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Abstract

In this work we study formal techniques for analysing information flow and
control properties in distributed systems modelled with Petri nets. The first
problem that we tackle consists in checking whether an agent observing only
part of a system is able to gather information about the hidden part. We
study this problem starting from two formal relations defined in the litera-
ture on the transitions of the Petri net: reveals and excludes. Reveals models
positive information flow, meaning that the observation of a transition gives
information about the occurrence of another one; excludes models nega-
tive information flow, meaning that observing a transition gives information
about the non-occurrence of another one. We define some generalizations
of these two relations and propose several algorithms to compute them on
a particular class of Petri nets.

We then consider a control problem: we assume that an agent can control
only some transitions on the Petri net and observe only some places; we
want to know whether the agent is able to enforce certain properties on
the system. We model the problem as a two-player asynchronous game on
the Petri net and study notions of observation that keep into account the
concurrent nature of the system. We propose algorithms to find strategies in
some particular cases, making use both of the unfolding and of the marking
graph, and we study the relation between our model and concurrent game
structures, introduced to define the game-based temporal logic ATL.

Finally, we start to explore the use of Petri nets to model asynchronous
multi-agent system. We consider a model defined on automata and show
that it can be equivalently expressed with Petri nets, possibly in a more
compact way.
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Chapter 1

Introduction

The main goal of this thesis is to develop new approaches for the formal
analysis and model-checking of information flow and control abilities in dis-
tributed systems.

We assume that an agent can observe parts of the distributed system,
and study two classes of goals for the agent on the system. The first class is
about the information that the agent can get on the unobservable part of the
system through its observations. This may happen because an unobservable
event is a cause or a consequence of an observable one, therefore its occur-
rence can be deduced without the need of a direct observation. The analysis
of information flow may be used to model-check security requirements, as
well as for system diagnosis. Some parts of the system may need to remain
secret, and the presence of information flow might violate the security of the
system. Security requirements can be formalized through noninterference
and opacity properties. On the contrary, we may want to be able to know
that a fault happened on the system, despite the impossibility of a direct
observation. This is the problem studied by diagnosis.

The second class of goals is about the control of a system. In this case,
not only the agent can observe a part of the system, but it can also control
it partially, influencing its global behaviour. We are interested to analyse
which properties the agent can guarantee on the system through its con-
trol. For example, the agent may try to guarantee that a service is always
available, or that the system never reaches a faulty state. We formalize the
control goals on the system through temporal logic formulas.

Despite the thesis is mostly focussed on the point of view of a single
agent, the considered problems may be generalized to a multi-agent context.
In the last part of the thesis we reason about models that could be used for
the analysis of this case.

We model the distributed systems with Petri nets. Petri nets explic-
itly represent concurrency, and this makes them a suitable tool to model
distributed systems, in which different components may modify different
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local parts of the global system without any need of time synchronization.
Whereas synchronous systems assume the presence of a global clock marking
the moments in which all the components together select which transition
to occur, in asynchronous systems, such as the one considered in this thesis,
concurrent transitions can occur at any moment independently from each
other.

The two most common tools for Petri net analysis are the marking graph
and the unfolding. The marking graph is a labelled transition system rep-
resenting all the global states of the system. The unfolding is a Petri net
explicitly representing all the possible executions of the system. The main
advantage of the unfolding with respect to the marking graph is that it
preserves the information about concurrency on the system, whereas the
marking graph hides it, creating several difficulties in the analysis of prop-
erties which are influenced by concurrency. On the other hand, transition
systems are more studied in the literature, and the techniques developed on
them can be very helpful for the analysis of some properties of Petri nets.
In this thesis we will use both these tools.

1.1 Outline and contribution

The rest of the thesis is organized as follows. Chap. 2 provides the back-
ground on Petri nets and the notation used in the rest of the thesis. In
particular, the chapter presents the classes of Petri nets used in the thesis
and discusses some of their features, formalizes the notions of unfolding and
marking graph, and presents the basic notions of the synthesis of Petri nets
through region theory.

In Chap. 3, we study a set of formal relations for the analysis of infor-
mation flow between transitions of a Petri net. We consider relations based
on the notions of reveals and excludes [70, 21]. Reveals was introduced in
the literature to study positive information flow between transitions; it is
used to express that observing a transition reveals that another transition
occurred, or will inevitably occur. On the contrary, excludes models nega-
tive information flow; it expresses that observing a transition excludes the
occurrence in the past or in the future of another one. In Sec. 3.1 we recall
the definitions in the literature for reveals and excludes on the transitions
of a Petri net, and we introduce new definitions, in which we assume that
the agent can count a certain number of repeated occurrences of a group
of transitions (Sec. 3.1.2). The definitions in Sec. 3.1.2 and the study of
the complexity of reveals and excludes in the class of 1-safe Petri nets in
Sec. 3.2 are the first contribution of this thesis. The main contributions of
this chapter is in Sec. 3.3, where we present a set of algorithms to compute
all the relations defined in Sec. 3.1 on the class of bounded equal-conflict
Petri nets. Finally, Sec. 3.4 discusses other works studying information flow
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and some applications of the relations presented in the chapter. Part of the
results in this chapter are in [7, 6, 1].

Chap. 4 presents the second main contribution of this thesis. In Chap. 4
we define a two-player game to model a control problem on an asynchronous
system modelled as a Petri net. The game is defined on the unfolding of
the Petri net; we assume that one of the two players (the user) can control
a subset of transitions, and we want to know whether it is able to force a
desired behaviour on the system, defined by a temporal logic. The user can
choose how to control the system on the basis of its observations, which are
defined as equivalence classes of B-cuts (antichains formed by conditions) on
the unfolding, its decisions are modelled by a strategy. Sec. 4.1 provides the
formal definitions of the game and discusses some notions of observations
on the basis of some examples. In particular, we focus the discussion on the
relation between observation of local states, memory and concurrency. In
addition to the classical notions of observations defined in games, we propose
a new notion based on stable parts of markings [4] that keeps into account
the impossibility of an observer to know in any moment the current global
state of a system in a concurrent structure, due to the possible changes of the
system in some locations from the time of their observation to the current
time. In Sec. 4.2 and Sec. 4.3 we show how to find a winning strategy,
if one exists, in some restricted cases of the game defined in Sec. 4.1. In
Sec. 4.2, we check the existence of a strategy on a prefix of the unfolding
for a reachability goal on the system. The result of this section is published
in [3]. In Sec. 4.3 we study the relation of our game with the one defined
on concurrent game structures [9] and provide an algorithm based on the
marking graph to find a winning strategy when the goal can be expressed
with a fragment of LTL. The result of this section is in [4]. Sec. 4.4 defines
a notion of implementable strategy. A strategy is implementable if it can be
encoded in the system by adding some places, so that in the system with
the additional places, all the runs are forced to follow the strategy. We show
how to check if a strategy is implementable in some particular cases. These
results are in [5]. Sec. 4.5 concludes the chapter by discussing related works.

Finally, in Chap. 5 we discuss a model of multi-agent system based on
Petri nets inspired to the asynchronous multi-agent systems (AMAS) defined
in [79] with automata networks. In Sec. 5.1 we discuss related works, with
a special focus on the definitions of AMAS in [79]. In Sec. 5.2 we discuss
the main contribution of the chapter, namely a method to construct our
model starting from an AMAS by using region theory, and the prove that
the equivalence of the two models is preserved by the composition of agents.
Finally, Sec. 5.3 present an algorithm to check whether any transition is not
1-live anymore after the composition. Part of the results on this paper are
in [8].

Chap. 6 concludes the thesis and propose future directions for the pre-
sented research.
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Chapter 2

Petri nets

Petri nets are formal tools for modelling concurrent and distributed systems.
They were introduced by Carl Adam Petri in his PhD thesis [105], and then
studied in many subsequent works, analysing their properties and applica-
tions, and proposing extensions to the original model. Among these works,
[101, 104] provide a general overview, [81, 50, 44] focus on the complexity
of some important properties of Petri nets, and [65, 132] discuss the use of
Petri nets in automatic control and model-checking, respectively.

Unlike in automata, in Petri nets, local states and the effect of transi-
tions on them are explicitly represented; a global state is a collection of local
states. This is convenient for modelling distributed systems, where the oc-
currence of a transition may not affect most of the global state, but change
only a few local states. During the last decades, several classes of Petri nets
have been defined, that differ by the nature of their local states; for exam-
ple, a local state can be a boolean condition, a counter, or a more complex
algebraic structure. The kind of local state defined on the net determines
how transitions can occur and modify the local states of the system.

In this thesis we consider the class of Place Transition (P/T) nets, where
local states are interpreted as counters, and some of its subclasses. This
chapter provides the basic definitions and notations used in the rest of the
thesis, and it is structured as follows.

Sec. 2.1 introduces P/T systems, and describes some properties of two
of their subclasses, namely equal-conflict P/T systems and 1-safe systems.
Sec. 2.2 and Sec. 2.3 present two of the most common models to describe
the behaviour of a net: the unfolding [49] and the marking graph. Sec. 2.4
compares the two models, focussing in particular on the case of equal-conflict
nets. Finally, Sec. 2.5 recalls the relation between labelled transition systems
and Petri nets [11].
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2.1 P/T systems

A P/T net is a graph with two kinds of nodes: places (or conditions) rep-
resented with circles, and transitions (or events), represented with squares.
Let P be the set of places, and T be the set of transitions; the flow relation
between the elements of the net is F ⊆ (P×T )∪(T×P ) and it is represented
with oriented arcs: let x, y ∈ P ∪ T , if (x, y) ∈ F , the arc starts from x and
arrives in y. Finally, we define a weight function W : (P ×T )∪ (T ×P )→ N
such that W (x, y) = 0 for each (x, y) ̸∈ F . In the graphical representation,
given a pair of elements (x, y) ∈ F , if W (x, y) > 1 we label the arc with
the value of W (x, y). Formally, a P/T net can be denoted as a quadru-
ple N = (P, T, F,W ). In the special case in which W (x, y) = 1 for each
(x, y) ∈ F , we can omit W and write the net as N = (P, T, F ).

Let A be an alphabet, a labelled net is a P/T net N = (P, T, F,W )
together with a function β : T → A mapping the transitions of the net on
the alphabet.

A net N ′ = (P ′, T ′, F ′,W ′) is a subnet of N = (P, T, F,W ) if P ′ ⊆ P ,
T ′,⊆ T , and F ′ and W ′ are respectively equal to F and W restricted to the
elements in N ′.

For each element of the net x ∈ P∪T , the pre-set of x is the set •x = {y ∈
P ∪T | (y, x) ∈ F}, the post-set of x is the set x• = {y ∈ P ∪T | (x, y) ∈ F}.
If x ∈ T , its pre-set (resp. post-set) is also called set of pre-conditions (resp.
post-conditions). Analogously, if x ∈ P , its pre-set and post-set are also
called set of pre-transitions and post-transitions respectively. The previous
notation can be extended to subsets of elements A ⊆ P ∪T : •A =

⋃
x∈A

•x
and A• =

⋃
x∈A x

•.
A net is finite if P ∪ T is finite, and infinite otherwise. A net is T-

restricted if for any t ∈ T , •t ̸= ∅ and t• ̸= ∅. In this thesis we consider only
T-restricted nets.

A marking is a function m : P → N describing the global state of the
net. A P/T system is a net with an initial marking, and it is denoted with
Σ = (P, T, F,W,min). A marking is graphically represented with tokens
(small black circles) inside places: for representing the marking m, for each
p ∈ P , we draw m(p) tokens in p.

Example 1. Fig. 2.1 represents a P/T system with 9 places and 8 tran-
sitions. In this system, W (p6, t5) = W (p6, t6) = 2. The initial marking
min : P → N can be explicitly described as min(pi) = 2 for 1 ≤ i ≤ 4,
min(pj) = 0 for 5 ≤ j ≤ 9.

A transition t ∈ T is enabled in a marking m, denoted with m[t⟩, if, for
each place p ∈ •t, p(m) ≥ W (p, t). If a marking m does not enable any
transition, we say that m is a deadlock. An enabled transition can occur,
or fire, producing a new marking m′ (denoted m[t⟩m′), such that for each
p ∈ P , m′(p) = m(p)−W (p, t) +W (t, p).
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Figure 2.1: Example of P/T system.

In Fig. 2.1, t1 is enabled in the initial marking. Its occurrence generate
the marking m′ such that m′(p1) = m′(p2) = m′(p5) = 1; m′(p) = min(p)
for all the other places. The marking m′′ such that m′′(p5) = 2, m′′(p7) = 2,
m′′(p) = 0 for each p ̸∈ {p5, p7} is a deadlock.

A markingm∗ is reachable from another markingm, if there is a sequence
of transitions t1t2 . . . tn such that m[t1⟩m1[t2⟩ . . .mn−1[tn⟩m∗; this is also
denoted with m[t1t2 . . . tn⟩m∗. We denote with [m⟩ the set of markings
reachable from m. A marking m is reachable if it is reachable from the
initial marking min, namely if m ∈ [min⟩. A transition is 1-live if there is a
marking m ∈ [min⟩ such that m[t⟩.

P/T systems allow for the explicit encoding of different relations be-
tween transitions: if two transitions t1, t2 ∈ T are enabled in a marking m,
they are said in conflict, denoted with t1#t2, if they are both enabled and
the occurrence of one disable the other, otherwise they are concurrent. In
Fig. 2.1, t1 and t2 are concurrent in min; however in the marking m′ reached
after the occurrence of t1, they are still both enabled, but in conflict.

In some situations concurrency and conflicts overlap in such a way that
it is not clear if in the execution of concurrent transitions a conflict has
been solved or not. This is a so called situation of ‘confusion’ which has
been discussed in several papers as for example in [118, 121], and which can
be formalised in the following way. Let m ∈ [min⟩, and t1, t2 ∈ T be two
concurrent transitions, then (m, t1, t2) is a confusion at m if cfl(t1,m) ̸=
cfl(t1,m2), where cfl(t1,m) = {t′ ∈ T : m[t′⟩m1 ∧ ¬m1[t1⟩}, and m2 is
such that m[t2⟩m2.

Example 2. Fig. 2.2 illustrates the two main situations of confusion, namely
asymmetric confusion, on the left side, and symmetric confusion, on the
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Figure 2.2: Asymmetric confusion (on the left) and symmetric confusion (on
the right side).

right side. In the net with asymmetric confusion, t1 and t2 are concurrently
enabled, whereas t3 is not. If t2 fires before t3, there is a conflict between t1
and t3 that needs to be solved; otherwise, if t1 fires before the occurrence of
t2, then t3 never becomes enabled. In the net with symmetric confusion, t1
and t2 are concurrently enabled, and t3 is in conflict with both of them. If
the conflict between t1 and t3 is solved in favour of t1, there is no conflict
anymore between t2 and t3, since t3 has been disabled. Simmetrically if t2
fires first.

A multiset of transitions U : T → N is concurrently enabled atm ∈ [min⟩,
denoted m[U⟩, and called step, if, and only if, ∀p ∈ P ,

∑
t∈T U(t) ·W (p, t) ≤

m(p). If U is enabled at m, it can occur producing the new marking m′,
denoted m[U⟩m′ and defined as follows: for each p ∈ P , m′(p) = m(p) −∑

t∈T U(t)·W (p, t)+
∑

t∈T U(t)·W (t, p). A multiset U : T → N is a maximal
step at m ∈ [m0⟩ if m[U⟩ and for each t′ ∈ T , there is a place p ∈ P such
that: m(p) <

∑
t∈T U(t) ·W (p, t) +W (p, t′).

Example 3. In Fig. 2.1, the multiset U such that U(t1) = 2, U(t3) = 1,
U(t4) = 1, and U(t) = 0 for all the other elements in T is a maximal step
concurrently enabled in min. The marking produced by its occurrence is m′

such that m′(p5) = 2, m′(p6) = 1, m′(p7) = 1, m′(p) = 0 for all the other
p ∈ P .

Remark 1. To simplify the notation, in some cases a multiset β : S → N
will be denoted as β = {sn|s ∈ S, β(s) = n > 0}. When n = 1, it will
be omitted. With this notation, the multisets in Ex. 3 are denoted as U =
{t21, t3, t4}, m′ = {p25, p6, p7}.

Analogously to occurrence sequences, a finite or infinite sequence of steps
(or maximal-steps) U1U2...Uk... is a step sequence (or a maximal-step se-
quence) enabled at m0, denoted m0[U1...Uk...⟩, if there are intermediate
markings m1...mk... such that: m0[U1⟩m1...[Uk⟩mk....

Whereas in standard Petri nets semantics transitions occur asynchronously,
maximal-step semantics require that in each moment as many transitions
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as possible occur. However, when the system allows for asymmetric con-
fusion, using maximal-step semantics may hide information about 1-live
transitions. For an example, consider the net on the left in Fig. 2.2. In
the initial marking, the only enabled maximal step is U = {t1, t2}. After
the occurrence of U , the new marking is m defined as m(p5) = m(p4) = 1,
m(p1) = m(p2) = m(p3) = m(p6) = 0. The marking m does not enable t3,
that therefore is never enabled when considering maximal-step semantics.
However, if instead of maximal steps we consider any possible behaviour
of the net, we find a marking in which t3 is enabled, namely the marking
reached after the occurrence of t2. In [80], the authors show that if there is
no asymmetric confusion, the two semantics are equivalent, namely a tran-
sition can fire n times in the initial net if, and only if, it can fire n times in
the net with maximal-step semantics.

The following subsection describes a subclass of P/T systems that rules
out confusion, and therefore in which some of its properties can be studied
with maximal-step semantics.

2.1.1 Equal-conflict systems

Equal-conflict Petri nets were introduced in [120] as a generalization of free-
choice nets [46]. Some of their properties are collected in [23, 78, 125, 126].

Definition 1. A Petri net Σ = (P, T, F,W ) is free-choice if the following
properties are satisfied.

1. For each pair of transitions t1, t2 ∈ T , if •t1 ∩• t2 ̸= ∅, then •t1 = •t2.

2. For each (x, y) ∈ F , W (x, y) = 1.

In the first definition [73], there was an additional condition imposing
that, if t1 and t2 are in conflict, then |•t1| = |•t2| = 1. Subsequent works
showed that this condition can be relaxed without losing any interesting
property.

Equal-conflict nets generalise the second condition by allowing weights
on arcs.

Definition 2. A net Σ = (P, T, F,W ) is equal-conflict if, and only if, the
first point of Def. 1 holds, and for each pair of transitions t1, t2 ∈ T , for
each place p ∈ •t1 ∩ •t2, W (p, t1) = W (p, t2).

Example 4. Fig. 2.1 represents an example of equal-conflict system. The
system in Fig. 2.4 is not equal-conflict since •t3 = {p2} ̸= •t2 = {p2, p3},
and •t2 ∩ •t3 ̸= ∅.

The structure of equal-conflict nets (resp. free-choice) nets guarantees
that when we consider an equal-conflict (resp. free-choice) system Σ =
(P, T, F,W,min), for each marking m ∈ [min⟩, if a transition t ∈ T is enabled
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Figure 2.3: An unbounded system.

in m, also all the transitions in conflict with t are enabled in m. This
excludes any possible situation of confusion and can lead to more efficient
algorithms. The structures of these nets is often sufficient to model business
processes, therefore they are of relevant use in some application domains
such as process mining [123, 127]. As a drawback, the absence of confusion
prevents them to model mutual exclusion and resource sharing situations
[118].

2.1.2 Bounded and unbounded systems

In general, a P/T system Σ = (P, T, F,W,min) may have an infinite number
of global states, namely [min⟩ is infinite, even if P ∪ T is finite. If this
happens, we say that Σ is unbounded. For an example, consider the system
in Fig. 2.3. Every time that transition t0 fires, it puts a token in place p2;
transition t2 takes a token from p2, but it can fire only twice, since it needs
also a token from its precondition p1. Since t0 can fire infinitely often, place
p2 can accumulate an infinite number of tokens and the net is unbounded.

Unbounded systems provide a finite structure to study systems with in-
finite states, and therefore they are a very powerful tool. However, many
problems are hard to solve on unbounded nets, and for many practical ap-
plications, models with a finite number of states are sufficient and easier to
analyse [50].

A system Σ = (P, T, F,W,min) such that |[min⟩| <∞ is called bounded.
Let k ∈ N; Σ is k-bounded (or k-safe) if, for each p ∈ P , for each m ∈ [min⟩,
m(p) ≤ k.

Fig. 2.1 represents a 4-bounded system: if both t2 and t3 occur twice
from the initial marking, the resulting marking has 4 tokens in p6 and none
in the other places. No other reachable marking assigns more than 4 token
to a place.

1-safe systems

When considering bounded systems, many studies focus on the analysis and
application of 1-safe systems [41, 82, 37, 28, 131], namely systems such that
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Figure 2.4: A 1-safe Petri net.

in each place of each reachable marking, either there is no token, or there is
only one token. In a 1-safe and 1-live system Σ = (P, T, F,W,min), W does
not add any information to F : if (x, y) ∈ F , then W (x, y) = 1, otherwise
W (x, y) = 0. Hence, we can denote a 1-safe system as Σ = (P, T, F,min),
without explicitly referring to W .

In such systems, places can be interpreted as logical conditions: given
a reachable marking m, a condition p ∈ P is true if m(p) = 1, and false if
m(p) = 0. Since there are no other possible values that a marking can take,
we can (and will) interpret a marking as the set of conditions that are true
in it.

Example 5. The system in Fig. 2.4 is 1-safe, and its initial marking is the
set {p1, p2}.

2.2 The unfolding

For analysing a P/T system, it is often useful to consider formal models
derived from it and explicitly describing its behaviour, such as the unfold-
ing [49]. The unfolding is an acyclic Petri net recording all the possible
executions of the system. Its elements are partially ordered, according to
a causality relation. If the system is cyclic, some of its executions may be
infinite, hence, in general the unfolding is an infinite object. To deal with it
algorithmically, many researchers defined finite prefixes, sufficient to verify
some properties of the system [52, 85, 27, 38]. In many cases, the size of
these prefixes is smaller than the size of the set of reachable markings.

In order to define the unfolding of a P/T system, we need to introduce
two technical relations and some preliminary definitions. The ≺ relation on
the elements of a net N is the transitive closure of F and ⪯ is the reflexive
closure of ≺. Let x, y ∈ P ∪ T , x ♮ y, iff there exist t1, t2 ∈ T : t1 ̸= t2, t1 ⪯
x, t2 ⪯ y and there exists p ∈ •t1 ∩ •t2.
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Figure 2.5: An equal-conflict P/T net (on the left) and a prefix of its un-
folding (on the right).

A net N = (B,E, F ), possibly infinite, is an occurrence net if the fol-
lowing restrictions hold:

1. ∀x ∈ B ∪ E : ¬(x ≺ x).

2. ∀x ∈ B ∪ E : ¬(x ♮ x).

3. ∀e ∈ E : {x ∈ B ∪ E | x ⪯ e} is finite.

4. ∀b ∈ B : |•b| ≤ 1.

An occurrence net can represent different histories of a net. The first point
guarantees the acyclicity of the net, the second and fourth points guarantee
that each time that there is a conflict, the branches of the net following
that conflict will never be reunited. The third point ensures the existence
of minimal element with respect to the ⪯ relation.

In an occurrence net, the elements of B are called conditions and the
elements of E are called events; the transitive and reflexive closure of F ,
⪯, forms a partial order. The set of minimal elements of an occurrence net
N with respect to ⪯ will be denoted by min(N). Since we only consider
T-restricted nets the elements of min(N) are conditions.

Example 6. The net on the right in Fig. 2.5 is a prefix of an occurrence
net. In this net, min(N) = {b0, b1, b2}.
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A configuration of an occurrence net N = (B,E, F ) is a, possibly infinite,
set of events C ⊆ E which is causally closed (for every e ∈ C, e′ ⪯ e
⇒ e′ ∈ C) and free of conflicts (∀e1, e2 ∈ C, ¬(e1 ♮ e2)). C is maximal if it
is maximal with respect to set inclusion.

In the net in Fig. 2.5 the set of grey events is a maximal configuration.
A configuration C is local if there is an event e ∈ C such that C = {e′ ∈

E | e′ ≤ e}, with E set of events of the unfolding. Such a local configuration
is denoted ⌊e⌋. Any local configuration is a finite set, and this is due to
condition 3. of the definition of occurrence nets.

On the elements of an occurrence net the relation of concurrency, co, is
defined as follows: let x, y ∈ B ∪ E, x co y, if neither (x ≺ y) nor (y ≺ x)
nor (x ♮ y).

A B-cut of N is a maximal set of pairwise concurrent elements of B,
and can be intuitively seen as a global state of the net in a certain moment.
An E-cut of N is a maximal set of pairwise concurrent elements of E, that
corresponds to a maximal step on N . By analogy with net systems, we will
sometimes say that an event e of an occurrence net is enabled at a B-cut γ,
denoted γ[e⟩, if •e ⊆ γ. We will denote by γ+e the B-cut (γ\•e)∪e•. A B-cut
is a deadlock if no event is enabled at it. We will denote by C(γ) the set of all
events in the causal closure of a B-cut γ, i.e., C(γ) = {e ∈ E | e ≺ b, b ∈ γ}.
We say that an event e ∈ E precedes a B-cut γ, and write e < γ, iff there is
y ∈ γ such that e ≺ y. In this case, each element of γ either follows e or is
concurrent with e in the partial order induced by the occurrence net. Given
an event e, we denote with γ(⌊e⌋) the minimal B-cut in which e is enabled,
namely, if ↓e = {e′ ∈ E : e′ ≤ e}, then γ(⌊e⌋) = ((↓e• \ • ↓ e) \ {e•}) ∪ {•e}.

Let Γ be the set of B-cuts of N . A partial order on Γ can be defined as
follows: let γ1, γ2 be two B-cuts. We say γ1 ≤ γ2 iff

1. ∀y ∈ γ2 ∃x ∈ γ1 : x ⪯ y

2. ∀x ∈ γ1 ∃y ∈ γ2 : x ⪯ y

In words, γ1 ≤ γ2 if any condition in the second B-cut is or follows a condi-
tion of the first B-cut and any condition in the first B-cut is or comes before
a condition of the second B-cut. γ1 < γ2 if the conditions above hold and
∃x ∈ γ1,∃y ∈ γ2 : x ≺ y.

A sequence of B-cuts, δ = γ0γ1 . . . γi . . . is increasing if γi < γi+1 for
all i ≥ 0. A cut γ is compatible with an increasing sequence of B-cuts δ iff
either there are two cuts γi, γi+1 ∈ δ such that γi ≤ γ ≤ γi+1 or γ < γ0.

Given an increasing sequence of B-cuts δ, we define a refinement δ′ of δ
as an increasing sequence of B-cuts such that for each γ ∈ δ, γ is also in δ′.
A maximal refinement δ′ is an increasing sequence of B-cuts such that there
is no γ ̸∈ δ′ compatible with δ′.

Example 7. In the occurrence net in Fig. 2.5, the set γ = {b3, b4, b5} is
a B-cut, the set {e4, e5} is an E-cut. The set γ′ = {b1, b2, b6, b7} is also a
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B-cut, C(γ′) = {e1, e2}, γ′[e4⟩, and γ′+e4 = γ′′ = {b1, b3, b7}. The sequence
δ = γ′, γ is an increasing sequence of B-cuts. The cut γ′′ is compatible with
δ.

A branching process of a bounded 1-live PT system Σ = (P, T, F,W,min),
whose underlying net is T-restricted, is a pair (N,λ), where N = (B,E, F )
is an occurrence net, and λ is a map from B ∪ E to P ∪ T such that:

1. λ(B) ⊆ P ; λ(E) ⊆ T

2. ∀e ∈ E, ∀p ∈ P , W (p, λ(e)) = |λ−1(p)∩•e| andW (λ(e), p) = |λ−1(p)∩
e•|

3. ∀p ∈ P min(p) = |λ−1(p) ∩min(N)|

4. ∀x, y ∈ E, if •x = •y and λ(x) = λ(y), then x = y

We extend the definition of λ to the set of configurations of the branching
process: for each configuration C, λ(C) is the multiset of the transitions
whose occurrences are recorded in C and is called the footprint of C; formally
λ(C) =

∑
ei∈C λ(ei). We denote the number of occurrences of a transition

t in the footprint as λ(C)(t). If a transition t belongs to the support set
of λ(C), i.e.: at least an occurrence of t is in C, λ(C)(t) ≥ 1, then we use
the notation t ∈ λ(C). If C is infinite, it records the infinite occurrence
of some transitions, and the multiset λ(C) is such that the multiplicity of
those transitions is infinite, whereas its support set is obviously finite, being
a subset of T .

Let t ∈ T be any transition of a P/T system, we denote with Et = {e ∈
E : λ(e) = t} the set of occurrences of t on the branching process.

A branching process (N1, λ1) is a prefix of a branching process (N2, λ2)
if N1 is a subnet of N2 containing all minimal elements (min(N2)) and such
that: if e ∈ E1 and (b, e) ∈ F2 or (e, b) ∈ F2 then b ∈ B1; if b ∈ B1 and
(e, b) ∈ F2 then e ∈ E1; and λ1 is the restriction of λ2 to B1 ∪ E1.

Any finite P/T system Σ = (P, T, F,W,min) has a unique branching
process which is maximal with respect to the prefix relation. This maximal
branching process, called the unfolding of Σ, will be denoted by unf(Σ) =
(B,E, F, λ), where λ is the map from (B,E, F ) to (P, T, F ).

A run records a possible non sequential behaviour of the system, it
is a branching process, whose occurrence net is free of conflicts, i.e., its
set of events is a configuration. A run is maximal if the corresponding
configuration is maximal. Let ρ be a run, its footprint λ(ρ) is equal to the
footprint of its set of events.

Example 8. The net in Fig. 2.5 on the right is a prefix of the unfolding
unf(Σ) of the P/T system Σ in the same figure on the left. For each element
x in unf(Σ) represented in the prefix, the outside label is the name of λ(x)
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Figure 2.6: Sequential marking graph of the system on the left in Fig. 2.5.

in Σ. Since the same label can occur multiple times, some elements have also
a second label inside the node, identifying their occurrence on the unfolding.
Let C be the configuration formed by the events coloured in grey in the figure.
Its footprint is λ(C) = {t0, t4, t5, t27}, where t27 denotes that λ(C)(t7) = 2.

2.3 The marking graph

The marking graph is an initialized labelled transition system (lts) used
to analyse the behaviours of a P/T system. The formal definition of lts
follows.

Definition 3. An lts is a quadruple ts = (Q,U,A, q0), where:

• Q is a set of states.

• U is a set of labels.

• A ⊆ Q×U ×Q is a set of arcs or transitions labelled with elements of
U .

• q0 is an initial state

Transitions in lts and transitions in Petri nets are two different notions,
for this reason, if the context can create ambiguity, the term ‘arcs’ will be
preferred when referring to lts.

In a marking graph, the set of states coincides with the set of reachable
markings, and the arcs are labelled as the transitions in the net.

Formally, let Σ = (P, T, F,W,min) be a P/T system. The sequen-
tial marking graph (or simply marking graph) of Σ is an lts mg(Σ) =
([min⟩, T, A,min), such that for each pair of markings m1,m2 ∈ [min⟩,
(m1, t,m2) ∈ A if, and only if, m1[t⟩m2.
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Figure 2.7: Marking graph of maximal steps of the system in Fig. 2.5.

Example 9. Fig. 2.6 represents the marking graph of the P/T system in
Fig. 2.5. Each state is labelled with a reachable marking, and each arc with
the name of a transition of the system. The initial state on the marking
graph is labelled {p0, p25}, where the notation p25 means that, in the initial
marking min, min(p5) = 2, and analogously for the other nodes where an
exponent appears.

The marking graph provides a description of the system based on the
sequences of transitions that can occur from the initial marking. If Σ is
bounded, mg(Σ) is finite. However, its size can be exponentially larger than
the size of Σ. This happens because in each marking, concurrent transitions
can fire in any order, and since the marking graph uses interleaving seman-
tics, it needs to record all of them. For this reason the marking graph is
said to suffer of the state explosion problem.

2.3.1 Maximal-step semantics in the marking graph

The maximal-step semantics discussed in Sec. 2.1 for P/T systems can also
be used in the construction of the marking graph. Let Σ = (P, T, F,W,min),
its marking graph of maximal steps, denoted mmg(Σ) or, if Σ is clear from
the context, just mmg, is an lts where the arcs are labelled with maximal
steps of transitions, and the states are the markings that can be reached on
the system through the occurrence of maximal steps from the initial mark-
ing. The marking graph of maximal steps is at most large as the sequential
marking graph, and it may be smaller in P/T systems with concurrent transi-
tions, since the maximal steps may hide some reachable markings. However,
as discussed in Sec. 2.1, in case of asymmetric confusion in the P/T system,
analysing the system with maximal-step semantics may provoke loss of in-
formation also with respect to the set of transitions that can be enabled in
a system.

Example 10. The lts in Fig. 2.7 represents the marking graph of maximal
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steps of the system in Fig. 2.5. Compared to the sequential marking graph in
Fig. 2.6, this lts has two states less, that can never be reached by considering
only maximal steps. However, since the P/T system is equal-conflict, all the
transitions that can be enabled in the P/T system are represented in the
marking graph of maximal steps.

2.3.2 Tree-unfolding of the marking graph of maximal steps

Let ts = (Q,U,A, q0) be an lts on alphabet T , namely in which U is the set
of labels of the transitions in A, and it is the set of multisets of the elements
in T . A path on mmg is a possibly infinite sequence π = q0u0q1u1...qnun...
such that for each i ∈ N, qi ∈ Q, un ∈ U , and (qi, ui, qi+1) ∈ A. Given
a path π, we can define a footprint of π, analogous to the footprint of a
configuration defined in Sec. 2.2. With an abuse of notation, we define λ(π)
the footprint of π, namely the multiset union of all the labels occurring in
π.

In order to represent explicitly all the paths of an lts, we can unfold
it in a tree. A first version of this tree was introduced in [7] for represent-
ing the marking graph of maximal steps in 1-safe free-choice systems, and
then adapted to the class of bounded equal-conflict PT systems in [6]. In
[1] the tree is generalised to any labelled transition system, therefore also
including those representing the maximal-step marking graph of bounded
P/T systems. Here we consider this last formal definition.

Definition 4. Let ts = (Q,U,A, q0) be a labelled transition system on al-
phabet T . The unfolding-tree of ts, denoted as ts-tree, is a tree defined as
follows.

• Each node of the tree is labelled with a state in Q.

• The root of the tree is labelled with the initial state q0.

• From each node labelled with state q in the tree, for each transition
(q, u, q′) in ts, there is exactly an arc in the tree, labelled with u, and
leading to a node labelled with q′.

Analogously to the path in a ts, a path in a ts-tree is a sequence π =
q1u1q2u2 · · · , such that, for each i, there is an arc from qi to qi+1, labelled
with ui. A path is initial if it starts in the root of the tree. A path can
be either finite or infinite. Let v, r be two nodes on the same path π in a
ts-tree, v < r iff v is closer to the root than r. The footprint λ(π), is the
(multiset) union of all the labels occurring in π.

By construction, for each maximal path π in a ts, there is a maximal
path π′ on the ts-tree with the same footprint and vice versa.

We define an inclusion relation between footprints: let π1 and π2 be
paths on a ts-tree; then λ(π1) ⊆ λ(π2) iff ∀t ∈ T , λ(π1)(t) ≤ λ(π2)(t), i.e.,
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Figure 2.8: The tree-unfolding of the mmg in Fig. 2.7.

for each element t, the number of occurrences in the footprint of π1 is less
than or equal to that in the footprint of π2.

To simplify the notation, we will write t ∈ λ(π) when λ(π)(t) ≥ 1,
namely when t occurs in some step of path π.

Example 11. Fig. 2.8 represents a prefix of the tree of the lts and mmg
in Fig. 2.7. A non-maximal initial path on the tree is for example

π = {p0p25}{t0}{p1, p25}{t1}{p0, p25}.

The footprint of π is λ(π) = {t0, t1}.

The following lemma states a property of ts-trees that will be useful for
the results presented in Chap. 3.

Lemma 1. Let ts = (Q,U,A, q0) be an lts, and vi and vk be two nodes of
the ts-tree labelled with the same elements of Q. The subtree with vi as root
and the one with vk as root are isomorphic.

Proof. Since vi and vk are associated to the same element in Q, the arcs
leaving from vi and from vk have the same labels. Then, by construction
the children of vi are equivalent to the children of vk, and the same reasoning
can be applied to each of them.

Let π be a path on a ts-tree, and v be a node on π; we denote with v ↓π
the set of nodes r ∈ π such that v ≥ r, and symmetrically, with v ↑ π the
set of nodes r ∈ π such that v ≤ r. On the maximal paths of the msc-tree,
we can define a peeling operation as follows [7, 72].

17



Definition 5. Let ts = (Q,U,A, q0) be an lts, π = v1U1v2U2 · · · be a
maximal path on the ts-tree, vi and vk be two nodes in π associated to the
same element of Q and such that i < k. Let πi,k be the subpath between vi+1

and vk. The peeling of π with respect to πi,k is the path π′ =peel(π, πi,k)
such that vi ↑ π = vi ↑ π′, πn,k is deleted from π, and vk ↓ π is equivalent to
vi ↓ π′.

In words, peeling π means to consider the execution in which the cycle
πi,k has not been executed. The path π′ constructed in this way is also
maximal in the ts-tree.

Some Notation for the tree-unfolding

In the following we will introduce some notations which will be used through-
out Chap. 3. In all the following items, A will denote a tree-unfolding, or
any sub-tree of it.

• ΠA is the set of all the maximal paths of A.

• Given a node v in a tree A, we denote Av the largest sub-tree of A
whose root is v.

• Given a transition t, we write

Πt
A := {π ∈ ΠA | t ∈ λ(π)}.

• Given a finite path π of A, let leaf(π) denote the single leaf in this
path.

2.4 Unfoldings and marking graphs of maximal
steps in equal-conflict P/T systems

The unfolding presented in Sec. 2.2, and the marking graph presented in
Sec. 2.3 are the two most common tools for the analysis of P/T systems.

The use of the unfolding is sometimes convenient, since prefixes on which
some properties can be verified are often significantly smaller than the mark-
ing graph [52]. In addition, the unfolding has an explicit representation of
concurrency and partial order between elements, whereas the marking graph
represents the system using sequential semantics.

On the other hand, the large body of works for finding properties on lts
and the explicit representation of the global states make the marking graph
a practical tool to verify properties of P/T systems.

When we focus on equal-conflict P/T systems and maximal-step seman-
tics, there is a strong relation between the unfolding and the marking graph
of maximal steps.
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Figure 2.9: A prefix of the unfolding of the P/T system in Fig. 2.5, and a
prefix of tree-unfolding of its marking graph.

In [25], the authors studied the relationships between various classes of
non-sequential processes (runs of an unfolding), occurrence sequences and
step sequences. They showed that, in the special case of countable, T-
restricted P/T systems of finite synchronisation (i.e., where any transition
has a finite set of pre- and post-places) with finite initial marking, and then
also in the case of the bounded equal-conflict P/T systems, the distinction
between occurrence sequences and step sequences disappears. Moreover, for
the same class of P/T systems, they showed that it is possible to consider
equivalence relations both on the set of occurrence sequences and on the set
of processes such that there is a bijection between the induced equivalence
classes.

In the case of occurrence sequences, the equivalence relation abstracts
w.r.t. the total order arbitrarily chosen when transitions are concurrent; in
the case of processes, the equivalence abstracts from the distinction among
several tokens on the same place.

From the construction of the equivalence classes both of occurrence se-
quences and of processes, it is possible to observe that the elements in each
class have the same footprints, i.e., the same multiset of transitions which
can be observed through the corresponding behaviour, and that elements
of an equivalence class in bijective correspondence with a class of the other
sort have the same footprint too.

Example 12. Fig. 2.9 recalls the unfolding of the equal-conflict system in
Fig. 2.5, and the tree-unfolding of the marking graph of maximal steps of
the same P/T system.

The run coloured in grey in the unfolding has the same footprint of the
path coloured in grey in the tree-unfolding. We can verify that we can find
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a path for all the maximal runs of the unfolding.
Given a path on the tree, we may find more that a maximal run of the

unfolding, for example, to the grey path on the tree, we can associate both
the grey run on the unfolding, and the run without e4, but with the other
occurrence of t5. This is not bothering, since the two runs are associated to
indistinguishable executions on the P/T system.

2.5 Synthesis with region theory

Let ts = (Q,U,A, q0) be an initialized labelled transition system. The
synthesis problem consists in finding a P/T system Σ, if one exists such
that ts is the marking graph of Σ. A method to address this problem is
given by region theory.

Regions were introduced in [48], and in [100] they were extended to the
synthesis of P/T systems. Intuitively, a region corresponds to a potential
place of the P/T system. An lts is synthesizable into a P/T system if its
set of regions satisfies some constraints. In this section, we will first consider
region theory in general P/T systems, and then focus on the special case of
the synthesis of a 1-safe system. For a detailed overview on region theory
and the synthesis problem, refer to [11].

We assume that in all the lts under consideration all the states are
reachable from the initial state, and that every label appears in at least one
arc. The marking graph of a 1-live P/T system fulfills these properties.

Definition 6. Let ts = (Q,U,A, q0) be an lts. A region of ts is a pair
of maps (r, wr), with r : Q → N, and wr : U → N × N, such that, for each
(q, t, q′) ∈ A, if wr(t) = (x, y), the following conditions hold.

1. r(q) ≥ x;

2. r(q′) = r(q)− x+ y

If we think of r as a map giving the number of tokens in a potential place
in each state, then Def. 6 states that every firing of t has the same effect
on the region r. For each region, the function wr does not depend on the
choice of the arc, but only on its label. For each label t ∈ U , the value wr(t)
expresses the change in the value of r produced by any arc labelled by t.

Example 13. Consider the labelled transition system in Fig. 2.10, and the
two maps r1 and r2 tabulated on the right of the picture. Let wr1(a) = (0, 1),
wr1(b) = (0, 1), and wr1(c) = (1, 0); and let wr2(a) = (1, 0), wr2(b) = (0, 0)
wr2(c) = (0, 0). The pairs (r1, wr1) and (r2, wr2) are regions of ts.

In order to have a solution for the synthesis problem, the lts needs to
satisfy some separation requirements.
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q0 q1 q2 q3 q4 q5 q6

r1 0 1 1 2 0 0 1
r2 1 0 1 0 0 1 0

Figure 2.10: An lts and two of its regions.

Let q1, q2 ∈ Q be two distinct states of ts = (Q,U,A, q0). A region
(r, wr) separates q1 and q2 if r(q1) ̸= r(q2). In this case, r solves the state
separation problem (q1, q2). Let t be a label in U , and q a state such that t
is not enabled in q; a region (r, wr) separates t from q if in wr(t) = (x, y),
x > 0 holds, and r(q) < x.

Intuitively, we can think of r as a place of a P/T system, with r(q) the
number of tokens in r in state q. The occurrence of t in r takes x token
from r, hence r is an input place of t; then r(q) < x means that in state q,
r does not contain enough tokens to allow for the firing of t. We will then
say that r solves the state-event separation problem (q, t).

A labelled transition system ts is separated if, for each pair of distinct
states, there is a region solving the corresponding separation problem, and,
for each state q and for each label t not enabled in q, there is a region solving
the corresponding separation problem.

If the transition system is not separated, we cannot synthesize a P/T
system such that its marking graph is isomorphic to the transition system.

We will say that a set D of regions separates ts = (Q,U,A, q0), if it
contains enough regions to solve all separation problems. If this is the case,
we can define a P/T system as follows. Let R = {r : (r, wr) ∈ D} be the set
of functions describing the states in the regions, we identify this set with the
set of places in the P/T system. In the P/T system Σ = (R,U, F,W,min),
the flow relation and the weights between elements are defined in this way:
for each region r in R, for each t ∈ U , let wr(t) = (x, y); then W (r, t) = x
and W (t, r) = y. For all r in R, min(r) = r(q0).

If R separates ts, then the marking graph of Σ is isomorphic to ts
(see [11] for a proof).

For each separation problem, there is an algorithm, polynomial in the
size of ts, which decides if there is a region solving it, and, if so, effectively
finds a separating region. For details on the algorithm, again see [11].

Example 14. Consider again the transition system ts shown in Fig. 2.10.
The rows of the table on the left of Fig. 2.11 correspond to the function
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q0 q1 q2 q3 q4 q5 q6

r1 0 1 1 2 0 0 1
r2 1 0 1 0 0 1 0
r3 1 1 0 0 1 0 0
r4 0 1 0 1 1 0 1
r5 1 1 1 1 0 0 0
r6 0 0 0 0 1 1 1
r7 0 0 1 1 0 1 1

Figure 2.11: A P/T system synthsizing the lts in Fig. reff:ptlts.

associated to places in the net, which are part of a separating set of regions
for ts. The P/T system on the right is the corresponding is constructed
from them as described above.

In order to clarify the correspondence between regions of a transition
system and places of a net system, consider a bounded P/T system Σ =
(P, T, F,W,min) and its marking graph mg(Σ) = ([min⟩, T, A,min). Choose
a place p and define a map fp : [min⟩ → N as follows:

∀m ∈M : fp(m) = m(p).

As a consequence of the firing rule of P/T nets, such a map satisfies a
uniformity property: for each transition t, and for each edge (m, t,m′) in A,
the difference fp(m)− fp(m′) is the same, and is equal to W (p, t)−W (t, p).
The marking graph mg(Σ) is separated by the set of regions corresponding
to the places of Σ.

Remark 2. Let ts = (Q,U,A, q0) be an lts; it may not exist any set of
regions separating ts (see Ex. 15). However, we can always synthesize a
labelled net by splitting transitions with the same label (in the worse case,
element of A is associated to a different transition on the net). The problem
of deciding how to split transitions by keeping their number as small as
possible and preserving the behaviour described by ts has been tackled under
different assumptions in [35, 114].

Example 15. Consider the lts in Fig. 2.12; from the state q1, transition
c can occur followed by transition d, which restore the state q1. In the P/T
system, this means that the effect of c in a given marking is cancelled by
the occurrence of d. However, this is contradicted by the structure of the
lts starting in q3: the sequence cd can also occur, but it does not return to
q3. In order to obtain a P/T system with the behaviour described in the lts
we need to split some labels, for example by considering different transitions
labelled with c in the P/T system.
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Figure 2.12: An lts that can be synthesized only with a labelled net on the
left, and a labelled P/T system synthesizing it on the right.

The labelled P/T system on the right of the same figure is obtained
through the synthesis of the lts on the left, where the transitions labelled
with c starting from q1 has been considered as a different transition from the
ones starting from q3 and from q5 (on the P/T system they are labelled with
c1 and c2 respectively).

2.5.1 Synthesis of 1-safe systems

In the special case in which we need to synthesize a 1-safe system, we can
consider a region as a set of states in an lts. In this section we show how
regions are characterized when we see them as sets, and how the separation
problems are formalized in this case. This notions could be equivalently
expressed as a restriction of the general case, by imposing that for each
region (r, wr), for each state q, r(q) ∈ {0, 1}, and for each label t, wr ∈
{0, 1} × {0, 1}. However, considering regions as subset of states is more
convenient for this case, and translation into this formalism is not immediate,
therefore we explicitly discuss it in this section.

Let ts = (Q,U,A, q0) be a transition system from which we want to
synthesize a 1-safe system.

Definition 7. A set r ⊆ Q is a region if, and only if, for each label t ∈ U ,
one of the following conditions hold.

1. For each arc (q, t, q′) ∈ A, q ∈ r and q′ ̸∈ r.

2. For each arc (q, t, q′) ∈ A, q′ ∈ r and q ̸∈ r.

3. For each arc (q, t, q′) ∈ A, q ∈ r and q′ ∈ r, or q ̸∈ r and q′ ̸∈ r.

Let ts = (Q,U,A, q0) be an lts. ts is synthesizable with a 1-safe net if
there is a set of regions D satisfying the following separation properties.
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Figure 2.13: An lts and the synthesised 1-safe system

• For each pair of states q1 ̸= q2 in Q, there is a region r ∈ D such that
q1 ∈ r, q2 ̸∈ r.

• For each state q ∈ Q, and each label t ∈ U such that there is no arc
(q, t, q′) ∈ A, there is a region r ∈ D such that q ̸∈ r, and either r
satisfies condition (1) in Def. 7, or for each arc (q1, t, q2) ∈ A, q1 ∈ r
and q2 ∈ r.

If such a set D exists, a 1-safe system Σ = (D,U, F,min) can be synthesized
as follows. For each place r ∈ D, and for each transition t ∈ U , if condition 1
in Def. 7, (r, t) ∈ F ; if condition 2 holds, then (t, r) ∈ F ; if condition 3 holds,
and in particular, for each arc (q, t, q′) ∈ A, q, q′ ∈ r, then (r, t), (t, r) ∈ F .

A region r is minimal if there is no region r′ such that r ⊆ r′. In [19],
the author proved that, if a set of regions separating an lts exists, the set of
minimal regions of the lts is sufficient to solve all the separation problems.

Example 16. Consider the transition system on the left of Fig. 2.13, with q0
as initial state. The green and red circle correspond to four different regions
on it. This regions are sufficient to solve all the state separation problems,
and state-transition separation problems. The synthesis process with these
four regions produces the 1-safe system on the right of the same figure. In
particular, place p0 is the region {q0, q2}: since it contains the initial state
in the lts, it belongs to the initial marking in the net; p0 is a precondition of
transition a, for both the arcs labelled with a, the region satisfies condition 1
of the Def. 7; it is a postcondition of transition c since it satisfies condition
3 of the definition, and has no relation with b, since q1 and q3 are outside
the region.

Implicit places

In a 1-safe system Σ = (P, T, F,min), each marking is a set of places, there-
fore, also each state of the marking graph can be seen as a set of places.
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We can associate to each place its extension, namely the set of reachable
markings to which it belongs:

∀p ∈ P r(p) = {m ∈ min | p ∈ m}.

The extension of a place satisfies a few properties, and in particular it is a
region of the 1-safe system.

We have already discussed in Sec. 2.5 that regions can be associated to
places of the net. In general, in the marking graph mg(Σ) of a 1-safe net Σ,
not all the region also extensions of places of Σ. However, if r is a region
of mg(Σ), then we can add a corresponding place to Σ without changing its
behaviour: the marking graph of the extended net system is isomorphic to
the marking graph of Σ. The place r ∈ P is connected to the transitions of
Σ according to the synthesis rules presented in Sec. 2.5.1.

Definition 8. Let Σ = (P, T, F,min) be a 1-safe system, and mg(Σ) its
marking graph. An implicit place is a region of mg(Σ) not associated to
any extension of places in P .

Given a set of regions on the marking graph, we can find new regions
by considering combinatorial properties on lts. Two regions, r1 and r2,
are compatible if there exist three, pairwise disjoint, regions, u1, u2, u3 such
that r1 = u1 ∪ u2 and r2 = u2 ∪ u3. If r is a region, then its set-theoretic
complement Q \ r is a region. In general, regions are not closed by union
and intersection, but the union of compatible regions is always a region. In
particular, the union of disjoint regions is a region. Since each region can
be associated to a (potential) place on the net, these same properties can be
equivalently stated between places of Σ. In particular, for each place p ∈ P
with extension r(p), its complement pc is the place with extension Q \ r(p);
two places p1, p2 ∈ P are compatible, denoted with p1$p2, iff their extensions
r(p1) and r(p2) are compatible; the union of two compatible places p1 and
p2 is the place with extension r(p1) ∪ r(p2) and is denoted with p1 ∨ p2.

Let H be a set of implicit places of Σ; then ΣH denotes the net system
obtained from Σ by adding the implicit places in H. For each place h in
H we add an arc to the flow relation from t to h for each t in •h and an
arc from h to t′ for each t′ in h•. An implicit place belongs to the initial
marking of ΣH if m0 belongs to the corresponding region.

Example 17. The left of Fig. 2.14 represents the 1-safe system of Fig. 2.4
with an implicit place, coloured in grey. Its marking graph is on the right of
the same figure. The region delimited by the red line on the marking graph is
the extension of place p8. The implicit place derives from the region coloured
in green on the transition system. This region is not represented in Fig. 2.4,
and it is not necessary to solve any separation problem. It is the union of
the extensions of places p4 and p8.
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Figure 2.14: An implicit place on the 1-safe system in Fig. 2.4.
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Chapter 3

Information flow between
transitions of a Petri net

In distributed systems, the actions happening in one of the components may
not be totally observable by another one, for example for physical distance
or for security reasons, but the two components may still be able to interact
with each other. If the structure of the system is known, even if an action
is not directly observable, sometimes a user can deduce its occurrence by
the observation of other parts of the system. This information flow between
events of a system may be wanted, for example to discover a fault in a
system, or unwanted, if private information can be deduced from public
one.

Formal methods can help to analyse the information flow in a distributed
system. This has several applications, among them, the diagnosis [70], where
we want to know if a set of observations is enough to detect an invisible
fault in the system, the noninterference [32], where we need to guarantee
that the observation of public events does not reveal information about the
occurrence of private events, and the opacity [31], where we require that for
any execution of the system satisfying a secret property, there is another
execution with the same observations and such that the property is not
satisfied.

In this chapter, we focus on a particular method for the analysis of
information flow on distributed systems modelled with Petri nets, based on
a reveals and an excludes relation between transitions of the P/T system
[70, 21].

Sec. 3.1 recalls the definitions already introduced in the literature, and
introduces some new relations based on reveals; Sec. 3.2 studies the complex-
ity of checking some of these relations in 1-safe systems. Sec. 3.3 proposes an
algorithm for checking the relations on bounded equal-conflict systems. Part
of the results presented in these sections are published in [7, 6, 1]. Finally,
Sec. 3.4 discusses different notions of diagnosis, noninterference, and opac-
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Figure 3.1: Petri net model of a business process.

ity, and shows how reveals have been used or can be used in these contexts.

3.1 Reveals and excludes relations

In the analysis of information flow, we are interested in studying whether
an agent allowed to observe only some transitions of a P/T system is able
to gain information about the occurrence of other hidden transitions. The
information may be positive, if the agent discovers the occurrence of a hid-
den transition through its observations, or negative, if the user discovers
the impossibility of a hidden transition to occur. The reveals relation was
introduced in [70], with the name of covering relation, to model positive
information flow between the events in the unfolding of a 1-safe system. In
[12], the authors propose an extended reveals relation, generalising the re-
lation in [70]. In this thesis we focus on reveals relations on the transitions
of the P/T system, rather than on the unfolding of the net; this version was
defined in [21]. In the same paper, the authors formalized an excludes rela-
tion between transitions of a P/T system, to model the negative information
flow.

Before proceeding with formal definitions, we give an intuition of the
reveals and excludes relations with an example.

Example 18. The P/T system in Fig. 3.1 is adapted from a model in
Chap. 2.3 of “Process Mining” book by Aalst [124]. The net models the
handling of compensation requests within an airline. A customer may place
a request for various reasons. After a request, the ticket is checked and
an inspection is performed in parallel. However, inspection can be in two
different ways, which is modelled via conflicting activities. Transition t2
and t5 model a critical inspection activity, which is performed for suspicious
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or complex requests. Transition t3 and t6 model a casual inspection activity,
which is performed for regular requests. A decision is made only after that
the check of the ticket and the inspection have been performed.

There are three possible outcomes of the decision: the requested compen-
sation is paid, the request is declined, or further processing is needed. In the
first two cases the process is finalised. In the latter case the process returns
to the marking {p2, p3}.

Since each execution of the P/T system must start with transition t1,
even if t1 is not directly observable, observing the occurrence of any other
transition reveals that t1 must have occurred. This is not a security concern,
since we can assume that for each component involved in the analysis of the
request, it is not a secret that a request has been sent. We may be concerned
if a user that can observe only the outcome of a request, can deduce on
which kind of inspection the request went through. This is not the case in
this model, since before the occurrence of t8, t9, and t10, both t2 and t3 may
have occurred; hence, t8, t9, and t10 do not reveal neither t2 nor t3.

In this P/T system we can detect also some negative information flow:
the occurrence of t10 excludes the occurrence of t9, and vice versa.

In Sec. 3.1.1 we recall some of the definitions in [21], and in Sec. 3.1.2
we propose new parametric relations based on reveals.

3.1.1 Reveals and excludes relations in the literature

In [21] reveals, extended-reveals and excludes relations are defined for the
transitions of a Petri net with the aim of modelling information flow in
concurrent systems. For all this relations, we assume progress of the sys-
tem, namely, an enabled transition either fires or gets disabled by another
transition in conflict with it.

Reveals relation

The reveals relation was originally introduced for events of an occurrence
net in [70]. In [72] the authors applied it in the field of fault diagnosis.
In [21] the reveals relation is redefined for the transitions of a 1-live P/T
system.

Transition t1 reveals transition t2 if each maximal configuration which
contains an occurrence of t1 also contains at least one occurrence of t2. This
means that, from the occurrence of t1, we can deduce that t2 has already
occurred or will inevitably occur. In other words, the occurrence of t1 implies
the occurrence of t2 either in the past or in the future. The formal definition
follows.

Definition 9. Let Σ = (P, T, F,W,min) be a 1-live P/T system, unf(Σ) =
(B,E, F, λ) be its unfolding, and Cmax be the set of all its maximal config-
urations. Let t1, t2 ∈ T be two transitions; t1 reveals t2, denoted t1 ▷ t2, iff
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∀ C ∈ Cmax

t1 ∈ λ(C) =⇒ t2 ∈ λ(C).

Reveals is a reflexive and transitive relation. However, it is neither sym-
metric nor anti-symmetric.

Example 19. As already discussed in Ex. 18, in Fig. 3.1 transition t9▷ t1,
but t1 ̸▷ t9, since there is a maximal configuration in the unfolding with t1
and without t9. Reveals is also not anti-symmetric, for example in Fig. 3.1
t3 ▷ t6 and t6 ▷ t3.

Extended-Reveals relation

In some cases, one transition alone does not give much information about the
occurrence of another transition. However, the occurrence of a set of tran-
sitions might give information about the occurrence of others. For example,
the occurrence of all the transitions in a set Y can imply the occurrence of
some transitions in set Z. This relation was originally defined in [12] for the
events of an occurrence net and used in the field of fault diagnosis. Later
the relation was expressed in terms of the transitions of a Petri net [21], and
used to analyse noninterference for information-flow security.

Definition 10. Let Σ = (P, T, F,W,min) be a 1-live P/T system, unf(Σ) =
(B,E, F, λ) be its unfolding, Y,Z ⊆ T , and Cmax be the set of all maximal
configurations. If there is at least a C ∈ Cmax where all the element of Y
occur, then Y extended-reveals Z, denoted Y _ Z iff ∀ C ∈ Cmax∧

ti∈Y
ti ∈ λ(C) =⇒

∨
tj∈Z

tj ∈ λ(C).

Extended-reveals relation is reflexive and nontransitive. It is neither
symmetric nor anti-symmetric. The reveals relation coincides with the
extended-reveals relation between singletons, i.e., t1 ▷ t2 can be written
as {t1}_ {t2}.

Example 20. In the P/T system in Fig. 3.2, although t4 reveals both t1
and t2, neither t1 nor t2 reveals t4 alone. However, if both t1 and t2 occur,
then t4 will inevitably occur because of the progress assumption. So we can
write {t1, t2} _ {t4}. Similarly, both t5 and t6 reveal t9, but t9 reveals
neither t5 nor t6. However, the occurrence of t9 implies that either t5 or t6
will inevitably occur. This can be expressed by the extended-reveals relation
{t9}_ {t5, t6}.
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Figure 3.2: A P/T system.

Excludes relations

Excludes relation was also introduced in [21] for transitions of a 1-live Petri
net in order to express negative information flow. Two transitions exclude
each other if they never occur in the same run. This means that the occur-
rence of one implies the nonoccurrence of the other.

Definition 11. Let Σ = (P, T, F,W,min) be a 1-live P/T system, unf(Σ) =
(B,E, F, λ) be its unfolding, Cmax the set of all its maximal configurations,
and let t1, t2 ∈ T . t1 excludes t2, denoted t1 ex t2, iff ∀ C ∈ Cmax t1 ∈
λ(C) =⇒ t2 /∈ λ(C).

By definition, excludes is a symmetric relation. It is neither transitive
nor reflexive. Moreover, it does not coincide with the conflict relation. Tran-
sitions which are in conflict at a reachable marking can still appear in the
same maximal run, so they may not exclude each other.

Example 21. In the P/T system in Fig. 3.1, t9 ex t10. Although t8 is in
conflict with t9, t8 ̸ex t9, since there is a configuration on the unfolding in
which an event labelled with t8 occurs, and after that, an event labelled with
t9 does.

In [21] the authors proposes two variants of excludes, namely excludes
in the past and excludes in the future, that respectively hold if observing a
transition excludes the occurrence of another transition in the past, but that
transition may still occur after the observation, and if observing a transition
excludes that another transition will ever occur from that moment on, but
it could have occurred in the past.

Definition 12. Let Σ = (P, T, F,W,min) be a 1-live P/T system, unf(Σ) =
(B,E, F, λ) its unfolding, Cmax the set of all its maximal configurations, and
let t1, t2 ∈ T . t1 excludes in the past t2, denoted t1 exp t2, iff ∀ C ∈ Cmax ,
∀e1 ∈ C ∩Et1 , ∄e2 ∈ Et2 ∩ C such that (e2 ⪯ e1 or e2 concurrent with e1).
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Definition 13. Let Σ = (P, T, F,W,min) be a 1-live P/T system, unf(Σ) =
(B,E, F, λ) its unfolding, Cmax the set of all its maximal configurations, and
let t1, t2 ∈ T . t1 excludes in the future t2, denoted t1 exf t2, iff ∀ C ∈
Cmax , ∀e1 ∈ C ∩ Et1 , ∄e2 ∈ Et2 ∩ C such that (e1 ⪯ e2 or e1 concurrent
with e2.

Unlike excludes, excludes in the past and excludes in the future are not
symmetric relations.

Remark 3. t1 exp t2 if, and only if, t2 exf t1.

Example 22. We have already observed in Ex. 21 that in the P/T system
in Fig. 3.1 t8 ̸ex t9. However, t9 exf t8, since after that the compensation
has been paid, the request cannot be initiated. In the same P/T system,
t4 exp t9, since if the ticket need to be checked, it is not possible that the
compensation was already paid.

3.1.2 Reveals relations counting occurrences

In some cases, knowing that a set of transitions occurred in the system does
not give any information about the occurrences of hidden transitions, but
observing the same transitions multiple times does. In this section, we define
three relations based on reveals that keep into account the possibility for the
observer to count. These relations generalise reveals and extended reveals,
and give the opportunity to specify security requirements of a distributed
system in a way that is more tailored to the needs of the system. The
definitions here proposed are published in [6, 1].

Repeated reveals

The repeated reveals relation extends reveals by checking whether several
occurrences of a transition reveal the occurrence of another one.

Intuitively, t1 n-repeated reveals t2 if each maximal configuration which
has at least n occurrences of t1, also has at least one occurrence of t2.

A first version of repeated reveals was defined in [21] without progress
assumption, thus considering all the configurations. In that version, express-
ing reveals as special case of repeated reveals was not possible. Here, as for
the other reveals relations, we consider only maximal configurations; in our
definition, reveals is a particular case of repeated reveals, where the observer
can count only one occurrence of the transitions.

Definition 14. Let Σ = (P, T, F,W,min) be a 1-live P/T system, unf(Σ) =
(B,E, F, λ) be its unfolding, Cmax be the set of all its maximal configura-
tions, t1, t2 ∈ T , and n be a positive integer. If there exists a maximal
configuration in which t1 occurs at least n times, then we say t1 n-repeated
reveals t2, denoted n.t1 ▷ t2, iff:

∀C ∈ Cmax |C ∩ Et1 | ≥ n =⇒ C ∩ Et2 ̸= ∅.
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Figure 3.3: A bounded equal-conflict P/T system.

Note that n-repeated reveals is not defined if there is no maximal con-
figuration in which t1 occurs at least n times.

The following statements are direct consequences of Def. 14.

Remark 4. Reveals relation (as in Def. 9) coincides with 1-repeated reveals.

Remark 5. If n.t1 ▷ t2 and ∃C ∈ Cmax such that |C ∩ Et1 | ≥ n + 1 then
(n+ 1).t1 ▷ t2.

Remark 6. n.t1 ̸▷ t2 =⇒ (n− 1).t1 ̸▷ t2.

Example 23. In the P/T system in Fig. 3.1, knowing that the ticket has
been checked (transition t4) does not give any information about the outcome
of the request (t8, t9, t10), but if the tickets is checked twice, then we are
sure that the request has been re-initiated, namely 2.t4 ▷ t8.

In the P/T system in Fig. 3.3, only one occurrence of t0 does not give
information about t3, but if t0 occurs twice, this implies the occurrence of t3,
i.e., 2.t0 ▷ t : 3. Simmetrically, two occurrences of t4 imply the occurrence
of t7, i.e., 2.t4 ▷ t7.

Extended-repeated reveals

The following variant of reveals relation is parametric and it generalises both
the reveals variants in Sec. 3.1.1 and repeated reveals. Extended-repeated
reveals allows one to specify the expected security requirements in a more
tailored fashion.

Definition 15. Let k ≥ 1 and {n1, ..., nk} be positive integers. Let {t1, ..., tk},
Y ⊆ T . If there is at least one maximal configuration in which, for each
i ∈ {1, ..., k}, each transition ti of {t1, ..., tk} occurs at least ni times, then
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{n1.t1, ..., nk.tk} extended-repeated reveals Y , denoted {n1.t1, ..., nk.tk} _
Y , iff ∀ C ∈ Cmax∧

ti∈{t1,...,tk}

(|C ∩ Eti | ≥ ni) =⇒
∨
t∈Y

(C ∩ Et ̸= ∅).

Note that {n1.t1, ..., nk.tk} extended-repeated reveals Y is not defined if
there is no maximal configuration in which each transition ti of {t1, ..., tk}
occurs at least ni times.

Remark 7. Reveals, extended reveals and repeated reveals can be expressed
by Def. 15.

t1 ▷ t2 ⇐⇒ {1.t1}_ {t2},
{t1, t2}_ {t3, t4} ⇐⇒ {1.t1, 1.t2}_ {t3, t4},

n.t1 ▷ t2 ⇐⇒ {n.t1}_ {t2}.

Example 24. In the P/T system illustrated in Fig. 3.3, let us examine
the relation between the transitions t0, t4 and t8. Neither t0 nor t4 reveals
t8 alone. There is no extended reveals or repeated reveals relation between
them either. However, there is still some information flow. Two occurrences
of t0 together with two occurrences of t4 extended-repeated reveal t8, i.e.,
{2.t0, 2.t4}_ {t8}.

Collective reveals

In the last case that we consider, the total number of occurrences of a set
of transitions gives information about another set of transitions. In other
words, if the total number of occurrences of the transitions in the first set is
more than a certain number, this implies that at least one transition of the
second set must have occurred or will occur inevitably. The next relation
defines such situation.

Definition 16. Let n ≥ 1 and X,Y ⊆ T . If there is at least one maximal
configuration in which the total number of occurrences of the transitions in
set X is at least n, then we say X n-collective reveals Y , denoted n.X _ Y ,
iff ∀ C ∈ Cmax ∑

t∈X
|C ∩ Et| ≥ n =⇒

∨
t∈Y

(C ∩ Et ̸= ∅).

Note that X n-collective reveals Y is not defined if there is no maximal
configuration in which the total number of occurrences of the transitions in
set X is at least n.

Remark 8. Reveals and repeated reveals can be expressed by Def. 16.

t1 ▷ t2 ⇐⇒ 1.{t1}_ {t2},
n.t1 ▷ t2 ⇐⇒ n.{t1}_ {t2}.
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Figure 3.4: Two equal-conflict P/T systems.

Example 25. The P/T system in Fig. 2.1 is recalled on the left of Fig. 3.4.
In it, if the total number of occurrences of t2 and t3 is at least 2 (t2 occurs
twice, t3 occurs twice or both t2 and t3 occur at least once), then either t5
or t6 must occur, therefore 2.{t2, t3}_ {t5, t6}.

In the P/T system on the right of Fig. 3.4, if the total number of oc-
currences of t4 and t5 is at least 3, this implies the occurrence of t8, hence
3.{t4, t5}_ {t8}.

3.2 Complexity of reveals and excludes in 1-safe
systems

In this section we discuss the complexity of computing reveals, repeated
reveals, and excludes on 1-safe systems.

The complexity of the other relations based on reveals, and the general-
ization to general P/T system is left as future work. However, since 1-safe
systems are a special case of P/T systems and reveals is generalized by all
the relations defined in the previous section for positive information flow,
the result on reveals gives a lower bound for the complexity of the other
cases. Fig. 3.5 recalls the hierarchy between the relations based on reveals
defined in the previous section. In particular, an arrow from a relation a to
a relation b denotes that each instance of b can be equivalently expressed as
an instance of a.

The relations excludes has the same complexity of excludes in the past
and excludes in the future, therefore we do not need to study them separately.
The equivalence between exf and exp is stated in Remark 3; for excludes,
we observe that given two transitions t1 and t2, t1 ex t2 if, and only if,
t1 exp t2 ∧ t1 exf t2.
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Figure 3.5: Diagram showing the generalizations between relations based on
reveals

As first step, we show that deciding reveals and excludes is at least
PSPACE, even when the system is 1-safe or free-choice. This provides a
lower bound for all the relations based on reveals and excludes. When we
consider reveals and excludes, we do not need to check whether the relation
is defined on the 1-safe system, since these relations are always defined in
1-live systems. However, checking whether a transition is 1-live in a 1-safe
system is also a PSPACE-complete problem, hence removing the 1-liveness
assumption would not change the complexity.

Lemma 2. Deciding whether an instance of the reveals or excludes relation
is verified on a 1-safe system is at least PSPACE in the size of the net.

Proof. First, we show that a reachability problem on a 1-safe system can be
reduced to checking an instance of a reveals relation on a 1-safe system.

Let Σ = (P, T, F,min) be a 1-safe system, and m ⊆ P a marking. Sup-
pose that we need to verify if m is reachable in Σ. First, we construct a net
Σ1 = (P1, T, F1,m1) by adding to Σ all the complements of the elements in
P , if they are not yet in P . For each place p ∈ P , we denote with pc its
complement; we define m′ = m ∪ {pc ∈ P1 : p ∈ P \ m}; in addition, we
add to Σ1 a transition tm, and a place pm such that •tm = m′, t•m = {pm}.
Let Σ2 = (P2, T2, F2,m1) be such a modification of Σ1. The following state-
ments are equivalent: (1) m is reachable in Σ; (2) m′ is reachable in Σ2; (3)
{pm} is reachable in Σ2; (4) tm is 1-live in Σ2.

As last step we add one place p0 and two transitions t1, t2 to Σ2 such
that •p0 = ∅, p•0 = {t1, t2}, •t1 =• t2 = {p0}, t•1 = m1, t

•
2 = m′. Let Σf =

(Pf , Tf , Ff , {p0}) the net obtained through the described transformation.
Σf is a 1-safe net system, and it is such that after the occurrence of t1 a
marking m is reachable iff it is reachable in Σ2; in particular this property
holds for {pm}. By construction, {pm} is reachable after the occurrence of
t2. Hence, m is reachable in Σ iff {pm} is reachable in Σ2. This can be
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expressed both with reveals and with excludes: m is reachable in Σ iff (1)
tm ̸▷ t2, or equivalently tm ex t2.

Remark 9. Often problems are computationally easier when we consider
free-choice systems. This is not the case for the reveals and excludes re-
lations: the reachability problem in free-choice 1-safe system is PSPACE-
complete, since there is a polynomial transformation from a 1-safe system
Σ to a 1-safe free-choice system Σ′ such that each marking m is reachable
in Σ iff m is reachable in Σ′ [81, 41, 74]; the construction used to prove
Lemma 2 can be slightly modified in order to obtain a free-choice system at
the end, where reveals and excludes can be checked.

In [71] the authors proved that computing reveals is PSPACE-complete
also when the relation is defined on events of the unfolding.

Some of the upper bounds for the verification of the relations based on
reveals and excludes can be proved by transforming the relations in LTL
formulas. In [50], Esparza proved that model-checking LTL in k-bounded
P/T systems is a PSPACE-complete problem; hence, if a relation can be
checked with LTL, verifying it must be in PSPACE.

Theorem 1. Deciding a reveals relation in a 1-safe system is PSPACE-
complete with respect to the size of the net.

Proof. Lemma 2 proves that deciding reveals is at least a PSPACE problem.
We need to show that reveals for 1-safe nets is in PSPACE. This can be
done by translating the problem of checking a reveals relation into the model
checking of an LTL formula. Since the latter is a PSPACE-complete problem
on a 1-safe Petri net [50], computing reveals cannot be harder. Let Σ =
(P, T, F,min) be a 1-safe Petri net, a, b ∈ T . Assume we need to check if a▷b.
We first transform the net Σ into a net Σ′ = (P ′, T ′, F ′,min) by replacing
each transition t with two transitions t1 and t2 such that •t1 = •t and
t•2 = t•, and adding a new place pt such that t•1 = •t2 = {pt}, •pt = {t1}, and
p•t = {t2}. This transformation is linear in the size of the net. Computing
a ▷ b on Σ is equivalent to model-check the formula Fpa → Fpb on the
set of maximal runs of Σ′, namely in all the runs in which no transition is
permanently enabled. For each transition t ∈ T ′, let enabled (t) =

∧
p∈•t p

be the formula denoting that transition t is enabled. Then, checking if a▷ b
is equivalent to model-check ψ = (

∧
t∈T ′ ¬FG(enabled (t)))→ (Fpa → Fpb).

The length of ψ is polynomial with respect to | P | + | T |, and since the
model-checking is PSPACE in the size of the formula, it is also PSPACE in
the size of the net.

We now need to check that checking if a ▷ b is at least PSPACE, even
when we consider free-choice nets. We prove it by reducing a reachability
problem on a 1-safe net to a reveals problem on a 1-safe free-choice net.

37



Theorem 2. Deciding an excludes relation in a 1-safe Petri net is PSPACE-
complete with respect to the size of the net.

Proof. To show that checking an excludes relation is in PSPACE, we reduce
it to a LTL formula. Let Σ = (P, T, F,m0) be a 1-safe Petri net, a, b ∈ T .
Assume we need to check if a ex b. We split each transition into two, as
described in the proof of Theorem 1, obtaining the net Σ′. Computing
a ex b is equivalent to model-check the formula Fpa → G(¬pb) on the
set of maximal runs of Σ′, that is equivalent to model-check the formula
ψ = (

∧
t∈T ′ ¬FG(enabled (t))) → (Fpa → G(¬pb)) on the entire net. The

length of ψ is polynomial with respect to | P | + | T |, and since the model-
checking is PSPACE in the size of the formula, it is also PSPACE in the
size of the net. This and Lemma 2 conclude the proof. hence .

Repeated reveals in 1-safe nets

The repeated reveals relation n.a ▷r b holds iff there is at least a maximal
run with n occurrences of a, and each of them has at least an occurrence of
b.

Since reveals is a special case of repeated reveals (1.a ▷r b ≡ a ▷ b),
checking repeated reveals is PSPACE-hard. To show that it is PSPACE-
complete we prove that both checking if there is a maximal run with at
least n occurrences of a, and checking if in each of them there is at least an
occurrence of b can also be done in PSPACE, when n is a given constant.

Lemma 3. Let Σ = (P, T, F,min) be a 1-safe net. Checking the existence of
a maximal run with n occurrences of a transition a can be done in PSPACE.

Proof. We modify Σ by adding a place p precondition of a with n tokens in
the initial marking. The net Σn obtained in this way is n-safe. There is a
maximal run in Σ with at least n occurrences of a iff the CTL formula EF¬p
is verified on Σn. Since the model-checking of CTL is PSPACE-complete
for bounded nets [40], the thesis follows.

Lemma 4. Checking if each maximal run with at least n occurrences of a
has at least an occurrence of b is at most PSPACE.

Proof. We construct a net Σ′ = (P ′, T ′, F,min) so that each transition t ∈ T
is split into two and there is a place pt in the middle denoting its occurrence.
We can translate the problem of checking if each maximal run of unf(Σ)
with at least n occurrences of a has at least an occurrence of b in a LTL
formula on the places of Σ′. If n = 2, we define

ψ2 = ((U(¬pa, pa ∧ U(pa,¬pa ∧ Fpa)))→ Fpb),
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n.a▷r b if the following formula holds.∧
t∈T ′

¬FG(enabled (t))→ ψ2.

The second until in ψ2 is needed when we consider the state-based logic of
the 1-safe Σ′, because we need to be sure that we are reaching two different
occurrences of transition a, and we are not just firing a concurrent transition
while the place pa is still marked. For n > 2, n.a ▷r b is expressed by the
following formula∧

t∈T ′

¬FG(enabled (t))→ (U(¬pa, pa ∧ U(pa,¬pa ∧ ψn−1)))→ Fpb.

Given n the size of this formula is fixed.

3.3 Algorithms for finding reveals and excludes on
bounded equal-conflict systems

In this section we propose algorithms for computing the relations defined
in Sec. 3.1 on bounded equal-conflict systems. The results in this section
are published in [7, 6, 1]. As discussed in Sec. 2.1.1 and Sec. 2.3.1, this
class of systems allows for the use of maximal step semantics, and this can
be exploited in the development of algorithms. In particular, in algorithms
discussed here, we will use prefixes of the tree structure defined in Sec. 2.3.2.

This section is organized as follows. In Sec. 3.3.1 we present the tree
structure on which the algorithms are defined, and its properties. From
Sec. 3.3.2 to Sec. 3.3.5, we discuss how to compute the relations of Sec. 3.1.

Sec. 3.3.6 proposes a reduction of the tree structure, that in several cases
can be used to have more efficient algorithms.

We implemented most of the algorithms presented in this section, and
made them available at https://github.com/MC3-lab/mscTree. Sec. 3.3.7
discusses the implementation and some preliminary experiments.

3.3.1 Prefix of the tree-unfolding

Let ts = (Q,U,A, q0) be an lts, the ts-tree defined in Sec. 2.3.2 can be
an infinite structure, even if ts is finite. A full prefix is a finite prefix of a
ts-tree, from which we can reconstruct all the information of the tree. It is
constructed starting from the root of the tree, and adding all the children
of its nodes, until we meet a node associated to a state that was already
visited in the path.

Definition 17. Let ts = (Q,U,A, q0) be a labelled transition system on
alphabet T , where U is the multiset of the elements in T . The full prefix of
the ts-tree, denoted fp(ts), is a labelled rooted tree defined by the following
clauses.
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Figure 3.6: A P/T system and the full prefix of the tree unfolding its mmg.

1. The root of fp(ts) is the root of the ts-tree.

2. Let v be a node of fp(ts). If there is no v′ such that v′ < v and v, v′

are associated to the same element in Q, then all the children of v in
the ts-tree are nodes in fp(ts); otherwise v is a leaf in fp(ts).

Given a leaf l of the full prefix, let rep(l) denote the ancestor of l cor-
responding to the same state. If l corresponds to a deadlock, then rep(l) is
undefined.

The subtree inherits all the notations defined for the tree in Sec. 2.3.2.
We denote with | fp(ts)| the number of nodes in the prefix.

In the special case in which ts is the mmg of a bounded equal-conflict
P/T system, we will show that the full prefix of the mmg-tree is sufficient
to compute the information flow of the P/T system.

Example 26. Fig. 3.6 shows a P/T system and the full prefix associated
to its mmg (which is represented in Fig. 2.7). In the prefix, the leaves
exhibit an additional label l1, i ∈ {1, ..., 8}. For each non-deadlock leaf li, its
ancestor associated to the same state is labelled rep(li). The leaves and their
ancestors are also coloured in the same way. Deadlock leaves are drawn with
black bold lines.

The following lemmas state some useful properties of the full prefix.

Lemma 5. Let ts = (Q,U,A, q0) be a finite lts. The full prefix of the
ts-tree is finite.
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Proof. Since the number of transitions is finite, for each node the number of
children is finite. Let n = |Q| be the total number of states in ts, no path
of the tree can have more than n + 1 nodes without reaching a state that
was already visited.

This lemma holds in particular for the mmg of bounded equal-conflict
P/T systems, since they have a finite number of markings.

Lemma 6. For each maximal path π of a ts-tree, there is a maximal path
π′ of its full prefix, such that π′ is a prefix of π.

Proof. Let π be a maximal path of an ts-tree and q be the last node of the
intersection between π and the full prefix. q cannot have any child in the
prefix, otherwise one of them should also be in the intersection, since by
definition, if q is not a leaf, all the children in the ts-tree are also in its full
prefix. Hence q must be a leaf, and the path from the root to q is maximal
in the prefix.

Lemma 7. Let ts = (Q,U,A, q0) be an lts, ts-tree be the tree-unfolding of
ts, and fp(ts) be its full prefix. For each node v in ts-tree, there is at least
a node v′ in fp(ts) such that v and v′ are associated to the same element of
Q.

Proof. Let v be a node of ts-tree. If v is also in fp(ts), the proof is trivial.
Otherwise, v must follow a leaf in fp(ts), since by definition, for each vi
internal node on fp(ts), for each child vi+1 of vi in ts-tree, vai+1 is also
in fp(ts). Let vj be the leaf preceding v and π a maximal path on ts-tree
including v. By construction, there must be a node v′j < vj such that vj and
v′j are associated to the same state. We can peel π (Def. 5) by identifying
v′j with vj . In the peeled path π′, let v′ be the node associated to v by the
peeling operation. There are two cases: (1) there is no pair of nodes v1, v

′
1

such that associated to the same state, and such that v1 < v′1 < v′. Then,
by construction v′ is in fp(ts). (2) v′ follows two nodes v1 and v′1 associated
to the same state. In this case, we can repeat the peeling procedure until
a node associated with v is in fp(ts). This will happen in a finite number
of steps, since each time the number of nodes between the node associated
with v and the root decreases.

Remark 10. If v is not a deadlock, at least an occurrence of v′ as described
in Lemma 7 is an internal node. In order to see it, we can observe that if
v′ is a leaf and it is not a deadlock, then there is another node in fp(ts)
preceding v′ and associated to the same state by construction.

A consequence of Lemma 7 is that when we consider the mmg of a
bounded equal-conflict P/T system Σ, at least an occurrence of all the tran-
sitions in Σ appears in fp(mmg): let t be a transition in Σ, an occurrence
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of t must appear also in mmg-tree (we are considering 1-live systems). Let
v be a node in mmg-tree and u the label of an outgoing arc from u such
that t ∈ u; by Lemma 7, there is a node v′ in fp(mmg) corresponding to the
same marking, and an outgoing arc from v labelled with u.

Lemma 8. Let ts = (Q,U,A, q0) be a labelled transition system on alphabet
T , where U is the set of multisets of the elements in T . Let π be a path on
the ts-tree, and fp(ts) be its full-prefix. If n ≤ λ(π)(t), but t ̸∈ λ(π∩fp(ts)),
then there is another path π′ ∈ ts-tree such that λ(π′) ⊆ λ(π), n ≤ λ(π′)(t),
and t ∈ λ(π′ ∩ fp(ts)).

Proof. Let l(π1) be the leaf of π1 = π ∩ fp(ts) and rep(l(π1)) its repetition
in the prefix. We can construct the run π′1 = peel(π, πrep(l(π1)),l(π1)). If
t ∈ π2 = π′1 ∩ fp(ts) we can stop the construction, otherwise we repeat the
procedure by considering l(π2). Since the distance between the root and the
first occurrence of t is finite, and every step of the peeling reduces it, after
a finite number of peeling operations the thesis must be satisfied.

We now define an extension operation on finite paths.

Definition 18. Let ts = (Q,U,A, q0) be an lts, π = v0u0v1u1...vn be a
finite path in ts-tree, and fp(ts) be the full prefix. For each internal node
v ∈ fp(ts) associated to the same state as vn, and for each π′ starting in v,
we define the extension of π through π′ as the function ext(π, π′) = π · πex,
where πex is the path with first node vn and such that πex ≃ π′.

The existence of πex in Definition 18 is a direct consequence of Lemma 1.
The extension operation allows us to state another property of the full prefix,
that establish a relation between its paths and the paths of the ts-tree. This
is expressed by the following lemma.

Lemma 9. For each π finite path in the ts-tree, if π is not contained in
fp(ts), then we can find a path including it, by starting from a maximal path
of the full prefix and applying recursively the extension operation.

Proof. Consequence of Lemma 1, Lemma 7 and Remark 10.

The result of the previous Lemma applies also to infinite paths when
considering the limit of applying recursively the extension operation. This
means that when we consider mmg, we can extract all possible system be-
haviour under maximal-step semantics from the full prefix.

The algorithms provided in the next sections works on the full prefix of
mmg of bounded equal-conflict P/T systems, and require a previous compu-
tation of the full prefix. Hence, their running time depends on the number
of distinct transitions of the system, as well as on the size of the full pre-
fix. It is therefore noteworthy that the length of the full prefix is at most
the number of markings of the system that are reached under maximal-step
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semantics, plus one repeated marking. In case of paths composed of many
cycles, the path will be as large as the least common multiple of the length
of these cycles, since after this number of maximal steps, each cycle will be
back at its initial conditions. In each node, the number of children depends
on the number of transitions concurrent and in conflict in the corresponding
marking. In particular, if the marking m enables n groups of concurrent
transitions, each of them with ki, i ∈ {1, ..., n}, transitions in conflict, then
the node associated with the marking m will have Πn

i=1ki children. Once
the full prefix is computed, it can serve all the subsequent information flow
analysis, as presented next.

3.3.2 Computing reveals

In this section we describe how to compute the reveals relation. As already
discussed, reveals can also be seen as a special case of more complex relations,
whose algorimths are given in Sec. 3.3.4 and Sec. 3.3.5. However, I decided
to discuss reveals separately for two reasons: (1) being it a basic relations on
which many others build, discussing it separately may be helpful for a better
understanding of the properties of the full prefix and its role in information
flow analysis; (2) this section provide a procedure that allows to check all the
reveals relations by looking only once at the full prefix, whereas the other
algorithms either need larger computations (this is the case of Algorithm 2),
or they focus on single relations (as in Algorithm 3).

Let t1 and t2 be two transitions of a bounded equal-conflict P/T system
Σ, t1 reveals t2 if, and only if, each maximal configuration which includes
an occurrence of t1 also includes an occurrence of t2 (see Definition 9).
In bounded-equal conflict P/T systems, due to the relation between the
footprints of maximal configurations of the unfolding, and the footprints of
maximal paths on the mmg-tree, t1 reveals t2 if, and only if, each maximal
path of the mmg-tree of Σ which includes an occurrence of t1, also includes
an occurrence of t2.

In the following example, we study the reveals relation among transitions
of a P/T system on the full prefix of its mmg-tree.

Example 27. Consider the prefix tree in Fig. 3.6, from it we can see that
t5 ▷ t4, but t4 ̸▷ t5 (the path ending with the blue leaf l6 has an occurrence
of t4, but none of t5). Other relations are t6 ▷ t7, t2 ▷ t3, and t3 ▷ t2. No
transition reveals t0, since all of them, except for t0, appear in the subtree
starting with the branch labelled with t2.

Next, we prove that, for bounded equal-conflict P/T systems, the full
prefix is enough to compute the reveals relation. In other words, if t1 ▷ t2
in Σ, then each maximal path of fp(mmg(Σ)) which has an occurrence of t1
also has an occurrence of t2 and vice versa.

43



Theorem 3. Let Σ = (P, T, F,W,min) be a bounded equal-conflict P/T
system, t1, t2 ∈ T , A be the mmg(Σ)-tree and L = fp(mmg(Σ)) be its full
prefix. Πt1

A ⊆ Πt2
A if, and only if, Πt1

L ⊆ Πt2
L

Proof. First, we prove that if Πt1
L ⊈ Πt2

L then Πt1
A ⊈ Πt2

A . Let π be a maximal
path in L such that π ∈ Πt1

L and π ̸∈ Πt2
L . If leaf(π) is a deadlock the con-

clusion is trivial because π is a maximal path in A. Otherwise, rep(leaf(π))
exists in π, and we can extend infinitely many times π with an isomorphic
copy of the segment between rep(leaf(π)) and leaf(π). This procedure pro-
duces a maximal path in A with the same labels of π, therefore without
occurrences of t2.

We now suppose that Πt1
A ⊈ Πt2

A and we show that Πt1
L ⊈ Πt2

L . The proof
proceeds with an iterative procedure meant to find a maximal path of the
prefix with an occurrence of t1 and no occurrence of t2, thus showing that t1
does not reveal t2 in L. Informally, this procedure constructs, at each step, a
maximal path of A with an occurrence of t1 and no occurrence of t2, in such
a way that the number of elements in the past of its first occurrence of t2 is
reduced at each step. Since there can only be finitely many such elements,
the procedure will reach a maximal path of L containing an occurrence of
t1 but none of t2, in a finite number of steps.

By hypothesis, there is a maximal path π′ ∈ ΠA : π′ ∈ Πt1
A , and π′ ̸∈ Πt2

A .
By Lemma 6, there is π ∈ ΠL that is a prefix of π′. Note that π has no
occurrence of t2 —otherwise, so would π′—, and so if it has an occurrence
of t1, then π ∈ Πt1

L and π ̸∈ Πt2
L . Now, suppose that t1 does not occur in

π, and vf = leaf(π). If vf were a deadlock, we would necessarily have that
π = π′, but this is a contradiction, since t1 occurs in π′ and not in π. Then
rep(vf ) is defined, there is only a finite number of elements in π′ which are
in the past of t1, and at least one of these must be found between rep(vf )
and vf , not to contradict maximal-step semantics. The path π′′ = peel(π′)
is maximal in A, and by Lemma 6, there is a maximal path π1 ∈ ΠL which
is a prefix of it. Clearly, t2 does not occur in π′′ or π1, and so if t1 occurs in
π1 we reach the desired conclusion. Otherwise, consider leaf(π1). Clearly,
it is not a deadlock, and by construction, rep(leaf(π1)) is defined. Since
the number of elements between the root and the first occurrence of t1 in
π′′ is strictly less than that between the root and the first occurrence of t1
in π′, we may iterate the procedure by finding prefixes π2, . . . , πn with no
occurrences of t2, until eventually πn will have an occurrence of t1, for a
finite n.

With the above proof, we conclude that all the reveals relations among
the transitions of Σ can be found by computing the footprints of the maxi-
mal paths of fp(mmg(Σ)) and checking for the corresponding labels among
them. Note that maximal paths of fp(mmg(Σ)) are finite, whereas maximal
configurations of the unfolding are in general infinite.
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Figure 3.7: A 1-safe free-choice system and the full prefix of the tree-
unfolding of its marking graph of maximal steps.

3.3.3 Computing excludes

Let t1 and t2 be two transitions of a P/T system Σ, we say that t1 excludes
t2 (or t2 excludes t1 by symmetry of the relation) if, and only if, no max-
imal configuration of unf(Σ) has both an occurrence of t1 and of t2 (see
Definition 11). In bounded equal-conflict P/T systems, due to the relation
between maximal configurations of an unfolding and maximal paths of the
mmg(Σ)-tree discussed in Sec. 2.4, this is directly translated to the follow-
ing: t1 excludes t2 if, and only if, no maximal path of mmg(Σ)-tree displays
both t1 and t2. In other words, let A be msct (Σ), t1 ex t2 iff Πt1

A ∩Πt2
A = ∅.

In the following example, we will study the excludes relation among
transitions of a bounded equal-conflict P/T system on the full prefix of its
mmg-tree.

Example 28. Fig. 3.7 represents a P/T system Σ on the left, and the full
prefix of its marking graph of maximal steps. As before, the leaves are repre-
sented with thick black lines if they are deadlocks, and with the same colour
of their ancestor associated to the same marking if they are repetitions. The
additional labels li, i ∈ {1, 2, 3, 4}, and rep(li) also identify leaves and their
repetitions. In Σ, t2 excludes all the other transitions. By symmetry of the
excludes relation, each transition (except t2 itself) excludes t2. These are
the only excludes relations in the net.

Now let us examine the full prefix, fp(mmg(Σ)), here denoted with L for
the sake of simplicity, and consider the transitions t1 and t2. The initial
node corresponds to the marking {p0}. From the initial node we can either
continue with an occurrence of t1 or an occurrence of t2 (and these are the
only occurrences of t1 and t2 in L). None of the maximal paths of L has
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occurrences of t1 and t2 together. However, we cannot conclude t1 excludes
t2 by looking at the maximal paths of the full prefix. We need to make sure
the maximal paths of the L do not have the two transitions together. To do
this, we do not need to construct the whole tree. We can use the full prefix
as a basis to decide excludes in a finite number of steps. This procedure is
formally defined later in this section.

The maximal path of L with the occurrence of t2 ends in a deadlock so it
is maximal in the mmg-tree as well. It is clear that after the occurrence of
t2, t1 cannot occur. Now we need to check if t2 can occur after t1 does. We
can extend the paths by gluing the nodes corresponding to the same mark-
ing. In this way, we can build maximal paths of mmg-tree. For example,
in the maximal path in which t1, t3, t4, t6, and t8 occur (let’s call it π1), the
blue nodes correspond to a repeated marking, namely {p2, p3}. So, π1 can be
extended in many different ways by gluing the blue nodes and repeating the
gluing operation on different repeated marking pairs. It can be extended to
a maximal path in which only t1, t3, t4, t6, and t8, occur. It can be extended
so as to also have occurrences of either t5 or t7 or both. But none of the
continuations can have an occurrence of t2 because the marking which en-
ables t2 can never be reached during this operation. So, we can conclude t1
excludes t2.

Now let us consider transitions t6 and t8. We can easily see that there
is a maximal path of L in which both occur, namely π1. So we can decide t6
does not exclude t8 on the full prefix, without any further computation.

If we look at the transitions t5 and t7, we can see that the maximal path of
L, in which t5 occurs, ends in a node corresponding to the marking {p4, p5},
which is repeated in the path. So the path can be extended so that after t5
occurs, t7 does as well. This path witnesses that t5 does not exclude t7.

In the following we present a finite algorithmic procedure to check whether
t1 excludes t2 on the full prefix of the mmg-tree; the pseudocode of this pro-
cedure is presented in Algorithm 1. Theorem 4 proves the correctness of the
algorithm.

Algorithm 1 takes the full prefix fp(mmg(Σ)) = L and two transitions
t1, t2 ∈ T as input. During its execution, it checks whether there can be an
occurrence of t2 following or being in the same label as an occurrence of t1,
in any path of the mmg-tree. If this is the case, the algorithm returns false,
and the procedure terminates. Otherwise, it returns true. In this second
case, in order to determine whether t1 ex t2, Algorithm 1 must be repeated
by exchanging the roles of t1 and t2, so as to check the case in which an
occurrence of t1 follows an occurrence of t2. If the algorithm also returns
true in this case, we conclude that t1 ex t2.

Next, we discuss the pseudocode as presented in Algorithm 1. The rea-
soning is analogous when the roles of t1 and t2 are exchanged.

First, the algorithm checks whether there is any maximal path in the full

46



prefix L with both t1 and t2. If t1 does not exclude t2 on the prefix, then it
will certainly not exclude it on the whole tree. Otherwise, we compute the
set sup of nodes following an occurrence of t1 and such that for each vi ∈ sup,
there is no vj < vi following an occurrence of t1. Until sup is empty, the
function extract removes an arbitrary element from sup and assigns it to x.
For each x, we consider the set leaves(x) of the leaves in Lx, and we compute
the minimum element of the set ({rep(l) : l ∈ leaves(x)\ checked} ∪ {x}).
This element, denoted by m is unique, as proved in Lemma 10. If the
returned node m is different from x, then we check whether t2 occurs in
Lm. If it does, t1 does not exclude t2. Otherwise, we remove from sup all
the nodes i such that m < i, and we mark all the leaves over x as checked.
In the next steps we will not need to visit these leaves again. When sup is
empty we can conclude that there cannot be any occurrence of t2 following
an occurrence of t1.

Remark 11. As it may be clear form the discussion above, Algorithm 1 can
be easily adapted to check whether, given two transitions t1, t2, t1 exf t2, and
t1 exp t2. To check if t1 exf t2, we need to modify lines 2-4 in Algorithm 1,
to check whether there is any occurrence of t2 following an occurrence of
t1 in the prefix, if this the case, the algorithm must return false, otherwise,
it proceeds from line 5 on. Unlike for the general excludes, in this case we
must not exchange the role of t1 and t2. As observed in Remark 3, to check
if t1 exp t2, we can equivalently check if t2 exf t1.

Lemma 10. Let x be a node in L, and S a set of leaves in Lx. The minimum
element of the set {rep(v) | v ∈ S} ∪ {x} is unique.

Proof. Let r be the root of L, and for each pair of nodes v1, v2 ∈ L, such that
v1 < v2, let πv1,v2 be the path starting from v1 and ending with v2 in L. Let
v′ ∈ {rep(v) | v ∈ S}, then x ≤ v′ or x > v′: for each v ∈ S, rep(v) must be
in πr,v, and πr,v ⊆ πr,x ∪Lx. So, either v′ ∈ πr,x, or x ≤ v′. Note that πr,x is
totally ordered, since it is the initial segment of a path. Then any unordered
pair v1, v2 ∈ {rep(v) | v ∈ S} must satisfy x ≤ v1 and x ≤ v2. Since for
any subset R, the elements of min(R) are unordered, we obtain that either
v ∈ min{rep(v) | v ∈ S} is unique, or ∀v ∈ min{rep(v) | v ∈ S} : x ≤ v,
which concludes the proof.

Lemma 11. The function described in Algorithm 1 terminates.

Proof. If Πt1
L ∩ Πt2

L ̸= ∅ then the algorithm immediately terminates. Else,
the function terminates when the set sup is empty. Let n be the number
of leaves in L, then initially n0 = |sup| ≤ n. At every iteration, at least
one element x of sup is removed, and possibly an element i < x is added.
Hence, after a general iteration |sup| ≤ n0. For each x ∈ sup, the number
of elements i : i < x is finite, therefore after a finite number of steps there

47



Algorithm 1 Computing excludes

function ex((L: full prefix, t1, t2 ∈ T )) ∈ {true, false}
2: if Πt1

L ∩Πt2
L ̸= ∅ then

return false
4: end if

sup ← min({vi ∈ L : vi follows an occurrence of t1})
6: checked ← ∅

while sup ̸= ∅ do
8: x← extract(sup)

m← min({rep(l) | l ∈leaves(x)\ checked} ∪ {x})
10: if m ̸= x then

sup ← sup ∪{m}
12: if t2 ∈ Lm then

return false
14: end if

for i ∈ sup do
16: if m < i then

sup ← sup \{i}
18: end if

end for
20: end if

checked ← checked ∪ leaves(x)
22: end while

return true
24: end function
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is no element left that can be added to sup, and k = |sup| ≤ n0. When this
point is reached, after at most k iteration the function terminates.

Theorem 4. Let Σ = (P, T, F,W,min) be a bounded equal-conflict P/T
system, t1, t2 ∈ T , A = mmg(Σ)-tree, L = fp(mmg(Σ)), and ex be the
function of Algorithm 1. Then Πt1

A ∩ Πt2
A = ∅ iff ex(L, t1, t2) = true and

ex(L, t2, t1) = true.

Proof. The function ex(L, t1, t2) checks whether some path of L containing
an occurrence of t1 can be extended to a path of A containing an occurrence
of t2, and returns false in that case. It is then required to check ex(L, t2, t1)
symmetrically, to ensure that no path of A contains both t1 and t2.

We first assume that either ex(L, t1, t2) or ex(L, t2, t1) return false. If
Πt1

L ∩Πt2
L ̸= ∅, then Πt1

A ∩Πt2
A ̸= ∅ as an immediate consequence of Lemma 6.

We assume that Πt1
L ∩ Πt2

L = ∅, and we can suppose, without loss of
generality, that ex(L, t1, t2) = false, the other case being symmetric with
respect to t1 and t2. Since Πt1

L ∩ Πt2
L = ∅, there must be an m such that

t2 ∈ Lm.
At every iteration of the while loop, the initial segment of a path of A is

considered, with at least an occurrence of t1 and such that its final node is
isomorphic to m. It then considers all its possible extensions with segments
isomorphic to those in Lm. Only if some of these extensions include t2 the
algorithm returns false, therefore some path of A has an initial segment
containing occurrences of both t1 and t2, so Πt1

A ∩Πt2
A ̸= ∅.

We now assume that π ∈ Πt1
A ∩ Πt2

A ̸= ∅, and that the algorithm returns
true, to derive a contradiction.

If t1 and t2 occur in π|L, the algorithm returns false in the first conditional
statement. We consider the case in which t1 or t2 do not occur in π|L. As a
consequence, and by Lemma 7, there cannot be any arc in π with occurrences
of both t1 and t2. Without loss of generality, we can assume that the first
occurrence of t1 precedes the first occurrence of t2 in π. We may also suppose
that t1 occurs in π|L. Otherwise, we can successively peel π until t1 occurs
in the prefix. We also assume that there are n nodes between v0 = leaf(π|L)
and the first occurrence of t2. Let π0 = π|L, and suppose that for 0 ≤ j, πj
is an initial segment of π with an occurrence of t1, but none of t2. Suppose
that leaf(πj) is isomorphic to some leaf vj of L, and note that if it were a
deadlock, we would have πj = π, so t2 would occur in πj . Then rep(vj)
must be well-defined. Furthermore, by Lemma 1, Lrep(vj) is isomorphic to
some prefix of Aleaf(πj), so we may define πj+1 to be the initial segment of π,
obtained by extending πj with a maximal path of Lrep(vj). Then πj+1 still
contains an occurrence of t1, and its final node is isomorphic to some leaf
vj+1 of L. Next, we show that t2 cannot occur in πj+1.

Let m be as in Algorithm 1, it follows from its definition, and Lemma 10,
that Lrep(vj) ⊆ Lm. Since by assumption, the algorithm does not return
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false, there is no occurrence of t2 in Lm, and so no occurrence of t2 can
appear in Lrep(vj). Hence t2 cannot occur πj+1. Let k ≥ n, we just showed
by induction that t2 does not occur in πk, but it must have at least n nodes
after v0, and since it is a prefix of π, it must have an occurrence of t2. This
is a contradiction, so either Πt1

A ∩Πt2
A = ∅ or the algorithm returns false.

In the next section, we will present a more general algorithm, that also
allows for checking the excludes relation. In order to justify that Algorithm 1
is in general a better option, we here provide a means of comparing the two
solutions.

During the first if, Algorithm 1 analyses all the arcs of the tree exactly
once. In the while loop, the algorithm crosses each arc at most once. Indeed,
an appropriate implementation of the condition t2 ∈ Lm would not require
to check the arcs of a sub-tree that has already been analysed. As discussed
above, in order to determine whether a ex b, the while loop must be run
twice, therefore the algorithm will check |L| arcs and so the complexity of
determining whether a given pair of transitions excludes each other is O(|L|).
In order to determine excludes for all the pairs of transitions, this analysis
must be repeated for all the |T |∗|T−1| pairs of distinct transitions, therefore
the complexity is O(|L| ∗ |T |2). Note that in information-flow analysis, we
are only interested in excludes relation between low and high transitions,
not all pairs of transitions.

It will be shown, in the next section that Algorithm 2 would require,
in the same conditions, to perform O(|L|2 ∗ 2|T |) visits to the nodes of L.
Therefore, it is in general more convenient to use Algorithm 1 when only
the excludes relation needs to be checked.

3.3.4 Computing footprint-sets

In this section, we present an algorithm that computes the set (but not the
multiset) of transitions occurring in each maximal run on the unfolding of a
bounded equal-conflict P/T system, by using the full prefix of the mmg-tree.
This algorithm allows to check all the relations between sets of transitions,
in which how many times each transition has occurred is not required. In
particular, it can compute all the relations defined in Sec. 3.1.1. Although
it may be less efficient than the algorithms presented so far in computing
reveals or an excludes relation, through its output we can check all the
extended-reveals and excludes relations we are interested in, with relatively
few additional operations.

Given a P/T system Σ, the footprint of a maximal configuration C of
unf(Σ) is the multiset of transitions that can be observed through the cor-
responding run, i.e., λ(C). Thanks to the bijection between maximal config-
urations of the unfolding and maximal paths of the mmg(Σ)-tree, we know
that if Σ is a bounded equal-conflict net, for each maximal run of the unfold-
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ing we can find a maximal path on the mmg-tree with the same footprint.
This equivalence holds in particular when we consider sets of transitions
instead of multisets, namely, when we ignore the number of occurrences of
each transitions, and we just register its occurrence in the maximal path or
in the maximal run.

We define footprint-set of a path π, and we denote it λs(π), the set of
transitions in the footprint of π, namely, t ∈ λs(π) if, and only if, t ∈ λ(π).
Analogously, let C be a configuration on unf(Σ), the footprint-set of C,
denoted with λs(C), is the set of transitions of Σ such that t ∈ λs(C) if,
and only if, there is an event e ∈ C with λ(e) = t. For what discussed in
Sec. 2.4 and above, if Σ is a bounded equal-conflict P/T system, for each
maximal configuration C on unf(Σ) there must be a maximal path π on
the mmg-tree such that λs(π) = λs(C), and vice versa.

Example 29. Consider the P/T system in Fig. 3.7, and the full prefix of
its mmg-tree on the right of the same figure. The footprint-sets of some
of the maximal configurations of unf(Σ) can be found by looking at the
maximal paths on the full prefix, These are {t2}, {t1, t3, t4, t7}, {t1, t3, t4, t5},
{t1, t3, t4, t6, t8}. However, in unf(Σ) there are also maximal configurations
with a different footprint-set. For example, the net could execute the cycle
with t4 and t5 several times and then fire t7; in this case the footprint-set
would be {t1, t3, t4, t5, t7}. Footprint-sets of other maximal configurations
are {t1, t3, t4, t6, t7, t8}, {t1, t3, t4, t5, t6, t8}, {t1, t3, t4, t5, t6, t7, t8}.

The footprint-sets of all the maximal paths of a mmg-tree can be com-
puted from its full prefix. This is made possible by two key features. First,
any path of the mmg-tree can be reconstructed solely with the information
provided by its full prefix. This is enabled by the following properties: (a)
all reachable markings of a mmg-tree are represented in the full prefix; (b)
each maximal path of a full prefix which does not end in a deadlock ends in
a node corresponding to a marking which is repeated in that path; and (c)
the subtrees of the mmg-tree whose roots correspond to the same marking
are isomorphic. Second, since the set of labels of the system is finite, there
are only finitely many possible footprint-sets that can occur in runs. Then
only a finite collection of maximal paths needs to be explored, making sure
that each possible footprint-set is represented in the collection. Further-
more, only a finite prefix of each path needs to be explored, if we make sure
that it displays all labels that will eventually occur along the path. These
notions are formalised in the following lemma.

Lemma 12. Let Σ = (P, T, F,W,min) be a bounded equal-conflict P/T
system, A be the mmg(Σ)-tree, r be its root, and π be a finite prefix of
some maximal path of A. Consider the final node v of π, and suppose there
is some other node v′ in π associated to the same marking and such that
λs(π) = λs(πr,v′). Then the following hold.
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1. There is a maximal path π′ of A such that λs(π) = λs(π
′), and π is a

prefix of π′.

2. For each maximal path πv such that v ∈ πv, and πv ̸= π′ of A, there is a
maximal path πv′ of A such that v′ ∈ πv′,v /∈ πv′, and λs(πv) = λs(πv′).

Proof. Let s0 = v′↑π, so that π = (πr,v′)·s0. Then λs(π) = λs(πr,v′)∪λs(s0),
and since λs(π) = λs(πr,v′), we derive that λs(s0) ⊆ λs(πr,v′).

In order to show (1), suppose that for some k ∈ N there is a maximal
path πk of A, and a sequence of segments {si}i≤k such that ∀i ≤ k : si ≃ s0,
and πr,v′ · s0 · · · sk is a prefix of πk. In particular, this is true for k = 0.
Since all the si are isomorphic, and can be concatenated, for each of them
the initial node vi must be associated to the same marking of the final nodes
vi+1. In particular, this holds for i = k, and it follows from Lemma 1 that
Avk ≃ Avk+1

. Put v0 = v′ and v1 = v, clearly ∀i ≤ k+ 1 : λ(πr,vi) = λ(πr,v0)
and Avi ≃ Av0 . Note that vk ↑ πk is a maximal path of Avk , and that sk is
its prefix. Then there must be a maximal path π′k in Avk+1

isomorphic to
vk ↑ πk, with a prefix sk+1 isomorphic to sk, and therefore also to s0. Then
πk+1 = (πr,vk+1

·π′k is a maximal path of A with prefix (πr,v′) ·s0 · · · sk+1. By
induction, we may derive that there is a sequence of isomorphic segments
{si}i∈N, and a path π′ = (π ↓ γ′) · s0 · · · sk · · · , maximal in A. Furthermore,
since the segments sk are all isomorphic, we have that ∀k ∈ N : λs(sk) =
λs(s0) ⊆ λs(πr,v). Hence, λs(π

′) = λs(πr,v).
This setting also allows one to show (2). Consider a maximal path

πv ̸= π′ of A, containing v. There must be some k ∈ N such that vk ∈ πv,
but vk+1 /∈ πv. But Avk ≃ Av′ implies that vk ↑ πv is isomorphic to some
maximal path π′v′ of Av′ . Let πv′ = (πr,v′) · π′v′ . The node v cannot belong
to πv′ , since otherwise we would have that vk+1 ∈ πv. Now note that since
∀k ∈ N : λs(sk) = λs(s0) ⊆ λs(v) , then λs(πv) = λs(πr,v′) ∪ λs(vk ↑ πv).
Since λs(vk ↑ πv) = λs(π

′
v′), we have that λs(πv) = λs(πv′).

This lemma provides a stop condition for an exploration of the mmg-tree
A, with the aim of finding footprints. Implication (2) provides a bound to
the number of maximal paths that need to be effectively visited, whereas
(1) lets us know when to stop exploring a path.

Algorithm 2 simulates such an exploration of A, in recursive depth first,
by successively exploiting Lemma 1 to explore sub-trees of the full prefix L.

In Algorithm 2, we suppose that the full prefix L is implemented thanks
to the structure Node. Aside from the field children, standard in a tree
structure, each node v gathers the following information.

• The marking corresponding to the node v, denoted v.m.

• The set of transitions labelling the arc bringing to the parent of v to
v, denoted v.U .

52



• When v is a leaf of the prefix which is not a deadlock, rep(v) is a
well-defined node of the prefix, and v.ancestor stores a pointer to that
node.

• The field v.seen is required for Algorithm 2 to terminate. It shall be
initialised to ∅ and will accumulate a collection of partial footprint-
sets.

Before proving the correctness of Algorithm 2, we provide an intuition with
a partial simulation of how it works on an example.

Example 30. Consider the P/T system Σ and the full prefix fp(mmg(Σ))
in Fig. 3.7

The algorithm to compute the footprint-sets starts from the root and at
each step, if the node is not a leaf, it makes recursive calls on the children
of the considered node.

In the tree in Fig. 3.7, the root has two children nodes. Then the ex-
ecution of function f on the root {p0} with c initialized to the empty set,
returns as value the union of the results of the recursive calls on the child
labelled with {p1} and on the one labelled with {p2, p3}.

Since {p1} is a deadlock, the first call returns as ‘value’ {{t2}}, indeed
there is a maximal path on the mmg-tree whose footprint-set is {t2}.

The call on the node labelled with {p2, p3}, with c = {t1}, induces a fur-
ther call of f on the only child node labelled {p4, p5} with c = {t1, t3, t4},
namely the footprint leading from the root to this node. This call will
return as ’value’ the union of the values returned by the further calls of
f on the children of node with label {p4, p5}. Inside this union, we fo-
cus only on the result of the call F (v, {t1, t3, t4, t6}), with v.m = {p4, p6}.
Node v has only one child, then it returns the value of the recursive call
on the node v′ with label {p2, p3} with c = {t1, t3, t4, t6, t8}. The node v′

is a leaf, and it is not a deadlock; at this step ‘v′.seen’ empty until this
point, gets the value {{t1, t3, t4, t6, t8}}, and ‘v′.ancestor’ is rep(l1) which
has label {p2, p3}. Then, the for cycle inside the second if call the function
f(v′′, {t1, t3, t4, t6, t8}), where v′′ is labelled {p4, p5}. This last call returns
as value the union of the recursive applications of f on the children of v′′,
with c updated by the information on the arc leading to the considered child.

The call f(l3, {t1, t3, t4, t6, t7, t8}), with l3 with label {p4, p7} returns as
‘value’ {{t1, t3, t4, t6, t7, t8}}, since {p4, p7} is a deadlock and {t1, t3, t4, t6, t7, t8}
is a footprint-set ending in l3.

The result of the call of f on the node with label {p4, p6} induces the call
of f(l1, {t1, t3, t4, t6, t8}), where l1 is labelled {p2, p3}.

The node l1 is a leaf, not a deadlock and l1.seen now contains c. Then,
the else branch is executed, and the value {{t1, t3, t4, t6, t8}} is returned. The
set {t1, t3, t4, t6, t8} is indeed an other possible footprint-set.
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The application of f to the next nodes will lead in an analogous way
to further recursive calls that terminate when the footprint-set c is already
present in the field ‘seen’ of the considered leaf that is not a deadlock.

Algorithm 2 Computing footprint-sets

struct Node v
2: m ⊆ P : marking in v

U ⊆ T : set of transitions on the arc connecting v and its parent
4: seen ⊆ 2T : set of footprint-sets that has been considered

ancestor : Node rep(v)
6: children : set of children of v

end struct
8:

function f(v :Node, c ⊆ T ) ⊆ 2T

10: value← ∅
if v.children = ∅ then

12: if v.m /∈ deadlocks(Σ) & c /∈ v.seen then
v.seen← v.seen ∪ {c}

14: for vi ∈ v.ancestor.children do
value← value ∪ f(vi, c ∪ vi.U)

16: end for
else

18: value← {c}
end if

20: else
for vi ∈ v.children do

22: value← value ∪ f(vi, c ∪ vi.U)
end for

24: end if
return value

26: end function

The following theorem proves the correctness of Algorithm 2.

Theorem 5. Let A an mmg-tree, L be its full prefix, and r be the root
of L. Let f be the function defined by Algorithm 2. Then f(r, ∅) returns
{λs(π) | π ∈ ΠA}.

Proof. The function f is recursive and simulates a depth first exploration of
A on its full prefix L. In order to formalise this, we will say that an input
pair of the algorithm (v′, c) simulates a node v of A whenever v and v′ are
associated to the same marking, and c = λs(πr,v). Since L is a prefix of A,
out of Lemma 1, Av′ ≃ Av whenever (v′, c) simulates v, independently of c.

First, we show that for each call f(v′, c), there is a node v simulated by
(v′, c). Indeed, the initial call f(r, ∅) satisfies that λ(r) = ∅. Now suppose
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that we enter the body of the function from a call f(v′, c) where (v′, c)
simulates some v of A. Further recursive calls are performed either if v′ is
not a leaf of L, or when v′ is a leaf which is not a deadlock.

In the first case, it follows from Av′ ≃ Av that a node v′i of L is a child
of v′ if, and only if, v has a child vi such that vi and v′i are associated to the
same marking. Furthermore, if U and U ′ are the sets of transitions labelling
the arcs (v, vi), and (v′, v′i) respectively, then U = U ′. Since each of these vi
satisfies λs(πr,vi) = λs(πr,v) ∪ U , then λs(πr,v′i) = λs(πr,v′) ∪ U ′ = c ∪ v′i.U .

In the second case, we observe that rep(v′) is well-defined, and v′, v, and
rep(v) are associated to the same marking. Then the previous argument
applies to rep(v′) instead of v′. It follows that each maximal path of A is
explored, up to simulation, and until the stop condition c ∈ v′.seen holds.

Next, we show that each call f(v′, c) returns a set containing only footprint-
sets of maximal paths of A. The function returns the footprint-sets of all
maximal paths of A which contain a node v simulated by (v′, c), unless these
footprint-sets are already returned at a previous call f(v′, c). In the function
body, the only return statement concerns the variable value, which is set to
∅ at the beginning of the call. We may suppose that all recursive calls inside
the body are effectively returning a set containing only valid footprint-sets.

We distinguish two cases, either v′ is a leaf of L or not. If it is not, then
the algorithm will enter a for loop, at each iteration of which the content of
the variable value will be extended with whatever is returned by a recursive
call to function f. Thus, by hypothesis, only valid footprint-sets are added
to the contents of value.

If v′ is a leaf of L, which is not a deadlock, and such that c /∈ v′.seen,
then the same argument applies. If c ∈ v′.seen, variable value gets the
singleton {c}. In this case, c must have been added to v′.seen in a previous
call f(v′, c), and so there are two nodes v0, and v1 of A, both simulated by
(v′, c).

Suppose there is a maximal path of A which contains both v0 and v1,
then we are in the conditions of Lemma 12. For the first condition, c must
be the footprint-set of some maximal path of A. Note that in this case,
the simulated visit to v1 must return before that to v0 does, and so the
values to be returned by the latter depend on those returned by the former.
However, from the second condition we may deduce that if the footprint-set
of a maximal path containing v1 is different from c, then it is returned by
the first call f(γ′, c), independently from the second: for each such path,
there is a path with the same footprint-set containing v0, but not v1, so its
footprint-set is computed without relying on the second call. Hence, {c}
is the only footprint-set to be returned by the second call, which is not
redundant with those returned by the first.

If on the contrary, there is no maximal path of A containing both v0 and
v1, then by the second call, the first call f(v′, c) must have already returned
and so there must have been an intermediary call f(v′, c) simulating a visit
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to a node v2, such that there is a maximal path of A containing both v0 and
v2. Then conditions of Lemma 12 apply to v0 and v2, and by the previous
argument, the first call has returned the footprint-sets of all maximal paths
of A containing v0. Since by Lemma 1, Av0 ≃ Av1 , then a maximal path of A
containing v1 has a given footprint-set if, and only if, A has a maximal path
containing v0 with the same footprint-set. Furthermore, by concatenating
infinitely many isomorphic copies of the segment with initial node rep(v′)
and final node v′ to the path leading to v1, we obtain a maximal path of A
whose footprint-set is precisely c.

The case in which v′ is a leaf of L which is a deadlock remains. Since
(v′, c) simulates some v of A, and since Av ≃ Av′ , then v must be a deadlock
as well. Hence {c} = λs(πr,v) is the footprint-set of the finite maximal path
ending at v.

Finally, since L and T are finite, there are only finitely many pairs (v, c),
with v node in L and c subset of T . Only the first time a call f(v, c)
is performed, the size of the sub-tree of A whose exploration is simulated
increases, and always by at most the size of the full prefix. Then, if w is
the number of leaves of L which are not deadlocks, the size of the explored
sub-tree is at most |L|+ w ∗ 2|T | ∗ |L|. This value is an upper bound to the
total number of calls to f, which ensures termination and provides a worst
case asymptotic complexity O(|L|2 ∗ 2|T |).

This proof concludes that the footprint-sets of maximal runs of a system
can be computed on its full prefix in a finite number of steps. This enables us
to identify all the excludes and extended-reveals relations among transitions
by looking for labels in the computed footprints.

3.3.5 Computing collective and extended-repeated reveals

In this section, we propose an algorithm to compute the collective reveals
relation (Def. 16), on a bounded equal-conflict P/T system Σ, through the
full prefix fp(mmg(Σ)). Its pseudo-code is presented in Algorithm 3.

Given two sets of transitions of Σ X and Y , and a natural number n > 0,
X n-collective reveals Y if, and only if, in each maximal configuration in
unf(Σ) with at least n occurrences of transitions in X, there is at least an
occurrence of a transition in Y .

Since reveals (Def. 9) and repeated reveals (Def. 14) can be expressed
as special cases of collective reveals (see Remark 8), the algorithm allows to
compute also these relations. At the end of the section, we will discuss how
to modify it to compute also extended-repeated reveals (Def. 15).

Algorithm 3 takes as input the full prefix L = fp(mmg(Σ)), two sets of
transitions, X and Y , and a positive number n. If there is no path in the
mmg-tree with at least n occurrences of transitions of X, then the algorithm
returns undefined. Otherwise, it returns true if n.X _ Y , false if n.X ̸_ Y .
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The main function of the algorithm is repex. The variable ‘Paths’ includes
all the prefixes of the paths of the mmg-tree that we need to check to verify
the relation. Initially, it includes all the paths in fp(mmg) with at least
an occurrence of a transition of X (this is justified by Lemma 8). The
variable ‘empty’ is true if a path with at least n occurrences of transitions
of X has not been found, false otherwise. ‘Paths’ and ‘empty’ are the input
arguments of the function extendPaths. This function checks which input
paths already include at least n occurrences of transitions of X, and, if it
finds a path with n occurrences of X and none of Y , it sets the value of ‘stop’
to true, and stops the execution. In this case, also the main function will
stop, and return false, since the path could be extended to a maximal path
of the mmg-tree without adding any new transition label. If the path has
at least n occurrences of X and an occurrence in Y , then it does not need
to be elongated further, and the algorithm must continue with the analysis
of the other paths.

Let π be a path with less than n occurrences of X; then the algorithm
needs to check which extensions could be useful to add more occurrences
of transitions of X. If π ends with a deadlock, it is not possible to extend
it further, and since there are no n occurrences of X we are not interested
in it. Otherwise, rep(leaf(π)) is well defined, and all the paths extending
π are labelled as one of the paths starting from rep(leaf(π)). Let ext be
any path starting from rep(leaf(π)). If ext does not have any occurrence of
X and ends with a deadlock, then we do not need to consider it, since the
concatenation π · ext of π and ext does not have n occurrences of X. Also,
we do not consider the extension of π with no occurrence of X, and such
that rep(leaf(π)) ≤ rep(leaf(ext)), since each path with such a prefix and n
occurrences of X can be peeled removing ext and still have n occurrences of
X. All the other extensions are put in the variable ‘newPaths’, and will be
considered in the next round. If there are no paths left to analyse, and in
all those with at least n occurrences of X there is an occurrence in Y , then
the algorithm returns true.

Example 31. Consider the P/T system in Fig. 3.6 and its full prefix. As-
sume that we want to check the relation 2.{t0, t2}_ {t1}. We can easily see
that the relation is verified. The first part of the relation is satisfied if we
observe t0 or t2 at least twice, or both t0 and t2 once. In all these cases, t1
must have occurred to bring the token back in p0. We simulate some steps
of the algorithm to see how to arrive at this conclusion. First, we need to
consider all the paths with at least an occurrence of t0 or of t2. In this
case, these are all the paths of the full prefix. Since none of them has two
occurrences, we need to check the possible extensions for all of them. The
two paths ending in a deadlock cannot be extended further, therefore we can
stop to consider them. As in previous parts, in what follows the occurrence
of transition ti n times in the multiset is denoted with tni , and with just ti if
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Algorithm 3 Computing collective reveals

function repex((L: full prefix, X,Y ⊆ T, n ∈ N) ∈ {true, false,
undefined})

2: Paths ← List of maximal paths in L with at least an element of X
empty ← true

4: while Paths ̸= [] do
Paths, empty, stop ← extendPaths(Paths, empty)

6: if stop = true then
return false

8: end if
end while

10: if empty = true then
return undefined

12: else
return true

14: end if
end function

function extendPaths((Paths, empty))
2: # returns a triple (x, y, z), where x is a list of paths, and y and z

are boolean values
newPaths = []

4: for π ∈ Paths do
if |π ∩X| ≥ n then

6: empty ← false
if Y ∩ π = ∅ then

8: return [], false, true
end if

10: else if l(π) is not a deadlock then
for ext ∈ Lrep(l(π)) do

12: if ext ∩X ̸= ∅ ∨ (rep(l(ext)) < rep(l(π))) then
newPaths.append(π · ext)

14: end if
end for

16: end if
end for

18: return newPaths, empty, false
end function

20: # | π ∩X | is equivalent to
∑

t∈X λ(π)(t)
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n = 1.
Consider the path with footprint {t0, t4, t27, t6, t8}. Its possible extensions

are isomorphic to the segments starting with rep(l1): these have labels {t5}
and {t6, t7}. In none of them an occurrence of t0 or t2 appears; the segment
labelled {t5} ends in a deadlock, and the leaf of the segment labelled {t6, t7}
(l1) coincides with rep(l1), therefore none of these extensions is useful to
observe a second occurrence in {a, c} and we can discard the path. Analo-
gously for the path with footprint {t2, t3, t4, t5, t6, t27}. A similar reasoning
can be done for the paths with footprints {t0, t4, t6, t7} and {t2, t3, t4, t6, t7}:
in these cases, the possible extensions start from the nodes rep(l3) and rep(l6)
respectively, but none of them has an other occurrence of t0 or t2, and the
repetition of the non-deadlock leaves coincides or follows these nodes. Hence,
the only paths that we can extend are those ending with the nodes l8 and l7
({t0, t1} and {t2, t3, t1} respectively). The extensions of these paths start
from the root, therefore in all of them there is an occurrence of t0 or one
of t2, and these extended paths have two occurrences in {t0, t2}. Since in
all of them there is already an occurrence of t1, we can stop, and conclude
2.{t0, t2}_ {t1}.

Lemma 13. The leaf of every path constructed by the algorithm is a dead-
lock, or is associated with a marking that is already present in the path.

Proof. First we observe that every path constructed by the algorithm ends
with a node equivalent to a leaf in the prefix tree. For each leaf, the path
in the tree starting from the root and arriving to it is unique.

Let r be the root of the tree, π0 · π′1 · ... · π′n be a path constructed by
the algorithm, where π0 is a maximal path in the prefix tree and π′i is an
added segment isomorphic to a segment πi starting from rep(leaf(πi−1)) (the
repetition of the leaf leaf(πi−1) of the segment πi−1) and ending in leaf(πi),
a leaf of the prefix tree. We have to prove that, if the leaf of the constructed
path is not a deadlock, then the repetition rep(leaf(π′n)) of the leaf leaf(π′n)
of the path belongs to the path itself, i.e., rep(leaf(π′n)) is in π0 · π′1 · ... · π′n.

We prove it by induction. Let leaf(π′1) be the leaf of π0 · π′1; if it is not a
deadlock, then rep(leaf(π′1)) is either in π′1 or inside πr,rep(leaf(π0)), where r is
the root. In this last case, it is contained in π0. Then rep(leaf(π′1)) ∈ π0 ·π′1.

We now assume the constructed path π0 · π′1 · ... · π′i ends either with
a deadlock, or with a node whose repetition rep(leaf(π′i)) is either in π′i or
in the segment πr,rep(leaf(π′

i−1))
, which is contained in π0π

′
1...π

′
i−1, and then

rep(l(π′i)) ∈ π0 · π′1 · ... · π′i.
We prove that the path π0 · π′1 · ... · π′i+1 ends either with a deadlock,

or with a node whose repetition rep(leaf(π′i+1)) is either in π′i+1 or in the
segment πr, rep(l(π′i)), which is contained in π0 · π′1 · ... · π′i, and therefore
rep(l(π′i+1)) ∈ π0 ·π′1 ·...·π′i+1. In fact, π′i+1 is isomorphic to a segment πi+1 in
the prefix tree starting from rep(leaf(πi)), which is between r and leaf(πi),
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and ending in a leaf leaf(πi+1) of the prefix tree. This last leaf is either
a deadlock, or has a repetition, which is either in πi+1 or in πr, rep(l(πi));
since rep(leaf(π′i)) is by inductive hypothesis in π0 · π′1 · ... · π′i, we get the
thesis.

Lemma 14. Let π be any maximal path in the mmg-tree. If π has in total
at least n occurrences of transitions belonging to X, then there is at least
a path π′ analysed by the algorithm with in total at least n occurrences of
transitions of X, such that λ(π′) ⊆ λ(π).

Proof. We show that we can peel π and obtain a maximal path of the mmg-
tree such that its prefix is analysed. For Lemma 8, we can peel π and obtain
a path π1 such that at least an occurrence of X appears in its prefix in
fp(mmg). Let π′1 be such prefix. If π′1 has n occurrences of X, we don’t
need to proceed further; otherwise π′1 must be followed in π1 by a path iso-
morphic to a path starting from rep(leaf(π′1)). Let π′2 be this segment. If
π′2 has at least an occurrence of a transition of X, or rep(leaf(π′2)) precedes
rep(leaf(π′1)), this elongation of the prefix has been considered by the algo-
rithm. If π′2 has no occurrences of X and rep(leaf(π′2)) ≥ rep(leaf(π′1)), then
we can peel π1 of the part between rep(leaf(π′2)) and leaf(π′2), obtaining π21.
Since in π′2 there are no elements of X, this cannot influence their number in
π21, and λ(π21) ⊆ λ(π1). The path π21 has also a prefix made by π′1 concate-
nated with a segment starting from rep(leaf(π′1)). Let π′3 be this segment.
If rep(leaf(π′3)) ≥ rep(leaf(π′1)), we repeat the peeling procedure. Since π1
has n occurrence of X by hypothesis, after a finite number i of steps, we will
obtain a peeled maximal run πi1 such that rep(leaf(π′i)) < rep(leaf(π′1)), with
π′i segment starting from rep(leaf(π′1)) extending the segment π′1, or π′i has
at least an occurrence of X. We can repeat this reasoning until obtaining
a prefix with at least n occurrences of X. Since in our steps we never re-
move any of those, and π includes them by hypothesis, this procedure ends
after a finite number of steps. By construction, all the transitions in the
constructed prefix are also in π, therefore we produced a prefix as required
from the thesis.

Theorem 6. Algorithm 3 is correct.

Proof. As first step we show that if the algorithm returns false, then n.X ̸_
Y . The algorithm returns false if the variable ‘stop’ is true. The value of
‘stop’ is selected into the function extendPaths, and it is set to true if
a path is found with n occurrences of X and none in Y . Each prefix is
constructed so that the final leaf is a deadlock for the path, or it is repeated
previously; in the first case the path is already maximal, in the second
case, the path can be extended to a maximal path without adding any new
transition by repeating infinitely often the segment between the leaf of the
prefix and its repetition. The existence of such a repetition is guaranteed by
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Lemma 13. In both cases there is a maximal run with at least n occurrences
of X and none in Y , therefore n.X ̸_ Y .

We now show that if the algorithm returns true, then n.X _ Y . This is
a consequence of Lemma 14: if there were a path with n occurrences of X
and none in Y , Lemma 14 guarantees that we would analyse a prefix with
the same feature, but if this happens, the algorithm returns false.

If the algorithm returns undefined, then there cannot be any run in
the mmg-tree with n occurrences of transitions of X as a consequence of
Lemma 14.

Theorem 7. Algorithm 3 terminates.

Proof. The algorithm ends when the variable ‘Paths’ becomes empty, or
when a path with n occurrences ofX and none in Y was found. We show that
‘Paths’ becomes empty after a finite number of steps. The variable ‘Paths’
is a list of prefixes of paths in the mmg-tree. Its content in each iteration of
the while loop is entirely determined by the function extendPaths, that
extends some of its elements. In particular, the function extends the paths
with less of n occurrences of X. Each path can be extended in two ways:
adding at least an additional occurrence of X, and this happens only finitely
many times, since when the path has at least n occurrences of X it is not
extended anymore, or with a segment whose repetition of the leaf is strictly
closer to the root than the repetition of the previous leaf. Also in this second
case the number of extension is finite, since the distance between each node
and the root is finite.

Remark 12. When we consider a reveals relation, e.g. t1▷t2, this algorithm
needs to analyse only the maximal runs of the prefix tree, without further
extensions. This is coherent with the result in Sec. 3.3.2, where it is shown
that all the reveals relations can be computed by looking one time at the
prefix.

Algorithm 3 can be adapted to compute the extended-repeated reveals
relation (Def. 15). Here we give a sketch of how this can be done. Let X =
{t1, ..., tk} and Y be the input sets. Instead of having just a single threshold
n in input as for repeated reveals, the input must include all the thresholds
{n1, ..., nk} related to transitions of X, and the information about how they
are associated to these transitions. Since the number of observations in
which we are interested changes for every transition, when the algorithm
needs to decide whether a path can stop or needs to be extended, it must
consider all transitions of X separately, each with its threshold. In addition,
if a path has already reached the number of required occurrences of a certain
transition, we should stop to consider this transition as useful when we
evaluate the possible extensions.
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Since extended reveals (Def. 10) can be expressed as a special case of
extended-repeated reveals, modifying the algorithm as described would allow
for its computation.

Unlike the algorithm proposed in Sec. 3.3.4, the algorithm proposed in
this section is designed to check a specific instance of the collective reveals
or extended-repeated reveals relations.

3.3.6 Toward more efficient algorithms: a reduction of the
prefix

In this section we describe an algorithm that, given a relation based on re-
veals and a bounded equal-conflict P/T system, computes a reduced version
RMG of the mmg, and uses an adapted version of the algorithm presented
in Sec. 3.3.5 on the full prefix of the RMG-tree to compute the relation.

We describe in details the case in which the given relation is an instance
of collective reveals, but the result can be adapted to the case of extended-
repeated reveals with an analogous reasoning to the one presented at the
end of Sec. 3.3.5, and therefore also to the other relations based on reveals.

Let Σ = (P, T, F,W,min) be a bounded equal-conflict P/T system,
X,Y ⊆ T , and n ≥ 1, and assume that we need to verify n.X _ Y .
The relation n.X _̸ Y holds if, and only if, there is a maximal configura-
tion in unf(Σ) with n occurrences of X and none of Y . Whereas finding a
configuration with n occurrences of X and at least an occurrence of Y does
not give us any information, finding a configuration with n occurrences of
X and none of Y is sufficient to conclude that the relation does not hold.
For this reason, while checking collective reveals, we can consider only the
paths with no occurrence of Y , and check if there is one with at least n
occurrences of X among them.

Note that in this way we do not detect the case in which the relation
is not defined. However, it is reasonable to assume that in practical cases,
users may be interested in verifying a relation which they already know to be
defined on the system. If this is not the case, we need to use the algorithm
presented in Sec. 3.3.5.

The procedure presented in this section reduce mmg(Σ) by keeping only
the sequences of maximal steps without occurrences of Y , and then check on
them whether n.X _̸ Y . We denote such a reduction of mmg with respect
to Y as RMGY (Σ), or just RMGY if Σ is clear from the context.

Given Σ and Y , the construction of RMGY is presented in Algorithm 4
and Algorithm 5. The construction start with the function rmg in Algo-
rithm 4. During its execution, the algorithm constructs a reduction of mmg,
where the arcs labelled with an occurrence of Y have been removed. At the
same time, it stores in ‘remove’ the list of markings that are not dead-
lock in Σ, but have no outgoing arc in the reduction of mmg. The paths
crossing these markings need to be removed from the final result, since a
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sequence ending on them would not be associated to any maximal sequence
in mmg. This further reduction is carried out by function update RMG
in Algorithm 5, that takes the list ‘remove’ and the reduced marking graph
constructed so far as input. This is a recursive function that removes from
the marking graph all the arcs having a marking in ‘remove’ as final point,
and constructs another list of markings (‘new bad’ ) that have no outgoing
arcs at the end of the function. The function calls recursively itself until the
list of nodes to remove is empty. This must happen at some point, since the
number of markings is finite, and once that a marking has been removed, it
can never be added again.

Algorithm 4 Computing the reduction RMGY of mmg(Σ)

function rmg(Σ: net, Y ⊆ T )
2: pending ← [m0]

RMG.markings = {Σ.m0}
4: RMG.trans ← ∅

remove ← []
6: while pending ̸= [] do

m←pending.pop()
8: steps ← compute max steps(m)

if steps = ∅ then
10: new dead ← False

else
12: new dead ← True

end if
14: for step ∈ steps do

if step ∩ Y = ∅ then
16: new dead ← False

m next ← compute next mrk(m, step)
18: if m next ̸∈ RMG.markings then:

RMG.markings.add(m next)
20: pending.append(next mrk)

end if
22: RMG.trans.add((m, step, m next))

end if
24: end for

if new dead = True then
26: remove.append(m)

end if
28: end while

return update RMG(RMG, remove)
30: end function
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Algorithm 5 Function removing deadlocks generated from the reduction

function update RMG(RMG, remove)
2: if remove = [] then:

return RMG
4: end if

new bad ← []
6: for m ∈ remove do

RMG.markings.remove(m)
8: for t ∈ RMG.trans do

if t[2] = m then
10: RMG.trans.remove(t)

end if
12: if ∄t′ ∈ RMG.trans : t′[0]← t[0] then

new bad ← t[0]
14: end if

end for
16: end for

return update RMG(RMG, new bad)
18: end function

Example 32. Fig. 3.8 recalls the P/T system introduced in Fig. 2.5 and its
mmg, and shows two reduction of the mmg, in particular the first reduction
on the left is made on the set {t1} and the second one is made on the set
{t7}. Considering set {t1}, only one arc is removed from the original mmg,
since there is only one arc labelled with t1. Since this arc arrives in the node
labelled p0, p

2
5, that is still reachable in the RMG{t1} (being the initial node)

and has two outgoing arcs, no other element is removed from RMG{t1}.
Instead, when we consider the set {t7}, the size of RMG{t7} is much smaller
than the one of mmg. This happens also because Algorithm 4 does not only
remove all the arcs labelled with t7 from mmg, but also the nodes that are not
deadlocks in mmg, but have no outgoing arcs after removing the occurrences
of t7 from mmg, and the arcs pointing to these nodes. An example of this, is
the node labelled {p3, p4, p25}, that is removed although it is reachable without
occurrences of t7, since its only outgoing arc is labelled with t7. The graph
resulting from this procedure, exactly produces all the maximal runs of the
P/T system which do not have any occurrence of t7.

Given a reduction RMGY of an mmg, the tree-unfolding of RMGY

(Def. 4) and its full prefix fp(RMGY ) (Def. 17) are well-defined. Since
each maximal path in the RMGY -tree are also paths in the mmg-tree, each
maximal path in the RMGY -tree can be associated to at least one maximal
configuration of the unfolding, with the same footprint. The vice versa does
not hold for the RMGY -tree, since all the paths with an occurrence of Y
have been removed; still, the vice versa holds when we consider only the
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Figure 3.8: Above, the P/T system introduced in Fig. 2.5 and its mmg.
Below, two reduction of the mmg, on the left with respect to the set Y =
{t1}, and on the right with respect to the set Y = {t7}.

maximal configurations on the unfolding without any occurrence of Y .

Remark 13. If Y = ∅, mmg coincides with RMGY , therefore, if a property
holds on RMGY -tree for any Y , it holds also on mmg-tree.

Example 33. Fig. 3.9 illustrates the full prefix of the mmg(Σ)-tree, the full
prefix of the RMG{t1}(Σ)-tree, and the full prefix of the RMG{t7}(Σ)-tree,
where Σ is the system net illustrated in Fig. 3.8.

Let Σ = (P, T, F,W,min) be a bounded equal-conflict P/T system,
X,Y ⊆ T , n ∈ N. To check whether the relation n.X _ Y on Σ, we
compute fp(RMGY ), and we use the adapted version of Algorithm 3 pre-
sented in Algorithm 6, in which the elements of Y are not considered (since
they are not present in fp(RMGY )).

Example 34. Consider the P/T system Σ in Fig. 3.8. As in Ex. 31, as-
sume that we want to check the relation 2.{t0, t2}_ {t1}, and that we knows
that the relation is well defined. Given the P/T system Σ and the set {t1},
Algorithm 4 computes the reduced marking graph RMG{t1}(Σ) which is also
illustrated in Fig. 3.8 (below on the left). This procedure results in a mark-
ing graph which only produces the maximal runs without occurrences of {t1}.
Then the full prefix of the reduced graph fp(RMG{t1}(Σ)) is constructed as
defined in Def. 17 and is illustrated in Fig. 3.9 (below on the left). Algo-
rithm 6 takes fp(RMG{t1}(Σ)), the set {t0, t2} and number 2 as input. When
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Figure 3.9: Above, the full prefix of the mmg-tree of the P/T system in
Fig. 3.8. Below, the full prefixes fp(RMG{t1}) on the left, and the full prefix
fp(RMG{t7}) on the right.
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Algorithm 6 Computing collective reveals through RMGY

function repex(L : fp(RMGY ), X ⊆ T, n ∈ N)
2: Paths = The list of maximal paths in L with at least an element of
X

while Paths ̸= [] do
4: Paths, stop ← extendPaths(Paths)

if stop = True then
6: return False

end if
8: end while

return True
10: end function

function extendPaths(Paths)
2: # returns a pair (x, y), where x is a list of paths, and y is a boolean

value
newPaths ← []

4: for π ∈ Paths do
if |π ∩X| ≥ n then

6: return [], True
else if l(π) is not a deadlock then

8: for ext ∈ Lrep(l(π)) do
if ext ∩X ̸= ∅ ∨ (rep(l(ext)) < rep(l(π))) then

10: newPaths.append(π + ext)
end if

12: end for
end if

14: end for
return newPaths, False

16: end function
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the algorithm runs, it detects that there is no maximal path with at least two
occurrences of {t0, t2}. Then 2.{t0, t2}_ {t1}.

Now let us assume that we want to check the relation t5 ▷ t7 which is
equivalent to 1.{t5} _ {t7}. We can follow the same procedure as above.
Given the net system Σ and the set {t7}, Algorithm 4 produces the reduced
marking graph RMG{t7}(Σ) which is also illustrated in Fig. 3.8 (below on
the right). The full prefix fp(RMG{t7}(Σ)) is illustrated in Fig. 3.9 (below
on the right). Algorithm 6 takes fp(RMG{t7}(Σ)), the set {t5} and number
1 as input. When the algorithm runs, it detects that there is no maximal
path with at least an occurrence of t5. Then, t5 ▷ t7.

Lastly, let us consider the relation 2.{t0, t2} _ {t7}. This time we call
Algorithm 3 with fp(RMG{t7}(Σ)), the set {t0, t2} and number 2 as input.
The algorithm finds a maximal run such that t7 does not occur but the num-
ber of occurrences of {t0, t2} is 2. In fact, the prefix of RMG{t7}(Σ)-tree il-
lustrated in Fig. 3.9 can be extended to produce many of such maximal runs,
e.g., the maximal run which repeats the sequence t0t1t2t3t0t1. With these
given inputs, Algorithm 6 returns false meaning that 2.{t0, t2} _̸ {t7}.

3.3.7 Experiments

We implemented the algorithms in Sec. 3.3.2, Sec. 3.3.5, and Sec. 3.3.6, and
tested them on some examples. This section describes the results obtained
in these experiments. Since the contribution of this chapter and of the
papers from which it is derived ([6, 1, 7]) are mainly theoretical, we did not
focus on the optimization of the code and we did not carry out a systematic
set of experiments; this is left as future work. However, I think that the
experiments and considerations presented in this section can be useful to
get some insights on the algorithm efficiency and to suggest directions for
future improvements.

Our tool takes as input a P/T system specified in the PNML format
[130], and has the following usage options.

1. The user can specify on the command line a collective reveals relation
n.X _ Y . In this case, the tool proceeds as described in Sec. 3.3.6:
first it computes RMGY , then the RMGY -tree, and finally decides
whether n.X _ Y , using the tree.

2. The user may also not specify any relation on the command line, and
require the computation of mmg and the mmg-tree. In this case, after
the computation of the mmg-tree, the user can specify any collective
reveals relation in an interactive way, and the verification proceeds as
in Algorithm 3.3.5.

3. Finally, the user may ask for the computation of all the (simple) reveals
relations (Def. 9) on the tree. As in the previous case, this is done by
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computing mmg and the mmg-tree, and by looking at the leaves of the
tree. To increase the efficiency, instead of checking the relations one by
one, for each leaf we check all the reveals relations that cannot hold,
since they are denied by that path, and if a relation is not excluded by
any leaf, then it must hold in the system. In this case, the code refers
to the result in Sec. 3.3.2.

For our experiments we considered the following sets of P/T systems. (1)
We combined in different ways the nets shown in Fig. 3.3 and Fig. 3.4 (rows
pn1 through pn6 in the tables). (2) We developed a set of examples inspired
by the Kanban P/T systems in [97], used as benchmark for the tool [117]
(rows k33, k34, and k4 in the tables). (3) Again from [97], we tested two P/T
systems describing industrial business process models [54] (rows IBM319 and
IBM703); these are interesting models, since we expect business processes
to be an application of the methods described in this chapter.

For each P/T system, we computed the number of reachable markings
(column RMa); the number of markings in mmg (MM) and RMGY (MMY);
the number of leaves in the mmg-tree (L) and RMGY -tree for some set
of transitions Y (LY); the time needed for computing mmg (TMM); the
time needed for computing the mmg-tree (Tt); the time for computing
the RMGY -tree (TYt); the time for computing a collective reveals rela-
tion (Trev); the time to compute all the reveals relations (Tall). The results
of our experiments are in Table 3.1 and Table 3.2. All times are given in
seconds. The second column in Table 3.1 (#Σ) denotes the sum of places
and transitions in the P/T system. Missing values denote cases in which we
stopped the computation before termination, after at least an hour.

The PNML files for all these nets are available in the git repository at
this link https://github.com/MC3-lab/mscTree, together with the tool.

From the results we can observe that in some cases, such as the sets
of examples (1) and (3), using maximal-step semantics significantly reduces
the number of markings to analyse. In the sets of examples (2) and (3),
the number of leaves in the tree is larger than the number of nodes in
mmg and RMG; this suggests that some of the constructed subtrees may
be isomorphic, and therefore it would be possible to prune them. However,
deciding how to prune the tree is not trivial, since two nodes in the prefix
associated to the same marking but with a different past, may be the starting
point of non-isomorphic subtrees in the prefix. Some criteria that we plan
to test in future works consist in pruning the tree if it reaches a node whose
marking has already been analysed and the set of markings preceding the
repeated node includes all the marking in the past of the node already
analysed, or in pruning the tree if we reach a node that has already been
analysed, and that is not part of any cycle.

Set (2) is particularly interesting. These nets are critical for our algo-
rithm and tool; the interplay between concurrency among components and
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Table 3.1: Results of the experiments using mmg.
Name #Σ RMa MM L TMM Tt Trev Tall

pn1 85 1289 172 44 0.244 0.018 0.001 0.384
pn2 88 408630 1173 315 0.370 0.216 0.005 0.418
pn3 91 2093213 3291 1494 0.953 1.150 0.012 0.511
pn4 80 2252 408 182 0.267 0.101 0.002 0.397
pn5 83 958197 3420 2656 0.970 4.529 0.021 0.613
pn6 129 ∼ 15 · 106 143341 132800 2622.647 374.301 5.997 424.937

k33-f1 25 64 29 155 0.002 0.029 0.052 0.021
k33-f2 25 64 29 155 0.002 0.029 0.001 0.021
k34 25 160 129 - 0.012 - - -
k4 32 160 49 3339 0.234 0.945 661.353 0.539

IBM319 431 2482 325 1282 0.387 28.717 0.007 30.147
IBM703 546 8370 732 1948 1.007 66.251 0.015 67.109

Table 3.2: Results of the experiments using RMGY .
Name MMY LY TMMY TYt Trev

pn1 146 32 0.243 0.013 1.27 · 10−4

pn2 895 207 0.350 0.150 0.001
pn3 2086 684 0.675 0.491 0.003
pn4 357 169 0.259 0.0900 4.15 · 10−4

pn5 1089 498 0.357 0.418 0.002
pn6 29946 18592 148.412 52.011 0.109

k33-f1 3 1 2.98 · 10−4 3.89 · 10−5 8.58 · 10−6

k34-f2 23 40 0.002 0.012 9.44 · 10−5

k34-f1 3 1 0.001 3.98 · 10−5 8.34 · 10−6

k34-f2 41 690 0.006 0.158 0.001
k4 16 38 0.232 0.005 7.25 · 10−5

IBM319 281 610 0.230 13.801 0.002
IBM703 714 1860 0.971 61.861 0.006
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local conflicts has two effects: first, there is no relevant difference between
the number of reachable markings in the full marking graph and in the
reduced marking graph; second, the tree is very large, because many dif-
ferent combinations of maximal steps are possible, thus generating many
branches, and long paths before returning to the same marking. Hence, for
these nets, a small number of components can become unfeasible; the use of
the reduction technique improves anyway the performance for these nets.

The reduction proposed in Sec. 3.3.6 seems to improve the performance
in all the steps of the algorithm with respect to the technique proposed in
Sec. 3.3.5, and in case of a large numbers of markings in mmg or in the
mmg-tree, it can become very convenient, even if we need to compute a few
reveals relations. The efficiency of the reduction of the mmg-tree strongly
depends on the set Y ; in some cases, removing the arcs with Y allows to cut
a huge number of nodes in the tree, whereas in other cases, the number of
nodes is similar in the RMGY -tree and in the mmg-tree.

3.4 Related works and application of the relations
based on reveals and excludes

In this section, we discuss other notions developed in the literature for the
analysis of information flow. In particular, we present a non-exhaustive
overview of the works dealing with diagnosis, noninterference, and opacity
in Petri nets and related formal models, and discuss some simple applications
of the relations based on reveals and excludes in these contexts.

The problem of diagnosability consists in determining whether observing
some behaviour on a system allows to determine that a fault has happened
or will inevitably happen. The faults are usually unobservable (otherwise
their identification would be trivial).

In the ’90s, diagnosis was formalized on discrete event systems (DES)
[113]. Several subsequent works extended the results in [113] on DES by
proposing different notions of diagnosability, developing algorithms, and
proposing applications. In [133] the authors propose an overview describing
the main lines developed in this context. The techniques developed for di-
agnosis on Petri nets follow different approaches. In [34] the authors study
diagnosis on labelled Petri nets, and propose a verification algorithm based
on a reduction of the reachability graph. Their algorithms are then applied
to a manufacturing system. The work in [47] proposes an online method for
fault detection based on Integer Linear Programming. The algorithm waits
for the observation of a transition and establish whether the behaviour of
the system is normal, or a fault has occurred. The approach more related to
ours is based on the unfolding of the Petri net [16, 70]. This is also the con-
text in which the reveals relation was defined for the first time [70]. The use
of reveals to model diagnosis was then developed in [12, 72, 71]. In [17] the
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authors compare several notions of diagnosis (and opacity) and determine
their complexity. The works in [14, 90] give an overview of the methods
used in diagnosis with Petri nets.

The concept of noninterference was introduced by Goguen and Meseguer
for deterministic state machines in [66]. In [32] Busi and Gorrieri discusses
several notions of noninterference defined on 1-safe system. In the study
of noninterference, the transitions of the system are divided into high tran-
sitions and low transitions on the base of their confidentiality. A system
satisfies a noninterference property if no information about high transitions
can be deduced through the interaction with low transitions. Noninter-
ference has applications in checking security and privacy requirements. In
studying noninterference, in [33], the authors define structural noninterfer-
ence properties for elementary nets based on absence of particular places
in the net. Baldan and Carraro give a characterisation of noninterference
based on unfoldings of 1-safe system in terms of causalities and conflicts in
[13]. In [15], the authors provide an algorithm to compute all the minimal
solutions for enforcing noninterference on bounded Petri nets by using lin-
ear integer programming techniques. The definitions of reveals and excludes
used in this thesis were introduced in [21, 86]. Unlike the definition in [70],
where reveals was defined on the events of an occurrence net, [21, 86] de-
fine reveals and excludes between transitions of a P/T system, and propose
several noninterference properties based on these relations. The parametric
relations defined in this chapter can contribute to define more general and
tailored noninterference properties on the line of the definitions in [21].

The last notion that we discuss in this section is opacity. As for non-
interferece, also in the study of opacity we assume that some parts of the
system are observable, while other are not. Some part of the system should
remain secret for a standard observer. The secret may be for example the
value of a state or the occurrence of a transition. A system is opaque if for
each run with the secret, there is another run without the secret such that
the two runs are indistinguishable for an observer. There is a strong relation
between noninterference and opacity. In [31] the authors study the relation
between opacity and noninterference, and show that, for some formulations
of the two notions, noninterferece implies opacity, while the opposite is not
true. A first notion of opacity was introduced in [96] to define properties
of security protocols. In [31] opacity is defined on transition systems. In
[30] the authors provides a framework to study three definitions of opacity
on weighted Petri nets. They assume that an observer knows the structure
of the system, but may not observe the value of some places, therefore it
cannot know the global state of the system, included the initial marking. In
[122] the authors tackle the problem of enforcing opacity on a DES. They
base their approach on supervisory control, developed for the first time in
[109]: this consists in synthesising a supervisor limiting the behaviour of the
system, so that all the remaining behaviours satisfy a certain property, for
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example opacity. An updated overview of methods used to study opacity in
DES can be found in [68]. So far there is no work modelling opacity with
reveals and excludes; however, in the following section we discuss an opac-
ity problem with the methods presented in this chapter. In future works
we plan to formalize the intuition provided by the example by using the
relations defined in Sec. 3.1 to express opacity properties.

3.4.1 Examples of applications

We now discuss two simple examples to show possible applications of the
relations and algorithms presented in this chapter. The example proposed
in this section are also published in [7].

A first example related to business process model has been already in-
troduced at the beginning of this chapter (see Fig. 3.1 and Ex. 18). The
next example that we propose models a variant of the dining cryptographers
protocol introduced in [30] and [96] in the context of opacity. We show how
the scenario described in the example can be modelled with a free-choice net,
and how the security requirements can be checked through the information
flow relations previously introduced in the chapter.

The dining cryptographers The two cryptographers Anne and Bob en-
joy a meal at the restaurant. When they ask for the bill, they are informed
that it has already been paid. They want to know whether one of them
or their employer National Security Agency (NSA) paid, but in case one
of them paid, they do not want their neighbour Eve to discover who. To
this aim, they perform a protocol to exchange information in a secure way.
They toss two coins, visible to both of them, and they state their parity
(’agree’ if the coins show the same side, ’disagree’ otherwise). Eve can hear
whatever they say, but she cannot see the coins. If Anne paid, she will lie
about the parity of the two coins, otherwise she will tell the truth. Bob will
do the same. After this procedure Anne and Bob will know who paid the
bill, whereas Eve will only be able to say whether one of them or the NSA
paid. But if NSA did not pay, Eve will not be able to know who paid among
Anne and Bob.

This protocol is modelled with the 1-safe free choice net in Fig. 3.10,
where the mmg-tree of the net and the legend of the labels of each transition
are also presented. Below we examine the net with our techniques.

Example 35. The protocol must make sure (1) Eve is not able to determine
who paid among Anne and Bob, (2) Anne and Bob are able to determine
who paid.

In the protocol, Eve can observe AdBa,AaBd,ABA and ABD. Every-
thing else is hidden. We can verify the first requirement by checking whether
the transitions that are observable to Eve reveal if Anne or Bob paid (AP
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Legend of transitions

AP/ BP/ NP Anne/ Bob/ NSA paid
HH/CC the coins show two heads or two crosses
HC one coin shows head, the other cross
ALA/ BLA Anne/ Bob lies stating that the two coins agree
ALD/ BLD Anne/ Bob lies stating that the two coins disagree
ABA Anne and Bob state that the coins agree
ABD Anne and Bob state that the coins disagree
AdBa Anne states that the two coins disagree,

whereas Bob states they agree
AaBd Anne states that the two coins agree,

whereas Bob states they disagree

Figure 3.10: The dining cryptographers net and the full prefix of its maximal
step computation tree.
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and BP ). As discussed in Sec. 3.3.2, by looking at the footprints of the
maximal paths of the full prefix (which is actually the whole mmg-tree in
this case), we see that none of the mentioned transitions reveals AP or BP ,
e.g., AdBa ̸▷ AP , AdBa ̸▷ BP , etc. We see that no combination of the
observable transitions appears in the same path, so it is not relevant to check
whether any combination extended-reveals AP or BP . We can conclude that
the first requirement is satisfied.

The second requirement is a property that the protocol must satisfy to
ensure the required information is exchanged between Anne and Bob. This
property can be expressed in terms of extended-reveals relation and can be
verified by computing the footprints of the mmg-tree as discussed in Sec-
tion 3.3.4. However, in this example there are no cycles and so the full
prefix is actually the whole mmg-tree. This means that further computation
is not required. The set of footprints of maximal paths of the full prefix and
the mmg-tree are the same. The protocol is finalised by one of the following
transitions: AdBa,AaBd,ABA,ABD. All are observable. Nothing else is
observable to Eve, but AP is observable to Anne while BP is observable to
Bob. Looking at the footprints, we deduce that ABA▷NP and ABD▷NP .
We also see that {AdBa} _ {AP,BP} and {AaBd} _ {AP,BP}. This
means that by observing AdBa or AaBd, the observer can deduce either
Anne or Bob paid. So, while Eve is not able to understand who paid, when
Bob pays, Anne understands and vice versa.

As second example, we consider a simple modular representation of a
client interacting with a group of providers, which could grow in size to
express arbitrarily complex behaviours. We discuss system reliability and
information-flow security in terms of reveals and excludes relations on a
simple instance of this model.

Client and providers We model a client as a controller interacting with
providers through some actions. Each action may send one or several service
requests in parallel, each to a different service provider, and remains idle
until all the services are performed. When all services are performed the
action is concluded and control returns to the client. The client controller
may implement an arbitrary program by sequentially determining which
action to take.

Suppose that the client needs to perform an operation for which she
requires data, and some remote computational power. She then needs to
check the outcome against a data set from a different database. Fig. 3.11
displays a controller for such task. It accesses the database of Provider 1
by performing request cr1. If the query produces an error, the controller
launches an emergency interrupt procedure. If the data is obtained, the
firing of cr23 launches two requests in parallel to concurrently process the
data on the remote cluster of Provider 2, and query the database of Provider
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Figure 3.11: A client exchanging information with three providers.

3 for the second data set. If this second query does not produce an error,
then cr23′ may fire, allowing the system to check the processed data against
this data set, possibly by invoking yet other services, and continue with the
execution of its arbitrary program, and service requests.

When a data provider receives the request, it simply processes it through
pr1 or pr3, which sends a positive or negative reply and enables it to reset.
Provider 2 is optimised so that depending on the request, it may choose to
perform the operation with algorithms algo1, or algo2.

Below, we examine the model illustrated in Fig. 3.11 for system reliabil-
ity and information-flow security by means of reveals and excludes relations.
Note that, in this setting, client can observe the transitions that are within
the client component (illustrated via the rectangle labelled “Client”). The
transitions belonging to the providers are hidden from the client. And con-
versely, the providers can only observe their own transitions. In the below
example, the observability of the transitions is relevant for the analysis of
security (noninterference) properties.

Example 36. In this model, transition cr23′ reveals transitions s1, s2, and
s3, but does not reveal transitions algo1, algo2. In fact, no observable tran-
sition reveals algo1 or algo2. This can be interpreted as the fact that once
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the client has received all the data, she is sure that the three services have
been provided, but she cannot decide which algorithm was chosen by Provider
2 to perform its task. Conversely, transition s1 reveals cr1, and s2 and s3
both reveal transition cr23; i.e., the providers send a reply only when the
client sends them a request. In general, reveals transition doesn’t imply any
order, i.e., the revealed transition may occur before or after the revealing
transition or even simultaneously with it. However, knowing the structure
of the net, we can safely say that the mentioned reveals relations guarantee
that the services are provided only when a request is made.

Note that cr1 does not reveal s1, since the request might lead to error1.
Transition cr23 does not reveal s3, but it reveals s2, since Provider 2 always
processes the data it receives. Also, error1 and error3 exclude each other,
because the system stalls after interrupt.

These properties can easily be verified on the full prefix of the mmg-
tree. Note that for all practical purpose, the undefined process in Fig. 3.11
may be abstracted as a single transition t. This transition represents all
the transitions T in the abstracted module. In this context, for a transition
t′ /∈ T , t▷ t′ can be interpreted as ∃t0 ∈ T : t0 ▷ t′, and conversely, t′ ▷ t as
∃t0 ∈ T : t′ ▷ t0.

With this abstraction, the full prefix of the mmg-tree has five maximal
paths. Three of these correspond to executions that end in a deadlock after
the firing of interrupt, and have for respective footprints the sets {cr1, pr1,
error1, reset1, interrupt}, {cr1, pr1, reset1, s1, cr1′, cr23, pr2, algo1,s2, cr23,
pr3,error3, reset3, interrupt}, and {cr1, pr1, reset1 , s1, cr1′, cr23, pr2, algo2,
s2, cr23, pr3, error3, reset3, interrupt}. Note that the last two footprints only
differ in the choice of Provider 2 for the algorithm. This is also the case for
the two remaining paths: each depicts all transitions in the system but for
error1, error3, and interrupt in its footprint, and present exactly one of the
labels among algo1 and algo2.

We may conclude that it is impossible, by observing the client, or the
database providers, to determine whether Provider 2 used algorithm 1 or 2.
On the other hand, the client may determine that Provider 1 did provide the
requested service s1, by observing cr1′, cr23, cr23′, or resetC. With analogous
computations all the reveals relation can be derived, as for instance cr23▷s1,
but cr23 ̸▷ algo1.

Another property that we may want to check is the possibility of error.
It is easy to see that error1 ex error3, i.e., only one error can occur in the
system that performs an emergency stop. However, by applying Algorithm 1
we can see that cr23′ does not exclude error1 (or error3), i.e., even when the
three services were successfully provided once to the client, an error could
still occur after the first resetC.
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Chapter 4

Control of a system

In this chapter, we analyse P/T systems in which a user controls a subset of
transitions. Controlling a transition means that whenever it is enabled, the
user can decide whether to fire it or not. The user can take decisions about
the occurrence of its transitions based on its information about the current
state of the P/T system, which is not necessarily complete, namely the user
may not know the current global state. The goal of the user is to force the
behaviour of the system so that every execution satisfies a certain property
(e.g. reaching and/or avoiding some subsets of places).

We model the interaction of the user on the system as a two-player game,
where the players are the user and the environment, which controls all the
transitions uncontrollable for the user. The goal of the user is a property of
the behaviour of the P/T system, and the user wins a play if such property
is satisfied during the execution. The game is asynchronous: the two players
can move whenever they have enabled transitions to fire, without any turn
division. The user has a winning strategy if it is able to win every game,
independently from the environment moves.

The ability of the user to win does not only depend on the structure of the
system and on the transitions under its control, but also on the information
that it can use to make its decisions, namely its observation of the current
state and the memory of what already happened on the system. Sec. 4.1
gives the formal definitions of the games, discusses notions of observability
and memory, and their relation with the concurrent semantics of Petri nets.

The rest of the chapter is organized as follows. Sec. 4.2 and Sec. 4.3 pro-
pose algorithms to check whether the user has a winning strategies in some
special cases. In particular, in Sec. 4.2 we study how to use prefixes of the
unfolding to find algorithms; in Sec. 4.3, we look for strategies on the mark-
ing graph, and compare our game with the one defined on concurrent game
structures [9]. Sec. 4.4 tackles the problem of “correcting” the behaviour of
a P/T system, constraining its behaviour so that only the executions that
follows a given strategy are allowed in the corrected P/T system. Finally,
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Figure 4.1: A game net

Sec. 4.5 discusses some related works.
The results discussed in this chapter are partially collected in [3, 2, 4, 5].

4.1 An asynchronous game on P/T systems

We introduce the game through an example. Consider the P/T system in
Fig. 4.1. The user and the environment interact on it, the user by controlling
the grey transitions, and the environment by controlling the white ones.
Both players have enabled transitions, namely t1, t2 for the environment,
and u1, u2 for the user; since the game is asynchronous, both of them could
decide to fire them. In the game, we assume that there is a set Tf of
transitions bound to a progress constraint, namely they cannot be blocked
forever once they are enabled. In this example, we assume that the progress
constraint is on the transitions controlled by the environment, whereas the
user has the right to keep its transitions blocked when they are enabled. We
suppose that the user has full observation of the current marking, and that
it has the goal of marking place q infinitely often. In order to win, the user
must wait for the environment to choose between firing t1 or t2. It can do it,
since the environment cannot delay this choice forever. In the former case,
the user chooses u1, otherwise u2. The environment is then forced to fire
either v1 or v2, with the effect of marking q, and then to fire z, reproducing
the initial marking.

Formally, we define a game on a bounded P/T system Σ = (P, T, F,W,min),
where the transitions are partitioned into two sets: Tu, the controllable tran-
sitions, i.e. the ones controlled by the user, and Tenv, the uncontrollable
transitions, i.e. the ones controlled by the environment; T = Tu ∪ Tenv,
Tu∩Tenv = ∅. Graphically, controllable transitions are coloured in grey, and
uncontrollable transitions are white.

We consider the unfolding of the P/T system Σ, where events are parti-
tioned into controllable (Eu) and uncontrollable (Eenv) events, depending on
their correspondence to occurrences of controllable or uncontrollable transi-
tions, respectively.
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Figure 4.2: A terminating play (left) and a partial play (right)

Definition 19. Let Σ = (P, T, F,W,min) a P/T system, unf(Σ) = (B,E, F, λ)
its unfolding, Tf ⊆ T be the subset of transitions that must satisfy a progress
constraint, and Ef = {e ∈ E : λ(e) ∈ Tf}. A play is a pair (ρ, δ), where
ρ = (Bρ, Eρ, Fρ) is a run in unf(Σ) and δ is an increasing sequence of
B-cuts satisfying the following conditions.

1. ρ is maximal with respect to the events in Ef , namely there cannot be
any event e ∈ Ef such that •e ∈ Bρ, and (•e)• ∩ Eρ = ∅;

2. for each event e ∈ Eρ, there is a cut γ ∈ δ such that e < γ.

Intuitively, the sequence of B-cuts can be seen as a record of some mo-
ments of the play taken by an external referee. This will be used in Sec. 4.3
to define the validity of an LTL formula on a given play.

The winning condition for the user is a set of plays, satisfying a certain
property. The user wins a play if the play belongs to the winning condition.
The goal of the user is to win all the plays.

Example 37. Consider the net in Fig. 4.1, in which Tf = Tenv. Fig. 4.2
shows a play on the left and a prefix of a play on the right. If the user
needs to guarantee infinite occurrences of q, then it looses the play on the
left, whereas it can win the play on the right.

In order to win, the user can apply a strategy. We assume that the user
has in general only a partial knowledge of the current state of the net system.
This is formalized by a notion of observation. An observation is given by
an equivalence relation on the set of B-cuts of the unfolding, denoted by ≡,
where two B-cuts are equivalent if they are indistinguishable for the user.
Examples of observations are discussed in Sec. 4.1.1.

Definition 20. A strategy α is a function from the set of observations,
denoted by Obs, to sets of controllable enabled transitions: α : Obs→ 2Tu.

When the user follows a strategy, it reduces the possible runs on the
system by blocking certain behaviours. The following definition provides
the formal conditions that a play needs to satisfy when the user follows a
strategy.

80



Definition 21. A play (ρ, δ) is consistent with a strategy α if the following
conditions hold.

1. For each controllable event e ∈ Eρ ∩ Eu there is a B-cut γ ∈ δ such
that λ(e) ∈ α([γ]) and λ(γ)[λ(e)⟩, where [γ] denotes the equivalence
class w.r.t. ≡ containing γ.

2. There is no event e ∈ Eu, e ̸∈ Eρ such that there is a B-cut γj ∈ δ :
λ(e) ∈ α([γ]), for each B-cut γ ≥ γj compatible with δ.

Loosely speaking, a play is consistent with a strategy if each choice of the
user in the play is justified by the strategy, and there is no event constantly
enabled and constantly selected by the strategy which never fires.

A strategy α is winning if all the plays consistent with α are in the
winning condition of the user.

Example 38. In the P/T system Σ in Fig. 4.1, assume that the user can
observe every marking, namely given two B-cuts γ1, γ2 in unf(Σ), γ1 ≡ γ2
iff λ(γ1) = λ(γ2). If the goal of the user is to reach q infinitely often, and
Tf = Tenv, a winning strategy for the user is the following:

• α({s1, p0}) = {u1};

• α({s2, p0}) = {u2};

• α(m) = ∅ for each m /∈ {{s1, p0}, {s2, p0}}.

4.1.1 Observability and memory

In Sec. 4.1, an observation is defined as an equivalence class of B-cuts on the
unfolding of a P/T system. Determining the equivalence classes allows us to
specify both the local states of which the user can observe the value, and the
memory of the user during the game. This is because each condition on the
unfolding carries the information about its past; hence, when we allow the
user to discriminate such conditions, the strategy can use an information
that we do not have when the user can only distinguish between places of
the P/T system. In addition, the value of some local states may never be
observable for the user, for example for security requirements or physical
distance, or it can be visible only under specific circumstances.

In this section, we discuss different equivalent classes that could be con-
sidered as observations, showing what kind of observability and memory
they imply for the user, and their relations with concurrency.

Observation of the global states

As first example, we consider the case in which all the local states are ob-
servable for the user, and we show that there is a difference if the user can
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Figure 4.3: A game net in which memory is necessary to win.

Figure 4.4: Prefix of the unfolding of the P/T system in Fig. 4.3, with a
highlighted run.
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discriminate between conditions on the unfolding, or it can only distinguish
places on the P/T system (Ex. 39).

In the first case, the user has the greatest possible information. In this
case, there is a bijection between B-cuts and equivalence classes, namely, for
each pair of B-cuts γ1, γ2, γ1 ≡ γ2 iff γ1 = γ2, and the user has a perfect
memory on the P/T system, that can use in its strategy.

The second case is the one that we considered in Ex. 38, where for each
pairs of B-cuts γ1 and γ2, γ1 ≡ γ2 iff λ(γ1) = λ(γ2).

Example 39. To satisfy some properties, the information about the current
marking is not sufficient. Fig. 4.3 represents a modified version of the P/T
system in Fig. 4.1, where also t1 and t2 are controllable by the user. Assume
that the user needs to guarantee that both q1 and q2 are reached infinitely
often. The user has a winning strategy only if it has memory on the system.

Fig. 4.4 represents a prefix of the unfolding of the P/T system in Fig. 4.3.
The run with black borders is the beginning of an execution where the user
is winning. A winning strategy for the user realizing such a run could be
α({b0, b1}) = {t1, u1}, α({b0, b3}) = {u1}, α({b1, b2}) = {t1}, α({b4, b5}) =
{u2, t2}, and so on by alternating the occurrences of u1 and t1 with the
occurrences of u2 and t2. This is not the only strategy for the user to win.
However, no winning strategy exists when the user can discriminate only
markings: if the user cannot remember how the initial marking was recreated,
it could always choose the same pair of transitions, and one between q1 and
q2 may occur only a finite number of times.

Often, assuming the observability of all the local states is not realistic,
therefore in the next equivalence classes we will present other scenarios. In
addition to that, in some systems, it is not reasonable to consider strategies
based on the global markings, as showed in the following example.

Example 40. In the P/T system in Fig. 4.5, assume that everything is
observable, and that the goal of the user is to reach one of the two markings
{p0, p4} or {p1, p3}. If the user could base its decision on the global states,
then it could reach its goal by firing t2 when the marking is {p0, p2} or t3 when
the marking is {p1, p2}. However, even if the user observes an occurrence
of p0, it is in general unrealistic to assume that the communication arrives
without time delay, and that it succeeds in firing t2 before the environment
can fire t0.

According to the definition of play and of play consistent with a strat-
egy (Def. 19 and Def. 21), the user does not have a winning strategy to
reach this goal, since neither t2 nor t3 satisfy requirement (2) in Def. 21,
and therefore a play without any occurrence of them is consistent with the
strategy. Also a strategy selecting both t2 and t3 on each marking would not
be winning, since the transition may fire in the wrong marking, and t4 or
t5 may fire immediately after. Although this is a reasonable conclusion, we
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Figure 4.5: A net system with controllable and uncontrollable transitions
(coloured resp. in grey and white)

may wonder how reasonable defining the strategy on global states is, if the
global information cannot be properly used in the strategy.

Observation of subsets of places

We consider the case in which the values of some local states are not observ-
able by the user. We denote the observable places as PO ⊆ P , and assume
that •Tu ⊆ PO, namely all the preconditions of controllable transitions are
observable by the user. The case of full observability can be seen as a special
case of this, in which PO = P . However, since in literature many results
hold only with full observability, I believe it makes sense to consider them
separately.

Let Σ = (P, T, F,W,min) be a P/T system, PO the subset of observable
places, unf(Σ) = (B,E, F, λ) its unfolding, and γ1, γ2 two B-cuts. If the
user has no memory, γ1 ≡ γ2 iff λ(γ1) ∩ PO = λ(γ2) ∩ PO. If the user has
memory, let BO = {b ∈ B : λ(b) ∈ PO}; γ1 ≡ γ2 iff γ1 ∩BO = γ2 ∩BO.

When the user has partial information, it may not have a winning strat-
egy on P/T systems where the strategy would exist with full information.
In Fig. 4.1, if the user cannot observe the value of s1 and s2, it cannot decide
which transition between u1 and u2 it should fire to avoid the deadlock.

The aim of the following example is to present a toy scenario in which
the partial observability context is relevant, and show that also in this case
the memory of the user may play a crucial role in the existence of a strategy.
Here and in the following examples, observable places are drawn with a bold
line.

Example 41. Consider the net in Fig. 4.6, where the user represents a
robber and the environment a banker. The goal of the user is to reach place
w, representing a successful robbery, without ending in place p, representing
the prison. In the initial marking, the environment can set the code of the
vault to one or to two (by executing sc1 or sc2 respectively). The user can
either go directly to the vault through transition gv, or can threaten the
environment and receive a communication of the code through transition t.
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Figure 4.6: 1-safe system inspired by the example presented in [115], where
the user represents a robber, and the environment a banker

In order to successfully end the robbery, the user needs to choose between i1
and i2, agreeing with the decision of the environment. If the robber observes
everything, there is no need to communicate with the environment in order
to know the code; the robber could directly execute transition gv and observe
whether s1 or s2 is marked. However, this scenario is not realistic, and
we should assume s1 and s2 are not visible by the robber. In this case,
the robber has a winning strategy only if some memory is allowed: in the
marking {s1, v}, in order to win the robber should choose i1, whereas in
the marking {s2, v}, the robber should choose i2. However, since s1 and s2
are not observable, the two markings are indistinguishable. In the unfolding
this is not the case: if the robber fires transition t in the initial marking,
the occurrence of v reached in the unfolding provides information about its
story, therefore the robber can deduce which between s1 and s2 is marked
without observing them directly.

A different notion of memory In some cases, we may want the user to
have memory of what happened in the system, but without discriminating
between runs in which the user observed the same elements of the P/T
system in the same order. This condition is in general not satisfied when we
assume that the user can distinguish between conditions of the unfolding,
as illustrated by the following example.

Example 42. Consider the net in Fig. 4.7. We assume that the user cannot
observe any occurrence of the places p3, p4 and p7, and that its goal is to
never reach a deadlock. In the figure, observable places are represented with
bold lines. Let BO = {b ∈ B : λ(b) ∈ P \{p3, p4, p7}} be the set of conditions
observable on the unfolding. Given two B-cuts γ1 and γ2, according to the
notion of memory that we defined so far, γ1 ≡ γ2 iff λ(γ1) ∩ BO = λ(γ2) ∩
BO. With this definition of observation, the user has a winning strategy.
Consider the prefix of the unfolding of Fig. 4.7 represented in Fig. 4.8. In the
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Figure 4.7: A P/T system where a winning strategy can be defined on B-
cuts.

Figure 4.8: Prefix of the unfolding of the P/T system in Fig. 4.7

B-cut γ1 = {b5, b7}, the user can observe only b7; in the B-cut γ2 = {b2, b8}
the user can observe only b8. Although λ(b7) = λ(b8), b7 ̸= b8, and therefore,
based on the notion of observation given above γ1 ̸≡ γ2. This notion of
observation implies that the user has full knowledge of what happened on the
system, even when it was not able to observe it: by observing a condition on
the unfolding, the user knows its entire past.

A different definition of observation may require that the user remembers
every element of the P/T system that it observed, but cannot discriminate
different elements of the unfolding. In this case, γ1 ≡ γ2 iff {λ(b) : b ∈
BO, b ≤ γ1} = {λ(b) : b ∈ BO, b ≤ γ2}, and the partial order of their
occurrence is the same. When we consider this notion, {b5, b7} ≡ {b2, b8},
since in both cases the user observes the places p5 and p6 followed by p0. The
user can still remember the observations that it made in the past, but cannot
distinguish between two runs if they differs only for unobservable elements
in the P/T system.
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Finally, with the next notion of observation, we tackle the problem raised
in Ex. 40.

Observation of stable parts of markings

As in the previous case, we assume that the user observes a subset of places
PO ⊆ P , and that •Tu ⊆ PO. We restrict ourselves to the case of 1-safe
systems.

In addition to the observability, in order to define what information
the user can actually exploit to reach its goal, we introduce the concept of
stable part of a B-cut. Let γ be a B-cut on unf(Σ) = (B,E, F, λ). Its
stable part is defined as the set γs = {b ∈ γ | ∄e1e2...en ∈ E∗

env : b ∈
•en ∧ (γ[e1...en−1⟩γn ∧ •en ⊆ γn)}; in other words γs is the set of conditions
in γ that cannot be consumed by any sequence of uncontrollable events
enabled in γ. We can assume that the user can base its decisions only upon
the observable and stable parts of B-cuts, namely, for each pair of B-cuts γ1
and γ2, γ1 ≡ γ2 iff

γs1 ∩ {b ∈ B : λ(b) ∈ PO} = γs2 ∩ {b ∈ B : λ(b) ∈ PO}.

The stable part of a marking is defined analogously. Given a marking m
and a cut γ in unf(Σ) with λ(γ) = m, compute γs; then, the stable part of
m is ms = λ(γs). This definition does not depend on the choice of γ since,
for each γ′ with λ(γ′) = m, the future of γ′ in unf(Σ) is isomorphic to the
future of γ.

This notion is motivated by cases analogous to the one discussed in
Ex. 40, where even if the value of a certain local state is not hidden to
the user, its information may arrive to the user with a certain delay. By
definition, if a place is not in the stable part of a marking, its value may
change due to a transition out of the control of the user, therefore the
information about it may arrive outdated to the user, that cannot count
on it, as it was the case in Ex. 40.

Example 43. In Fig. 4.5, in the initial marking only p2 is in the stable
part, since the value of p0 may change due to the uncontrollable transition
t0. Analogously for {p1, p2}.

In some cases, the definition of stable part of a marking has consequences
also on the controllable transitions that the user can fire. Consider the 1-safe
system in Fig. 4.9, where p1 and p2 are the observable places, and t1 and t2
are the controllable transitions. Assume that the goal of the user is to reach
p8. From the initial marking the user cannot prevent the sequence t3t6 to
fire, and therefore it cannot count on the occurrence of t2 to win, even if t2 is
controllable and enabled in the initial marking. This can be modelled thanks
to the definition of stable part of a marking: there is no marking where p2
is stable, because from every marking containing p2, there is a sequence of
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Figure 4.9: A P/T system with no stable marking in which t2 is enabled

uncontrollable transitions that could fire and make p2 false (for example, as
we already observed, the sequence t3t6 in the initial marking).

In some cases, the information coming from the structure of the net and
from some observations, even if delayed, is sufficient for the user to reach
his goal, but is not included in the stable parts of the reachable markings.
For example, the user may know that an observable place cannot be marked
anymore in the future or that there must be a token in a certain set of
observable places, even without knowing precisely in which one (see Ex. 44).
For this reason, in order to use this information in the strategy, we consider
some implicit places, corresponding to unions and complements of observable
and compatible places (defined in Sec. 2.5.1). These new places, together
with the set PO, form a new set P ′

O, defined recursively as follows. PO ⊆ P ′
O;

if p ∈ P ′
O, then its complement pc is in P ′

O; if p1, p2 are in P ′
O and p1$p2

then p1 ∨ p2 ∈ P ′
O. By construction all the places in P ′

O \ P are observable.
Then, P ′ is obtained as P ′ = (P \ PO) ∪ P ′

O. We denote the net with these
additional places as ΣS = (P ′, T, F ′,m′

in); in what follow ΣS will be also
referred as extension of Σ or extended net. In the figures, the implicit places
will be coloured in green.

Recall, from Sec. 2.5.1, that adding implicit places to a net does not
change its behaviour. The extended net just makes explicit an information
which was actually available in the original net. On the other hand, in
defining a strategy we cannot use information corresponding to the union,
or logical disjunction, of non compatible places, because this information
cannot be coded in the form of a place, explicit or implicit.

Example 44. Consider the net in Fig. 4.10, without the green places. As-
sume that the user can observe everything and its goal is to reach any mark-
ing among {p3, p5}, {p5, p7} and {p4, p6}. A way for the user to reach this
goal would be to wait for the environment to move, then fire t3 if transition
t1 occurred, and t4 otherwise. This would not be possible with a strategy
defined on the stable parts of the markings of the initial net: the stable part
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Figure 4.10: A 1-safe system and two of its implicit places (in grey)

of {p1, p2}, {p2, p3} and {p2, p7} is {p2}, therefore the strategy could not
differentiate between the initial marking ({p1, p2}) and the markings reached
after the occurrence of t1 ({p2, p3} and {p2, p7}). This problem is overcome
when we consider the extended net, with the place p3 ∨ p7 (added in green
in the figure). Once that t1 occurs, this place will belong to the stable parts
of all the markings subsequently reached, therefore the strategy can use the
information that one of those two places must be marked to select transition
t3. Note that the net in Fig. 4.10 is not the complete extended net, but the
represented places are sufficient for the sake of presentation.

4.2 Finding a strategy on a prefix of the unfolding

In this section we apply the general idea of asynchronous game to a specific
reachability problem, and propose an algorithm to determine if the user has
a winning strategy by constructing a prefix of the unfolding.

In particular we assume that the system is modelled with a 1-safe system
in which choices among transitions are local either to the environment or
to the user, and that transitions controlled by the user are never concur-
rent with each other, while they can be concurrent with transitions in the
environment. The goal of the user is to force the occurrence of a target
transition. The user can observe all the places in the 1-safe system and
has no memory. The transitions of the environment must satisfy a progress
constraint. The results presented here are published in [3].

As a formal setting, we refer to the so-called distributed net systems, as
introduced and studied in [24] and in [128].

Definition 22. A distributed net system over a set K of locations is a
1-safe net system Σ = (P, T, F,min) together with a map

η : (P ∪ T )→ K

such that for every p ∈ P , t ∈ T , if p ∈ •t, then η(p) = η(t).
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We consider the special case of distributed net systems ⟨Σ, η⟩ such that
K = {environment,user}, namely of distributed net systems with only two
components, representing the environment and the user, respectively; we
assume that the user controls all the transitions in its location, and these
transitions are never concurrent with each other. From now on, by dis-
tributed net system we will mean a net system satisfying these constraints.

The choice of considering distributed net systems is due to the assump-
tion that, in case of a conflict between a transition of the user and a transition
of the environment, the user cannot be sure to win the conflict. Hence, the
existence of a winning strategy cannot depend on the occurrence of such
transitions. In distributed net systems, when a transition is enabled, it can
never be disabled by the occurrence of transitions belonging to different
components. In the case of a cycle this observation justifies the following
lemma.

Lemma 15. Let ⟨Σ, η⟩ be a distributed net system with two locations, A and
G. Let m be a marking, and

m1[t1⟩m2[t2⟩m3[...⟩m1

be a firing sequence with η(ti) = A for each i. Then, if η(t) = G, and t is
enabled at mi for some i between the two repetitions of m1, then t is enabled
at mj for each mj in the cycle.

The notions of unfolding and run apply in the obvious ways to distributed
net systems.

Example 45. Fig. 4.1 and Fig. 4.6 are examples of distributed net systems
with two locations. Places are not explicitly divided into the two components,
because their partition can be inferred by their post-transitions.

Let ⟨Σ, η⟩, be a distributed net system, where Σ = (P, T, F,min), unf(Σ) =
(B,E, F, λ) be its unfolding, and t the target transition that the user needs
to fir to win. We define as winning condition for the user the set of plays
(ρ, δ) such that there is an event e ∈ Eρ with λ(e) = t. In this case, the
sequence δ is not relevant to decide whether a play is won by the user. We
say that the target transition t is controllably reachable in Σ if, and only if,
there is a strategy α on unf(Σ) such that the user wins every play consistent
with α. Example 38 can be seen as an example of the game presented in
this section. The strategy discussed in the example is a winning strategy for
this game.

Example 46. The net shown in Fig. 4.11 is distributed, with two locations,
its unfolding is represented in Fig. 4.12. Assume that t4 is the target tran-
sition. If the environment cooperates with the user by eventually choosing
t1, then the target is reached. However, the environment can choose t2 at
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Figure 4.11: A distributed net system

Figure 4.12: The (prefix of the) unfolding of the net system shown in
Fig. 4.11

every B-cut consisting in an occurrence of p1 without violating any fairness
constraint. Hence, irrespective of the strategy chosen by the user, an infinite
play made of repeated occurrences of the cycle p1, t2, p2, t3, p1 is admissible,
therefore the user does not have any winning strategy.

In a general case, given a strategy α, there are infinitely many plays
consistent with α in unf(Σ), and some plays could be infinite, hence the
exhaustive exploration of them would take infinite time.

We propose an algorithm that, given a distributed net system and a
target transition, establishes if there is a winning strategy for the controlled
reachability of the target and, if so, computes a winning strategy.

4.2.1 Algorithm for a winning strategy

In this section we present an algorithm that looks for a winning strategy for
the reachability of a target transition, and we illustrate how it works on the
1-safe system in Fig. 4.13. This 1-safe system modifies the one represented in
Fig. 4.1, and the discussion in Ex. 38 can be adapted to it. Unlike the 1-safe
system in Fig. 4.1, this 1-safe system does not restore the initial marking
after the occurrence of z, and there may be an uncontrollable cycle made by
transitions t3 and t4 firing concurrently to z. These details help to highlight
some features of the proposed algorithm.

The algorithm generates a prefix of the unfolding of a given distributed
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Figure 4.13: A variant of the distributed net system presented in Fig. 4.1.

Figure 4.14: A (prefix) of the unfolding in Fig. 4.13.
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net system, deciding whether there exists a winning strategy for the user.
In the positive case, it gives as output a strategy as a function on reachable
markings; the strategy is initially associated to B-cuts of the unfolding, but
the algorithm works so that, for distinct B-cuts corresponding to the same
marking, the strategy gives the same answer.

Before starting a detailed description of the algorithms, we give an intu-
ition of the ideas underlying it. The strategy of the user cannot be based on
firing a controllable transition faster than an uncontrollable enabled tran-
sition; furthermore, once that a controllable transition is enabled, only the
user can disable it. Therefore, waiting for the decisions of the environment
as much as possible can help the user to gather information useful for the
strategy. However, waiting until only controllable transitions are enabled
is not possible, since the environment could enter an infinite cycle (for ex-
ample by firing infinitely often transitions t3 and t4 in Fig. 4.13), and this
must be detected by the algorithm. Hence, in order to find the strategy,
the algorithm starts unfolding the uncontrollable part of the 1-safe system,
and once that this part is maximally unfolded or a cyclic uncontrollable be-
haviour was found, it checks which controllable choices result in a victory
for the user. Once that a candidate solution has been found, the algorithm
needs to backtrack to see whether alternatives uncontrollable behaviours
may necessitate to revise some choices.

The input data are the following:

• A net in which the transitions are enumerated so that all the uncon-
trollable transitions precede all the controllable ones. If the target is
a controllable transition, it must be the first of the controllable tran-
sitions.

• The position of the first controllable transition.

• The initial marking min of the system.

• The target transition.

The value of these variables is available for all the functions of the algo-
rithm and does not change during its execution.

The core of the algorithm is the recursive function unf exploration
(see Algorithm 7), which unfolds the 1-safe system by exploring reachable
B-cuts, and constructs at the same time a prefix of the unfolding and a
strategy.

The function takes five input arguments:

1. γ: the B-cut that must be analysed;

2. M : the list of markings associated to the B-cuts already analysed in
the current run;
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Algorithm 7 Unfolding exploration
function unf exploration(γ, M , El, e, sz)

2: if e = target then
return true

4: else if γ is a deadlock or enables only transitions in sz then
return false

6: else if γ ∈ Γbad then
return false

8: else if γ ∈ Γgood then
return true

10: else if λ(γ) ∈M then return explore cut c(γ,M,El)
else if enab n(γ) ̸= ∅ then

12: E ← enab n(γ)
repeat

14: e0, E ← extract(E)
v ← unf exploration(γ + e0,M.append(λ(γ)), E.append(e), e0)

16: if v = true then
unf ← unf ∪[γ, e0, γ + e0]

18: end if
until E = ∅ ∨ v = false

20: if v = true then
if γ ∈ ver then

22: sz ← stable zone(E)
v ← Unf exploration(γ,M,El, e)

24: else
Γgood.append(γ)

26: end if
else

28: Γbad.append(γ)
end if

30: return v
else

32: E ←enab c(γ)
repeat

34: e0, E ← extract(E)
v ← Unf exploration(γ + e0,M.append(µ(γ)), El.append(e), e0)

36: if v = true then
unf ← unf ∪[γ, e0, γ + e0]

38: str ← str ∪ [γ, e0]
end if

40: until E = ∅ ∨ v = true
if v = true then

42: if γ ∈ ver then
sz ← stable zone(E)

44: v ← Unf exploration(γ,M,El, e)
else

46: Γgood.append(γ)
end if

48: else
Γbad.append(γ)

50: end if
return v

52: end if
end function
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3. El: the list of events that fired in the current run;

4. e: the last event added to the current run, leading to γ;

5. sz: the set of events enabled in γ that are part of a cycle or that are
in conflict with events that are in a cycle.

It returns a boolean variable, that is equal to true if there is a winning
strategy, for all the plays passing from the input B-cut γ consistent with
the strategy, false otherwise. In addition, it possibly modifies the prefix and
the strategy, initially empty, filling them with events, B-cuts and choices
already explored.

The first time that the function is called, the input consists always in the
initial cut γin in the unfolding, empty lists for the list of visited markings,
the list of analysed events and the list of events that are part of cycles or
in conflict with them (those events will be discovered during the execution
of the algorithm), and a fictitious event i. The function unf exploration
uses some auxiliary functions:

• enab n is a function that has an input B-cut and returns the list of
uncontrollable events which are enabled in that specific B-cut;

• similarly, enab c returns the controllable enabled events.

• extract returns the first element of an input list, and the list deprived
of this element.

• stable zone returns the set of events that can be part of a cycle, and
those in conflict with them.

Let us recall that we denote with γ + e the B-cut obtained by firing the
event e in the B-cut γ.

The function constructs every run by adding uncontrollable events until
one of the following cases occurs: (1) the target occurs; (2) a deadlock cut is
reached or a cut is reached in which only transitions that are part of a cycle
or that are in conflict with events in a cycle are enabled; (3) a cut that has
been previously analysed is reached (two subcases are considered); (4) a cut
is reached in which no uncontrollable event is enabled, and some controllable
events are enabled; (5) a cut is reached corresponding to a marking which
has already been visited in the current run, and there are not uncontrollable
enabled events that are concurrent with all the ones that occurred between
the two equivalent markings.

In case (1), the current run corresponds to a play won by the user; hence
the function tries to backtrack along choices among uncontrollable events, if
possible. Symmetrically, in case (2), the current run corresponds to a play
won by the environment; hence, the function tries to backtrack along choices
among controllable events, if possible. In cases (3), the current run is the

95



prefix of a set of runs that have been already analysed. The user wins or
loses according to the analysis previously done. In case (4), a controllable
event is added, and the exploration restarts from the new B-cut. Finally,
in case (5), if possible, a controllable event is added, and the exploration
restarts from the new B-cut; if this is not possible, the run corresponds to a
play won by the environment and the function tries to backtrack and change
the previous controllable choices.

Example 47. Consider the net system shown in Fig. 4.13 and its unfold-
ing (Fig. 4.14). Starting from the initial cut, the algorithm adds the event
labelled with t2, reaching a B-cut in which only controllable transitions are
enabled. It then adds the event labelled with u2, reaching the B-cut {b4, b5},
and starts again adding uncontrollable transitions. This run will lead to the
target event z, hence it is not necessary to backtrack on controllable events.

The next backtracking step goes back to the initial cut, and starts explor-
ing a new run by adding the event labelled with t1; from {b0, b3, b10}, the
events labelled with t4 and t4 fire. This produces the cut {b0, b3, b12}, that
corresponds to a marking that has already been visited. Hence, the control-
lable event labelled with u2 is added, leading to a cut in which only the cycle
formed by occurrences of t4 and t3 can occur, thus repeating the same mark-
ing. The algorithm backtracks and tries the occurrence of u1. The events v1
and t4 are enabled in {b2, b3, b12}. After the occurrence of v1, the target is
reached.

In the following, we explain in detail how unf exploration works in a
general step of execution of the algorithm. If γ is a cut of a play on the
unfolding, one of these situations is verified:

1. γ is not a deadlock, it enables events that are not part of cycles or
in conflict with them, has not been previously analysed, it is the first
time that the associated marking is visited in the play, the target has
not occurred yet and there are k uncontrollable enabled transitions to
analyse in λ(γ). In this case, the prefix of the play currently ending
with γ is extended in k different plays, each of them obtained by
adding a different uncontrollable event after γ. The output for this
step is ‘true’ only if the values returned by all recursive calls on the
cuts that immediately follow γ is ‘true’.

Considering the system in Fig. 4.13 and its unfolding (Fig. 4.14), we
find the described situation in the initial cut of the unfolding: in
{b0, b1}, both the event labelled with t1 and the one labelled with
t2 are enabled. Therefore, the algorithm extends the current prefix
considering the two plays obtained by adding the two events and the
cuts that follow their occurrence.
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2. γ is not a deadlock, λ(γ) has never been analysed in the play, the target
did not fire in the previous part of the play and the only enabled events
that are not part of cycles or in conflict with them are controllable. In
this case, the algorithm analyses the controllable events in the order
induced by enumeration of the transitions in the net, until it finds an
extension that returns ‘true’ as output or it ends the analysis of all
the controllable events enabled in γ.

Referring to Fig. 4.14, the cut {b0, b4} enables an occurrence of tran-
sitions u1 and u2. Assume that the algorithm starts constructing the
play with u2. After verifying that the user has a strategy to win all
the plays passing from the cut {b4, b5}, the function does not continue
with the analysis of {b4, b2}, and returns the Boolean value ‘true’.

3. Either γ is a deadlock, or all the enabled events are part of a cycle
or in conflict with events in a cycle, or γ follows the target transition.
These are base cases for the recursive algorithm. Their occurrence
stops the exploration for that play. If the target fired, the algorithm
returns ‘true’, in all the other cases of this situation, it returns ‘false’.

In the considered example, all the plays ending with a cut in which
there is an occurrence of s5 are winning for the user (because an oc-
currence of z has necessarily fired).

4. γ has already been considered in a previous step. In this case, the
analysis stops and the function returns ‘true’, if the first analysis of
the cut returned ‘true’, and ‘false’ otherwise. This case is verified in
case of concurrency in the environment component.

5. λ(γ) was already visited in the play. In this case, the algorithm checks
if any controllable event fired between the two repetitions. If this
happens it returns ‘false’. (This is justified by the fact that the victory
of the user cannot depend on the choice of a controllable transition
that contributes to a cycle without the target.) Otherwise, it analyses
only the events that are enabled and concurrent with all the ones fired
in the cycle. If there are uncontrollable events among them, then it
behaves as in 1; if there are only controllable events, it behaves as in
2; if there is no event satisfying the requirements, it behaves like in a
deadlock situation.

During the execution of the algorithm on the system in Fig. 4.13, the
cut {b3, b5, b10} is analysed. The only enabled event is the occurrence
of t4, but it is not added to the play, because it depends on the repeated
occurrences of transitions t3 and t4, that create a cycle in the system.
Hence, the algorithm returns ‘false’ for this particular play. Later,
changing the controllable choice, it analyses the cut {b2, b3, b10}. In
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this cut, v1 is enabled and concurrent with all the occurrences of t3
and t4, hence, the algorithm extends the play with it.

The functions explore cut c (Algorithm 8) and f (Algorithm 9) deal with
concurrency. Specifically, explore cut c is called by unf exploration
when a cut associated with a marking repeated in the run is detected. The
function f is called by explore cut c; it takes the current cut, the list of
the previously visited markings, and the list of events that have been fired.
It checks whether a controllable event fired in the cycle; if not, it returns the
list E of events concurrent with all the events occurred after the first cut in
the run associated to the same marking as the current one. The events in
E are the only ones considered by explore cut c to extend the prefix of
the run.

In Algorithm 8, there are two more auxiliary functions:

• ENC takes a list of events as input, and returns only the uncontrollable
ones.

• Symmetrically, EC takes a list as input, and returns the controllable
events in it.

Both unf exploration and explore cut c are responsible for the
construction of the prefix and the strategy. The prefix is updated every
time that unf exploration returns the value ‘true’ (with the exception
of the very first call). When this happens, the receiving function appends
to the prefix a triple consisting of its input cut γ, the following cut γ + e
that was in input to the call to the function that just returned ‘true’, and
the event e. If the added event e is controllable, then the strategy is also
updated. In particular, the algorithm appends the input cut γ coupled with
the controllable transition λ(e) to the current strategy.

At the end of the execution of unf exploration, if there is a winning
strategy, it is defined on the cuts of the prefix. To complete it, we have
to define it on the markings, detect the parts of the plays corresponding to
a cyclic behaviour on the system and, if the strategy chooses a transition
immediately after them, the algorithm has to fill the strategy, attributing
the same choice to all the markings in the cycle.

4.2.2 Discussion

In this section, we discuss the correctness of the proposed algorithm.

Lemma 16. Every play exploration ends due to one of the following ending
criteria:

1. The target fires. In this case the user wins all the plays with the con-
structed prefix.
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Algorithm 8 Cuts associated with markings already visited in the prefix

Input: the cut γ that must be analysed, the ordered list M and E of the
markings and events that occurred in the run before γ.

function explore cut c(γ,M,El)
2: E,Elreap

← f(γ,M,El)
if E = ∅ ∨ EC(Elreap

) ̸= ∅ then return false
4: else

E ← f(γ,M)
6: Enc ← ENC(E)

Ec ← EC(E)
8: if Enc ̸= ∅ then

v = true
10: repeat

e0, Enc ← extract(Enc)
12: v ← unf exploration(γ + e0,M, e0)

if v = true then
14: unf ← unf ∪[γ, e0, γ + e0]

end if
16: until Enc = ∅ ∨ v = false

if v = true then
18: Γgood.append(γ)

else
20: Γbad.append(γ)

end if
22: ver.append(λ(γ), Elreap)

return v
24: else

v ← false
26: repeat

e0, Ec ← extract(Ec)
28: v ← unf exploration(γ + e0,M, e0)

if v = true then
30: unf ← unf ∪[γ, e0, γ + e0]

str ← str ∪ [γ, e0]
32: end if

until Ec = ∅ ∨ v = true
34: if v = true then

Γgood.append(γ)
36: else

Γbad.append(γ)
38: end if

ver.append(λ(γ), Elreap
)

40: return v
end if

42: end if
end function
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Algorithm 9 Events that are concurrent with the ones that already fired
in the run
Input: the cut γ that must be analysed and the ordered lists M,El of the
markings and the events that occurred in the run before γ.
Output: list of events that have been enabled from the cut associated with
the first occurrence of the marking λ(γ) to the current cut γ, list of events
that occurred in the run between the two repetitions on λ(γ).

function f(γ,M,El)
2: i ← 0

while M [i] ̸= λ(γ) do
4: i ← i+1

end while
6: Elreap ← El[i : len(El)]

E ← []
8: for all e ∈enab c(γ) do

if λ(e) enabled in m ∀m ∈M [i : len(M)] then
10: E.append(e)

end if
12: end for

return E,Elreap

14: end function

Algorithm 10 Full strategy

v = unf exploration(γin, [], i)
2: if v == True then

str = cuts to markings()
4: str = complete strategy()

end if
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2. The play reaches a deadlock cut γ before reaching the target. In this
case the user loses the play.

3. The play reaches a cut in which the target has not fired, and the only
enabled transitions can be part of cycles or in conflict with transitions
that can be part of a cycle. In this case the user loses the play.

4. The play reaches a cut γ that was previously analysed.

5. The play reaches a cut γ′ such that there is another cut γ : γ < γ′ for
which λ(γ) = λ(γ′), γ corresponds to the first occurrence of λ(γ) in
the play, and

• either γ′ does not enable any event that is concurrent with all the
events occurred between γ and γ′,

• or there is a controllable event e such that γ < e < γ′.

If the prefix is consistent with the strategy, the user loses at least a
play by following the induced strategy.

Moreover, if α is a strategy defined on the markings, then, for every prefix
of a play consistent with α determined with one of these criteria, we can
decide if the user wins all the plays consistent with α starting with such a
prefix.

Proof. 1. If the target fired in the prefix, then every play with such a
prefix is winning for the user, because it includes the target.

2. If the target does not fire and the play is in a deadlock, the prefix
coincides with the whole play. Since it does not have the target, it is
losing for the user.

3. If the target does not fire and the only enabled transitions can be part
of a cycle or be in conflict with transitions in cycles, then the user
cannot prevent the environment to remain in the cycles forever (the
transitions in a cycle are uncontrollable by construction). Since the
target is not part of this cycle, the user cannot be sure to reach it.

4. If two prefixes end with the same cut γ, it means that they differ only
for the order in which the concurrent events occurred, and their possi-
ble elongations are the same. The winning condition for the user does
not depend on the order in which events occurred, but only from the
presence of the target in the run. Hence, if the algorithm is requested
to analyse a cut for which it has already determined if α is winning,
it can immediately stop and return the same answer.
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5. First, we have to show that if the play does not reach the target, does
not end with a deadlock, and does not reach a cut previously analysed,
then this last criterion is verified. The number of reachable markings
in the system is finite, hence after a number of steps equal at most
to the number of reachable markings, the algorithm analyses a cut γ′,
such that λ(γ) = λ(γ′), where γ is a cut preceding γ′ and belonging
to the same play. Let us suppose that k events are enabled in γ′ and
concurrent with all the ones fired between γ and γ′. The algorithm
adds one of these to the play and continues as before. If the play
reaches a cut γ′′ such that λ(γ) = λ(γ′′), then the events that the
algorithm analyses are necessarily strictly less then k, because they
should be concurrent both with the events occurred between γ and γ′

and with those fired between γ′ and γ′′. Since for every repetition, the
number of events satisfying the requirements to be added decreases,
after at most k cuts corresponding to the same marking λ(γ), the third
criterion is satisfied. Notice that this does not depend on the specific
cut: the same reasoning applies to all markings.

The next step is showing that if there is a play with such a prefix,
then there is at least a play that follows the same strategy in which
the user loses. We first consider the case in which there are not en-
abled events concurrent with all the ones in the cycle. If the prefix
follows the strategy α, then the play repeating infinitely many times
the behaviour of the prefix is a play consistent with α and the tar-
get never occurs. We cannot guarantee that the user will lose all the
plays consistent with α with such a prefix, but the fact that there is
at least one is enough to state that α is not a winning strategy for the
user. Secondly, we consider the case where a controllable transition
fired between two occurrences of the same marking. By construction,
the algorithm analyses controllable events only when all the significant
uncontrollable events have been fired; hence, there cannot be any un-
controllable event that is concurrent with the cycle and that leads to
the target, otherwise it would have been analysed before in the prefix.
Again, if the prefix is consistent with the strategy α, the play that
repeats infinitely often the cycle is a play consistent with α and does
not contain the target.

A consequence of Lemma 16 is the termination of the algorithm. We
proved that every prefix constructed by the algorithm is finite. The number
of considered plays is also finite, because at every step there is only a finite
number of enabled events to extend the prefix.

By construction, if the algorithm finds a winning strategy, all the runs in
the prefix: (1) are consistent with the strategy, and (2) contain the target.
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(1) All the plays in the list are consistent with the strategy. Every time
that the algorithm analyses a B-cut γ and chooses to extend the prefix
with a controllable event, it explores all the plays including γ and, one
by one, each of the controllable enabled events. It stops when it finds
a controllable enabled event such that, from the cut of the unfolding
following this event, the user has a winning strategy. When this hap-
pens, the prefix is updated, adding the event and the B-cuts preceding
and following it. Also the strategy is updated, choosing the associated
controllable transition in γ. In this way, at every step, all the parts of
runs in the prefix constructed until that moment are consistent with
the strategy updated until that moment. If in γ there is no controllable
enabled event such that, after it, the user has a winning strategy, then
the part of the prefix already generated is not connected to the initial
cut in the unfolding, since the event connecting this part to γ is not
added to the prefix. At the same way, if there is a winning strategy,
it cannot depend on the strategy calculated on the disconnected parts
of the unfolding. If the algorithm finds a winning strategy and a dis-
connected part was found, since the algorithm chooses a controllable
event in γ only when it is necessary to win, then there must be an-
other cut in the prefix, that precedes γ in the partial order, in which
the algorithm adds a controllable transition that allows the user to
avoid γ.

(2) All maximal runs in the prefix contain the target. If a run ends without
the target, then the strategy allowing that run is not winning and must
be changed. If it cannot be changed, then the algorithm will not state
that there is a winning strategy, hence there must be a controllable
node in which the decision previously taken can be changed. When
another possible choice is analysed, all parts of runs depending on the
previous one are deleted. Hence all the remained runs contain the
target.

If the algorithm finds a winning strategy, every play in the unfolding consis-
tent with this strategy is equivalent to an extension of a play in the prefix.
This is shown in two steps.

1. Let us first consider the case without uncontrollable cyclic behaviours
of the system.

The strategy α constructed by the algorithm chooses a controllable
transition only if there are not uncontrollable enabled ones. Let {t1, ..., tn}
be a set of uncontrollable transitions in a play, so that after their oc-
currence, there are not other uncontrollable enabled transitions. In
whatever order the transitions are considered, the cut in the unfolding
after their occurrence is the same, and the strategy will choose the
same transition, because the following part of the unfolding is every
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time visited in the same way. Considering a play consistent with α,
there must be a prefix of its run in the unfolding, because all the un-
controllable transitions are analysed in all the uncontrollable cuts of
the prefix and the strategy chooses only a transition for every cut,
the controllable choices must be the same of the ones considered in
the prefix. This is enough to state that the play is won by the user,
because in the common prefix of the run there is the target transition.

2. If there are uncontrollable cyclic behaviours, such that there is a con-
current enabled transition leading to the target, then there is more
variety in the possible plays consistent with α, because the strategy is
defined on markings in which uncontrollable events are enabled. Any-
way, if a consistent play has a prefix with the same events of one of
the prefixes produced by the algorithm, then it is won by the user,
regardless of the order in which the events occurred. Some of the
plays consistent with α have a longer uncontrollable part, because if
an uncontrollable transition would be finally enabled, or a control-
lable transition would be finally enabled and eligible, there must be a
certain point in which it will fire, but the precise point is unknown.
However, since we complete every cycle at least once and from every
cut that is not a repetition all the possible uncontrollable extensions
are explored, and since the part of the unfolding starting from a given
cut is isomorphic to the part of the unfolding starting from every cut
corresponding to the same marking, the uncontrollable sequence of
the play can be divided in parts such that an isomorphic one has been
considered by the algorithm.

Based on the previous observations, if the algorithm finds a winning strategy,
the proposed strategy is winning in the unfolding.

Finally, we wish to show that if the algorithm states the existence of a
winning strategy and proposes one on the cuts of the prefix, to complete
it adding the same choice to all the markings that are part of a cycle is
necessary and does not change the correctness.

• Let us suppose that a cycle with only uncontrollable transitions is in
the net, and there is a controllable enabled transition that is concurrent
with all the transitions in the cycle and which is necessary for the
victory of the user. The strategy constructed together with the prefix
adds the choice of the controllable transition only in the cut associated
to the last repeated marking. This strategy is incomplete, because the
chosen transition is not finally eligible, since every time that the system
is in a marking of the cycle that is not the one that has been repeated in
the prefix, the strategy does not choose it. To overcome this problem
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we fill the strategy by adding the choice of the controllable transition
in every marking along the cycle.

• This preserves the correctness of the strategy. Actually, if γ is a cut
that in a certain play is between γ1 and γ2 with γ1 < γ2 and λ(γ1) =
λ(γ2) and α′ is the strategy computed by Algorithm 7 and translated
on markings, then necessarily α′(λ(γ)) = α′(λ(γ1)) or α′(λ(γ)) = ∅.
Specifically, if α′(λ(γ)) ̸= ∅, then it has to be α′(λ(γ)) = α′(λ(γ1)). Let
us suppose that {ti} = α′(λ(γ)), {tj} = α′(λ(γ2)) and ti precedes tj in
the enumeration defined by the input net. Then, ti is not a winning
choice in λ(γ2), but there is a play that leads from γ to γ2 and between
these two cuts only uncontrollable events fire (because the controllable
component is sequential). The algorithm updates the strategy in a cut
only if, starting from that cut, the user is able to win every play. This
cannot be the case, because the play can arrive in γ2 and the user loses
the play. Reasoning in the same way, it cannot be that ti follows tj in
the enumeration. Hence it must be {ti} = α′(λ(γ)) = α′(λ(γ1)).

If λ(γ) is never visited more than once in any run, then α′(λ(γ)) = ∅.
We construct a final strategy α such that α = α′ for every marking m
in which α′(m) ̸= ∅ and α(m′) = α′(m1) for all m′ such that there is
a play in the unfolding with two cuts γ1, γ2 : λ(γ1) = λ(γ2) = m1 and
a cut γ : λ(γ) = m′ and γ1 < γ < γ2.

The marking m′ could be reached in more than one run, and if it
is part of two different uncontrollable cycles, with different repeated
markings, there could be the doubt that α(m′) is not well defined,
but this is not possible. Let us suppose that there is another play in
the unfolding with two cuts γ′1, γ

′
2 : λ(γ′1) = λ(γ′2) = m2 ̸= m1 and

a cut γ′ : λ(γ′) = λ(γ) = m′ and γ′1 < γ′ < γ′2. We have to show
that if there is a winning strategy, then α′(λ(γ1)) = α′(λ(γ′1)). By
contradiction, let us assume {ti} = α′(λ(γ1)), {tj} = α′(λ(γ′1)) and ti
precedes tj in the enumeration (the opposite case is equivalent due to
the symmetry of definitions). Then, ti is not a winning choice for γ′1,
otherwise it would have been chosen before analysing tj . If ti is not
winning for γ′1, then it cannot be winning from γ1, because, starting
from γ1 the play can arrive in γ firing only uncontrollable transitions,
and from γ there is a path made only by uncontrollable transitions to
a cut γ′′2 such that λ(γ′′2 ) = λ(γ′1). Since the unfolding starting from γ′′2
is isomorphic to the one starting from γ′1, if the strategy is not winning
from γ′1 it cannot be winning from γ′′2 and therefore from γ1.

4.2.3 Experiments

This work is mainly theoretical, and a full experimental evaluation of the
algorithm is left for future works. However, we tested the algorithm on some
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Table 4.1: Results of the experiments

Net |P ∪ T | |K| conc cycles #calls g dim

heart 15 2 2 no 10 8
double heart 26 2 3 no 31 24
big heart 141 30 2 no 355 126
heartC 19 2 2 yes 20 14
bc 23 2 3 no 19 16
bc2 27 2 4 yes 1882 1162
10conc0 32 0 10 no 5122 1024
10conc1 32 1 10 no 2307 1025
10conc2 32 2 10 no 1028 258
conc 12 2 3 yes 255 143

preliminary examples. The set of the examples and a Python implementa-
tion of the algorithm are available at https://github.com/MC3-lab/PNstrunf.

The parameters of the net that we think are important to consider are:
(1) the number of elements in the net; (2) the number of controllable transi-
tions; (3) the level of concurrency, i.e. the maximum number of concurrent
transitions that are enabled in a reachable marking; (4) the presence of cy-
cles. We evaluate the performance of the algorithm by showing the total
number of calls to the functions unf exploration and explore cut c,
and the number of cuts in the prefix at the end of the execution. The results
of the experiments are shown in Table 4.1. In all these cases, the user has a
winning strategy.

From the results, we see that the level of concurrency and the cycles
increase the computational cost of the algorithm. In some cases, cycles raise
a lot the number of necessary steps to arrive at the solutions, without con-
tributing in the research of the strategy (this is the case in the comparison
between the nets bc and bc2 ). We are currently working to develop a pre-
processing of the net, in order to identify these inactive parts that may not
be considered in the search for a strategy.

4.3 Finding a strategy on the marking graph

In this section we use the marking graph to find a strategy for the user,
when its goal is an LTL-X formula, the user has no memory, and the system
is 1-safe. LTL-X is the fragment of LTL [106] in which the X operator has
been removed; other works, such as [51, 87, 116], studied this logic on Petri
nets. We identify the set of atomic propositions as the set of places of the
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net; a proposition p is true in a marking m iff p ∈ m. Given an LTL-X
formula ψ, and a play (ρ, δ), we can evaluate ψ on a maximal refinement δ′

of δ by considering the sequence of markings corresponding to the B-cuts in
δ′. A play (ρ, δ) is winning for the user when the goal is ψ iff ψ holds in all
the maximal refinements of δ.

Through LTL-X, we can express both safety and reachability goals. Re-
ferring to the net in Fig. 4.6, described in Ex. 41, a goal for the user could
be to always avoid prison (place p), and to finish successfully at least a
robbery (place w). This can be expressed by the formula G¬p ∧ Fw. Also
the goal considered in the previous section could be easily translated in an
LTL-X formula: if t is the target transition, we can split t in a sequence of
two transitions, with a place pt in the middle. The problem studied in the
previous section can then be expressed with the formula Fpt.

Using the marking graph allows us to consider techniques developed for
infinite games on finite graphs, that have been widely studied in the liter-
ature for decades (see for example [98]). However, many of them consider
synchronous models, where each player has its turns to move. In [9], the
authors defined a graph based structure, called concurrent game structure,
allowing for some kinds of asynchronous behaviour. This structure is an ex-
tension of a Kripke model, and was introduced for model-checking the game-
based temporal logic ATL (Alternating-time Temporal Logic). In Sec. 4.3.1
we recall some formal definitions for concurrent game structures, and we
show that when we consider strategies based on stable parts of markings,
the game on Petri nets can be translated into a game on concurrent game
structures. Finally, in Sec. 4.3.2 we provide a method for finding a winning
strategy when the user has no memory, and its strategy can use the informa-
tion given by stable parts of markings on a 1-safe system in which implicit
information has been added. Most of the results in this section are also in
[4].

4.3.1 Relation between Petri nets and concurrent game struc-
tures

We recall the formal definition in [9] of turn-based asynchronous games
played on a concurrent game structure (cgs). This is a special case in the
general context of cgs, that allows to model situations in which the players
move asynchronously (although it still imposes a total order between tran-
sitions that, as we will see in Ex. 48, may lead to unwanted situations when
modelling concurrent asynchronous systems). In [9] the authors considered
only the case of full observability and full memory. Subsequent works such as
[115, 29] extended the definitions to include other cases. Since in this section
we are also interested in the case of no memory and partial observability,
we consider some of the adapted definitions in [115].

In this section, the goal of the user is an LTL-X formula. The problem of
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finding a winning strategy for the user can be interpreted as a special case of
model-checking an ATL* formula. ATL* is an extension of ATL including
LTL. Checking whether the user is able to enforce a behavior specified by an
LTL-X formula ψ can be translated into the problem of verifying whether the
system satisfies the corresponding ATL* formula ⟨⟨user⟩⟩ψ (the meaning of
the formula will be explained later in this section). This fragment of ATL*
was previously considered in [79] and denoted with 1ATL-X.

Formal definitions

Definition 23. A turn-based asynchronous game structure is a tuple G =
⟨n,Q,Π, w, d, τ,∼⟩, where

• n ≥ 2 is the number of players. Every player is identified with a
number 1,..., n. Player n represents the scheduler. At every turn, the
scheduler selects one of the other players.

• Q is a finite set of states.

• Π is a set of propositions.

• ∀q ∈ Q, w(q) ⊆ Π is the set of propositions that are true in q.

• ∀a ∈ {1, ..., n}, q ∈ Q, da(q) ∈ N is the number of moves available for
the player a in the state q. Every move is identified with a number
1, ..., da(q). For every state q ∈ Q, dn(q) = n− 1.

• For every state q ∈ Q, D(q) is the set {1, ..., d1(q)}× ...×{1, ..., dn(q)}
of move vectors.

• τ is the transition function. For every q ∈ Q and vector move ⟨j1, ..., jn⟩,
τ(q, j1, ..., jn) ∈ Q is the state where the system goes if from state
q, every player a ∈ {1, ..., n} chooses move ja. For all move vectors
⟨j1, ..., jn⟩, ⟨j′1, ..., j′n⟩, if jn = j′n = a and ja = j′a, then τ(q, j1, ..., jn) =
τ(q, j′1, ..., j

′
n), for every q ∈ Q.

• For each a ∈ {1, ..., n}, ∼a is an equivalence relation specifying which
states are indistinguishable for player a.

From now on with cgs we will refer to the structure in Def. 23. Given
an initial state q0, an infinite computation σ = q0q1... on a turn-based asyn-
chronous game structure is an infinite sequence of states such that for each
i ≥ 0, there is a move di with τ(qi, di) = qi+1.

We denote with Q+ the set of all the finite prefixes of the computations
σ in the concurrent game structure and with σi the prefix of σ ending at
the i-th state. A strategy for a player a is a function fa : Q+ → N such that
fa(σi) ≤ da(q), where q is the last element of σi. In addition, for each pair
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of sequences σi = q0q1...qi, σ
′ = q′0q

′
1...q

′
i, if qj ∼a q

′
j for j ∈ {0, ..., i}, then

fa(q1) = fa(q2).
The strategy is memoryless if, and only if, for every pair of prefixes σi, σj

ending with the same state, fa(σi) = fa(σj). We say that a computation
σ follows a strategy fa iff, for every prefix σi of a computation, player a
chooses the move fa(σi). Let A be a set of players and FA = {fa : a ∈ A} a
set of strategies fa, one for each player in A. We denote with out(q, FA) the
set of computations starting from state q in which each player in A followed
its strategy in FA. We can include some fairness constraints to the cgs, in
order to ignore some computations.

Definition 24. A fairness constraint is a pair ⟨a, c⟩, where a is a player,
and c is a function that for every state q ∈ Q selects a subset of moves
available for a in q.

Let σ be an infinite computation and qi its i − th state. A fairness
constraint ⟨a, c⟩ is enabled in qi if c(qi) ̸= ∅; ⟨a, c⟩ is taken in qi if there is a
vector move ⟨j1, ..., jn⟩ with ja ∈ c(qi) and qi+1 = τ(qi, ⟨j1, ..., jn⟩). If a < n
we also require that jn = a.

A computation σ is weakly fair with respect to a fairness constraint
⟨a, c⟩ if ⟨a, c⟩ is not enabled in infinitely many positions of σ or if it is taken
infinitely many times in σ.

The logic ATL* The logic ATL* extends CTL* by considering a larger
number of paths quantifiers. Both logics are defined and model-checked on
Kripke structures, in case of ATL* extended by modelling the interaction of
a group of agents. The only path quantifiers allowed in CTL* formulas are
the universal and the existential quantifier (resp. a formula is satisfied in all
the paths or a formula is satisfied in at least one path); in ATL*, quantifiers
may be defined by groups of agents. For example, let A be a group of agents
interacting on the structure, and ψ be an LTL formula. With an ATL*
formula we can require that the agents in A can coordinate their action on
the structure to satisfy ψ despite of the behaviours of the other agents. This
is expressed by the formula ⟨⟨A⟩⟩ψ. The universal quantifier in CTL* can
be expressed as ⟨⟨⟩⟩ψ, namely it is associated to the case in which a formula
is required to be verified whatever the agents decide to do; the existential
quantifier, at least for agents with full information and full memory, can be
expressed with quantifiers including all the agents.

In this paragraph we consider the formalization in [115] for ATL* formu-
las. Let G be a cgs, p be an atomic proposition, and A be a set of agents.
The syntax of an ATL* formula ϕ is expressed as follows.

ϕ ::= p | ⊤ | ¬ϕ1 | ϕ1 ∨ ϕ2 | ⟨⟨A⟩⟩ϕ1 | ϕ1Uϕ2 | Xϕ1

with ϕ1, ϕ2 ATL* formulas. In the syntax above, the symbol U stands for
‘until’, and X stands for ‘next state’. As usual in temporal logics, formulas
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use the two additional temporal operators F (‘eventually’) and G (‘always’),
where Fϕ = ⊤U ϕ, and Gϕ = ¬F¬ϕ.

The semantics of ATL* extends the semantics of CTL* (a formalization
of which can be found in [42]). In addition, let q0 be the initial state in σ,
σ |= ⟨⟨A⟩⟩ϕ1 if there is a set of strategies Y , one for each agent in A, such
that, for each computation σ′ in out(q0, Y ), σ′ |= ϕ1.

Construction of a CGS from a game on Petri nets

Let Σ = (P, T, F,min) be a net system, Tu the set of controllable transitions,
Tenv = T \Tu the set of uncontrollable transitions, and PO the set of observ-
able places. Assume that the transitions in Tenv need to satisfy a progress
constraint. In order to put our game in relation with the one on concurrent
game structures, we need to assume that the user cannot discriminate con-
ditions of the unfolding, but only places on the 1-safe system. Among the
definitions of observations defined in Sec. 4.1, this happens when the user
has no memory, and with the notion of memory defined in the paragraph
starting on page 85. Here, we focus on the case of no memory. Since in this
case, for each pair of B-cuts γ1, γ2, if λ(γ1) = λ(γ2) then γ1 ≡ γ2, we will
consider the relation ≡ on the elements of [min⟩.

We construct a cgs (denoted GΣ) where the elements are defined as
follows.

• {u, env, s} is the set of players; specifically u denotes the user, env the
environment, and s the scheduler.

• [min⟩ is the set of states of the system. Each state is a reachable
marking of Σ; min is the initial state.

• The set of propositions on the concurrent game structure is given by
the set of places P of the net; for each state m ∈ M , for each propo-
sition p ∈ P , p is true in m iff p ∈ m.

• For i ∈ {u, env}, for each m ∈ [min⟩, di(m) is given by the transitions
enabled in m belonging to player i. Specifically, for each m ∈ [m⟩,
du(m) is the set of controllable transitions enabled in m, plus a move
remaining in the same state, from now on denoted with ϵ; denv(m) is
the set of uncontrollable transitions enabled in m; if no such transition
is enabled, denv(m) = {ϵ}; ds(m) = {u, env}. For each state m ∈
[min⟩, a move vector enabled in m is a tuple ⟨ju, jenv, js⟩, where ji ∈
di(m), i ∈ {u, env, s}.

• τ is the transition function; for each m ∈ [min⟩ and vector move
⟨ju, jenv, js⟩ enabled in m, τ(m, ju, jenv, js) is the state reached on Σ
when transition jjs occurs.
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• ≡⊆ [min⟩× [min⟩ is an equivalence relation that specifies which states
are indistinguishable by the user (player u). In our setting, we are not
interested in the observations of the other players

An infinite computation σ = m0t0m1t1.... on GΣ is an infinite sequence of
states and transitions starting from min such that for each mi, mi+1 is the
marking reached from mi after the occurrence of ti. In order to exclude
the computations associated with unfair runs on the net (for the progress
constraint or for condition (2) of Def. 21), we need to add to GΣ some weak
fairness constraints.

1. There must be no point in the computation from which the scheduler
always selects the same player: this is expressed by the constraints
⟨s, cu⟩ and ⟨s, cenv⟩, where ∀m ∈ [min⟩ ci(m) = {i}, i ∈ {u, env}.
This requirement guarantees that if the user wants to move, at some
point it has the possibility of doing it, and that the environment can
progress.

2. For each uncontrollable transition t, let #t : [min⟩ → 2Tenv be a func-
tion such that #t(m) = ∅ if t is not enabled in m, #t(m) = {t} ∪ {ti :
•ti ⊆ m ∧ ti # t} otherwise; intuitively #t is the set of transitions
in conflict with t at marking m together with t itself. For each t
uncontrollable, we add the constraint ⟨env,#t⟩. This point together
with point (1) guarantees that uncontrollable transitions satisfy their
progress constraint in all the fair computations.

For each state m ∈ [min⟩, let [m] be the equivalence class of m with respect
to ≡, and [min⟩+ the set of finite computations. A memoryless strategy is
a function f : [min⟩ → Tu ∪ {ϵ} such that if m ≡ m′, then f(m) = f(m′).

Given ψ ∈ LTL-X, a strategy is winning with respect to the goal ex-
pressed by ψ iff all the fair computations in which the user follows the
strategy satisfy ψ.

In general, looking for a winning strategy on the unfolding and on the
cgs constructed as described above is not equivalent, as illustrated by the
following example.

Example 48. Consider the 1-safe system in Fig. 4.5 on page 84, and the
goal discussed in Ex. 40, that can be equivalently expressed with the LTL-X
formula F (p0∧p4)∨F (p1∧p3). In Ex. 40 we motivated the non-existence of a
winning strategy, and the problems in defining the strategy on the markings.

The ambiguity of defining a strategy on markings, when part of the infor-
mation cannot actually be used causes problems when we look for a strategy
on the marking graph or on the associated GΣ. Due to the asynchronicity
defined in the cgs we do not know in which state the user will be selected to
move; however, when the user is selected, it can choose between transition
t2 and transition t3 based on the current marking. In order to prevent this

111



situation, we need to define the markings {p0, p2} and {p1, p2} as indistin-
guishable for the user, for example by defining the equivalence relation for
observations on stable parts of markings.

Motivated by the example above, we now prove the equivalence of games
on the unfolding and derived cgs, when ≡ is defined on stable parts of
markings, namely for each pairs of markings m1,m2, m1 ≡ m2 iff ms

1∩PO =
ms

2 ∩ PO.
Given a computation σ = minm1...mn... (finite or infinite) we can con-

struct a new sequence µ(σ) in which all the consecutive states such that
mi = mi+1 have been identified. Given an infinite sequence σ, µ(σ) can
be also infinite, if there is no state mi ∈ σ such that for each mj : j > i
mj = mj+1, or finite otherwise.

Lemma 17. Let ψ be an LTL-X formula, and σ1 and σ2 be two infinite
computations such that µ(σ1) = µ(σ2). σ1 satisfies ψ iff σ2 does.

Proof. If the operator X is not allowed, then the validity of ψ depends only
on the sequence of distinct states in computations; since, by hypothesis,
µ(σ1) = µ(σ2), the thesis follows.

Relation between plays in the two models

Let Σ = (P, T, F,min) be a 1-safe system, and GΣ the derived game struc-
ture.

We now prove some propositions that show the relations between the
plays on the unfolding and the infinite fair computations on GΣ.

Let σ = m0m1 · · · be a fair computation on GΣ. For every pair of con-
secutive states mi,mi+1, such that mi ̸= mi+1, the move on the concurrent
game structure is associated, by construction, with a transition t in Σ, such
that mi[t⟩mi+1.

Given σ, we construct a run ρ on the unfolding of Σ and a sequence δ of
B-cuts, starting from the initial cut and adding the events associated with
the moves that bring from a state to the next one in the same order that
the states have in σ, and the cuts following those events. The run derived
in this way will be denoted by (ρ, δ)[σ].

Lemma 18. The run (ρ, δ)[σ] is a play on unf(Σ).

Proof. We need to prove that there is no uncontrollable event e ̸∈ ρ such
that ρ ∪ {e} is a run on the unfolding. By contradiction, assume that we
can find such an event e. Then, there is i ∈ N such that, on GΣ, the move
λ(e) = t is enabled in every state mj ∈ σ : i < j, but is never chosen.
The reason cannot be that the environment player is never selected by the
scheduler, otherwise, the constraint ⟨s, cenv⟩ would not be satisfied, and σ
would not be a fair computation. Hence the move t is available in every
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state mj for player env, but it never chooses it. Then, the computation
does not satisfy the fairness constraint ⟨env,#t⟩.

Hence, (ρ, δ)[σ] constructed in this way is a play on the unfolding.

With a similar idea, for each strategy α defined on stable and observ-
able parts of markings, we can associate every play on unf(Σ) consistent
with α with a set of infinite fair computations on GΣ: let (ρ, δ) be a play
consistent with α on the unfolding. As first step, we consider all the possi-
ble sequentializations of events included between the initial cut γ0 and the
next cut γ1 ∈ δ. For each of these linearizations we can find a prefix of a
computation on the concurrent game structure by executing on it, from the
state corresponding to the initial marking, all the events in the order given
by the linearization; then, we extend all these prefixes by considering the
successive pairs of consecutive cuts, and the sequentializations of the events
between them. If the play on the 1-safe system reaches a deadlock, then the
only possibility in the associated concurrent game structure is to execute
the transition that remains in the same state infinitely often.

In this way, we obtain a set of infinite computations associated with a
play (ρ, δ), denoted by Λ(ρ, δ).

Lemma 19. Let α be a strategy on Σ, and (ρ, δ) be a play consistent with
α on unf(Σ). For every computation σ ∈ Λ(ρ, δ) on GΣ, there is at least
one fair computation σ′ : µ(σ′) = µ(σ).

Proof. The set of constraints of the scheduler guarantees that no player is
neglected forever. If ρ is finite then every σ ∈ Λ(ρ, δ) is fair: the only move
available for the environment is the empty move, that keeps the system in
the same state; when the scheduler selects the user, it can decide to execute
the move that keeps the structure in the same state.

In addition, when ρ is finite, also the constraints on the environment are
satisfied: after a finite number of states there is no uncontrollable enabled
transition, therefore those constraints are infinitely not enabled.

We now consider the case in which ρ is infinite. Since a play on the
unfolding must be fair with respect to uncontrollable transitions, in the
computation σ the fairness constraint ⟨s, cenv⟩ must be satisfied. If ρ has
infinitely many controllable events, then the fairness constraint ⟨s, cu⟩ is also
satisfied by construction; otherwise, since the user has always the possibility
not to move in the system, we can construct a sequence σ′ : µ(σ) = µ(σ′)
with some repeated states, that represent points of the sequence in which
the user was selected by the scheduler in GΣ, but the state of the system
did not change.

The set of fairness constraints for the environment must be satisfied: by
contradiction, we assume that there is a function #t, such that ⟨env,#t⟩
is not satisfied in σ′; this means that ⟨env,#t⟩ is not enabled in a finite
number of states in σ, but it is taken only a finite number of times. This
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means that there is an uncontrollable event e ̸∈ ρ in the net that is enabled
in all the cuts compatible with δ, except for a finite set; since ρ is infinite,
there must be a cut γ ∈ δ such that e is enabled in γ and in all the cuts
γj ∈ ρ : γj > γ; hence ρ ∪ {e} is a run on unf(Σ). This is in contradiction
with the hypothesis that (ρ, δ) is a play.

Lemma 20. Let ψ be an LTL-X formula. A computation σ satisfies ψ iff
(ρ, δ)[σ] does. Analogously, a play ρ consistent with a strategy α according
to an increasing sequence of B-cuts δ satisfies ψ iff all the computations in
Λ(ρ, δ) do.

Proof. Constructing the play (ρ, δ) from σ, δ is by construction a maximal
refinement, in which events are ordered in the same way as in σ.

Each element σ ∈ Λ(ρ, δ) is associated with a maximal refinement of δ
by construction. If all the elements in Λ(ρ, δ) satisfy ψ, then also all the
refinements of δ do. Vice versa, if there is a σ ∈ Λ(ρ, δ) that does not satisfy
ψ, also the δ′ maximal refinement of δ associated with σ does not.

Relations between winning strategies in the two models

Let α : Obs→ 2Tu be a strategy for the user on Σ. We call fα a strategy on
GΣ constructed from α as follows.

1. If α([m])) ̸= ∅, and t is a transition in α([m]) arbitrarily chosen, then
fα(m) = t.

2. fα(m) = ϵ otherwise.

Analogously, let f : [min⟩ → Tu ∪ {ϵ} be a strategy on GΣ; we define the
derived strategy αf on Σ as follows:

1. αf ([m]) = {f(m)}, if f(m) ̸= ϵ.

2. αf (m) = ∅, otherwise.

Theorem 8. Let ψ be an LTL-X formula, Σ a 1-safe system, and GΣ the
derived cgs. A winning strategy exists on Σ for ψ iff a winning strategy
exists on GΣ.

Proof. As first step, we show that if α is a winning strategy on Σ for ψ, then
fα is a winning strategy for ψ on GΣ.

Let out(min, fα) be the set of fair computations starting from min that
the user enforces by following the strategy fα. For any σ ∈out(min, fα),
we show that (ρ, δ)[σ] satisfies the conditions of Def. 21, and therefore
is consistent with α: (1) let e ∈ Eu ∩ ρ be an event controllable by the
user. By construction, δ is a maximal refinement, hence there must be
two cuts γj and γj+1 such that e is the only event between them. By
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construction, if e was added to the run after γj , there must be a state
m ∈ σ : λ(γj) = m such that fα(m)) = λ(e). By construction of the
strategy, λ(e) ∈ α([m]). (2) By contradiction, assume that the user is finally
postponed; then there is a cut γ ∈ δ such that for each cut γj compatible
with δ such that γj > γ, α([λ(γj)]) ̸= ∅. By construction, there must be a
state mi ∈ σ : λ(γ) = mi such that f(mj) ̸= ∅ for each mj , j > i; then σ
cannot be fair with respect to ⟨s, cu⟩. (ρ, δ)[σ] is a play, and it is consistent
with the strategy by construction, hence it is a winning play for the user
and it satisfies the property expressed by ψ. Hence also σ satisfies it on the
concurrent game structure.

As second step, let f be a winning strategy on GΣ. We show that αf is
a winning strategy on Σ.

Let (ρ, δ) be a play consistent with αf . By contradiction, we assume that
the formula ψ is not satisfied on unf(Σ), and that the play (ρ, δ) testifies it.
Then there must be a maximal refinement δ′ of δ that does not satisfy the
formula. δ′ is associated with an infinite sequence of states σ on GΣ. If σ is
a fair computation on GΣ, then it is also a computation consistent with the
strategy: let t be a user’s move in mi ∈ σ. By construction, there must be
e : λ(e) = t in (ρ, δ) such that t ∈ f(λ(γi)), where γi ∈ δ′ and λ(γi) = mi.

If λ is not fair, we know by Lemma 19 that we can construct a fair
computation σ′ such that µ(σ) = µ(σ′). In addition, from the proof of
Lemma 19 we know that the only reason why σ can be unfair is that the
user is finally neglected during the play. This cannot happen if the user
has the strategy finally non-empty, otherwise the play on the net would
not be consistent with this strategy (by definition the strategy selects only
enabled events). Then, there is an infinite number of states in the sequence
in which f selects only the transition that keeps the system in the same
state. We add a copy of these states in the position coming immediately
after them. This computation σ′ is fair with respect to the user, therefore it
is a play consistent with the strategy on the concurrent game structure and
by hypothesis is winning. By construction µ(σ) = µ(σ′), hence Lemma 17
guarantees that also σ respect ψ.

4.3.2 An algorithm for finding a winning strategy

In this section we describe a method to find a winning strategy for the user
on the 1-safe system, if one exists, when the user has no memory, and the
strategy is defined on observable and stable parts of markings including
the implicit places. In Sec. 4.3.1 we showed that this is equivalent to find a
strategy on the derived game structure, and we mentioned that this problem
can be translated into the problem of model-checking a 1 ATL* formula.
However, to our knowledge, none of the model-checkers developed for ATL
can be directly applied to solve the problem as we stated. This is because
we want to model check a fragment of ATL*, whereas most of the tools only
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support ATL, and because even those tools supporting ATL* do not allow to
specify the observability and the fairness constraints that we require. Among
the most prominent tools, MOCHA [10] works only for synchronous systems
and allows neither partial observability nor any kind of fairness constraint;
MCMAS [92] does not support partial observability and consider only the
so called unconditional fairness, where each fair computation must cross
infinitely often some subsets of states; finally the recent STV+ [89] supports
a special case of partial observability, in which the agents can observe only
their local states, and does not support any fairness constraint.

In this section we focus on the research of a winning strategy on the
derived game structure.

Let Σ be a 1-safe system. We want to find a strategy on GΣS
, where ΣS

is the extension of Σ with implicit observable places. In order to reach this
goal, we proceed as follows.

1. We construct the marking graph of Σ, mg(Σ), and we interpret it as
a Kripke model.

2. We compute all the regions of mg(Σ) associated with the unions and
the complements of observable places. We update the set of proposi-
tions true in each state as follows. For each region r, for each state
m ∈ r, we add the boolean combination of places associated to r as
local proposition that is true in m. With this operation we obtain a
Kripke model isomorphic to GΣS

.

3. For each marking m, we compute its stable part ms, and define the
relation ≡ as follows. Let P ′

O be the set of observable places in P ′;
m1 ≡ m2 iff ms

1 ∩ P ′
O = ms

2 ∩ P ′
O.

4. From each state m, we compute which controllable transitions are
enabled in [m] and we remove from GΣS

the controllable transitions
which are enabled in m and not in ms ∩ P ′

O. We denote as M r the
subset of states that are reachable in GΣS

once that this step has been
executed. Since some places may not belong anymore to any reachable
marking, the associated propositions are false in all the states of GΣS

.

An example of this construction is in Ex. 49.

Example 49. Let Σ be the 1-safe system in Fig. 4.15, except for the green
places (pc1 and p

c
2). Let p1 and p2 be the observable places. In the right part of

the figure, we show mg(Σ) (in black and grey), and the structure of GΣS
(in

black). In this example, the extended net ΣS has only two places more than
Σ, represented in green in the figure, associated with the complements of the
two observable places. In Table 4.2, each state of mg(ΣS) is associated with
its stable and observable part. As observed in Ex. 43, there is no marking
where p2 is stable. For this reason, a winning strategy for the user can
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Table 4.2: Table representing the stable and observable part of each state
of the marking graph in Fig. 4.15

States Propositions

m1, m2 p1
m5 p1, p

c
2

m3,m6,m8,m11 pc1
m4,m7,m9,m10,m12,m13 pc1, p

c
2

Figure 4.15: A 1-safe system, its marking graph (black and grey) and its
associated game structure (black)

never depend from the occurrence of t2, and when we construct GΣS
we can

remove all the occurrences of this transition as well as of the transitions
causally depending from it (as explained in point 4 of the procedure above).

The method that we propose can be summarized in the following steps,
that will be explained in detail in the next subsection.

1. Among the set of potential winning strategies, we select a strategy f
for GΣS

, and we prune GΣS
accordingly.

2. From the pruned GΣS
and the strategy f , we construct a Kripke model

K(G, f) that allows us to verify fairness constraints without having
them externally specified. To the same aim, we construct a formula
ψ′ from ψ such that the user has a winning strategy for ψ on GΣS

if,
and only if, ψ′ is verified in the initial state on K(G, f).

3. We check if the strategy is winning with the help of an LTL model-
checker; if it is, we stop and return that strategy, otherwise we mark
the current strategy and all those equivalent to it as checked, and we
repeat the steps.

We say that two strategies f and f ′ are equivalent if the set of states reach-
able from the initial state of K(G, f) is equivalent to the set of states reach-
able from the initial state of K(G, f ′). This may happen because some states

117



become unreachable after the pruning process. In this case, f is winning iff
f ′ is.

Encoding fairness constraints into the Kripke model

Let GΣS
= ({u, env, s},M r,m′

in, P
′, d, τ,≡) be a derived game structure

with fairness constraints, and f be a strategy on GΣS
. We modify GΣS

and
construct a Kripke model K(G, f) as follows. Let Pα be the set of atomic
propositions of K. P f includes all the elements in P ′. In addition, for each
transition t ∈ Tenv, we add an element to P f . Abusing the notation, these
propositions will be denoted with the name of their associated transitions.
Finally P f includes the two propositions env and u.

For each statem ∈M r, we delete all the outgoing controllable transitions
that are not selected by f in [m]. We split all the other arcs by adding for
each of them an intermediate state. Let t be a transition outgoing from m
in GΣS

, and l be the intermediate state to add. All the propositions true in
m and all those associated with uncontrollable transitions not enabled at m
are true in l. In addition, if t is controllable or f([m]) = ∅, u is true in l; if
m does not enable any transition in Tenv, env is true in l; if t ∈ Tenv all the
propositions in #t are true in l.

Finally, for each state m in M r if m does not enable any transition in
Tenv and f([m]) = ∅, we add a state l and two transitions so to create a
cycle between m and l. In l the true propositions are those true in m and
all those in P f \ P ′.

Example 50. Consider the 1-safe system and its concurrent game structure
represented in Fig. 4.15. Assume that the goal of the user in ΣS is F (p7 ∧
p9), and that the user follows the strategy α such that α([{p1, pc2}]) = {t1},
α([m]) = ∅ otherwise. The Kripke model K(G, f) encoding this strategy
and the fairness constraints is represented in black in Fig. 4.16. The grey
part represents the parts of the game structure GΣS

that must be deleted.
Each transition in K(G, f) is doubled with respect to the same transition in
GΣ. The states dividing each transition (m′

1,m
′
2,m

′
5 etc.) are used to store

the information about fairness constraints. The true propositions in each of
these new states are in Table 4.3. We can use this Kripke model to check if
α is winning, as formalized in Lemma 21.

Lemma 21. Let ψ be an LTL-X formula, GΣS
be a derived structure, f be

a strategy on GΣS
and K(G, f) the derived Kripke model. f is winning on

GΣ if, and only if, ψ′ = (
∧

x∈{u,env}GF x∧
∧

tj∈Tenv
GFtj)→ ψ holds in the

initial state on K(G, f).

Proof. We associate to every infinite computation σf on K(G, f) an infinite
computation σ on GΣS

by removing from σf all the states that are not in
M r.
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Table 4.3: True propositions in the states added during the construction of
K(G, f)

New states True propositions

m′
1 p1, p2, p3, u, env, t3, t4, t5, t6

m′
2 p1, p2, p6, u, env, t3, t4, t5, t6

m′
5 p1, p

c
2, p9, u, t3, t4, t5, t6

m′
10 pc1, p

c
2, p4, p9, u, env, t3, t4, t5, t6

m′
13 pc1, p

c
2, p7, p9, u, env, t3, t4, t5, t6

Figure 4.16: A Kripke model derived from the game structure in Fig. 4.15.

We first show that for each infinite path σf in K(G, f), σf satisfies

(
∧

x∈{u,env}

GF x ∧
∧

tj∈Tenv

GFtj)

iff there is a computation σ′ in GΣS
such that µ(σ) = µ(σ′), and σ′ satis-

fies all the fairness constraints in GΣS
. Assume such a σ′ exists, then both

the user and the environment must have been selected infinitely often by the
scheduler. If σ′ is obtained through the occurrence of infinitely many uncon-
trollable and controllable transitions, then by construction

∧
i∈{u,env}GFi

holds in σf . If there is a finite number of uncontrollable transitions, there
must be an index i such that for each σ′j : j > i, σ′j does not enable any un-
controllable transition. Since µ(σ) = µ(σ′), this property must hold also for
σ. By construction, for each state in σ where no uncontrollable transition
is enabled, there is a state in σf where env is true. Analogously for u if no
controllable transition is enabled from a certain state on. In addition, there
may be a finite number of controllable transitions also if the strategy for the
user does not select any transition from a certain state on. By construction,
for each of these states in σ there is a state on σf where u is true. Vice versa,
if there is no fair σ′, also the formula

∧
i∈{u,env}GFi does not hold on σf ,

since there are no other cases than those discussed above in which u or env
are true in a state. If σ satisfies also the constraints for the environment,
then the formula

∧
tj∈Tenv

GFtj must hold in σf , because by construction,

for each tj ∈ Tenv, tj is true in a state l of σf iff there is a state m in σ and
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a transition ti bringing to the next state of σ and such that tj is not enabled
at m (and therefore its associated fairness constraint is also not enabled) or
tj ∈ #ti (and therefore the constraint is taken in σ).

As second step, we observe that ψ holds in σ iff it holds in σf (since all
the propositions of ψ are in P , this can be seen as a Corollary of Lemma 17).

Then, if ψ′ holds in K(G, f), in all the fair paths in GΣ that follow f , ψ
holds, and therefore f is winning on GΣS

. Vice versa, if ψ does not hold in
K(G, f), there is at least a fair path on GΣ that follows f and such that ψ
is not verified, therefore f is not winning on GΣS

Lemma 21 allows us to prove the correctness of the algorithmic procedure
proposed at the beginning of this section to find a winning strategy, if one
exists.

4.3.3 Complexity

Theorem 9. The complexity of finding a winning strategy is at least PSPACE
and at most EXPSPACE in the dimension of the net.

Proof. In order to prove that finding a winning strategy is at least PSPACE,
we show that this problem is at least as hard as the reachability problem.
This consists in deciding whether a given marking is reachable from the
initial marking, and it is proved to be PSPACE-complete for 1-safe nets
[41]. Let Σ = (P, T, F,m0) be a net system, and m ⊆ P be a marking.
We associate to the reachability problem for m from m0 a game on the net.
On Σ, we assume that all the places are observable, and all the transitions
are controllable by the user. Since every transition is controllable, for each
marking, the stable part is the entire marking, therefore the strategy is
defined on the reachable markings of the net. Let the goal of the user be
F (

∧
pi∈m pi ∧

∧
pi∈P\m ¬pi). A winning strategy for the user exists iff m is

reachable:

• If m is reachable, then there is a sequence of transitions that brings
from m0 to m. Let σ = t0...tn be this sequence, and m0m1...mn be the
corresponding sequence of markings, so that m0[t0⟩m1[t1⟩...mn[tn⟩m.
We can assume that for each i ̸= j, mi ̸= mj . If this is not the case,
we can construct another path that from m0 arrives to m by observ-
ing that if ml = ml+k for some l, k, then the sequence of transitions
t0t1...tl−1tl+k...tn also reaches m and the repetition between ml and
ml+k has been deleted. Then a winning strategy is a function α such
that α(mi) = {ti} for each i ∈ {0, ..., n}.

• If there is a winning strategy for the user, then by construction the
user reaches m after a finite number of steps.
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We now prove the upper limit by showing that the algorithm that we pro-
posed is at most EXPSPACE. In general, the marking graph mg(Σ) has
exponential size with respect to the size of Σ; computing all the unions
and complements of the observable places is also exponential with respect
to Σ. Computing the stable and observable parts of all the markings re-
quires polynomial time with respect to mg(Σ). Let GΣS

be the concurrent
structure derived from Σ. By construction, mg(Σ) and GΣS

have the same
size. In our algorithm we guess a strategy α, we construct a Kripke model
K(G, f) and we verify an LTL formula. Since constructing a strategy f and
K(G, f) is polynomial with respect of GΣS

, and model-checking of LTL-X
is PSPACE, the algorithm is PSPACE with respect to the size of mg(Σ).
Since mg(Σ) is in general exponentially larger than Σ, the algorithm is at
most EXPSPACE.

4.4 Implementable strategies

In the previous sections we studied how to find a strategy for the user to
pursue a certain goal, in case such a strategy exists. When the user follows
a strategy, it constraints the behaviour of the system, preventing some of
the possible executions. In this section, we discuss how to encode a given
strategy in the system itself, namely how to add constraints to the system,
so that the only executions allowed in the new systems are those obtained
when following the strategy. In some sense, this procedure “corrects” the
system that does not necessitate anymore of an external controller in order
to satisfy the behaviour imposed by the strategy.

The idea we pursue is this: a strategy is encodable within a P/T system,
if its decisions can be represented as extra places, corresponding to causal
relations from uncontrollable transitions to controllable transitions. We will
then say that a strategy is implementable if we can add new places to the
given P/T system, so that the maximal runs of the augmented nets are the
runs of the plays consistent with the strategy in the original P/T system.

In Sec. 4.4.1, we formalize the idea of implementable strategy for bounded
P/T systems without self-loops, and we discuss some aspects of the defini-
tions on the basis of some examples. In Sec. 4.4.2, we restrict ourselves to
the case in which the strategy is defined on observations without memory,
and we propose an algorithm to find an implementation, if one exists, based
on region theory.

The results discussed in this section are in [5].

4.4.1 Formal definitions and examples

Before giving a formal definition of implementable strategy, we need some
auxiliary definitions.
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Figure 4.17: The game net of Fig. 4.1 and one of its restrictions.

Definition 25. Let Σ = (P, T, F,W,min) be a bounded P/T system. A
restriction of Σ is a P/T system Σ′ = (P ∪ H,T, F ′,W ′,m′

in) such that
F = F ′|(P×T )∪(T×P ), W (x, y) = W ′(x, y) for each (x, y) ∈ (P×T )∪(T×P ),
and min = m′

in|P , P ∩H = ∅.

Let Σ be a bounded P/T system, and Σ′ be a restriction of Σ. Since all
the constraints in Σ are maintained in Σ′, and Σ′ has some additional places
that may add constraints to the occurrences of some transitions, a sequence
of transition firings in Σ′ from m′

in can always be reproduced in Σ from min.

Example 51. Fig. 4.17 recalls, on the left, the net already presented in
Fig. 4.1, and represents one of its restrictions on the right, where the addi-
tional places are coloured in blue. In the initial P/T system, four transitions
are enabled in the initial marking, namely t1, t2, u1, and u2, whereas in the
restriction, only t1 and t2 are enabled, since the new places, initially un-
marked, are preconditions of u1 and u2.

Definition 26. Let ρ′ = (B′
ρ′ , E

′
ρ′ , F

′
ρ′) be a run in the unfolding of Σ′, and γ′

be a B-cut of ρ′. A projection of ρ′ on unf(Σ) is a run ρ = (Bρ, Eρ, Fρ) such
that ρ is isomorphic to ρ′ \ J , with J = {j ∈ B′ : λ(j) ∈ H}. Analogously,
a projection of γ′ on ρ is a B-cut γ ⊆ Bρ such that γ = γ′ \ J .

By construction, for each ρ′ run of unf(Σ′), and for each B-cut γ′, there
is always at least a projection on unf(Σ).

As discussed in Sec. 4.1, while following a strategy, the user has complete
control over controllable transitions, for example it can decide to fire control-
lable transitions only after the occurrence of some uncontrollable transitions,
to completely block their occurrence, or to order the occurrence of concur-
rently enabled controllable transitions in a specific way. However, it cannot
force uncontrollable transitions to fire in any order and it cannot be sure to
fire a controllable transition before an enabled uncontrollable transition has
occurred. An implementation of a strategy must reflect these properties,

122



therefore, we cannot allow for places that limit the behaviour of the envi-
ronment. A naive solution for this would be to allow to add only places that
are preconditions of controllable transitions. However, Ex. 52 shows a sys-
tem in which the new places are preconditions of uncontrollable transitions,
without limiting the behaviour of the environment.

Definition 27. Let Σ = (P, T, F,W,min) be a P/T system, and Σ′ = (P ∪
H,T, F ′,W ′,m′

in) a restriction of Σ. A place p ∈ H \P is environment-fair
if p• ∩ Tenv = ∅, or if the following conditions hold.

1. There is a transition t ∈ T such that p ∈ t•.

2. For each tn ∈ Tenv such that tn ∈ p•, for each run ρ ∈ unf(Σ′)
including the elements b, e1, e2 such that λ(b) = p, λ(e1) = t, λ(e2) =
tn, e1 ∈ •b, b ∈ •e2, then e1 ≺ e2 in the projection of ρ on unf(Σ).

3. For each transition tn ∈ Tenv such that tn ∈ p•, for each transition
ti ∈ p•, and for each markingm′ ∈ [m′

in⟩, if ti and tn are in behavioural
conflict in m′, then they are also in behavioural conflict also in m =
m′ ∩ P .

In Def. 27, the second condition expresses that if an uncontrollable tran-
sition is forced by a new place to occur after another one, then this same
order constraint must hold also in the initial net. The third condition ex-
presses that all the conflicts derived from a new place involving at least an
uncontrollable transition must be structural and not behavioural.

We have now all the elements to define implementable strategies. In
Def. 28 and Def. 29, we propose two notions: loosely speaking, Σ′ is a
weak implementation of α on Σ if all its maximal runs follow the behaviour
prescribed by α on Σ, possibly restricting it; it is a strong implementation
if all the behaviours allowed by α on Σ are reproducible on Σ′.

Both notions have advantages and drawbacks. In order to guarantee
that all the runs of a system satisfy a given property that holds when fol-
lowing the strategy, it is sufficient to use a notion of weak implementation.
However, this notion may allow for unnecessary restrictions of the behaviour
of the system, therefore in some cases the strong implementation may be
preferable.

Definition 28. Let Σ = (P, T, F,W,min) be a bounded P/T system. A
strategy α is weakly implementable iff there is a bounded restriction Σ′ =
(P ∪H,T, F ′,W ′,m′

in) of Σ such that the following conditions hold.

1. Each place in H \ P is environment fair.

2. For each maximal run ρ′ in unf(Σ′), there exists a sequence δ′ of
B-cuts in ρ′, such that the projection ρ of ρ′ on unf(Σ), and the pro-
jection of the B-cuts in δ′ on ρ form a play (ρ, δ) on unf(Σ) consistent
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with α, with δ the sequence of B-cuts that are projections of the B-cuts
in δ′.

If such a Σ′ exists, we say that it is a weak implementation of α on Σ.

Definition 29. Let Σ = (P, T,W,min) be a bounded P/T system. A strategy
α is strongly implementable iff there is a bounded restriction Σ′ = (P ∪
H,T, F ′,W ′,m′

in) of Σ such that Σ′ is a weak implementation of α, and for
each play (ρ, δ) consistent with α, ρ is a projection of a maximal run in
unf(Σ′).

If such a Σ′ exists, we say it is a strong implementation of α on Σ.

Remark 14. By definition, a weak implementation Σ′ of a strategy α on
a P/T system Σ has at least a maximal run in unf(Σ′), since its initial
marking cannot be empty. Hence, in the unfolding of a weak implementation
there must always be at least a maximal run projecting on a play consistent
with α in unf(Σ).

To illustrate the definitions and the different cases that can occur, we
discuss three examples of nets and strategies.

Example 52. Consider the safe (1-bounded) P/T system on Fig. 4.18
where, in order to simplify the drawing, the output arcs of the five tran-
sitions labelled by R have been omitted. These transitions reproduce the
initial marking, hence they all have as post-set the places {p1, p2, p10}. In
this system, the user has the goal to infinitely often reach a marking contain-
ing place p12, it has no memory, and it can observe the value of the places
{p1, p2, p3, p4, p5, p6, p10, p12}, which are represented with bold lines.

In the initial marking, there are two independent conflicts controlled by
the environment (between A and B, and between C and D), and a conflict
controlled by the user, between H and I. In order to fulfil its goal, the user
has to wait for the environment to make its choices.

The system is safe, so we can take the powerset of the set of observed
places as Obs. A winning strategy is: α({p1, p2, p10}) = ∅, α({p4, p6, p10}) =
{H }, α({p3, p5, p10}) = α({p3, p6, p10}) = α({p4, p5, p10}) = {I }. A strong
implementation of this strategy is given by the P/T system on Fig. 4.19,
where the additional places and their relations with the transitions of the
P/T system are coloured in blue. Since the choice of H depends on the
occurrence of both B and D, this is represented by adding place p14 from B
to H, and place p15 from D to H. Instead, the choice of I depends on the
occurrence of either A or C, hence it may be represented adding place p13
from both A and C to I. In this way, if it is the case that both A and C
occur, the added place p13 may get two tokens and then the net system with
this added place becomes 2-bounded and no more safe (1-bounded). In order
to correctly reproduce the initial marking, the added places may be emptied
by the uncontrollable transitions R, and this without limiting the behaviour
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Figure 4.18: A P/T system where the user observes the thick places and has
the goal to reach place p12 infinitely often.

of the environment, indeed it is possible to show that the added places, p13,
p14 and p15 are environment-fair, since they satisfy conditions 1., and 2. of
Def. 27.

Example 53. A strategy can be weakly implementable, but not strongly im-
plementable. Consider the net system Σ on the left of Fig. 4.20, and the fol-
lowing strategy, defined on markings, under the hypothesis that the user can
see all places, but cannot distinguish distinct occurrences of them (braces are
omitted in the arguments of the map): α(p0, p3) = {t0, t1}, α(p1, p3) = {t2},
α(p7, p3) = {t2}, α(p2, p3) = {t3}, and α(m) = ∅ for all other markings.
The marking graph shown on the right of Fig. 4.20 is obtained from mg(Σ)
by removing arcs corresponding to controllable transitions which are not cho-
sen by the strategy, and states which are no more reachable from the initial
state. This transition system is not separated for bounded P/T systems with-
out self-loops. As we will see in the next section, this means that the strategy
is not strongly implementable. However, we can notice that the unsolvable
separation problem is given by the absence of label t2 in state {p2, p3}, and by
the absence of label t3 in the state {p1, p3}, which are reached if the user fires
t0 in the initial state. The strategy α gives the user the freedom to choose
either t0 or t1 in that state, therefore a weak implementation of α can be
realized by blocking t0, so that the critical states are not reached, adding a
place from t6 to t2, and blocking t3.

An alternative weak implementation consists in adding a place from t6
to t2, and blocking the occurrence of t3. In this way, if t0 fires in the imple-
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Figure 4.19: An implementation of a strategy for the P/T system in
Fig. 4.18, adding preconditions also to uncontrollable transitions.

mentation, neither t2 nor t3 can fire. This execution on the implementation
projects on a consistent play, since neither t2 nor t3 are constantly selected
by α after the choice of t0. In the run selecting t1 we are in the same case
discussed above, therefore the requirements for the weak implementation are
satisfied.

Example 54. In some cases, neither a weak implementation nor a strong
implementation exist. Consider the net Σ in Fig. 4.21, and assume that the
user can distinguish each B-cut in unf(Σ). Consider the strategy α such
that α(γ0) = α(γ1) = ∅, α(γ2) = α(γ) = {t0}, for each γ > γ2 enabling t0.

Figure 4.20: A weakly implementable strategy.
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Figure 4.21: A 1-bounded net and its unfolding

An implementation cannot block t0, since in all the plays consistent with α,
t0 must fire, since it is constantly enabled and selected from γ2 on. Hence,
t0 needs to be blocked until the first occurrence of t2, and we need to add a
place from t2 to t0. Such a place is not bounded, therefore the resulting net
is not a weak implementation of Σ.

4.4.2 An algorithm to decide if a strategy is (strongly) im-
plementable

We are interested in characterizing cases in which a given strategy is imple-
mentable. In this section we focus on P/T systems where the user cannot
discriminate between two B-cuts associated to the same marking, namely,
for each pair of B-cuts γ1, γ2 such that λ(γ1) = λ(γ2), γ1 ≡ γ2. Any class
of observations satisfying this condition is allowed. Hence, from now on, we
consider strategies consistent with this assumption.

For this case, we propose an algorithm which, given a strategy, defined
as a map from equivalence classes of markings to sets of controllable tran-
sitions, decides if the strategy is strongly implementable, and constructs an
actual implementation, in the positive case. Its pseudo-code is presented in
Algorithm 11.

The algorithm builds on region theory, and is conceptually simple: we
first construct a reduced marking graph of Σ, where we remove all arcs
corresponding to controllable transitions which are not compatible with the
strategy, and remove states which are no more reachable from the initial
marking. In practice, we can think of directly building the reduced marking
graph, starting from the initial marking. Given a strategy α, the reduced
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Algorithm 11 Implementable strategy

function impl(Σ, α)
2: ▷ Σ is a bounded P/T system, α a strategy.

Σ′ ← Σ
4: build mgα(Σ) = (M ′, T, A)

compute SP = {(m, t) | m ∈M ′,m[t⟩ in Σ, t ̸∈ α(m)}
6: for (m, t) in SP do

if there is a region r solving (m, t) then
8: add to Σ′ a place corresponding to r

else
10: return failure ▷ α is not strongly implementable

end if
12: end for

add a new place ω to Σ′, with m′
in(ω) = 0,

14: and make it an input place of each t unreachable in mgα.
return Σ′ ▷ Σ′ is a strong implementation of α.

16: end function

marking graph will be denoted mgα(Σ).
We then try to synthesize the reduced marking graph by the calculus

of regions. To this end, we first observe that, for each region r of the full
marking graph mg(Σ), the restriction of r to the set of states of the reduced
marking graph mgα(Σ) is a region of the latter. This implies that all the
state separation problems in mgα(Σ) are solved by restrictions of the “old”
regions. Such restrictions also solve the state-transition separation problems
which were already in mg(Σ).

On the other hand, removing some transitions from mg(Σ) creates new
state-transition separation problems. The algorithm we propose looks for a
set of regions solving these new problems. If no such set of regions exists,
then the strategy is not strongly implementable, as will be proved below.
If U = {r1, . . . , rK} is a set of separating regions for the new separation
problems, then we can add to Σ the set H of corresponding places, and the
arcs with the corresponding weights.

Lemma 22. Let Σ = (P, T, F,W,min) be a bounded P/T system with T =
Tu ∪ Tenv, Tu ∩ Tenv = ∅. Let mgR be a transition system obtained from
mg(Σ) by removing a subset of transitions labelled with elements in Tu, and
the states unreachable from the initial marking. Let U be a set of regions
solving the new state-event separation problems, and H the set of places
derived from them. The restriction Σ′ = (P ∪ H,T, F,W,m′

in) of Σ is a
bounded P/T system, and all the places in H are environment-fair.

Proof. Boundedness follows from the fact that Σ′ is separated, and its mark-
ing graph is finite. To show that the new places are environment-fair, we
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proceed in two steps. First, we note that by removing arcs labelled by con-
trollable transitions, we cannot introduce new behavioural conflicts between
uncontrollable transitions. Second, suppose that in a run of Σ′, there is a
B-cut γ enabling an occurrence e1 of an uncontrollable transition t1; sup-
pose moreover that in the same run there is an occurrence e2 of another
uncontrollable transition, t2, and that e1 precedes e2 in this run, while e1
and e2 are not ordered in the projection of the run. Then, in Σ, the reach-
able marking λ(γ) must enable t1 and t2, and these two transitions must
be concurrent in m. Hence, there must be reachable markings m1, m2, and
m3, with m[t1⟩m1, m[t2⟩m2, m1[t2⟩m3, and m2[t1⟩m3. None of these arcs in
mg(Σ) can be removed by the reduction operation, hence e1 and e2 should
be concurrent in γ.

Lemma 23. Let Σ = (P, T, F,W,min) be a bounded P/T system whose
transitions are partitioned into controllable (Tu) and uncontrollable (Tenv).
A strategy α : Obs → 2Tu is strongly implementable if, and only if, the
reduced marking graph mgα(Σ) is separated. Furthermore, if mgα(Σ) is
separable, Σ′ returned by Algorithm 11 is a strong implementation of α on
Σ.

Proof. First, we prove that if a strategy α is strongly implementable on Σ,
then mgα(Σ) is separable. Let Σ′ be a strong implementation of α on Σ. By
contradiction, assume that mgα(Σ) is not separable. Then, mg(Σ′) cannot
be isomorphic to mgα(Σ) and either there is a path σ′ in mg(Σ′) that cannot
be reproduced in mgα(Σ), or there is a path σ in mgα(Σ) that cannot be
reproduced in mg(Σ′). In the first case, there must be a run in unf(Σ′) that
cannot be associated to any play in unf(Σ); in the latter case, there must
be a play on unf(Σ) that is not associated to any run in unf(Σ′). Hence,
in both cases Σ′ is not a strong implementation of α on Σ, contradicting the
hypothesis.

Next, we show that if the marking graph is separated, α is strongly
implementable, and Σ′ returned by Algorithm 11 is a strong implementation.
Lemma 22 shows that the places added to Σ′ are environment fair. We
need to show that also the other conditions in Def. 28 and Def. 29 are
satisfied. The second point of Def. 28 and the condition in Def. 29 follow from
the observation that, by construction, mg(Σ′) and mgα(Σ) are isomorphic.
As sequence of B-cuts, we can consider those associated to sequences of
markings in mg(Σ′).

The computational cost of solving one state-event separation problem
is polynomial in the size of the transition system, so the overall cost of
our algorithm depends mainly on the construction of the reduced marking
graph. If Σ is k-bounded and has h places, then the marking graph has at
most (k + 1)h reachable markings. Hence the complexity in the worst case
is exponential in the number of places. For a given strategy, the number
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Figure 4.22: A marking graph and its reduction.

of reachable markings in the reduced graph can be much smaller, but this
depends strongly on the specific strategy.

Example 55. Consider the P/T system Σ in Fig. 4.1 (recalled also in
Fig. 4.17), and the associated discussion. A winning strategy is given by the
following map: α({p0, s1}) = {u1}, α({p0, s2}) = {u2}, and α({m}) = ∅ for
all other markings.

The marking graph of Σ is shown on the left of Fig. 4.22. The reduced
marking graph, obtained by removing controllable transitions not chosen by
the strategy, is on the right. This reduced transition system turns out to
be separated. Beyond the regions corresponding to places of Σ, we need
to find regions solving four new state-transition separation problems: the
initial state labelled with q1 must be separated both from u1 and from u2;
q3 must be separated from u1, and q2 from u2. The set {q2} is a region in
the reduced marking graph, and solves all the separation problems related to
u1. Analogously, the region {q3} solves the separation problems related to
u2. An implementation of the strategy where the places associated to these
regions has been added is represented on the right in Fig. 4.17. Where the
place on the top of the figure corresponds to {q2}, and the one of the bottom
to {q3}.

4.5 Related works

Games have been used to model the interaction between agents on a system
for decades. One of the most used game model considers two-player infinite
games on finite graphs [67, 98]. In this context, a play is an infinite path on
the graph, and the two players are opponents. The nodes of the graph are
divided among the two players, that move whenever the play reaches one of
their nodes. A winning condition for a player may require for example to
reach or to avoid a set of nodes.
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Unlike in the context of games on graph, in this thesis we considered
an asynchronous game, without turn division between the two players. Our
game develops the idea of game on the unfolding in introduced in [22]. In
that paper, the authors consider the problem of weak observable liveness
(WOL) [45, 20], consisting in forcing a target transition of a 1-safe system
to fire infinitely often, by controlling some transitions in the system. In [22],
the problem was modelled as a two-player game on the unfolding of a 1-
safe system, on which the user could observe all the transitions. A previous
attempt to model WOL made use of Streett games [67], which are infinite
games on finite graphs where the winning condition is defined as the Streett
acceptance condition [119]. Although this method provided a technique
to model-check WOL with full observability under some restrictions, the
interleaving semantics used in games on graphs prevented to easily represent
asynchronicity of the system.

In [58, 59], Finkbeiner and Olderog introduced a different notion of asyn-
chronous games on Petri nets, called Petri games. As for the game in this
thesis, Petri games are defined on the unfolding of the net; the players
are represented as tokens on the net, and they are divided into two teams,
namely the system and the environment. One of the most interesting aspects
of this game is that the players have causal memory, i.e. they are fully in-
formed about their past, and they have no information about the rest of the
system until a synchronization occur. When two or more players synchro-
nize through the occurrence of a shared transition, they get the information
about the past of the tokens participating in that transition. In [59], the
authors studied how to check whether the system players have a strategy to
avoid a set of bad places. Among the works extending the results in [58, 59],
[64, 56] propose tools for the analysis of Petri games and the synthesis of
strategies; [55, 57, 76, 75] study the complexity and decidability of Petri
games by considering different classes of Petri nets, number of players in the
two teams, and winning conditions; [26] proves an equivalence between Petri
games and control games [62] defined on Zielonka’s asynchronous automata
[134].

The idea of games on concurrent structures such as Petri nets, VASS,
and event structures was defined also in several other works. In [84], the
authors consider a two-player game on Petri nets in which players strictly
alternate moves, and one of them has the goal of reach a subset of states.
In [69], the authors study decidability conditions on a concurrent game on
event structures. Finally, [18] presents an asynchronous two-player game on
a VASS based model, studies the decidability and complexity class of some
safety and reachability goal, and propose algorithms to find strategies, when
the problem is decidable.

Another line relevant in the study of games and control problems is given
by game-based logics. In Sec. 4.3.1, we have already discussed the relation
of our game with ATL [9].
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Finally, the research line on supervisory control of discrete event systems
(DES) started by Ramadge and Wonham in the late 80s [108, 109] is also
very relevant for our work, and in particular for the results presented in
Sec. 4.4. In Chap. 3 and Chap. 4 of their book [36], Cassandras and
Lafortune collect some results about the control of a DES with a supervisor.
Supervising a DES means to limit its behaviours, so to avoid that it can
generate unwanted strings of its language. A supervisor is a function that,
for each given observation, chooses some controllable events to disable. In
particular, Chap. 4 shows how these results can be adapted when DES are
modelled as labelled Petri nets.

The idea of using region theory to construct a supervisor in a Petri net
was introduced in [110], where the goal of the supervisor is to avoid a set of
bad states. In a later work [63], the authors extended their work by requir-
ing that the supervised system need to be able to always restore the initial
marking, in addition to the avoidance of bad states. In [91, 111, 103], the
authors improve the efficiency of the search for regions and consider appli-
cations of this approach in the control of flexible manufacturing systems.
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Chapter 5

Toward multi-agent system
analysis with Petri nets

In Chap. 4, we considered systems with a centralized controller, and we
studied how it could control and influence the rest of the system. However,
in a distributed system, there may also be the interaction of several agents,
each of them with its own goal, not necessarily in conflict with the goals of
the others. Most of the results in the formal analysis of strategic abilities
in such systems consider agents as transition systems. The main challenge
that these models need to tackle is the high computational complexity, that
partly depends on the huge size of the global model.

Using Petri nets to model agents may help to produce smaller models,
since they may be much smaller than the transition system describing the
same behaviour. In this chapter, we present a translation from a multi-agent
system defined with transition systems to a multi-agent system modelled
with 1-safe systems, we show their behavioural equivalence and we consider
the problem of finding transitions in the global model which are not 1-live.
In future works we plan to use this Petri net framework for model-checking
game-based logics.

The results in this chapter generalize those published in [8]. In particular,
in [8] we considered a naive construction of the agents as 1-safe systems, in
which each labelled arc in the transition system was transformed into a
transition of the 1-safe system. Here, we show that the results in [8] also
hold when we construct 1-safe systems through region theory.

The chapter is structured as follows. Sec. 5.1 discusses related works,
with a special focus on the multi-agent model defined in [79], that we want
to translate into a Petri net model. Sec. 5.2 defines the translation and
shows the equivalence between the two models. Finally, Sec. 5.3 discusses
an algorithm to find transitions that are not 1-live in the global model.
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5.1 Related works

Synthesis and analysis of multi-agent systems is a well known topic in the
literature, also in the context of Petri nets. Pujari and Mukhopadhyay in
[107] discuss MAS as discrete-event dynamic systems (DEDS), and use Petri
nets as a modeling tool to assess the structural properties of the system.
Similarily, following DEDS concept, Lukomski and Wilkosz [94] show rules
of modeling and analyzing the considered multi-agent system with use of
Petri nets. In [53], the authors propose to use the compositional specification
power of Petri nets in application to a multi-agent system; highly distributed
air traffic operations system is considered and modelled using Stochastically
and Dynamically Coloured Petri Nets. The approach of Galan and Baker
[60] focuses on specifying and analyzing the conversations in a multi-agent
system. Conversations are specified using an automata model and converted
into a Petri net representation. Using a Petri net analyzer, the conversations
are checked for consistency and coherency by testing liveness and safety of
the resulting net. Hiraishi in [77] proposes PN2 model, an extension of P/T
nets, for the design and the analysis of multi-agent systems.

Another branch of the literature on the subject shows a number of ap-
proaches using Petri nets to coordinate, organize or plan MAS behaviors.
In [135] a representation and execution framework for high level multirobot
plan design, called Petri Net Plans (PNP), is proposed. PNP is based on
Petri nets with a domain specific interpretation. Places and transitions are
partitioned into several classes of different interpretations. A special case is
a Petri net that has at most one token per place and edges of weight one.
As a central feature, PNPs allow for a formal analysis of plans based on
standard Petri net tools. Scheduling by hierarchical structuring of the tasks
performed by agents is one of key ideas in [99]. They propose a multi-agent
system that allows the user to define a hierarchical structuring of the tasks
that these agents perform, to plan a schedule involving parallel and sequen-
tial calling of the agents. The agents are atomic or complex. Atomic agents
are simple Petri nets performing a task, while complex agents are used to
gather atomic (and/or other complex agents) to conglomerate their individ-
ual behaviour, and arrange their working order. The authors of [88] pro-
pose a framework for specifying multi-agent systems based on Synchronized
Petri Nets. It is an extension of Recursive Petri nets, facilitating multi-
agent system specifications by concepts like: typed places, transitions and
tokens, synchronization points, synchronization conditions, synchronization
relations and binding functions.

Finally, an approach that seems to be very close to ours uses Nested Unit
Petri Nets (NUPN) [61]. One can see multi-agent systems as safe NUPNs
of height 1 (taking every agent as a leaf unit and the whole system as the
root unit). The agents that we construct in this work are not necessarily
unit-safe; however, they would become unit-safe if we decompose them into
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sequential components as we plan to do in future works. The considered
problem of transitions disabled by synchronizations corresponds to the usual
weak-liveness check for such nets.

5.1.1 Asynchronous multi-agent systems (AMAS)

In this section we focus on the model presented in [79]. This model is
particularly relevant for the results discussed in this chapter, since it is the
starting point of the definition of multi-agent system based on Petri nets
presented in the next section.

In [79], the authors define an asynchronous multi-agent system as a net-
work of automata, and they use it as basis for model-checking a fragment
of ATL* [9]. They define a notion of partial information on the system for
the agents, and apply a partial order reduction for model-checking strate-
gic abilities of a group of agents. Interestingly, their technique cannot be
applied when the agents have perfect information on the global system.

In what follows, we recall some formal definitions of the model in [79]
that will be used to present the result of this chapter.

Definition 30. An asynchronous multi-agent system (AMAS) consists of
n agents A = {ag1, . . . ,agn}. Each agent is associated with a tuple agi =
(Qi, Ui, Ai, qi,0,PV i, Vi), where

• Qi = {q1i , . . . , q
ni
i } is a set of local states;

• Ui = {α1
i , . . . , α

mi
i } is a set of labels representing the events in which

agent agi can choose to participate;

• Ai ⊆ Qi × Ui × Qi is a set of arcs or transitions local with respect to
agent agi;

• qi,0 ∈ Qi is an initial state;

• PV i is a set of local propositions;

• Vi : Qi → 2PVi is the valuation of local propositions in local states.

The sets of labels of different agents may not be disjoint. This is because
different agents may participate in the same events; events which are present
in more than one label set Ui require participation of all the agents having
them in their Ui, needing to synchronize for the execution.

Example 56. Fig. 5.1 represents an AMAS with three agents. The events
n1,m1, n2,m2 are shared by two agents, and require the participation of both
of them to occur, whereas the events n3 and m3 are local, and depend on a
single agent.
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Figure 5.1: Example of three local models for agents related to Train-Gate-
Controller benchmark from [79].

The composition of agents in an AMAS happens with synchronizations
on common events. The resulting structure is the canonical interleaved in-
terpreted system, which is formally defined below.

Since the model checking of AMAS is not in the scope of this thesis, we
simplify the definition of agents and of their composition by only considering
the structure of their transition systems, namely the tuples (Qi, Ui, Ai, qi,0)
(omitting the propositional variables).

Definition 31. A canonical interleaved interpreted system (canonical IIS)
is an AMAS extended with a tuple (Q,U,A, q0) where:

• Q ⊆ Q1 × . . .×Qn is a set of global states;

• U =
⋃

i∈{1,...,n} Ui is a set of events;

• A ⊆ Q × U × Q is a set of arcs or transitions in the global system
such that a = ((q1, ...qn), α(q′1, ..., q

′
n)) ∈ A iff for each agent agi with

α ∈ Ui, (qi, α, qi) ∈ Ai.

• q0 = (q1,0, . . . , qn,0) is an initial state.

Given a canonical IIS I, some of its states may not be reachable through
any execution, due to the restrictions given by the synchronizations, and
therefore also the transitions outgoing from these states can never be exe-
cuted. We will denote with Ir the canonical system where these unreachable
states and transitions have been pruned.

By definition, the number of states in the IIS grows exponentially with
the number of agents, therefore limiting the number of compositions when
studying the properties of the system may help in the analysis.

Example 57. Fig. 5.2 represents the reachable part of the canonical IIS of
the AMAS in Fig. 5.1.
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Figure 5.2: IIS of the AMAS in Fig. 5.1

5.2 Modelling asynchronous multi-agent systems
with 1-safe systems

In Sec. 5.1.1 we recalled the formal definition of AMAS and IIS introduced
in [79]. In this section we show how to translate such a model into a multi-
agent system modelled by 1-safe systems.

Since each agent in an AMAS is an lts, we can use region theory to
synthesize a P/T system for each of them. In particular, in this section we
consider the synthesis of 1-safe systems. As we discussed in Sec. 2.5, not
always the synthesis of an lts through region theory is possible. However, we
can always obtain a labelled 1-safe system (see Sec. 2.1). The representation
of agents with 1-safe systems is at most large as the representation with
transition systems, but, if the same label appears multiple times in the
agent, the 1-safe system may be smaller. This is particularly important at
the composition stage: even in the worst case, the composed 1-safe system
can be exponentially smaller than the composition of transition systems; in
the best case in which each agent can be synthesized with region theory, the
composed 1-safe system has only one transition for each label of the AMAS.

Remark 15. In general, we can have different labelled 1-safe systems real-
ising an lts, based on which criteria we choose for splitting labels.

Formally, we can represent each agent agi as a labelled 1-safe system.
In particular, for each agent agi = (Qi, Ui, Ai, qi,0), the associated labelled
1-safe system is defined as Σi = (Di, Ti, Fi, ri,0) together with a map β :
Ti → Ui, where:

• Di is a set of regions solving the separation problems in agi, possibly
by splitting some of the labels in Ui;

• Ti is the set of transitions; there must be at least one for each element
in Ui, and there could be more if splitting transitions is necessary for
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Figure 5.3: 1-safe systems for the transition systems depicted in Fig. 5.1.

the synthesis;

• Fi ⊆ (Di × Ti) ∪ (Ti ×Di) is constructed as described in Sec. 2.5;

• ri,0 ⊆ Di is the set of region including qi,0;

• β is the function associating to each transition in Ti its label Ui on
agi; if agi can be synthesized without splitting of transitions, β is
injective.

Example 58. Consider the AMAS in Figure 5.1. In Figure 5.3, each agent
has been synthesized into a 1-safe system. In this case, each agent is trivially
synthesizable in an exact way: since each action is never repeated inside the
same agent, each of their states is a minimal region, and the set of minimal
regions satisfies all the separation properties.

5.2.1 Synchronization on common actions

Let Σ1 = (P1, T1, F1,m1,in), ...,Σn = (Pn, Tn, Fn,mn,in) be a set of labelled
1-safe systems, and β1, ..., βn their labelling functions with βi labelling func-
tion of Σi for each i ∈ {1, ..., n}.

We construct a global 1-safe system Σ = (P, T, F,min) with labelling
function β by synchronizing the agents on transitions with the same label.
The set of places P of Σ is the union of the sets of places Pi, assumed
to be pairwise disjoint. For each label α ∈ β(Ti), for each agent Σi, let
Tα
i = {t ∈ Ti : β(t) = α} be the set of transitions labelled with α. The

set of transitions of Σ is defined as T =
⋃

α∈β(Ti)

⊗
i∈{1,...,n} T

α
i . The flow

relation is determined in this way: for each transition t ∈ T , and each place
p ∈ P there is an arc from p to t iff there is a Σi and tj ∈ Ti such that
p ∈ Pi, tj is a component in t, and (p, tj) ∈ Fi; analogously for the arcs
from t ∈ T to p ∈ P . The initial marking min is the union of all mi,in, with
i ∈ {1, ..., n}. The labelling function β associates every transition t ∈ T to
the label of all its component, that is unique by construction.

By construction, each place in Σ belongs at most to one agent, whereas
the transitions can be shared. Note that some of the transitions may be
enabled in no reachable marking, and therefore are not 1-live. The same

138



Figure 5.4: Global 1-safe system model resulting from the composition of
the nets depicted in Fig. 5.3.

problem happens when we consider the composition of AMAS, because some
states may not be reachable from the initial state q, due to the synchroniza-
tion constraints. The problem of finding these transitions is discussed in
detail in Sec. 5.3.

Example 59. Fig. 5.4 represents the composition of the three agents from
Fig. 5.3 based on synchronizations on transitions. Since in this case every
agent is synthsizable, in the global 1-safe system in Fig. 5.4 each transition
has a different label.

In order to prove the equivalence between the behaviour of the global
1-safe system and of the IIS as defined in [79] and recalled in Def. 31, we
show that synthesis and composition commute, namely synthesizing 1-safe
system agents from the AMAS and then composing them is equivalent to
construct the composition of AMAS and then synthesizing a 1-safe system.
As already noted in Remark 15, the synthesis of labelled 1-safe systems
may produce different sets of agents. However, for all the possible sets the
commutativity holds.

Theorem 10. Let A = (ag1, ...,agn) be an AMAS, Σ1, ...,Σn be a set of
1-safe systems and β1, ..., βn be a set of labelling functions such that for each
i ∈ {1, ..., n}, Σi labelled with βi synthesizes agi. Let Σ = (P, T, F,min) be
a global 1-safe system labelled with β constructed as described above, and
I the canonical IIS of A. The transition system of Σ is isomorphic to the
reachable part Ir of I.

Proof. The proof is based on the fact that the set of places P of the global
1-safe system can be partitioned into the places of the agents Σi, and each
agent has a marking graph isomorphic to an agent agi.

We first show that the set of labels of the transitions enabled in min in Σ
is the same as the set of labels of the transitions occurring in the initial state
q0 of Ir, and that for each label α, the cardinality of the set of transitions
associated to α is the same.
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Assume that q0, initial state of A, enables a transition with label α.
Let agα = {agj : j ∈ J ⊆ {1, ..., n}, α ∈ β(Uj)} be the set of agents in
the AMAS with α in their alphabet. All the agj ∈ agα must enable a
transition labelled with α in their initial state. By contradiction, assume
that no transition labelled with α is enabled in min; since min is the union
of the initial states of the Σi, there must be a Σi with α in its alphabet
that does not enable any transition labelled with α in its initial state. This
is impossible, since by construction, its marking graph is isomorphic to the
marking graph of a agi ∈ agα. Similarly, if there is a transition with a label
α enabled in min, then each 1-safe system agent having it in its alphabet
must have it enabled in the initial state, since by construction, the marking
graph of the 1-safe system agents are isomorphic to the agents in A, α must
be enabled in the initial state also in Ir.

For each label α, the number of transitions labelled α and enabled in
q0 is the product of the numbers of transitions enabled in the initial states
of each agent in agα; since the marking graphs of the 1-safe system agents
are isomorphic to the agents in agα, in min the same number of transitions
labelled with α is enabled.

Next, we show that two transitions bring to different markings in Σ,
iff they bring to different states in Ir. Assume that two transitions t1, t2
enabled in q0 arrive in different states of Ir. By construction, there is at least
an agent agi participating in the action and such that the local state after
the occurrence of t1 differs from the local state after the occurrence of t2.
This must happen also in Σi, since its marking graph is isomorphic to agi.
Therefore, the markings reached from min in Σ differs at least for the places
belonging to Σi. Analogously, if t1 and t2 lead from q0 to the same state in
Ir, then for all the agents participating in them, the local states after t1 and
t2 must be the same, and this is true also for all the Σi participating in t1
and t2, and therefore also for their union.

This same reasoning can be applied recursively to the states reached
from the initial marking, until considering all the reachable states. With
the same argument we can also show that a cycle is closed on the marking
graph of Σ iff it is closed in Ir.

5.3 1-liveness of transitions in the global model

In this section we discuss how to find transitions that are not 1-live on the
global 1-safe system. This is known to be a PSPACE-complete problem
[81, 50]. We propose an algorithm that, in some cases, does not need to
construct the global 1-safe system in order to verify whether a transition is
1-live, but uses a smaller subnet. If this is possible, some computation is
saved, since the complexity of the problem depends on the size of the net.
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Figure 5.5: Multi-agent system with three agents.

In the worst case, the algorithm reconstructs the global 1-safe system, and
checks 1-liveness on it.

Example 60. Fig. 5.5 shows three agents modelled with 1-safe systems. In
each of them, every transition is 1-live. However, in the global 1-safe system
obtained by synchronizing the transitions with the same labels, c is not 1-live
anymore.

Although we can verify which transitions are 1-live in the global 1-safe
system by computing its marking graph, this can be computationally very
expensive, since having all the agents may increase the level of concurrency,
and therefore the size of the marking graph.

A first alternative idea could be to find some of the transitions that will
never be enabled by composing, for each label, all the agents sharing it.
For example, the labels a and b in the multi-agent system in Fig. 5.5 are
shared by the first and the second agent from the left in the figure. Fig. 5.6
shows the composition of the two agents, and the marking graph of this
1-safe system. If a transition cannot occur in the 1-safe system obtained
composing only the agents sharing its label, then it cannot occur in the
global 1-safe system, since adding new components can only increase the
number of constraints, due to the synchronization requirements.

Unfortunately, this is only a necessary condition to identify transitions
that cannot fire, but it is not sufficient. Transition c is not 1-live in the
global 1-safe system, but it appears only in the first agent, where it is 1-live.

This happens because c must occur after the occurrences of both a and
b. This is not possible in the global system, since transitions a and b in the
first agent must synchronize with transitions a and b in the second agent,
but in the second agent a and b are in conflict and cannot occur in the same
execution.

This suggests us another element to check whether a transition can be
enabled without constructing the transition system of the global 1-safe sys-
tem, consisting in composing all the agents sharing a certain label, and all
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Figure 5.6: 1-safe system obtained by composing the first and the second
agents in Fig. 5.5, and its marking graph.

the labels which appear in a minimal path leading to it from the initial
state. In case of label c, this means to compose the agents with labels a, b, c,
namely, the two on the left in Fig. 5.5. The marking graph of this com-
position is on the right in Fig. 5.6, and it does not include any transition
labelled with c.

Definition 32. Let mg(Σ) be the marking graph of Σ = (P, T, F,min).
The firing sequence t1...tn is minimal if for each i, j < n, mi ̸= mj, where
m0 = min, and mi−1[ti⟩mi for each i ∈ {1, ..., n}.

Let L ⊆ β(T ) be any subset of labels in the global net Σ. We will
denote with ΣL the net obtained by composing all the agents with at least
an element of L in their alphabet.

Let α be any label on the system, and Tα = {tj ∈ T : β(tj) = α}. Algo-
rithm 12 shows how to check that tj ∈ Tα is 1-live in Σ, without computing
the entire system. By applying the algorithm to each tj ∈ Tα, we can dis-
cover which transitions of Σ are not 1-live, and therefore can be removed
without changing the behaviour of the net.

The algorithm takes as input a transition tj , the set of all the agents
in the system, and a set of labels L, and returns true if there is a firing
sequence of transitions that enables tj , false otherwise. In addition, if one
exists, the algorithm returns the sequence π of transitions leading to tj . In
the first call L = {α}.

The algorithm has a recursive structure. The first step consists in com-
puting the minimal paths from the initial state of ΣL to tj (this is done by
the function comp min paths). If there are no minimal paths in mg(ΣL),
then it returns false, since ΣL does not need to be further explored. Oth-
erwise, it selects a minimal path π, through the function select path. Let
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β(π) be the set of labels of the transitions in π. If Σβ(π) = ΣL, then the
algorithm returns true, since we found a path that can be executed on Σ
and enables tj . When this happens, there is no need to look for alternative
paths, and the computation can stop and return true. This is not the case
if a recursive call returns false, since the unreachability of tj may be due
to a wrong choice of the path in one of the previous steps. Then, we need
to check if, in previous calls, other paths could have been chosen, leading
to different subsystems, and check if tj is reachable in them. If tj is not
reachable from any path, then we can conclude that tj is not 1-live in Σ.

Algorithm 12 Check if tj is 1-live

function check 1 liveness(tj , {Σi : i ∈ {1, ..., n}}, L) ∈ {true, false
} ×Π)

Π← comp min paths(mg(ΣL), tj)
if Π = ∅ then

return false, ∅
end if
while Π ̸= ∅ do

π ← select path(Π)
Π← Π \ {π}
if ΣL = Σβ(π) then

π′ ← π
return true, π

end if
r, π′ ← check 1liveness(tj , {Σi : i ∈ {1, ..., n}}, β(π))
if r = true then

return true, π′

end if
end while
return false, ∅

end function

By construction, for each transition ti in the sequence π returned by
Algorithm 12, the set of preconditions and the set of postconditions are the
same in Σ and in Σβ(π).

Theorem 11. Algorithm 12 is correct: for each transition tj ∈ T , the
algorithm returns true iff tj is 1-live in Σ.

Proof. As the first step, we show that if the algorithm returns true, then tj
is executable in Σ, and in particular the path π = t1...tj returned by the
algorithm is a firing sequence of Σ. We proceed by induction, starting to
show that t1 is enabled in min. By contradiction, let us suppose that t1 is
not enabled in min. Then, there must be a precondition p ∈ •t1, such that
p ̸∈ min. By the construction, all the elements in •t1 come from agents that
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have transitions labelled with β(t1), and all these agents are included in
Σβ(π); hence, if t1 is enabled in the initial state of Σβ(π), it must be enabled
also in min. Let πi = t1...ti, i < j, be a prefix of the firing sequence π and
mi the state reached in Σ after executing πi. We show that ti+1 is enabled
in mi. By contradiction, let us suppose that ti+1 is not enabled in mi. Then
there must be a place p ̸∈ mi and such that p ∈ •ti+1. This place must
be also in Σβ(π), since, by construction, Σβ(π) includes all the agents with
transitions labelled β(ti+1), and the preconditions of ti+1 on Σ cannot belong

to any other agent. Let m
β(π)
in t1m

β(π)
1 ...tim

β(π)
i the sequence of states and

transitions obtained by firing the sequence t1...ti in Σβ(π); p ∈ mβ(π)
i , since

ti+1 can fire after πi in Σβ(π), and there must be an index k ≤ i such that

p ∈ mα
r for each r ≥ k. If k = 0, then p ∈ m0 = min, since m

λ(π)
in ⊆ min,

by the construction. If k > 0, then p ∈ t•k, and p ∈ mk. Since the set of
preconditions and postconditions of tk+1...ti is the same in Σ and Σβ(π), if

p ∈ mβ(π)
i after the execution of tk+1...ti, then p ∈ mi after firing the same

sequence.
As the second step, we need to prove that if the algorithm returns false,

then tj is not 1-live in Σ. This follows from the observation that adding
agents to the system can only restrict the possibility of the transitions in
Σα to occur by adding synchronizations constraints. Therefore, if tj is a
transition in ΣL, but there is no sequence in ΣL enabling tj , a fortiori there
cannot be any sequence in Σ.

Theorem 12. Algorithm 12 terminates after a finite number of steps.

Proof. The thesis follows from the finiteness of the number of agents in the
system, and of the number of minimal paths.

Algorithm 12 does not guarantee that the system Σβ(π) to check will be
smaller than Σ, since the two systems may coincide. However, in distributed
systems in which each agent interacts with a small subset of other agents
of the entire system, it may become a convenient technique. An example of
such a system could be represented by a social network, where the number
of users is huge, but each of them has a limited number of connections. A
toy example is represented in Fig. 5.7. In this case concurrency enlarges the
size of the global transition system, without affecting the reduced systems.
The required computation can also be reduced by choosing proper heuristics
for the function select path, so that the more convenient paths are selected
to be analysed first. A possible criterion could be to select first the paths
requiring to add the smallest number of new agents, even when they are
longer and with more labels than others. Consider for example the system
of agents in Fig. 5.8. The four agents are represented at the top of the figure,
and two of their compositions at the bottom. Transition d belongs only to
agent ag2 (the second from the left), and there are two minimal sequences
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Figure 5.7: Example of a multi-agent system where each agent interacts
with a small subset of other agents.

Figure 5.8: Above, four agents part of a multi-agent system; below, compo-
sition of ag1, ag2, ag3 on the left, and of ag2 and ag4 on the right.
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reaching it: ad, and bcd. Although ad is shorter, the label a is shared by
two more agents: ag1 and agent ag3, whereas c belongs only to ag2, and
b is shared with ag4 only. The two compositions of agents represented in
Fig. 5.8 show Σ{a,d} (on the left), and Σ{b,c,d} (on the right). It is easy to
see that Σ{b,c,d} has less reachable states than Σ{a,d}, and it is sufficient to
decide the 1-liveness of the transition labelled with d.

Note that, for simplicity, we have considered compositions of the entire
1-safe systems modelling the agents. However, an optimization of Algo-
rithm 12 consists in decomposing the agents into sequential components
(see [112]) as first step, and then consider their composition. This possibly
allows for a further reduction of the resulting composition, since parts of
some agents may not be necessary for some labels.
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Chapter 6

Conclusion and future works

In this thesis, we studied formal methods for the analysis of distributed
systems that are not fully observed and/or controlled by a single agent. In
particular, we studied how to check which information an agent may obtain
on the system through its partial observations of it, and which behaviours
the agent is able to force on a system, when it can partially control it.
Most of the work focusses on goals achievable by a single agent, despite the
possibly opposing behaviour of the rest of the system. In the last part of the
thesis we put the basis for the analysis of systems in which several agents
interact, each of them with its own observations, control, and goals.

The problems considered in this thesis may have applications in the
analysis of noninterference, diagnosis and control of distributed systems.

We now recall the main results presented in the previous chapters and
discuss their possible developments.

First, we proposed some formal methods for the analysis of informa-
tion flow between transitions of a P/T system. We studied the information
flow on the basis of two relations: reveals and excludes. These relations
were used in the literature to verify diagnosis and noninterference proper-
ties. We defined three new relations generalizing reveals, by assuming that
the observing agent may have the ability of counting a certain number of
occurrences of a group of transitions. We then provided a group of algo-
rithms to compute both the relations defined in the literature and the new
relations on bounded equal-conflict P/T systems. The algorithms are based
on the equivalence between maximal-step semantics and step semantics in
equal-conflict P/T systems, and on the finiteness of markings in bounded
nets. We plan to generalize them in order to allow also to model-check these
relations on nets with confusion. We also plan to complete the study of the
complexity class of these relations, and to assess whether they are decidable
on unbounded nets.

The second problem that we considered consisted in determining whether
a certain property can be forced by a user controlling a subset of transitions

147



and observing a subset of places. We modelled this problem as an asyn-
chronous two-player game on the unfolding of the P/T system, where the
player user has the goal to enforce the property, and the player environment
works against it. The behaviour of the user is formalized by a strategy, that
is winning if the user wins all the plays consistent with it. The strategy of
the user is based on its observations on the unfolding. We discussed different
notions of observation, and their relation with memory and concurrency, on
the basis of some examples. In particular, we defined a notion of stable part
of a marking, that we consider particularly useful to model observations in
asynchronous systems. This notion keeps into account that some informa-
tion on the system may change from the time of actual occurrence to the
time of receiving it, and therefore, a strategy for the user should not depend
on such information. In our use of stable parts, we considered net extended
with implicit places. Finding implicit places may be computationally hard:
in the general case we need to compute the marking graph and find the
regions on it. We plan to consider classes of 1-safe system in which this
computation may be avoided, such as systems that can be decomposed in
sequential components.

We studied in detail some examples of games, providing algorithms to
find winning strategies both on the unfolding and on the marking graph, and
comparing our game with the ones defined on concurrent game structures
(cgs) [9]. In particular, we showed that when we consider strategies without
memory, and the goal of the user is to satisfy an LTL-X formula, our game
can be translated into a game on concurrent game structure. When we con-
sider strategies with memory, this relation may not hold, due to the different
semantics (interleaving and concurrent) on the two models. We conjecture
that when we consider observations based on stable parts of markings, and
the user has a memory based on the partial order of the places that it could
observe, the game on the unfolding can be translated into a game on cgs.
We plan to formalize this notion of observation and to prove our conjecture.
We also plan to develop new algorithms to deal with the notions of memory
using the elements of the unfolding, and to determine whether we can find a
finite bound of memory that is always sufficient to find a winning strategy,
if one exists under the assumption of infinite memory.

In addition, we want to extend the work for finding strategies by using
a prefix of the unfolding both by considering wider classes of goals and by
considering partial observations. Since the marking graph suffers of the
state explosion problem, finding solutions on the unfolding may be more
convenient; we plan to make experiments to compare the two methods,
when possible. Finally, we also plan to merge the approach on the unfolding
and the one on the marking graph to obtain more efficient algorithms: a
small prefix of the unfolding, such as the complete prefix in [52], can give
information about choices that the user should not make; although deriving
a full strategy from it seems quite hard, the partial strategy may be used to
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reduce the number of states of the marking graph, by avoiding transitions
that are known to be losing.

Once we have a strategy defining the behaviour of the user, we studied
how it can be implemented on the system. In particular, we defined a strong
and a weak notion of implementable strategy, both consisting in adding some
places to the system to constraint the P/T system so that all the maximal
runs are associated with plays consistent with the strategy in the original
P/T system. In addition, the strong notion requires the vice versa, namely
for all plays consistent with the strategy, there must be a maximal run
associated to it on the constrained P/T system. We then proposed an algo-
rithm based on region theory to check whether a strategy without memory
is strongly implementable on a bounded system, and, in case of positive
answer, to return an implementation. In future works, we plan to develop
an algorithm also for checking weak implementation, possibly based on the
techniques of synthesis approximation. We also plan to characterize imple-
mentable strategies, so to recognize them before running the algorithm. We
conjecture that strategies defined on stable parts of markings are always
strongly implementable. The idea behind this conjecture is that when we
consider stable parts of marking, either a controllable transition is chosen in
each marking where concurrent uncontrollable transitions are enabled, or it
is chosen after their occurrence. In both cases, this can be represented in a
Petri net: in the first case in the implementation the transitions remain con-
current, whereas in the second case the transitions will be in sequence, and
the occurrence of the controllable transition will depend on the occurrence
of the uncontrollable ones.

Another line that we want to follow consists in considering games where
the user needs to guarantee some liveness goal, while at the same time
keeping some information secret from the environment. In this scenario, the
environment observes a subset of transitions in the system, and part of the
transitions of the user are secret for it; the user is the central controller on
the system, and needs to guarantee some service (expressed with a liveness
condition) and avoid that the observations of the environment can reveal
some secret transition. This line would join the analysis of information flow
with the search of winning strategies.

Finally, we also plan to extend our two-player game setting to a real
multi-agent game, both by considering the model-checking of LTL and ATL
formulas in which two teams plays against each other, and by considering
other game-based logics such as strategy logic (SL) [39], where each agent
can have its own goal, not necessarily in competition with the goals of the
others. In addition to the model-checking, we plan to study the satisfiabil-
ity of game-based logics, namely, given a formula in ATL or SL, we want
to check whether a multi-agent system satisfying that formula exists. The
relatively few works on this topic focusses on the synthesis of multi-agent
systems modelled as transition systems (for example, [129] provides results
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on cgs, whereas [102, 83] works on synchronous multi-agent systems). We
plan to extend these results on multi-agent systems modelled as Petri nets.
For these lines, we plan to use the framework that we presented in Chap. 5.
In that chapter, we showed how to construct a multi-agent system modelled
with 1-safe systems with the same behaviour of an AMAS as defined in [79]
and how to check if a transition is 1-live in the global model, possibly avoid-
ing to construct it completely. We plan to implement our method with the
help of synthesis tools such as Petrify [43], and to compare the efficiency
of our approach for 1-liveness with the one used in other existing tools (see
for example Evaluator [95]). In addition, we plan to extend our model by
allowing for the synthesis of bounded P/T systems, to obtain smaller models
by splitting less transitions. Finally, we plan to extend our framework to
the multi-agent semantics defined in [93] in the context of assume-guarantee
reasoning. In this model transitions are local for each agent, but their oc-
currence may depend on the value of local states of external agents. This
would provide a common framework based on Petri nets for the analysis
of asynchronous multi-agent systems with action-oriented and data-oriented
synchronizations.
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Ernst-Rüdiger Olderog. Global winning conditions in synthesis of dis-
tributed systems with causal memory. In 30th EACSL Annual Confer-
ence on Computer Science Logic (CSL), volume 216, page 20. Schloss
Dagstuhl—Leibniz-Zentrum für Informatik, 2022.

155



[56] Bernd Finkbeiner, Manuel Gieseking, and Ernst-Rüdiger Olderog.
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nized Petri net: A formal specification model for multi agent systems.
Journal of Software, 8(3):587–602, 2013.

158



[89] Damian Kurpiewski, Witold Pazderski, Wojciech Jamroga, and Yan
Kim. Stv+ reductions: Towards practical verification of strategic abil-
ity using model reductions. In Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent Systems, pages
1770–1772, 2021.

[90] Stéphane Lafortune, Feng Lin, and Christoforos N. Hadjicostis. On
the history of diagnosability and opacity in discrete event systems.
Annual Reviews in Control, 45:257–266, 2018.

[91] Zhiwu Li, MengChu Zhou, and MuDer Jeng. A maximally permissive
deadlock prevention policy for fms based on Petri net siphon control
and the theory of regions. IEEE Transactions on Automation Science
and Engineering, 5(1):182–188, 2008.

[92] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. MCMAS: an
open-source model checker for the verification of multi-agent systems.
Int. J. Softw. Tools Technol. Transf., 19(1):9–30, 2017.

[93] Alessio Lomuscio, Ben Strulo, Nigel Walker, and Peng Wu. Assume-
guarantee reasoning with local specifications. International Journal of
Foundations of Computer Science, 24(04):419–444, 2013.

[94] Robert Lukomski and Kazimierz Wilkosz. Modeling of multi-agent
system for power system topology verification with use of Petri nets.
In 2010 Modern Electric Power Systems, pages 1–6. IEEE, 2010.

[95] Radu Mateescu. Specification and analysis of asynchronous systems
using CADP, 2008.
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