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Abstract: For the Laplacian of an n-Riemannian manifold X, the Weyl law states that
the k-th eigenvalue is asymptotically proportional to (k/V )2/n, where V is the volume of X.
We show that this result can be derived via physical considerations by demanding that the
gravitational potential for a compactification on X behaves in the expected (4+n)-dimensional
way at short distances. In simple product compactifications, when particle motion on X

is ergodic, for large k the eigenfunctions oscillate around a constant, and the argument is
relatively straightforward. The Weyl law thus allows to reconstruct the four-dimensional
Planck mass from the asymptotics of the masses of the spin 2 Kaluza-Klein modes. For
warped compactifications, a puzzle appears: the Weyl law still depends on the ordinary
volume V , while the Planck mass famously depends on a weighted volume obtained as an
integral of the warping function. We resolve this tension by arguing that in the ergodic case
the eigenfunctions oscillate now around a power of the warping function rather than around
a constant, a property that we call weighted quantum ergodicity. This has implications for
the problem of gravity localization, which we discuss. We show that for spaces with Dp-brane
singularities the spectrum is discrete only for p = 6, 7, 8, and for these cases we rigorously
prove the Weyl law by applying modern techniques from RCD theory.
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1 Introduction

In gravitational models with n extra dimensions, a four-dimensional observer sees a tower
of Kaluza-Klein (KK) massive particles. The latter give rise to Yukawa-type potentials,
that decay exponentially; when the distance r between particles is very large, they can be
ignored, and the gravitational potential U is proportional to the familiar 1/(m2

4r), with m4
the four-dimensional Planck mass.1 On the contrary, when r is much smaller than the size of
the extra dimensions, one expects that the KK particles conspire to reproduce the behavior
of gravity in D = (4 + n) spacetime dimensions, namely U ∼ m2−D

D /rD−3 ∝ m2−D
D /r1+n,

with mD the D-dimensional Planck mass.
We will see that such an expectation implies the Weyl law, a well-known property of

the Laplace operator ∆: on an n-dimensional Riemannian manifold X, the k-th eigenvalue
1We focus on d = 4 uncompactified dimensions, but a similar logic applies to d ̸= 4.
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(counted with multiplicity) behaves at large k as

λk ∼ a2
(

k

V (X)

)2/n
, a = 2π

ω
1/n
n

, (1.1)

where ωn := πn/2/Γ(1+n/2) is the volume of the n-dimensional Euclidean ball. The exponent
2/n is precisely the right value so that U ∝ 1/r1+n. The term V (X) in the coefficient in (1.1)
is the usual Riemannian volume; it helps convert the four-dimensional Newton constant into
the D-dimensional one, since for direct-product spacetimes m2

4 = mD−2
D V (X). Thanks to

this property, knowing the asymptotic behavior of the spin 2 Kaluza-Klein masses allows to
determine the four-dimensional Planck mass in terms of the higher-dimensional Planck mass.

This gravitational argument can be seen as a variant of a more classical argument using
the heat equation. In its traditional form, the latter requires at some point to take an average
over X; this step is needed because of the appearance of the eigenfunctions ψk of the Laplace
operator. This can also be done for our case. However, it is more natural to consider the
behavior of particles that are localized at some point of X. As we will see, if X has the
ergodic property, which is expected to be generic, one can straightforwardly derive the Weyl
law without needing to integrate over X. Classically, this means roughly speaking that the
geodesic motion at large time explores uniformly all of X (or more precisely all of phase
space). This also implies quantum ergodicity [1–3]: roughly speaking this means that, for
large k, the eigenfunction ψ2

k oscillates around a constant value. As a consequence, for any
measurable open set B ⊂ X the integral

∫
B |ψk|2 → V (B)/V (X). (More precisely, this is

true up to a subset of measure zero of the indexes k.)
Everything looks natural so far. Our work was actually motivated by a puzzle that

appears in the general case of warped compactifications, namely those where the total D-
dimensional metric is not a direct product, but reads as ds2 = e2A(ds2M4

+ ds2X); the warping
A is a function of X, and is only defined up to the shift A 7→ A − A0, for a constant A0,
since such a transformation can be reabsorbed by rescaling ds2M4

. The relevant KK square
masses are now eigenvalues of the weighted Laplacian [4, 5]:

∆fψ := −e−f∇m(ef∇mψ), with f := (D − 2)A.

The relation between the Newton constants is now G4 ∝ GD/Vf (X), where

Vf (X) :=
∫
X
dny√gnef (1.2)

can be thought of as a weighted volume (y being the internal coordinates). However, known
mathematical results show that the eigenvalues of ∆f still obey the Weyl law (1.1) with the
ordinary, unweighted volume V (X). As we will review in section 4, this has been established
even in situations where X has certain types of singularities.

Naively, it would then seem that our gravitational argument for the Weyl law would break
down for warped compactification: dressing with a warping the physical quantities would
predict to substitute the volumes with warped volumes, thereby predicting the appearance
of the Planck mass in the law, as in the unwarped case.

The resolution turns out to hinge on the role of the wavefunctions ψk. We saw earlier that
quantum ergodicity predicts them to oscillate around a constant value; but that statement has
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r

ψ2

Figure 1. Numerical check of weighted quantum ergodicity for the example in appendix A.1, where
M1 = S1 and f = sin(x) + cos3 x. In orange, the function e−f/V predicted by (1.3); in black, ψ2

k/Vf

for k = 20.

Spin 2 operator Planck Mass Weyl Law Ergodicity

Unwarped ∆ m2
4 = mD−2

D V m2
k ∼ V −2/nk2/n

∫
B

√
gψ2

k∫
M

√
gψ2

k

→ V (B)
V (X)

Warped ∆−∇f · ∇ m2
4 = mD−2

D Vf m2
k ∼ V −2/nk2/n

∫
B

√
gefψ2

k∫
M

√
gefψ2

k

→ V (B)
V (X)

Table 1. A comparison of different quantities between warped and unwarped compactifications.
Notice that in the warped case the coefficient in the Weyl law does not correspond to the Planck mass.

been proven for the ordinary curved-space Laplace operator. For the weighted Laplacian ∆f ,
which is the one relevant to warped compactifications, this property does not hold. However,
analyzing the dependence of the gravitational potential on the internal position of the test
particles suggests a replacement: at large k, the ψ2

k actually tend to oscillate instead around
a non-constant function proportional to e−f , as depicted in figure 1. It is well-known that the
natural measure for the inner products and norms includes a factor ef . When we consider
the squared norm on a measurable B, we obtain∫

B

√
gefψ2

k∫
X

√
gefψ2

k

−→
k→∞

V (B)
V (X) . (1.3)

Notice that the ordinary volume V (X) still appears. It is natural to call this the weighted
quantum ergodicity (WQE) property. While we have not proven the WQE, we have tested it in
some simple models, as in the example in figure 1, which we analyzed in detail in appendix A.1.
Moreover, it is simple to see that the gravitational potential now exactly reproduces the
physics expectation: the factor of V (X) in the Weyl law is provided by (1.3). This explains
why the Weyl law is not in contradiction with the physics of gravity compactifications. Thus,
in the general case of warped compactifications, the knowledge of the asymptotics of the KK
spectrum does not allow to reconstruct the Planck mass, as summarized in table 1.

We begin in section 2 by setting the stage and deriving (2.15), a relation involving a
certain sum over eigenvalues and eigenfunctions. We give both a more physical gravitational
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argument, and one that is more precise but partially abandons physical intuition. In section 3
we apply (2.15) to obtain the Weyl law. Again we give two versions: a less physical argument
gets the result quickly but involves smearing over the internal space. The more physical
unsmeared argument requires some knowledge about properties of eigenfunctions, which leads
us in section 3.3 to the idea of weighted quantum ergodicity. As an application, we point out
in section 3.4 that WQE might also help establishing gravity localization in some models,
since it gives a natural way to suppress the graviton eigenfunctions in some regions.

While these physical derivations allow to prove the Weyl law under certain hypotheses,
they are not rigorous mathematical proofs for the general case, in particular in the presence
of singularities. Thus, in section 4, we review known mathematical results concerning
the Weyl law in the RCD setting, and apply them to rigorously prove the Weyl law for
general compactifications with Dp-brane singularities, for p = 6, 7, 8. For p < 6 we formalize
in Prop. 4.2 our earlier results that show the spectrum is instead continuous. While an
appropriate rigorous generalization of the Weyl law might be given also for these case of
continuum spectrum, we do not attempt this here.

We conclude in section 5. Appendix A contains some explicit examples on the validity
of weighted quantum ergodicity, and appendix B reviews an older mathematical argument
involving the heat equation, for the Weyl law in the unwarped case. Finally, appendix C
contains a technical lemma regarding Green’s functions for the weighted Laplacian.

2 Gravitational potential

After some brief preliminaries on the general setting, we will discuss the gravitational potential
of a compactification. This will result in a physical expectation on the spectrum, which we
will use in the next section to constrain the asymptotic behavior of the eigenvalues.

2.1 Preliminaries

The Weyl law was originally established more than a century ago for the Laplace operator on
bounded domains in two dimensions. Subsequent work generalized this to higher dimensions,
to Riemannian manifolds, and gave information about the subleading behavior. See for
example [6] for a historical review.

Here we also need the generalization regarding the weighted Laplacian, on a space X
with weight function f :

∆fψ := −e−f∇m(ef∇mψ) = − 1
ef√g∂m(e

f√ggmn∂nψ) . (2.1)

Its eigenvalues and eigenfunctions are defined by ∆fψk = λkψk. We will focus on the case
where the spectrum is discrete, and k runs over the integers.2 This is the case when X

is smooth and compact, but as we will see below this holds also in the presence of many
types of singularities.

2While some of our arguments below can probably be extended to cases where the spectrum also has a
continuous part by using the spectral measure, this case appears to be much less studied mathematically in
our setting.
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As we saw in the introduction, the Weyl law remains (1.1) also for the weighted case
f ̸= 0. A perhaps slightly clearer mathematical formulation is

N(λ) := #{k ∈ N : λk < λ} ∼ V (X)
an

λn/2 as λ→ +∞ , (2.2)

where the eigenvalues should be counted with multiplicity.
In the next sections, we will derive a relation among eigenvalues and eigenfunctions that

will serve as the basis for obtaining the Weyl law in the rest of the work.

2.2 Compactification

We consider a D-dimensional theory that includes the usual Einstein-Hilbert action SD =
mD−2
D

∫
dDx√−gDRD. To compute the potential between two mass sources M1,2 we will

solve the equations of motion in the presence of M1, and compute the gravitational potential
felt by a probe M2. For this, we will use the source actions SM1,2 ≡ −M1,2

∫
Σ
√
−gD|Σ, where

Σ denotes the world-volume of the source.
We will compare two situations:

i) Higher-dimensional space-time: the space-time has the topology of R1,D−1 with the
Minkowski metric.

ii) Four-dimensional vacuum compactification: the space-time has the topology of M4×X.
The product is generally warped, with a warping depending on the (D− 4)-dimensional
internal space X.

Denoting with ρ the proper distance between the two particles, we expect the gravitational
potentials to agree in the limit ρ→ 0, since in the compactified theory we expect to reproduce
higher-dimensional gravity at distances shorter than the compactification scale.

We start with i), and we work in a regime where M1,2 ≪ mD, or in other words where
the test masses have a Schwarzschild radius much smaller than their Compton wavelength.
We then have gMN ∼ ηMN +m2−D

D hMN , hMN ≪ mD−2
D . In the TT gauge, where ∇MhMN =

0 = hMM , at quadratic level in h, the action describing the backreaction of M1 on the
background reads

δ2S = m2−D
D

2

∫ √
−ηDhMN∇2hMN +m2−D

D

M1
2

∫
Σ
(−η00)−1/2h00 . (2.3)

Since the source is static, we can specialize to time-independent perturbations, resulting
in the following equation of motion for h00:

∆D−1h00 =
M1
2 δD−1 , (2.4)

where δD−1 is a delta function localizing M1. Notice that since we are in flat space, −∇2

reduces to the scalar Laplacian. Thus, h00 is a Green’s function of the scalar Laplacian in
RD−1. We will re-use this fact in the more precise derivation of the Weyl law in section 2.3.

– 5 –



J
H
E
P
0
8
(
2
0
2
4
)
1
2
3

We are left with the task of determining the potential felt by a probe M2. Expanding
the probe action at the same order we get U(x0) = M2

(
1− m2−D

D
2 h00(x0)

)
. Using radial

coordinates in RD−1 centered on M1 we have

h00 = −M1
2

c

ρD−3 , c := 1
(D − 3)V (SD−2) , (2.5)

resulting in the gravitational potential

UD(ρ) =M2

(
1−M1

m2−D
D

4
c

ρD−3

)
. (2.6)

We can now turn our attention to the case ii) of a warped compactification, namely, a
spacetime with a line element ds2 = e2A

(
ds24 + ds2X

)
, with A a function on X. We take X

to be compact and ds24 to be the Minkowski4 line element; the other maximally symmetric
spacetimes, AdS4 and dS4, can also be accommodated, with suitable adjustments. (As
already mentioned in the introduction, changing the number of macroscopic uncompactified
dimensions is also possible.) D-dimensional gravity can be approximated at large distances
by a four-dimensional action S4 + SKK. Here S4 = m2

4
∫
d4x√−g4R4, with

m2
4 = mD−2

D Vf (X) ; (2.7)

recall that Vf is the weighted volume (1.2). SKK represents the contribution of infinitely
many matter fields; in particular, there are infinitely many spin-two fields.3 While the full
general expression of this action is not known when the warping is non-trivial, its quadratic
expansion around vacua is universal. Following [4, 5] and reducing the source action, we find

2m2
4δ

2S =
∑
k

∫
M4

√
−η̄

(
h̄µνk ∇̄2h̄kµν +m2

kh̄
µν
k h̄kµν

)
+
∑
k

M1e
A(y0)ψk(y0)

∫
M4

(−η̄00)−1/2h̄k00δ3 .
(2.8)

To write this action, we have considered transverse-traceless perturbations of the unwarped
four-dimensional metric, that is the D-dimensional metric is perturbed as

ds2 = e2A
(
(η̄µν +m2

4h̄µν(x, y))dxµdxν + ds2X(y)
)

(2.9)

where η̄µν is the four-dimensional Minkowski metric, possibly multiplied by a constant that
we will fix later. In addition, m2

k and ψk are respectively eigenvalues and eigenfunctions of
the weighted Laplacian (2.1) relative to the weight function [4, 5]

f := (D − 2)A = (n+ 2)A . (2.10)

We have normalized the eigenfunctions so that∫
X

√
gefψkψl = Vf (X)δkl , (2.11)

3A detailed discussion of SKK for the pure gravity case with zero warping is given in [7]. An earlier review
with a broader outlook is [8].
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where Vf (X) is the weighted volume (1.2). Since ∆f in (2.1) is self-adjoint, its eigenfunctions
are an L2-basis for functions in the internal space, and we have expanded h̄µν(x, y) :=∑
k h̄

k
µν(x)ψk(y). Finally, we have also assumed that the particle M1 sits at the internal

position y = y0, and called δ3 the delta-function that localizes it in non-compact space. From
this action, we obtain that the h̄k00 satisfy the equation of motion

(∆̄3 −m2
k)h̄k00 =

M1
2 eA(y0)ψk(y0)

δ3(x)√
η̄3

(−η̄00) , (2.12)

where, as above, we have assumed static perturbations. We are now interested in the potential
energy U4d between M1 and a probe mass M2 which sits at the same internal point y0 and
is separated by a proper distance ρ from M1 in the uncompactified directions. Expanding
the probe action, we find U4d(x0) =M2e

A(y0)√−η̄00
(
1− m−2

4
2

h̄00(x0,y0)
−η̄00

)
. Solving (2.12), we

get for mk ̸= 0 the Yukawa expression

h̄k00 = −M1
8π

e−mkr

r
eA(y0)ψk(y0)(−η̄00) , (2.13)

where r is the four-dimensional radial distance from M1, computed with respect to the
metric η̄. Before plugging it in the gravitational potential, recall that we need to express the
gravitational potential in terms of the proper distance ρ. At leading order, this is related to r
by ρ = eA(y0)r. In addition, before comparing the two potentials at short distances, we have to
make sure that we are computing the energy with respect to the same reference. That is, we
also have to require that U4d ∼ UD for ρ→ ∞. This fixes η̄00 = −e−2A(y0). All in all, we find

U4d(ρ) ∼ UD(ρ) =⇒ m−2
4 e(D−2)A(y0)

∑
k

e−mkrψ2
k(y0) ∼ 4πcm2−D

D

1
rn
, as r → 0 .

(2.14)
Recalling also (2.7) to compare the Planck masses, this gives the prediction4

∞∑
k=0

e−mkrψ2
k(y0)ef(y0) ∼ n!ωnVf (X)

(2πr)n as r → 0 . (2.15)

In section 3 we will use this physical expectation to derive the Weyl law in various ways.

2.3 Scalar version

The essence of the gravitational argument leading to (2.15) involves the comparison of the
Green’s function of (weighted) Laplacians in different dimensions, close to their poles. In this
section, we dispense with the gravitational intuition and derive (2.15) by directly comparing
these Laplacians in a more rigorous way.

While for simplicity we will use the language of Riemannian geometry and state our
results for smooth manifolds, the results in this section apply to more general n-dimensional
spaces X, which can be smooth Riemannian manifolds of finite diameter, asymptotically

4We have also rewritten the numerical factors using the identity (n + 1)!V (Sn+2)V (Sn−1) = 2(2π)n+1n,
which in turn uses the duplication formula for Γ(z). Recall that ωn = V (Bn), the volume of the n-dimensional
Euclidean ball Bn.
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Dp-branes (for p ⩾ 6) [9, Def. 6.1], or smooth spaces with O-plane singularities, provided the
spectrum is discrete and that the Green’s functions are centered at smooth points.

To start, consider a product p-dimensional Riemannian manifold Mp ≡ R3 ×X, where
X has dimension n = p − 3, with product metric

ds2p(z) = δijdxidxj + ds2n(y) . (2.16)

We use coordinates z = (x, y) to denote points on the different factors. We can think of this
space as a spatial slice of the ‘unwarped’ D-dimensional space-time of section 2.2.

On this space we will compare the behavior of G0,z0 , the Green’s function of the standard
Laplacian ∆0 centered at z0, with the behavior of Gf,z0 , the Green’s function of the weighted
Laplacian ∆f ≡ ∆0 −∇f · ∇ centered at the same point. Since on a vacuum the warping
can only depend on the internal coordinates, we take f = f(y), so that

∆f = −∂2x +∆(n)
f , (2.17)

where ∆(n)
f is a weighted Laplacian on X with weight f(y). In particular, we assume that

it is self-adjoint and that its eigenfunctions ψk, defined by ∆(n)
f ψk(y) ≡ m2

kψk(y), provide
a countable L2-basis on which to expand L2-functions on X. In particular, assuming the
Green’s function to be square integrable (a sufficient condition for this is that the internal
space X has finite diameter), we can write

Gf,(x0,y0)(x, y) ≡
∑
k

cf,k(x)ψk(y) (2.18)

where z0 = (x0, y0) and the limit in the series is understood in the L2-topology. Using
the factorization property (2.17) we can write cf,k(x) explicitly in terms of the Yukawa
potential as follows. Take a test function ξ proportional to an arbitrary eigenfunction ψj ,
ξ(x, y) ≡ ξj(x)ψj(y) (no sum over j). By definition of Green’s function, we have

ξj(x0)ψj(y0) =
∫
R3

d3x
∫
X

√
gndny ef

(∑
k

cf,k(x)ψk(y)∆f (ξj(x)ψj(y))
)

=
∫
R3

d3x
∫
X

√
gndny ef

(∑
k

cf,k(x)ψk(y)ψj(y)
(
−∂2x +m2

j

)
ξj(x)

)

= Vf (X)
∫
R3

d3x
(
cf,j(x)

(
−∂2x +m2

j

)
ξj(x)

)
(2.19)

where we normalized the eigenfunctions ψk as
∫
X

√
gnefψkψj = Vf (X)δij , with Vf (X) the

weighted volume of X. In the second step, exchanging the summation and the integral is
justified since the series (2.18) converges in L2 when the diameter is finite. We can recognize
that by definition cf,j is proportional to the Green’s function of the operator −∇2

x +m2
j in

R3, centered at x0. This has the form of the Yukawa potential, and explicitly we have

cf,j(x) = −ψj(y0)
Vf (X)

e−mjr

4πr with r ≡ |x− x0| . (2.20)

Plugging (2.20) in (2.18) we get an expression for Gf,(x0,y0)(x, y) in terms of the spectral data
of ∆(n)

f . Before using it to derive (2.15), we also need the following Lemmas.
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Lemma 2.1. Call Gf,z0 the Green’s function of the operator ∆f centered at z0, and G0,z0

the Green’s function of the standard Laplacian ∆0 on the same p-dimensional Riemannian
manifold Mp. If f is smooth at z = z0, then

lim
z→z0

Gf,z0(z)
G0,z0(z)

= e−f(z0). (2.21)

An intuitive understanding of this result can be obtained by noticing that the dominant
local behavior of the Green’s function close to the pole is not affected by the weight, since the
weight only adds to the Laplacian a term with a single derivative. For a smooth weight, this
term is subdominant at short distances to the two-derivative terms already present in the
Laplacian. Thus, only the pointwise value of f is important, but it does not alter the power-
law behavior of the Green’s function. For a similar reason, on a smooth Riemannian manifold
the local behavior of the Green’s function of the Laplacian close to the source is not sensitive
to the details of the metric, thus behaving as in Rn. More precisely, we have the following

Lemma 2.2. Call G0,z0 the Green’s function of the Laplacian on a smooth p-dimensional
Riemannian manifold Mp, centered at z = z0, then

lim
z→z0

|z − z0|p−2G0,z0(z) = −1
4π

− p
2 Γ
(
p

2 − 1
)
. (2.22)

Equivalently, G0,z0(z) approaches the Green’s function in Rp as z → z0.

See appendix C for a proof of these Lemmas.
Applying the two lemmas to ∆f and ∆0, and combining them with (2.20) and (2.18)

we finally get

e−f(y0) = lim
r→0

lim
y→y0

∑
k−

ψk(y0)
Vf (X)

e−mkr

4πr ψk(y)

−1
4π

− 3+n
2 Γ

(
n+1
2

)
|z − z0|−n−1

= π
1+n

2

Vf (X)Γ
(
n+1
2

) lim
r→0

rn
∑
k

ψ2
k(y0)e−mkr ,

(2.23)

where in the first line we have split the limit for z → z0 as a limit for y → y0 followed by a limit
for r = |x− x0| → 0. Notice that (2.23) agrees with (2.15) upon expanding the coefficients.

3 Gravitational arguments for the Weyl law

3.1 Average argument

One first strategy to use (2.15) is to integrate both sides over all of X. Physically, this
corresponds to taking the four-dimensional particles to be mass distributions in the internal
space instead of D-dimensional localized particles, a procedure sometimes called smearing.
Equivalently for our purposes, a distribution in the internal space can also be thought of
as a classical probability distribution assigned to a genuinely localized particle by a four-
dimensional observer who is not able to probe the internal scales.5 A four-dimensional

5This point of view has been introduced in [9], which showed that, by associating an appropriate notion of
entropy to such a probability distribution, a four-dimensional observer can reconstruct the internal geometry
completely from thermodynamical quantities. Specifically, assigning a concavity property for this entropy is
equivalent to assigning the complete set of internal Einstein equations.
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observer maximally ignorant about the internal position of the particle would assign to it
a uniform probability distribution in the internal space. In both cases, this corresponds to
integrating (2.15) in the whole X with a uniform probability distribution, which in curved
space is a constant times √

g.
Taking

∫
dny0ef(y0)√gn on both sides of (2.23) and recalling the normalization (2.11),

we obtain

lim
r→0

rn
∞∑
k=0

e−mkr = n!ωnV (X)
(2π)n , (3.1)

where we allowed the exchange of the limit and integral, a point to which we will come
back at the end of this section. Notice that thanks to the integration, we have gotten rid
of the eigenfunctions and, simultaneously, all the dependence on the weight f disappeared
from (3.1). Because of this, any result on the asymptotic behavior of the eigenvalues m2

k

will be the same in the warped and unwarped case.
We can now use a classic result on Laplace transforms due to Karamata and streamlined

in [10, XIII.5, Th. 2]. Applying it to the point measure on the eigenvalues and taking
mk =

√
λk we obtain

lim
λ→∞

N(λ)
λn/2

= ωnV (X)
(2π)n , (3.2)

which reproduces (2.2) with the coefficient a given in (1.1).
For a rough idea of how this last step works, let us assume mk =

√
λk ∼ αk1/ν with

two unknown constants α and ν. When r ≪ 1 the sum can be well approximated by an
integral, using the general formula

ϵ
∞∑
k=0

f(kϵ) ∼
ϵ→0

∫ ∞

0
dpf(p) . (3.3)

Taking ϵ = (αr)ν , we obtain∑
k

e−mkr ∼
r→0

∑
k

e−αk1/νr ∼ 1
(αr)ν

∫ ∞

0
dp e−p1/ν = Γ(ν + 1)

(αr)ν . (3.4)

Comparing with (3.1), the power of r determines ν = n. The overall coefficient sets α
to the a in (1.1).

Summarizing, we have shown how to prove the Weyl law under the hypothesis that
the exchange of the limit and integration that lead to (3.1) can be rigorously justified. In
general, this requires to control the local geometry, in particular close to possible singularities.
We will come back to this problem by providing an alternative proof of the Weyl law for
D-brane type of singularities in section 4. In the next sections, we will discuss instead a local
derivation of the Weyl law, which is thus not affected by these issues.

3.2 Quantum ergodicity in the unwarped case

In our derivation in the previous subsection, integrating over the internal space was useful
in getting rid of the eigenfunctions in (2.15). For a large class of spaces X, an alternative
strategy exists.

– 10 –



J
H
E
P
0
8
(
2
0
2
4
)
1
2
3

A space X is said to be (classically) ergodic if, roughly said, for a generic choice of initial
conditions, the geodesic motion of a particle covers uniformly all of phase space. Usually this
is made precise as follows. Let S∗X be the sphere bundle inside T ∗X: it consists of all the
choices of pairs (x, ẋ), where x ∈ X and ẋ is the velocity vector (taken to have unit norm).
It comes with a natural Liouville measure ω. A geodesic γ parametrized by arc-length can be
lifted canonically to the curve (γ, γ̇) in S∗X. By definition, (classical) ergodicity means

lim
T→∞

1
T

∫ T

0
f(γ(t), γ̇(t))dt =

∫
S∗X

fdω (3.5)

for almost all geodesics γ and for any continuous f on S∗X. In particular, one can take f
to be a function of the variable x alone, i.e. the pullback of a function on X.

Not every X has this property: when there are many isometries, geodesic motion might
be integrable, and in that case (3.5) will fail. As an extreme example, consider S2, with
its usual coordinates θ, ϕ; there are three Killing vectors, and the associated conserved Li
are the components of the angular momentum. A geodesic is a great circle: a particle will
remain on it for ever, and not explore all of S2. In particular, if Lz/L = cos θ0, the particle
will always remain in a region around the equator:[

π

2 − θ0,
π

2 + θ0

]
. (3.6)

So typical geodesics don’t sample all of the S2, and (3.5) fails for a non-constant function f(θ).
It is natural to wonder if an analogue of (3.5) exists for a quantum particle on X. Indeed

it turns out [1–3] that if X is ergodic, then it also has the quantum ergodicity property,
i.e. the eigenfunctions ψk of the Laplacian have the property that the probability to find the
particle in a Borel subset B ⊂ X is proportional to the measure of B:

lim
k→∞
k/∈e

∫
B

√
gψ2

k∫
X

√
gψ2

k

= V (B)
V (X) . (3.7)

The limit should be taken by possibly excluding a set e ⊂ N of k’s of measure zero: namely,
limk→∞(#(e∩ {1, . . . , k}))/k = 0. If e = ∅, then one says there is quantum unique ergodicity.
There has been extensive research over the years over this topic; the excluded set may not
be empty, in which case the ψk∈e are peaked along the non-generic, non-ergodic classical
trajectories, called scars. (See for example [11] for an introduction and [12, section 7.5] for
some concrete examples with billiards.)

Concretely, (3.7) works because at large k the ψk oscillate wildly around a constant
value; no matter how small B is, at large enough k taking the average of ψ2

k over it will
suppress the oscillating part and give the constant.

Just like its classical counterpart, QE fails in models with too many symmetries: taking
again the round S2, the ψk can be chosen to be the spherical harmonics Yl,m (the functions
obtained by restricting polynomials on R3 to S2); recall that λ = l(l + 1), |m| ⩽ l. These
will display the typical WKB behavior, with a wildly oscillating behavior in the classically
allowed band (3.6), and exponential decay outside it; again here m/l = Lz/L = cos θ0. So
even at large λ the ψk are not approximately constant. Of course if we sum over m we do
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get a constant, ∑l
m=−l Y

2
l,m = (2l + 1)/4π. (The spectrum is invariant under the Li, so the

projector over a given level of ∆ must be rotationally invariant.) Actually, even for this
extremely symmetric case, if we select a random orthonormal basis of eigenfunctions rather
than the Yl,m, then quantum ergodicity does hold [13]. Essentially the random choice has
the same effect as the sum over all m. More general results hold for random orthonormal
bases (not necessarily of eigenfunctions) [14, 15].

For the problem at hand, when ergodicity holds we can integrate (2.15) over a small
Borel subset B rather than over all of X. The QE property was established for eigenfunctions
of the ordinary unweighted Laplacian, so we still need to work with f = 0. The V (B) factors
cancel out, and we reduce to (3.1) again, from which point our previous computation applies.

This argument for Weyl’s law has the advantage that it doesn’t require integrating over
the whole X. This is physically more meaningful, because it corresponds to particles that
are localized in the internal space; and it avoids possible issues when X has singularities.6
The disadvantage is that it only applies to ergodic spaces. While many of the best known
solutions have lots of symmetries, one expects the ergodic case to be the generic one.

3.3 Weighted quantum ergodicity

We will now consider the case of warped compactifications, i.e. f ̸= 0. As we have seen in
the averaged derivation in section 3.1, Weyl’s law contains the ordinary volume, while (2.15)
contains the weighted volume (1.2), ultimately because of the relation (2.7) among the Planck
masses. When integrating (2.15) over the internal space, this cancels, by virtue of the left hand
side depending on ef(y0), leaving just an ordinary volume. Trying to avoid the internal integral,
however, a puzzle arises here. Quantum ergodicity would suggest that ψk(y0)2 → 1, but this
would not cancel the weighted volume factor on the right hand side of (2.15) nor transform it
into an ordinary volume. What reconciles the Weyl law with the local behavior of (2.15)?

One clue to the solution is that the left hand side of (2.15) depends on y0, while the
right hand side does not. This implies that the wavefunctions cannot possibly oscillate
around a constant at large k; rather,

ψ2
k(y0) oscillate around ∝ e−f(y0) . (3.8)

Notice that this is the inverse of the function appearing in the definition of the weighted
volume (1.2). When we integrate (3.8) over a Borel subset B ⊂ X with that measure, we
thus end up with an ordinary V (B) on the right-hand side:

lim
k→∞
k/∈e

∫
B

√
gefψ2

k = Vf (X)V (B)
V (X) , (3.9)

where we fixed the normalization constant by consistency with the case B = X in our
normalization (2.11). For a more general normalization, we have

lim
k→∞
k/∈e

∫
B

√
gefψ2

k∫
X

√
gefψ2

k

= V (B)
V (X) for every Borel subset B ⊂ X . (3.10)

6In string theory, solutions with singularities have A ̸= 0, for which we actually need to use the argument
in the next subsection.
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It is natural to call (3.10) the weighted quantum ergodicity (WQE) property. It might have
applications independent of the Weyl law. While the QE in the previous subsection is proven
in the classically ergodic case, the corresponding statement for (3.10) is at this point a
conjecture. We give in appendix A.1 a couple of simple one-dimensional examples where
it can be checked rather explicitly.

Integrating (2.15) over a small ball where the particles are present, and using (3.9) gives
the Weyl law (1.1). Let us stress that the WQE is key in order to cure the naive discrepancy
between the gravitational expectation (2.15) and the Weyl law (1.1), as in the former the
weighted volume Vf (X) appears while in the latter only the classical volume V (X) shows
up. We give below the precise statement, followed by a proof.

Theorem 3.1. Let (X, g, ef ) be a weighted Riemannian n-dimensional manifold, possibly
with isolated singularities. Assume that

(i) The Riemannian volume V (X) and the weighted volume Vf (X) are finite;

(ii) The spectrum of the weighted Laplacian ∆f is discrete and satisfies

lim sup
r→0

rn
∞∑
k=0

e−
√
λkr <∞ ; (3.11)

(iii) The weighted quantum ergodicity property (3.10) holds, with the excluded set e of finite
cardinality.

Then the eigenvalues of the weighted Laplacian ∆f satisfy the (regular) Weyl law (1.1).

Proof. Fix y0 ∈ X, a regular point for both the Riemannian n-dimensional manifold (X, g)
and the weight f . Fix ε > 0 and let B be a small metric ball of radius r centred at y0.
To keep notation short, we denote mk :=

√
λk. Integrating (2.23) (or, equivalently, (2.15))

over B with respect to the Riemannian volume √
g, and using that the series ∑∞

k=0 e−mkrψ2
k

converges in L1(M, efvolg), we get that∣∣∣∣∣n!ωnV (X)
(2π)n − V (X)

Vf (X)V (B)r
n

∞∑
k=0

e−mkr
∫
B

√
gefψ2

k

∣∣∣∣∣ ⩽ ε

4 , (3.12)

for all r ∈ (0, r0), where r0 = r0(ε) > 0 is small enough. Notice that the weighted quantum
ergodicity property (3.10) together with the normalization (2.11) gives (3.9). Now, using (3.9)
under the additional assumption that the excluded set e has finite cardinality, we infer that
there exists N = N(ε′) > 0 such that∣∣∣∣ Vf (X)V (B)

V (X) −
∫
B

√
gefψ2

k

∣∣∣∣ ⩽ ε′, for all k ⩾ N. (3.13)

Notice also that

V (X)
Vf (X)V (B)r

n
N∑
k=0

e−mkr
∫
B

√
gefψ2

k ⩽
ε

4 , for all r ∈ (0, r0(ε)). (3.14)
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Plugging (3.13)–(3.14) into (3.12) and recalling (3.11), we obtain∣∣∣∣∣n!ωnV (X)
(2π)n − rn

∞∑
k=N

e−mkr

∣∣∣∣∣ ⩽ ε

2 , for all r ∈ (0, r0(ε)). (3.15)

Notice also that

rn
N∑
k=0

e−mkr ⩽
ε

2 , for all r ∈ (0, r0(ε)). (3.16)

Splitting the series in (3.12) as the finite sum up to N and the infinite series for k ⩾ N , and
using (3.15)–(3.16) yields∣∣∣∣∣n!ωnV (X)

(2π)n − rn
∞∑
k=0

e−mkr

∣∣∣∣∣ ⩽ ε, for all r ∈ (0, r0(ε)). (3.17)

Since ε > 0 is arbitrarily small, (3.17) leads us back to (3.1), which we have already shown
to imply the Weyl law (1.1).

Remark 3.2. In Th. 3.1, in place of (iii) it is sufficient to ask the following (a priori weaker)
variant of the WQE: there exists a regular point y0 ∈ X such that (3.10) holds for a sequence
of metric balls B = Brj (y0) around y0 whose radii rj converge to 0.

Remark 3.3. It is natural to expect that the finite cardinality condition in Th. 3.1 (iii) can
be dropped. The contribution of some of the e can be large if B intersects one of the scars
(i.e. the classical closed trajectories; recall the discussion below (3.7)). But the number of
scars intersecting a single B is unlikely to be large.

For another heuristic argument leading to the Weyl law, at least in the smooth case, we
can use a standard trick and map the original eigenvalue problem ∆fψk = λkψk for (2.1)
to a Schrödinger equation:

(∆0 + U) ψ̃k = λkψ̃k , U = −e−f/2∆0 ef/2 , ψk = e−f/2ψ̃k , (3.18)

where ∆0 is now the ordinary unweighted Laplace-Beltrami operator on X. If |U | is bounded,
the λk at large k should be much larger than supXU . In other words, at large k the ψ̃k
should oscillate fast, so the kinetic term in (3.18) should dominate over U .7 So the ψ̃k
should be asymptotic at large k to the eigenfunctions of ∆0. If ergodicity holds, we know
by the previous subsection that the ψ̃k will oscillate around a constant. By the rescaling
in (3.18), we can now conclude (3.8).

It should be noted that the WQE is not expected to hold for a space that has symmetries,
just like its usual unweighted counterpart. These are typically the models where the spectrum
can be solved explicitly. In appendix A.2 we will see an example where the WQE does
not hold, but the spectrum is so explicit that the gravitational expectation (2.15) can be
checked directly.

7Note that U is in fact not always bounded for the singularities that appear in string theory. In the usual
coordinates (see e.g. [16, section 3]), for Dp-branes U ∼ −1/16(p − 3)(p − 7)3r5−p, which as r → 0 diverges
for p = 6. For Op-planes, U ∼ −1/16(p − 3)(p − 7)(r − r0)−3, whose r → r0 limit is +∞ for p = 4, 5, 6 and
−∞ for p = 8. In addition, even in the cases where U is bounded, the geometry itself is singular for various
sources, and this heuristic argument would not apply directly since quantum ergodicity for ∆0 might not hold.
We thank Zhenbin Yang for discussions on this point.
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3.4 Possible application to gravity localization

The WQE property (3.10) might also have an application to gravity localization. This is
the idea that some warped product spacetimes might give rise to a gravitational potential
that behaves in the four-dimensional way ∝ 1/r over some range of distances, even if the
“internal” space X is non-compact. It was famously realized in the Randall-Sundrum II [17]
and Karch-Randall models [18], for Minkowski and AdS spacetimes respectively, with string
theory realizations explored for example in [19–21].

The idea involves often a mix of two phenomena: i) a separation between the first
spin-two KK mass and the rest of the tower, and ii) a suppression of the wavefunctions for
the latter. The first can be analyzed mathematically using our work on estimates on the
KK tower [16, 22, 23]. The second is harder, as there appears to be very little mathematical
literature on eigenfunctions of the weighted Laplace operator, especially in the presence
of singularities.

Our result (3.8) about the eigenfunctions, albeit not fully rigorous, provides a partial
remedy to this. If ef = e(D−2)A is peaked in a region, the ψk at large k will be suppressed
there. Ideally one would of course also want results about small k.

For example, in earlier work [23, section 4] we found examples of AdS warped products
where eigenvalue separation is realized, estimating the mk using Cheeger constants. However,
this result alone guaranteed a four-dimensional gravitational behavior only for distances
larger than the cosmological scales; we found that lowering this scale would be possible only
by using the aforementioned wavefunction suppression.

Let us further restrict to the models of [23, section 4.3] with N = 4 supersymmetry,
previously studied in this context by Bachas, Estes and Lavdas [4, 21]. Here the non-compact
internal space has a central “bulb” connected via two thin “tubes” to two non-compact ends.
The function ef has a peak in the bulb, is small in the tubes, and grows again exponentially
in the non-compact ends. So (3.8) leads to expect that the ψk are localized on the tubes
for large k. A numerical study suggests that this indeed happens. Further more general
results on lower k would be needed to really conclude that the scale of localization can be
made much lower than the cosmological scale. But we find the results obtained here from
WQE to be an encouraging step in that direction.

4 Weyl law and RCD spaces

We discuss here the mathematical literature about the Weyl law for non-smooth spaces, with
a particular focus on the RCD setting. We then provide a rigorous proof of the validity of
the Weyl law for compact spaces with Dp-brane singularities, for p = 6, 7, 8.

4.1 Mathematical results in the non-smooth setting

In the last decades, there has been a tremendous interest in the theory of curvature-dimension
bounds on non-smooth spaces (see [24] for a survey). Among the various conditions introduced
and studied, a prominent role is played by the class of RCD(K,N) spaces, where the Weyl law
was recently investigated. This class consists of metric measure spaces (X, d,m) with synthetic
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Ricci curvature bounded below by K ∈ R, and dimension bounded above by N ∈ [1,∞).8
These spaces may possess singularities, but it was proved in [25] that the regular part covers
the whole space, possibly up to a singular set of m-measure zero. Roughly, one defines the
regular part as the set of points such that the metric measure space looks like the Euclidean
space at an infinitesimal scale. More precisely, for every n ∈ N let us introduce the set
Rn of points x ∈ supp(m) such that

(X, r−1d,mx
r , x)

pmGH−−−−→ (Rn, | · |, cnHn, 0n) as r → 0+ .

Here | · | is the Euclidean distance, Hn is the Hausdorff measure (or in other words the
standard Lebesgue volume measure), and mx

r is the rescaled measure defined as

mx
r :=

(∫
Br(x)

(1− r−1d(x, y))dm(y)
)−1

m .

cn is the natural normalization constant and by pmGH we are denoting the pointed measured
Gromov-Hausdorff convergence (see [25] for all the relevant definitions). It is known thanks
to [26] that there exists an n ∈ [1, N ], called essential dimension of the space (X, d,m), such
that m(X \ Rn) = 0. Introducing the reduced regular set R∗

n defined as

R∗
n :=

{
x ∈ Rn : ∃ lim

r→0+

m(Br(x))
wnrn

∈ (0,∞)
}
,

it is proved in [27] that on any compact RCD(K,N) space we have m(Rn \ R∗
n) = 0 and

the regular Weyl law

lim
λ→∞

N(λ)
λn/2

= wn
(2π)nH

n(R∗
n)

holds if and only if

lim
r→0+

∫
X

rn

m(Br(x))
dm =

∫
X

lim
r→0+

rn

m(Br(x))
dm <∞ . (4.1)

We remark that in (4.1) it is required both the equality between the two integral expressions,
and the finiteness of them. An important class where these conditions are always satisfied (with
n = N) is the one of compact non-collapsed RCD(K,N) spaces, namely those RCD(K,N)
spaces where m = HN . The validity of the regular Weyl law was also established for the
Dirichlet problem in a bounded domain inside the ambient RCD(K,N) space (X, d,HN ) [28],
and for general compact RCD(K,N) spaces with essential dimension equal to 1 [29].

The situation may drastically change if one works in higher dimensions and removes the
non-collapsed assumption: it was shown in [30] that for any β ∈ (2,∞) there exist compact
RCD(−1, N) spaces of essential dimension 2 such that

0 < lim
λ→∞

N(λ)
λβ/2

<∞ .

8The RCD(K, N) class can be also defined for N = ∞ and N < 0. Weyl law in these more general settings
has not been considered yet in the literature.
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Moreover, in the same class of spaces the asymptotic regime of the eigenvalues can also
exhibit a logarithmic correction of the form

lim
λ→∞

N(λ)
λ log λ = 1

4π .

We refer to [31] for some other interesting results concerning non-regular Weyl laws in the
presence of singularities, where the spaces are non-complete Riemannian manifolds (M, g)
with the curvature blowing up when approaching the metric boundary, and to [32] where,
for general metric measure spaces satisfying some weak regularity conditions, it is shown
that the number N(λ) is related to the cardinality of appropriate covers of the space with
balls of radius λ−1/2.

We proved in [16] that spaces whose only singularities are of D-brane type are RCD.
They are not non-collapsed, nonetheless we will check in section 4.2 that (4.1) is satisfied
for Dp-branes for p ⩾ 6; thus the Weyl law is valid. Notice that Dp-brane singularities with
p ⩾ 6 are exactly those for which the spectrum is discrete, as we will clarify in Prop. 4.2. On
the other hand, we showed in [9, section 6.4.1] that spaces with O-plane singularities are not
in the RCD class so we cannot conclude from the RCD theory that the Weyl law holds for
compactifications with O-planes. Our physics argument above, on the other hand, although
do not constitute a complete mathematical proof, covers such spaces as well.

4.2 Validity of Weyl law for singularities of D-brane type via RCD theory

Here we prove that exact Dp branes satisfy (4.1) and thus the regular Weyl law for p = 6, 7, 8,
thanks to [27]. Since it will be relevant for the following computations, we start by recalling
the precise definition of the space we will treat, focusing for simplicity on the case with
d = 4 uncompactified dimensions. We refer the interested reader to [16] for the definition
of spaces with Dp branes singularities, p ⩽ 5.

Definition 4.1 (Exact D-brane metric measure spaces). We define an exact Dp-brane metric
measure space a smooth and compact Riemannian manifold (X, g) that is glued (in a smooth
way) to a finite number of ends where the metric has a precise form that we specify below.
The distance d between two points p, q ∈ X is given by

d(p, q) := inf
γ∈Γ(p,q)

∫
g
(
γ′(t), γ′(t)

)
dt ,

where Γ(p, q) denotes the set of absolutely continuous curves joining p to q.
The measure m is a weighted volume measure m := efdvolg, where dvolg is the Riemannian

volume measure associated to g and the function ef is smooth outside the singular set and
gives zero mass to it.

Depending on the value of p, near the singular set the metric g and the measure satisfy:

• Case p = 6. In a neighborhood {r < ϵ} of the singular set {r = 0}, the metric is of the
form

g = dy23 +
(
r0
r

)(
dr2 + r2ds2S2

)
, (4.2)
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with r0 = gs(2πls)/Vol(S2) and dy23 being the flat metric of a 3-dimensional torus. The
measure is given by

m⌞{r<ϵ}=
√
r

r0
dvolg⌞{r<ϵ} .

• Case p = 7. In a neighborhood {r < ϵ} of the singular set {r = 0}, the metric is of the
form

g = dy24 −
2π
gs

log(r/r0)
(
dr2 + r2ds2S1

)
, (4.3)

with r0 > 0 a constant and dy24 being the flat metric of a 4-dimensional torus. The
measure is given by

m⌞{r<ϵ}= volg⌞{r<ϵ} .

• Case p = 8. In a neighborhood {|r| < ϵ} of the singular set {r = 0}, the metric is of
the form

g = dy25 + (1− h8|r|)dr2 , (4.4)

with h8 > 0 a constant and dy25 being the flat metric of a 5-dimensional torus. The
measure is given by

m⌞{|r|<ϵ}=
√
1− h8|r| dvolg⌞{|r|<ϵ} .

In the next proposition, we collect some results obtained in our previous works.

Proposition 4.2. An exact Dp-brane metric measure space is a RCD(K,N) space for some
K ∈ R and N ∈ [1,∞) with essential dimension n = 6. Moreover:

• It is a compact metric space and the spectrum is discrete if p = 6, 7, 8.

• The spectrum is not discrete if p < 5. More precisely, there are no positive eigenvalues
below the infimum of the essential spectrum of the Laplacian.

Proof. The validity of the RCD(K,N) condition was proved in [16, Th. 3.2]. Since the space
is smooth outside the singular set, it is immediate that the essential dimension of the space
coincides with the dimension of the underlying manifold and thus n = 6 (recall here that we
are assuming d = 4 uncompactified dimensions). It was also checked in [16] that a Dp-brane
metric measure space is compact if and only if p = 6, 7, 8, and thus for these values of p
the spectrum is discrete as a consequence of [33, Th. 6.3]. For p < 5 it was noticed in [16,
section 4.2.2] that h1 = 0 since for tubular neighborhoods BR of the singular set we have
Per(BR)/m(BR) → 0 as R → 0; here, h1 is the Cheeger constant of the space. The last
conclusion of the proposition is thus a consequence of [16, Th. 4.2] (based on the Buser
inequality proved in [34]).

Although we have not detailed a completely rigorous mathematical argument, we remark
that the spectrum is expected to have a continuous part also for D5 brane singularities: this is
suggested by i) a local study of the eigenvalue equation, ii) a study of the Cheeger constants [16,
section 4.2.2], an estimate [23, section 4.1] of capacities based on [35]. A difference with the
cases p < 5 is that for D5-brane metric measure spaces the Cheeger constant is expected to
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be positive. By similar considerations based on an analysis of tubular neighborhoods of the
singularities, we also find that the spectrum of Op-plane singularities appears to be discrete.9

We are now ready to state and prove the main result of the section.

Theorem 4.3. An exact Dp-brane metric measure space satisfies (4.1) (and thus the regular
Weyl law) for p = 6, 7, 8.

Proof. We start by proving the right hand side inequality in (4.1). For this purpose, we notice
that the set of singularities is m-negligible and for any other point x ∈ X \ {r = 0} we have

lim
R→0+

R6

m(BR(x))
= C

ef(x)

for a constant C depending only on r0 or h8. This yields∫
X

lim
R→0+

R6

m(BR(x))
dm = C volg(X \ {r = 0}) <∞ .

We are left to show the equality

lim
R→0+

∫
X

R6

m(BR(x))
dm =

∫
X

lim
R→0+

R6

m(BR(x))
dm (4.5)

which follows by applying the dominated convergence theorem as we specify below by handling
the three different cases.

Case p = 6. In the following we always suppose to work in the set {0 < r < ϵ}, which
is the only which needs a discussion (the complement is smooth and compact). With the
change of variable ρ = 2√r0

√
r, the metric takes the form

g = dy23 +
(
dρ2 + ρ2

4 ds2S2

)
,

and the measure is given by

m = ρ

2r0
dvolg =

ρ3

8r0
sin θ dρ dθ dϕ d3y,

where θ ∈ [0, π] and ϕ ∈ [0, 2π) are the spherical variables in S2. We fix R > 0 and our aim is
to find w ∈ L1(m) such that

sup
0<R<R

R6

m(BR(x))
⩽ w(x) for m− a.e. x.

To compute m(BR(x)), we start by noticing that this quantity only depends on R and
ρ0 := d(x, {r = 0}). Without loss of generality, we can thus suppose

x = (y = 0, ρ = ρ0, θ = 0, ϕ = ϕ0) ∈ X \ {r = 0} .
9This is indeed the case for example for the explicit computation in [36], where an O8 is present.
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Expressing the flat space in polar coordinates with radial coordinate ϱ, we have

m(BR(x)) = 4π
∫ R

0
ϱ2I

(
ρ0,
√
R2 − ϱ2

)
dϱ , (4.6)

with

I(ρ0, ρ1) : =
∫
B̃ρ1 (x)

ρ3

8r0
sin θ dρ dθ dϕ = π

2r0

∫ ρ0+ρ1

max{ρ0−ρ1;0}
z′
(
ρ21 − (z′ − ρ0)2

)
dz′

=


2π
3r0
ρ0ρ

3
1 if ρ0 ⩾ ρ1

π
24r0

(3ρ1 − ρ0)(ρ0 + ρ1)3 if ρ0 < ρ1 ,

where B̃ρ1(x) denote the geodesic ball in the 3-dimensional factor with metric g̃ = dρ2 +
ρ2

4 ds2S2 , and the expression of I is motivated by the fact that, up to the change of variables
θ′ = θ/2 ∈ [0, π/2], this geodesic ball corresponds to the 3-dimensional Euclidean ball. The
integral in (4.6) can be computed explicitly: for R ⩽ ρ0 the expression is given by

m(BR(x)) =
8π2ρ0
3r0

∫ R

0
ϱ2(R2 − ϱ2)

3
2dϱ = π3

12r0
ρ0R

6 ;

when R > ρ0 we get instead the following expression

m(BR(x))=
8π2ρ0
3r0

∫ (R2−ρ2
0)

1
2

0
ϱ2(R2−ϱ2)

3
2dϱ

+ π2

6r0

∫ R

(R2−ρ2
0)

1
2
ϱ2
(
3(R2−ϱ2)

1
2 −ρ0

)(
ρ0+(R2−ϱ2)

1
2
)3

dϱ

= π2

1260r0

(
105ρ0R6

(
π−arccos

(
ρ0
R

))
+(R2−ρ20)

1
2 (48R6+87ρ20R4−38ρ40R2+8ρ60)

)
.

Since 48R6 + 87ρ20R4 − 38ρ40R2 + 8ρ60 ⩾ 0 and π − arccos(ρ0/R) ⩾ π/2, it follows

sup
0<R<R

R6

m(BR(x))
⩽
C̃

ρ0

for a suitable constant C̃ = C̃(r0, R) independent on ρ0. The proof is concluded by taking

w(x) := C̃

d(x, {r = 0}) ∈ L1(m).

For the cases p = 7, 8, the direct computations are more heavy. It is therefore useful
to perform some simplifications. Note we can neglect the flat part given by the Euclidean
metric dx2p+1−d since it is smooth and with finite diameter (and thus with finite volume). We
denote by O := {r = 0} the singular point. Near O, the Riemannian metric and the measure
are of the form

ḡ = H(r)(dr2 + r2ds2S8−p), m̄ = H(r)
p−7

2 dvolḡ, (4.7)

with H(r) = −2π
gs

log(r/r0) for p = 7, and H(r) = 1− h8|r| for p = 8.
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Case p = 7. Thanks to the dimension reduction discussed above, (4.5) reduces to show
that, for some ε0 > 0,

lim
R→0+

∫
Bḡ

ε0 (O)

R2

m̄(BR(x))
dm̄ =

∫
Bḡ

ε0 (O)
lim
R→0+

R2

m̄(BR(x))
dm̄. (4.8)

Note that (4.8) is a consequence of the following two claims:

Claim 1: lim
R→0+

∫
Bḡ

ε0 (O)\Bḡ
2R(O)

R2

m̄(BR(x))
dm̄ =

∫
Bḡ

ε0 (O)
lim
R→0+

R2

m̄(BR(x))
dm̄. (4.9)

Claim 2: lim
R→0+

∫
Bḡ

2R(O)

R2

m̄(BR(x))
dm̄ = 0. (4.10)

We start by showing the first claim (4.9). We denote by C(S1) the metric cone over S1

with metric dr2 + r2ds2S1 . From (4.7), we have

m̄⌞Bḡ
R(x) ⩾ inf

Bḡ
R(x)

H dvolr dvolS1 (4.11)

and
Bḡ
R(x) ⊃ B

C(S1)
R

sup
B

ḡ
R

(x)
√

H

(x). (4.12)

The ḡ-distance ρ between O and a point of coordinate r is given by (up to a multiplicative
constant that is not relevant for this argument)

ρ =
∫ r

0

√
− log(s) ds . (4.13)

It is easy to check that
lim
r→0+

ρ(r)
r
√
− log r = 1 . (4.14)

The combination of (4.11) and (4.12) gives that there exists constants c1, c2, c3, c4 > 0 such
that for all x ∈ Bḡ

ε0(O) \Bḡ
2R(O) it holds

m̄(Bḡ
R(x)) ⩾ c1R

2
infBḡ

R(x)H

supBḡ
R(x)H

⩾ c2R
2
infBḡ

R(x)− log r
supBḡ

R(x)− log r ,

⩾ c2R
2 − log r(ρ(x) +R)
− log r(ρ(x)−R) ,

⩾ c3R
2 r(R)
r(3R) ,

⩾ c4R
2, (4.15)

where in the third line we used L’Hôpital’s rule, and in the fourth line we used (4.14). The
claim (4.9) then follows by dominated convergence theorem by observing that the constant
c−1
4 is in L1(Bḡ

ε0(O), m̄) and that (4.15) guarantees

R2

m̄(BR(x))
χBḡ

ε0 (O)\Bḡ
2R(O)(x) ⩽ c−1

4 ∈ L1(Bḡ
ε0(O), m̄).
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We now show the second claim (4.10).
It is useful to perform a change of variables, so as to reduce the argument to a standard

cone. Following the proof of [16, Thm. 3.2], we perform the change of variable (4.13) so that,
in a neighbourhood of the singular point O, the Riemannian metric ḡ becomes

ḡ = dρ2 + f(ρ)ds2S1 , (4.16)

and the measure takes the form

m̄ =
√
f(ρ) dvolρ dvolS1 , (4.17)

where f(ρ) represents the factor − log(r)r2, expressed in the new variable ρ. One can check
that

0 ⩽ f(ρ) ⩽ ρ2, ρ 7→ f(ρ) is increasing for small ρ. (4.18)
This estimate and the formula (4.16) of ḡ yield that the distance dḡ associated to ḡ satisfy
the following properties:

• For every θ ∈ S1, it holds dḡ((θ, ρ),O) = ρ.

• The distance dḡ is bounded above by the cone distance dC(S1), i.e. for every pair of
points x0 := (θ0, ρ0), x1 := (θ1, ρ1) it holds

dḡ(x0, x1) ⩽ dC(S1)(x0, x1) :=
√
ρ20 + ρ21 − 2ρ0ρ1 cos(dS1(θ0, θ1)).

The second fact implies that, for every base point x and every radius R > 0, we have the
inclusion of metric balls BC(S1)

R (x) ⊂ Bḡ
R(x), which implies

m̄(BC(S1)
R (x)) ⩽ m̄(Bḡ

R(x)). (4.19)

Using (4.17) and (4.18), one can check that there exists ε0 > 0 such that

m̄(BC(S1)
R (x)) ⩾ ε0 m̄(BC(S1)

R (O)), ∀R ∈ (0, ε0]. (4.20)

A direct computation gives

m̄(BC(S1)
R (O)) = 2π

∫ R

0

√
f(ρ) dρ ⩾ πr(R)2, (4.21)

where r(R) is the value of the variable r when ρ = R, with r and ρ are related by (4.13).
Combining (4.19), (4.20) and (4.21), we obtain

R2

m̄(Bḡ
R(x))

⩽
1
πε0

R2

r(R)2 , ∀R ∈ (0, ε0], ∀x ∈ Bḡ
ε0(O). (4.22)

Recalling that (0, ε0] ∋ ρ 7→ f(ρ) is increasing, from (4.14) and (4.22) we have that
R2

m̄(Bḡ
R(x))

m̄ ⩽
1
πε0

R2

r(R)2
√
f(3R) dvolρ dvolS1 ,

⩽
2
πε0

r2| log r|
r2

√
− log(3r)(3r)2

√
| log r| dvolr dvolS1

⩽
6
πε0

r | log r|
√
log(3r) log(r) dvolr dvolS1

⩽ C dvolr dvolS1 ∀R ∈ (0, ε0], ∀x ∈ Bḡ
2R(O), (4.23)
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for some constant C = C(ε0) independent of R, as long as R ∈ (0, ε0]. Observing that (4.13)
gives limρ→0+ r(ρ) = 0, it is clear that (4.23) implies the second claim (4.10).

Case p = 8.
Let us start by recalling the expression of the metric and measure of a D8-brane. Given a
positive constant h8 > 0, set

H(r) := 1− h8|r|, for r ∈ [−(2h8)−1, (2h8)−1].

The metric and the measure have the following expressions

ḡ = H(r) dr2, m̄ = H1/2dvolḡ, for r ∈ [−(2h8)−1, (2h8)−1].

Thanks to the dimension reduction discussed before the proof of the case p = 7, (4.5) reduces
to show that, for some ε0 > 0,

lim
R→0+

∫
Bḡ

ε0 (O)

R

m̄(BR(x))
dm̄ =

∫
Bḡ

ε0 (O)
lim
R→0+

R

m̄(BR(x))
dm̄ . (4.24)

It is useful to perform a change of variables, so to reduce the argument to the standard metric
on an interval with a weighted measure. Following the proof of [16, Thm. 3.2], we perform
the change of variable

t(r) := − 2
3h8

sgn(r)
[
(1− h8|r|)3/2 − 1

]
,

which transforms ḡ into the euclidean metric on a segment in the real line and the measure
m̄ into

m̂ =
(
1− 3

2h8|t|
)1/3

dt. (4.25)

The claim (4.24) is thus equivalent to show that, for some ε0 > 0,

lim
R→0+

∫
[−ε0,ε0]

R

m̂([x−R, x+R])dm̂ =
∫
[−ε0,ε0]

lim
R→0+

R

m̂([x−R, x+R])dm̂. (4.26)

Notice that there exists c0 = c0(ε0) > 0 independent of x,R ∈ [−ε0, ε0] such that

inf
t∈[x−R,x+R]

(
1− 3

2h8|t|
)1/3

⩾ c0, for all x,R ∈ [−ε0, ε0], (4.27)

provided ε0 > 0 is small enough, only depending on h8 > 0. The combination of (4.25)
and (4.27) gives that

R

m̂([x−R, x+R]) ⩽
1
2c0

, for all x,R ∈ [−ε0, ε0].

Since 1
2c0

∈ L1([−ε0, ε0], m̂), the claim (4.26) follows by dominated convergence theorem.
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5 Conclusions

We have seen how to use consistency of gravity compactifications to derive the Weyl law for
eigenvalues. The argument proceeds by studying the gravitational potential between two
point sources and requiring agreement at short distances among the four- and D-dimensional
behavior. This results in a relation among the Green’s function and the spectral data
of the Laplacian (section 2.2) which we also derived in a mathematically precise way in
section 2.3, and repeat here:

ef(y0) lim
r→0

rn
∑
k

ψ2
k(y0)e−mkr = m2

4
mD−2
D

Γ(n+1
2 )

π
n+1

2
. (5.1)

Equation (5.1) implies the Weyl law once rendered independent from the eigenfunctions
ψk, and in section 3 we studied two ways to achieve this: i) integrating it over the internal
space and ii) studying the asymptotic behavior of ψk(y0) at large k. However, a puzzle
seems to arise from (5.1) for warped compactifications: the 4-dimensional Planck mass m4
depends on the weighted volume Vf =

∫
X

√
gnef , while the Weyl law always depend on the

geometric volume of the internal space.
In the integrated argument i), this is easily resolved by the ef(y0) factor on the left hand

side of (5.1), which upon integration gives a weighted volume that compensates with the one
inside m2

4, leaving behind the geometric volume that appears in the Weyl law (section 3.1).
Method ii) instead is a local procedure, more aligned in spirit with the physical idea

of studying the local behavior of the potential, and in section 3.3 it leads us to introduce
the novel notion of Weighted Quantum Ergodicity (WQE):

lim
k→∞
k/∈e

∫
B

√
gefψ2

k∫
X

√
gefψ2

k

= V (B)
V (X) , (5.2)

for a negligible set e ⊂ N. This extends the standard notion of Quantum Ergodicity, to
which it reduces for f = 0, and implies that for large k the ψ2

k(y0) oscillates around e−f(y0),
as shown in figure 1 for an explicit example.

This latter property of ψ2
k(y0) connects to the physics of gravity localization, as we started

investigating in section 3.4. In this context, knowledge of the behavior of ψk allows to infer
whether gravity can be localized in four dimensions even in situations where the internal space
is not of finite (warped) volume. However, very few results on the behavior of eigenfunctions
are known, particularly in the physically important case of warped compactifications. Through
the notion of WQE, the results in this paper provide novel insights about the asymptotic
behavior of the ψk for generic scenarios in which ergodicity holds. It would be interesting to
expand this connection more in the future, for example analyzing in more detail the cases
with many symmetries, in which, generically, ergodicity is not expected to hold.

Finally, in section 4 we rigorously proved the Weyl law for spaces with Dp-brane sin-
gularities, for p = 6, 7, 8, which, as we formalized in Prop. 4.2, are the cases in which the
spectrum is discrete. For other branes, the spectrum is instead continuous, and we did not
attempt a rigorous proof of a Weyl-type law for those cases. While for spaces with O-plane
singularities the spectrum is always expected to be discrete, they are outside of the RCD
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class [9, section 6.4.1] and thus outside of the class of spaces covered by current mathematical
techniques. Nevertheless, the physical derivation still applies and we expect a similar validity
of the Weyl law, albeit we cannot provide a rigorous proof yet.

Acknowledgments

We thank Alex Belin, Naomi Gendler, Miguel Montero, Ignacio Ruiz, Irene Valenzuela, and
Zhenbin Yang for discussions. GBDL is supported in part by the NSF Grant PHY-2310429.
NDP is supported by the INdAM-GNAMPA project “Mancanza di regolarità e spazi non
lisci: studio di autofunzioni e autovalori”, CUP E53C23001670001. AM is supported by
the ERC Starting Grant 802689 “CURVATURE”. AT is supported in part by INFN and
by MUR-PRIN contract 2022YZ5BA2.

A Examples

A.1 Ergodic examples

We will consider examples in one dimension, with X = S1. The metric can of course always to
be taken to be the Euclidean distance, but we can still consider different choices of f = −A.

Consider first the piecewise-linear

f = |x| (A.1)

on X = ([−1/2, 1/2]/∼) ∼= S1, with ∼ denoting identification of the two endpoints; V (X) = 1.
The eigenfunctions can be found explicitly: after imposing that they are in C1(S1),

ψk = e−|x|/2 (c+ sin(2πkx) + c−(sin(2πkx) + 4πc−k cos(2πkx))) , (A.2)

for k ∈ N. The eigenvalues are λk = 1
4 + 4π2k2. Notice that this satisfies the Weyl law (2.2)

after taking into account that each level has multiplicity two: N(λk) ∼ 2k ∼
√
λk/π as

k → ∞. Indeed the leading term in k is 4π2k2, the same as for the f = 0 problem.
When considering (3.10) on an interval B, the ef = e|x| in the integrals cancels with the

e−|x|/2 prefactor in (A.2), and the integrand becomes a simple (translated) sine squared. This is
equal to a constant plus an oscillating term; upon taking k → ∞, the latter is suppressed. For
example, taking c+ =

√
2, c− = 0 we have

∫
X efψ2

k = 1; if B = [x0−δx/2, x0+δx/2] ⊂ {x > 0},∫
B
efψ2

k = δx− 1
2πk cos(4πkx0) sin(2πkδx) . (A.3)

The second term is a contribution from the oscillation, and it gets suppressed as k → ∞,
leaving a limit δx = V (B), in agreement with (3.10).

With more complicated choices of f , analytic expressions for the ψ2
k are not always

available (and even less for their integrals); however, a numerical study is still relatively
straightforward. Plotting the wavefunctions at relatively large k, we see that they indeed
oscillate around (Vf/V )e−f . See figure 1 for one particular f .
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A.2 A non-ergodic example

As we mentioned, the WQE does not hold for a space that has many symmetries, just like
the ordinary QE. Here we will present such an example, where we were able nevertheless
to check that our gravitational formula (2.15) holds anyway.

AdS7 solutions [37–39] have internal (Einstein frame) metric and weight function

ds2E = (α̇2 − 2αα̈)1/4
21/8 9π1/4

(
− α̈
α

)7/8
(
dz2 + α2

α̇2 − 2αα̈ds
2
S2

)
,

ef = e8AE = 211
√
2

38π

√
−α
α̈
(α̇2 − 2αα̈) .

(A.4)

α is a function on an interval with coordinate z; it is piecewise-cubic, with coefficients suitably
quantized and obeying certain boundary conditions.

Perhaps the simplest non-trivial example is α = 27
2 n0π

2z(N2 − z2), with z ∈ [0, N ],
where n0 = 2πF0 and N are the Romans mass and NSNS three-form flux quanta respectively.
There are k = n0N D6-branes at z = N . The spin-two KK problem in this case can be
solved analytically [40, section 4.2].10 The eigenfunctions read

ψℓ,j = αℓP
(2ℓ+1,ℓ+1/2)
j

(
−1 + 2z2/N2

)
Y m
ℓ , (A.5)

where the P are Jacobi polynomials, and the Y are spherical harmonics on the S2 in (A.4).
The eigenvalues read

m2
ℓ,j = 4ℓ(4ℓ+ 6) + 8

3j(5 + 2j + 6ℓ) . (A.6)

The angular momentum associated to the symmetries of the S2 is conserved, and while
the motion is chaotic, it cannot get all the way to the poles of the sphere.11 Indeed the
eigenfunctions (A.5) are of the WKB form, oscillating in a subinterval of [0, 1] ∋ x, and
decaying exponentially outside it; this reflects the classical analysis, just like in the S2

discussion in section 3.2. Thus the model does not display the WQE property.12 Moreover,
the spectrum depends on two integers (ℓ, j), and their ordering in terms of growing m2 is
not particularly elegant.

Nevertheless, given that both the ψℓ,j and mℓ,j are known explicitly, we have managed to
checked numerically that (2.15) does hold even in this example. Summing O(102) eigenvalues
is enough to obtain a precision of O(10−2).

10The analysis was partially redone recently in a more modern language in [41].
11In a geometry −dt2 + a2dz2 + b2ds2

S2 , the geodesic motion can be simplified using the conserved quantities
ṫ := E, L2 = b4(ϕ̇2 + sin2 ϕθ̇2); this results in a2z2 + L2b−2 = E2 − 1, which has the form of a conserved
energy for a particle moving in a one-dimensional potential. Compactness demands that b goes to zero at the
endpoints of the z interval, so the effective potential L2b−2 blows up at the endpoints, and the motion can
never get there. The chaotic nature of the classical motion of a string (rather than a particle) in this geometry
was studied in [42].

12As mentioned in section 3.2, it is sometimes possible to achieve a version of quantum ergodicity by
considering random orthonormal bases; however in the present case such a basis would mix different eigenvalues,
and would not be made of eigenfunctions, as in [14, 15].
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B Heat equation and Weyl law

The modern proofs of the Weyl’s law are based on the heat equation. Here we try to give
a rough idea of how this works in the unweighted case.

In the spirit of the rough idea described in section 3.1, we write λk ∼ (αkν)2 for large k,
and we try to determine the coefficients α, ν by using the heat equation

∂tu(x, t) = −∆u(x, t) . (B.1)

A solution can be found by expanding u = ∑
ukψk; the equation then fixes uk = u0ke−λkt.

A fundamental solution u(x, y, t) is one for which limt→0 u(x, y, t) = δ(x− y). For this, we
notice that δ(x− y) = 1

V (X)
∑
k ψk(x)ψk(y), with the normalization

∫
X

√
gψkψl = δkl. This

fixes the constants u0k. We infer that

u(x, y, t) = 1
V (X)

∑
k

e−λktψk(x)ψk(y) . (B.2)

When X = Rn, the spectrum is continuous; the analogue of the former expression is the
Fourier transform:

u = 1
(2π)n/2

∫
dnp e−ip·x−||p||2t = 1

(4πt)n/2
e−||x−y||2/4t . (B.3)

On a general X, at small time the heat generated by the source at t = 0 has not had time
to explore all the space, so one expects it to behave as in (B.3). Integrating (B.2), (B.3)
over X one then obtains as t → 0

1
(4πt)n/2

V (X) ∼
∫
X

√
gu(x, x, t) =

∑
k

e−λkt ∼
∑
k

e−α2k2/νt . (B.4)

Since t is small, we can approximate the sum by recalling (3.3). Taking ϵ = (α
√
t)ν , (B.4)

becomes
1

(4πt)n/2
V (X) ∼ 1

(α
√
t)ν

∫ ∞

0
dp e−p2/ν = Γ (1 + ν/2)

(α
√
t)ν

. (B.5)

Comparing the powers of δt yields ν = n; the overall coefficient gives α = a as in (1.1).

C Proofs of Lemmas about limits of Green’s function

In this appendix, we prove the Lemmas 2.1 and 2.2 we used in section 2.3 to obtain
equation (2.23), which served as a basis for our argument to derive the Weyl law and for
the introduction of the notion of weighted quantum ergodicity.

Proof of Lemma 2.1. By definition of Green’s function, for any smooth test function ξ, we
have

ξ(z0) =
∫
Mp

dpz√gef ξ∆f (Gf,z0) =
∫
Mp

dpz√gef Gf,z0∆f (ξ) (C.1)

for any z0 ∈Mp. Now, consider a ball B(z0; ε), centered at z0 and with radius ε, and split
the last integral on the right hand side in two pieces:∫
Mp

dpz√gef Gf,z0∆f (ξ) =
∫
B(z0;ε)

dpz√gef Gf,z0∆f (ξ) +
∫
Mp\B(z0;ε)

dpz√gef Gf,z0∆f (ξ) .

(C.2)
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To prove (2.21), we make a suitable choice of test function ξ. Taking a ξ′ with compact
support away from z0, we construct ξ = (1 + ξ′)ζ, where ζ has compact support in Mp and is
identically equal to 1 in a neighbourhood of z = z0. For such a ξ, the first integral on the
right hand side of (C.2) is regular, and thus

lim
ε→0

∫
B(z0;ε)

dpz√gef Gf,z0∆f (ξ) = 0 . (C.3)

We now analyze the second integral. Since we are now away from the singularity of the
Green’s function, we can freely integrate by parts twice, obtaining∫

Mp\B(z0;ε)
dpz√gef Gf,z0∆f (ξ) =

∫
Sp−1(z0,ε)

√
gef (ξη · ∇Gf,z0 −Gf,z0η · ∇ξ) (C.4)

where η is the vector normal to the boundary and the integral is on the sphere with radius ε
centered at z = z0. We also used the fact that the only boundary terms are at |z − z0| = ε,
since other possible terms (e.g. at infinity) would vanish by virtue of ξ of being of compact
support. In addition, in the limit ε → 0 the second term in the parenthesis also vanishes,
since for the above construction ∇ξ vanishes on a neighborhood of z0. Putting everything
together, we thus have

ξ(z0) = ξ(z0)ef(z0) lim
ε→0

∫
Sp−1(z0,ε)

√
gη · ∇Gf,z0 . (C.5)

We can now repeat the same argument from scratch, but for ∆0 and its corresponding
Green’s function G0,z0 . Doing so, results in (C.5) with f = 0. Combining the two results, we
find

e−f(z0) =
limε→0

∫
Sp−1(z0,ε)

√
gη · ∇Gf,z0

limε→0
∫
Sp−1(z0,ε)

√
gη · ∇G0,z0

= lim
ε→0

∫
Sp−1(z0,ε)

√
gη · ∇Gf,z0∫

Sp−1(z0,ε)
√
gη · ∇G0,z0

. (C.6)

The result then follows by going in Riemann normal coordinates around z0 and applying
L’Hôpital’s rule.

With a similar technique, we can also prove Lemma 2.2.

Proof of Lemma 2.2. Following the proof of Lemma 2.1 and in particular using eq. (C.5)
with f = 0, we can write

1 = lim
ε→0

∫
Sp−1(z0,ε)

√
gη · ∇G0,z0 . (C.7)

Since we are taking the limit ε→ 0, we can use Riemann normal coordinates centered around
z = z0. This shows that G0,z0 has to approach the Green’s function of the Laplacian in Rp

for (C.7) to be valid in this limit. Since the power behavior on the left hand side, and the
constants on the right hand side in (2.22) agree with the ones for the Green’s function of the
Laplacian in Rp, this concludes the proof.

We can be more explicit and also check this final statement directly from eq. (C.7). In
Riemann normal coordinates we have √

g = vol(Sp−1)rp−1, η · ∇G0,z0 = ∂rG0,z0(r), where
r = |z − z0|. Plugging in (C.7) and performing the integral over the sphere gives

1 = Vol(Sp−1) lim
r→0

∂rG0,z0(r)
r1−p

= Vol(Sp−1)(2− p) lim
r→0

G0,z0(r)
r2−p

, (C.8)

– 28 –



J
H
E
P
0
8
(
2
0
2
4
)
1
2
3

where in the last step we used L’Hôpital’s rule. Expanding the constants in (C.8) then proves
the result.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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