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Abstract

In this paper we prove the existence of solutions of regularized set-valued variational
inequalities involving Brézis pseudomonotone operators in reflexive and locally uni-
formly convex Banach spaces. By taking advantage of this result, we approximate a
general set-valued variational inequality with suitable regularized set-valued variational
inequalities, and we show that their solutions weakly converge to a solution of the orig-
inal one. Furthermore, by strengthening the coercivity conditions, we can prove the
strong convergence of the approximate solutions.
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1 Introduction

Let X be a real, reflexive Banach space, with dual X∗. We will assume that both X and
X∗ are renormed so that they are locally uniformly convex. Denote by C ⊆ X a nonempty,
convex and closed set. Given a set-valued map T : X ⇒ X∗ with C ⊆ dom(T ), the
set-valued variational inequality VI(T,C) is to find x ∈ C such that

sup
x∗∈T (x)

〈x∗, y − x〉 ≥ 0 for all y ∈ C. (1.1)

Whenever T is weakly-compact valued for all x ∈ C, then VI(T,C) is equivalent to finding
x ∈ C such that, for every y ∈ C, there exists x∗(y) ∈ T (x) satisfying

〈x∗(y), y − x〉 ≥ 0.

In case x satisfies the inequality above, x is said to be a weak solution of VI(T,C). If x∗(y)
can be chosen independently of y ∈ C, then x is said to be a strong solution of VI(T,C).
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Note that, by the Sion minimax theorem (see [?]), every weak solution is a strong solution
in case T is weakly-compact and convex valued on C (see, for instance, [?]).

Several problems in applied mathematics can be formulated via set-valued variational
inequalities and many authors have contributed to the study of this problem. A great
number of direct applications of set-valued variational inequalities can be found, for instance,
in Economics, Transportation, and Operations Research ([?], [?]).

Most of the existence results require some kind of continuity properties together with
suitable assumptions of monotonicity of the operator T . One is the notion of pseudomono-
tonicity introduced by Karamardian and Schaible, arising from and extending the classical
notion of monotonicity for operators; in this framework some existence results can be found,
for instance, in [?] and the references therein. A different kind of pseudomonotonicity for
operators, known as Brézis pseudomonotonicity (B-pseudomonotonicity, for short), was in-
troduced by Brézis when dealing with integral equations and partial differential equations.
As a matter of fact, the theory of B-pseudomonotone operators has played an important
role in the study of solvability of operator equations and quasi–linear elliptic equations. To
this purpose, the reader could refer for instance to [?], Ch. 27.

This notion of Brézis pseudomonotonicity is not directly related to any classical mono-
tonicity property, but the operators are required to satisfy a different topological condi-
tion. However, under some kind of continuity, the classical monotone operators are B-
pseudomonotone (see Proposition 1 below). Recently some authors provided existence of
solutions for set-valued variational inequalities under B-pseudomonotonicity of the operator
T (see, for instance, [?], [?], [?]).

Our purpose is to prove the solvability of VI(T,C) by approximating the pair (T,C)
with a sequence of more regular operators Tk : X ⇒ X∗, and sets Ck ⊆ dom(Tk). We study
the existence of solutions xk ∈ Ck of the regularized variational inequality VI(Tk +αkJ,Ck)

sup
x∗∈Tk(xk)+αkJ(xk)

〈x∗, y − xk〉 ≥ 0 for all y ∈ Ck, (1.2)

where J denotes the duality map. The solvability of VI(Tk + αkJ,Ck) is proved in terms
of standard assumptions which can be on the whole referred to results on equilibrium
problems that can be found in some papers by Brézis et al. ([?], [?]). The main concern
will be to relate the solutions of the regularized problems with possible solutions of the
original VI(T,C). As a matter of fact, we will show that, under suitable closeness of the
images of Tk and T, and good behaviour of Ck with respect to C, every weak cluster point of
any sequence of strong solutions of VI(Tk+αkJ,Ck) is a weak (strong) solution of VI(T,C).
Under more restrictive assumptions, the strong convergence can be proved.

The motivation of our study can be summarized as follows. It is well known that
the problem of finding a solution of VI(T,C) is often ill-posed and small perturbations
of the data T and C can lead to significant changes in the solution set (see [?] and the
references therein). This ill-posedness creates difficulties in application where often only
approximations Tk and Ck of the data are available. To overcome this issue Tikhonov [?]
and Browder [?] introduced the notion of regularized variational inequality, which turns out
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to be usually well-posed and, thus, less sensitive to data perturbations. To broaden the
applicability of their results, it is important to study the convergence of the solutions of the
regularized variational inequalities to the solution of the original problem for other classes
of operators, like Brézis pseudomonotone operators, which, as we have already pointed out,
are useful in the study of operator equations.

The paper is organized as follows: In Section 2 some preliminaries on set-valued B-
pseudomonotone operators and notations are recalled. Noting that to every set-valued
operator T : X ⇒ X∗ one can naturally associate the bifunction GT : X ×X → R∪{+∞},
given by

GT (x, y) = sup
x∗∈T (x)

〈x∗, y − x〉,

in Section 3 we study existence results for a set-valued variational inequality via the solv-
ability of the equilibrium problem related to GT . In addition, taking advantage of the nice
properties of the duality map J , we provide an existence result for VI(T + αJ,C), under
mild conditions on T. In Section 4 we face the main problem, i.e., we prove an existence
result for the original variational inequality following two steps: first, we show that every
sequence of strong solutions of VI(Tk + αkJ,Ck) has a weak cluster point in C. Then, we
show that every weak cluster point is indeed a weak (strong) solution for VI(T,C). Besides,
more restrictive assumptions will lead to strong convergence.

2 Preliminaries and notations

In order to investigate the existence of solutions of VI(T,C), we will focus on a notion of
monotonicity property for the operator T that was introduced by Brézis for single-valued
operators in 1968 (see [?]), called in the sequel B-pseudomonotonicity. Let us emphasize
that this kind of monotonicity has no direct relation with the monotonicity of mappings
with respect to an ordering as the one introduced by Karamardian and Schaible in [?] and
commonly known as algebraic pseudomonotonicity (see for instance [?]). In [?] the author
defined a mapping A : X → X∗ to be B-pseudomonotone on a set D ⊆ X if, whenever
{xn} ⊂ D, xn ⇀ x and lim supn〈A(xn), xn − x〉 ≤ 0, then,

〈A(x), x− y〉 ≤ lim inf
n
〈A(xn), xn − y〉, ∀y ∈ D,

where ⇀ denotes the weak convergence.

This definition can be extended to set-valued maps as follows (see, for instance, [?], Defini-
tion 1 (c), or [?], Definition 6.1-(c), p.365):

Definition 1. We say that T : X ⇒ X∗ is B-pseudomonotone on a nonempty subset D
of dom(T ) if, for every {xn} in D such that xn ⇀ x ∈ D, and for every x∗n ∈ T (xn), with
lim supn〈x∗n, xn − x〉 ≤ 0, one has that for every y ∈ D, there exists x∗(y) ∈ T (x) such that
〈x∗(y), x− y〉 ≤ lim infn〈x∗n, xn − y〉.
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In [?] Brézis showed that radially continuous monotone single-valued mappings are B-
pseudomonotone. In order to extend this result to set-valued mappings, we need the fol-
lowing properties of set-valued mappings:

Definition 2. Let T : X ⇒ X∗ and D ⊆ dom(T ). We say that T is radially continuous on
D if gph(T ) satisfies the condition: for all x, y ∈ D, tk ∈ (0, 1], tk → 0, if

((1− tk)x+ tky, z
∗
k) ∈ gph(T ), and z∗k ⇀ z∗,

then (x, z∗) ∈ gph(T ).
T is said to be s-w -closed on D if, for any (xk, x

∗
k) ∈ gph(T |D), if xk → x and x∗k ⇀ x∗,

then (x, x∗) ∈ gph(T |D).

Note that if T is s-w -closed on D, then T is radially continuous on D.
By extending a result due to Brézis in [?] for the case of single-valued operators, we prove

that monotone operators satisfying a suitable continuity condition are B-pseudomonotone.
Let us recall that an operator T : X ⇒ X∗ is said to be monotone on D ⊆ dom(T ) if

〈x∗ − y∗, x− y〉 ≥ 0, ∀x, y ∈ D, ∀x∗ ∈ T (x), ∀y∗ ∈ T (y).

The following proposition holds:

Proposition 1. Let C ⊆ int(dom(T )), C closed and convex, and T : X ⇒ X∗ be monotone,
and radially continuous on C. Then T is B-pseudomonotone on C.

Proof: Take any {xn} ⊂ C, x∗n ∈ T (xn), such that

xn ⇀ x ∈ C, lim inf
n
〈x∗n, x− xn〉 ≥ 0. (2.1)

By the monotonicity,
〈x∗n − x∗, xn − x〉 ≥ 0 ∀x∗ ∈ T (x),

i.e.,
〈x∗n, x− xn〉 ≤ 〈x∗, x− xn〉.

Since 〈x∗, x− xn〉 → 0, we have that

lim sup
n
〈x∗n, x− xn〉 ≤ 0.

Therefore, from (??),
〈x∗n, x− xn〉 → 0. (2.2)

For every y ∈ C, let zk = (1 − 1
k )x + 1

ky ∈ C, and note that zk → x in the norm topology.
For every k ∈ N, from the monotonicity,

〈x∗n − z∗k, xn − zk〉 ≥ 0, ∀z∗k ∈ T (zk),
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i.e.,
1

k
〈x∗n, x− y〉 ≥ 〈x∗n, x− xn〉+ 〈z∗k, xn − x〉+

1

k
〈z∗k, x− y〉.

From (??) and the assumption xn ⇀ x, taking the lower limit of both sides, we get, for
every k,

lim inf
n
〈x∗n, x− y〉 ≥ 〈z∗k, x− y〉.

Taking into account that every monotone operator is locally bounded in the interior of its
domain, there exists k0 ∈ IN, and M > 0 such that⋃

k≥k0

T (zk) ⊆ BX∗(0,M),

where BX∗(0,M) denotes the closed ball in X∗ centred at 0 and with radius M. Therefore
{z∗k} ⊂ BX∗(0,M) for k ≥ k0, and, by the reflexivity of X∗, there exists {km} such that
z∗km weakly converges to x∗ ∈ BX∗(0,M). From the radial continuity of T we get that
x∗ ∈ T (x). Thus,

lim inf
n
〈x∗n, x− y〉 ≥ 〈x∗, x− y〉.

Since 〈x∗n, xn − y〉 = 〈x∗n, xn − x〉+ 〈x∗n, x− y〉, by (??)

lim inf
n
〈x∗n, xn − y〉 = lim inf

n
〈x∗n, x− y〉 ≥ 〈x∗, x− y〉,

thereby proving the assertion.
�

Let us finally recall some notions and notations that will appear in the forthcoming sections.
Given a sequence {Ck} of subsets of X, we set

s− lim inf Ck = {x ∈ X : ∃{xk}, xk ∈ Ck : xk → x},

w − lim supCk = {x ∈ X : ∃{xnk}, xnk ∈ Cnk : xnk ⇀ x}.

In particular, the sequence {Ck} is said to be Mosco convergent to C if

s− lim inf Ck = w − lim supCk = C.

Moreover, given two subsets A,B of a metric space (E, dE), the excess from A to B is
defined as

e(A,B) := sup
a∈A

dE(a,B) = sup
a∈A

inf
b∈B

dE(a, b),

under the convention e(∅, B) := 0, and e(A, ∅) := +∞, for A 6= ∅. The Hausdorff distance
between A and B is defined as

Haus(A,B) := max {e(A,B), e(B,A)} .
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The duality mapping J : X ⇒ X∗ is defined as follows

J(x) := {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2}.

The map J has nonempty, closed, convex and bounded values. In our setting of local
uniform convexity of X, the duality mapping turns out to be single-valued, coercive (i.e.,

lim‖x‖→+∞
〈J(x),x〉
‖x‖ = +∞), demicontinuous (i.e., for every w ∈ X, the map x 7→ 〈J(x), w〉

is continuous, or, equivalently, J is w∗-continuous), and B-pseudomonotone.

3 Equilibrium problems and existence results for set-valued
variational inequalities

The main aim of this section is to provide existence results for the so-called regularized
variational inequality VI(T + αJ,C) defined as follows: find x ∈ C such that

sup
x∗∈T (x)

〈x∗ + αJ(x), y − x〉 ≥ 0, ∀y ∈ C, (3.1)

where T : X ⇒ X∗, C is a closed and convex subset of dom(T ) and α is a positive number.
We start our analysis by investigating existence results for the initial problem VI(T,C)

associated to the operator T . Note that, by introducing the bifunction GT : C × C →
R ∪ {+∞} given by

GT (x, y) = sup
x∗∈T (x)

〈x∗, y − x〉,

the VI(T,C) corresponds to the equilibrium problem (EP): find x ∈ C such that

GT (x, y) ≥ 0, ∀y ∈ C.

The equilibrium problems were formulated by Blum and Oettli in [?], and in recent years
several authors have investigated existence results for (EP), but the first ones date back to
the seventies ([?], [?]).

Let us recall a well-known existence result for (EP) that holds in the more general setting
of Hausdorff topological vector spaces:

Theorem 1. (see [?], Theorem 1) Let C be a nonempty, closed and convex subset of a
Hausdorff topological vector space E, and f : C × C → R be a bifunction satisfying the
following assumptions:

i. f(x, x) ≥ 0 for all x ∈ C;

ii. for every x ∈ C, the set {y ∈ C : f(x, y) < 0} is convex;

iii. for every y ∈ C, the function f(·, y) is upper semicontinuous on the intersection of C
with any finite dimensional subspace Z of E;
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iv. whenever x, y ∈ C, xn ∈ C, xn → x and f(xn, (1 − t)x + ty) ≥ 0 for all t ∈ [0, 1] and
for all n, then f(x, y) ≥ 0;

v. if C is unbounded, there exists a compact subset K of E, and y0 ∈ K ∩ C such that
f(x, y0) < 0 for every x ∈ C \K.

Then, there exists x ∈ C ∩K such that

f(x, y) ≥ 0 for all y ∈ C.

Note that condition iv. applied to the bifunction GT is equivalent to a property of the
operator T which is termed C-pseudomonotonicity in [?].

By applying the previous theorem to the bifunction GT , we can prove an existence result
for VI(T,C) (for related results, see also [?], [?], [?] and [?]). Let us first recall the following
Berge-type result:

Lemma 1. (see [?], Proposition 3.3, p. 83) Let E1, E2 be Hausdorff topological spaces,
u : E1 × E2 → R be an upper semicontinuous function, and F : E2 ⇒ E1 be an upper
semicontinuous map with nonempty, compact values. Then, the value function v : E2 → R
given by v(y) = supx∈F (y) u(x, y) is upper semicontinuous.

In our setting, E1 = X∗ will be endowed with the weak topology, and E2 = C ∩Z, with
the strong topology, where Z is a finite dimensional subspace of X. We get the following
result:

Theorem 2. Let T : X ⇒ X∗ and C be a nonempty, closed and convex subset of dom(T ).
Suppose that:

i. T (x) is bounded, closed and convex for every x ∈ C;

ii. T satisfies the following property: for every finite dimensional subspace Z of X, for
every {xk} ⊂ C ∩Z, xk → x, and x∗k ∈ T (xk), there is a subsequence {x∗kn} converging
in the weak topology to some point in T (x);

iii. T is B-pseudomonotone on C;

iv. if C is unbounded, there exists a weakly compact subset K of X, and y0 ∈ K ∩C such
that GT (x, y0) < 0 for every x ∈ C \K.

Then, VI(T,C) is solvable, and all weak solutions of this problem are strong.

Proof. We will show that all the assumptions of Theorem ?? are satisfied by the bifunction
GT (x, y) = supx∗∈T (x)〈x∗, y − x〉:

- i. and ii. of Theorem ?? follow easily from the definition of GT .
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- Under assumptions i. and ii., and the continuity in the weak × norm topology on X∗ ×
(C ∩ Z) of the function (x∗, x) → 〈x∗, y − x〉, by applying Lemma ?? we get that, for
every y ∈ C, the function GT (·, y) is upper semicontinuous on the intersection of C with
any finite dimensional space Z of X; therefore iii. of Theorem ?? is fulfilled.

- Let us now prove that iv. in Theorem ?? is implied by i. and iii. This could be done by
adapting Theorem 13 in [?] to our case. For the reader’s convenience, we provide below a
direct proof. Let x, y ∈ C, xn ∈ C, xn ⇀ x and GT (xn, (1− t)x+ ty) ≥ 0 for all t ∈ [0, 1],
that is

inf
t∈[0,1]

sup
x∗n∈T (xn)

〈x∗n, (1− t)x+ ty − xn〉 ≥ 0.

First, note that, from i.,

sup
x∗n∈T (xn)

〈x∗n, (1− t)x+ ty − xn〉 = max
x∗n∈T (xn)

〈x∗n, (1− t)x+ ty − xn〉.

Moreover, by the Sion minimax theorem,

inf
t∈[0,1]

(
max

x∗n∈T (xn)
〈x∗n, (1− t)x+ ty − xn〉

)
= max

x∗n∈T (xn)

(
inf
t∈[0,1]

〈x∗n, (1− t)x+ ty − xn〉
)
≥ 0.

Thus there exists x̄∗n ∈ T (xn) such that

〈x̄∗n, (1− t)x+ ty − xn〉 ≥ 0 for all t ∈ [0, 1]. (3.2)

In particular, for t = 0, we get 〈x̄∗n, x− xn〉 ≥ 0 and thus

lim sup
n
〈x̄∗n, xn − x〉 ≤ 0.

From the B-pseudomonotonicity we get in particular that, for every y ∈ C, there exists
x∗(y) ∈ T (x) such that

〈x∗(y), x− y〉 ≤ lim inf
n
〈x∗n, xn − y〉.

Thus
GT (x, y) ≥ lim sup

n
〈x∗n, y − xn〉 ≥ 0,

where the last inequality follows from (??) for t = 1.

Taking into account Theorem ?? we are now in the position to prove an existence result
for VI(T + αJ,C):

8



Theorem 3. Let T : X ⇒ X∗ be an operator and C be a nonempty, closed and convex
subset of dom(T ). Suppose that T satisfies i.-iii. of Theorem ??. Moreover, in case C is
unbounded, assume that there exists y0 ∈ C such that

lim sup
‖x‖→+∞, x∈C

GT (x, y0)

‖x− y0‖2−ε
< +∞, (3.3)

for some positive ε. Then, VI(T +αJ,C) is solvable, and all weak solutions of this problem
are strong.

Proof: Let us verify that the set–valued mapping Tα = T+αJ satisfies the assumptions
of Theorem ??, for any α > 0. Indeed, the images Tα(x) are bounded, closed and convex
for all x ∈ C. From the demicontinuity of J, easy computations show that Tα satisfies the
assumption ii. in Theorem ??. Moreover, since the sum of B-pseudomonotone operators is
B-pseudomonotone, (see [?], Proposition 6.15, p.368), by the properties of J, we get that
Tα is B-pseudomonotone.

Finally, the coercivity assumption (??), together with the coercivity property of J ,
entails that Tα satisfies iv. in Theorem ?? with respect to y0. In fact, note that

GTα(x, y0) = GT (x, y0) + α〈J(x), y0 − x〉.

Therefore, taking into account (??), we get

lim sup
‖x‖→+∞, x∈C

GTα(x, y0)

‖x− y0‖2−ε

= lim sup
‖x‖→+∞, x∈C

(
GT (x, y0)

‖x− y0‖2−ε
+ α
〈J(x), y0 − x〉
‖x− y0‖2−ε

)
≤ lim sup
‖x‖→+∞, x∈C

GT (x, y0)

‖x− y0‖2−ε
+ α lim sup

‖x‖→+∞, x∈C

〈J(x), y0 − x〉
‖x− y0‖2−ε

= −∞.

This implies that there exists M > ‖y0‖, such that

GTα(x, y0) < 0, ∀x ∈ C, ‖x‖ > M.

Therefore, GTα(x, y0) < 0 for every x ∈ C\K, where K is the weakly compact set BX(0,M).
�

From Theorem ?? we can recover the next result, proved in [?], Corollary 2.2:

Corollary 1. Let T : X ⇒ X∗, and C ⊆ int(dom(T )) be a nonempty, closed and convex
set. If T is monotone, convex-valued and s-w -closed on C, VI(T + αJ,C) has a unique
strong solution.
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Proof: Let us show that Theorem ?? can be applied. From the monotonicity, T is
locally bounded at every point of C; moreover, T (x) is closed and convex for x ∈ C. By
applying the Closed Graph Theorem (see Section 16.12, p. 529 in [?]), the s-w -closedness
of the graph, together with the local boundedness of T imply condition ii. of Theorem ??.
Note that, from Proposition ??, T is B-pseudomonotone on C. Finally, let us prove that
the coercivity condition (??) holds. Take any x0 ∈ C, and x∗0 ∈ T (x0). For every x ∈ C,
and x∗ ∈ T (x), the monotonicity of T implies that

〈x∗ − x∗0, x− x0〉 ≥ 0.

Thus
〈x∗, x− x0〉 ≥ 〈x∗0, x− x0〉 ≥ −‖x∗0‖‖x− x0‖

and eventually
〈x∗, x0 − x〉
‖x0 − x‖

≤ ‖x∗0‖, ∀x∗ ∈ T (x).

This implies that (??) holds. Furthermore, the strong monotonicity of the operator T +αJ
entails the uniqueness of the solution. �

4 Existence of solutions via approximate problems

The problem of finding solutions for VI(T,C) occurs in many practical fields and often is
ill-posed in the sense that small perturbation of the data may affect seriously the set of
solutions. Our aim in the sequel is to find conditions for avoiding ill-posedness in the sense
above. To this purpose we will introduce a sequence of approximate problems VI(Tk +
αkJ,Ck).

Let Tk, T : X ⇒ X∗ be operators, and Ck ⊆ dom(Tk), Ck 6= ∅, closed and convex, for
every k. Let αk > 0, αk → 0, and denote by xk ∈ Ck a strong solution of the regularized
variational inequality VI(Tk + αkJ,Ck), i.e., there exists x∗k ∈ Tk(xk) such that

〈x∗k + αkJ(xk), y − xk〉 ≥ 0, ∀y ∈ Ck. (4.1)

Beside the fact that solving the regularized problem VI(Tk + αkJ,Ck) is more convenient
from computational point of view, it is important to guarantee that any sequence {xk},
where xk is a solution of VI(Tk + αkJ,Ck), is approximating in some sense a solution of
the initial problem VI(T,C). For this reason, in this section we will investigate suitable
conditions leading on one hand to the existence of weak cluster points for a sequence of
strong solutions of VI(Tk + αkJ,Ck), and, on the other hand, to show that these weak
cluster points are indeed weak (strong) solutions of the original VI(T,C).

Let us start by analysing the first question. In other words, let xk be a strong solution of
VI(Tk + αkJ,Ck): under what conditions does there exist a bounded subsequence of {xk}?
Note first that, in case there exists a subsequence {Cnk} such that ∪nkCnk is a bounded
subset of X, this is trivially true. In the general case, the following result holds:
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Theorem 4. Let Ck, C be nonempty, closed and convex subsets of X, and Tk, T : X ⇒ X∗

be operators, such that

i. Ck ⊆ dom(Tk), and C ∪ {∪kCk} ⊆ dom(T );

ii. Haus(Tk(x), T (x)) ≤ βk
‖x‖+1 , for every x ∈ Ck, where βk > 0 and βk → 0;

iii. if ∪nkCnk is unbounded for every {nk}, the following coercivity condition holds: ∃x̃ ∈
∩kCk such that

lim sup
‖x‖→+∞, x∈∪kCk

GT (x, x̃) < 0.

Suppose that xk is a strong solution of VI(Tk+αkJ,Ck), for every k. Then, {xk} is bounded.

Proof: Suppose by contradiction that there exists an unbounded subsequence of {xk},
which will be denoted, by simplicity, also by {xk}. From ‖xk‖ → +∞, the coercivity condi-
tion iii. entails that

lim sup
k

sup
x∗∈T (xk)

〈x∗, x̃− xk〉 < 0. (4.2)

From the assumptions, for any fixed k there exists x∗k ∈ Tk(xk) such that

〈x∗k + αkJ(xk), y − xk〉 ≥ 0, ∀y ∈ Ck.

In particular,
〈x∗k + αkJ(xk), x̃− xk〉 ≥ 0.

From a well-known fact related to the notion of Hausdorff distance (see, for instance, Lemma
3.62 in [?]) given x∗k ∈ Tk(xk), for every ε > 0 there exists η∗k ∈ T (xk) such that

‖η∗k − x∗k‖ < Haus(Tk(xk), T (xk)) + ε.

Since ‖xk‖ → +∞, we may suppose xk 6= x̃ and, by taking εk = βk
‖xk−x̃‖ , from ii. we get

that there exists η∗k ∈ T (xk) such that

‖η∗k − x∗k‖ ≤
βk

‖xk‖+ 1
+

βk
‖xk − x̃‖

.

We have that

〈η∗k, xk − x̃〉 ≤ 〈x∗k − η∗k, x̃− xk〉+ αk〈J(xk), x̃− xk〉
≤ ‖x∗k − η∗k‖ · ‖x̃− xk‖+ αk‖xk‖(‖x̃‖ − ‖xk‖)

≤
(

βk
‖xk‖+ 1

+
βk

‖xk − x̃‖

)
· ‖x̃− xk‖+ αk‖xk‖(‖x̃‖ − ‖xk‖).

Since (‖x̃‖ − ‖xk‖) is negative for k big enough, we have that

〈η∗k, xk − x̃〉 ≤ βk
(
‖xk − x̃‖
‖xk‖+ 1

+ 1

)
.
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Since the right hand side goes to 0, we have that

lim sup
k
〈η∗k, xk − x̃〉 ≤ 0,

thereby contradicting (??). Indeed, from (??), we get that, for k big enough,

sup
x∗∈T (xk)

〈x∗, x̃− xk〉 ≤ c < 0,

and therefore, in particular, for k big enough,

〈η∗k, x̃− xk〉 ≤ c < 0.

�

Let us now face the second question, that is we look for sufficient conditions guaranteeing
that every weak cluster point of strong solutions of VI(Tk+αkJ,Ck) is indeed a weak (strong)
solution of the initial VI(T,C).

We recall first that an operator T : X ⇒ X∗ is said to be bounded if it maps bounded
subsets of the domain into bounded sets (see, for instance, Definition 1.4-(c), p.302 in [?]).
The following result holds:

Theorem 5. Let Ck, C be nonempty, closed and convex subsets of X, and let Tk, T : X ⇒
X∗. Assume that Ck ⊆ dom(Tk), C ∪ {∪kCk} ⊆ dom(T ), and either condition 1 or 2 is
satisfied:

1. i. C ⊆ s− lim inf Ck;

ii. T is bounded on ∪kCk;
iii. T is B-pseudomonotone on C ∪ {∪kCk};

2. i. C ⊆ Ck, for every k;

ii. T is B-pseudomonotone on ∪kCk.

Furthermore, suppose that

Haus(Tk(x), T (x)) ≤ βkq(x), ∀x ∈ Ck, ∀k,

where q : X → R+ is bounded on bounded sets, and βk > 0, βk → 0. Then, every point in
C which is a weak cluster point of a sequence of strong solutions of VI(Tk + αkJ,Ck) is a
weak solution of VI(T,C). If, in addition, T has weakly compact and convex values on C,
then the above solution is strong.

Proof: We will denote by Sk the operator Tk+αkJ : X ⇒ X∗. Suppose that x∗k ∈ Sk(xk)
satisfies

〈x∗k, z − xk〉 ≥ 0, ∀z ∈ Ck. (4.3)
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Fix any y ∈ C. From the assumptions 1.i., or 2.i., there exists yk ∈ Ck, yk → y; in particular,
in case 2.i. we can trivially take yk = y. Suppose that x ∈ C is a weak cluster point of
{xk}; then, there exists a subsequence {xnk} such that xnk ⇀ x. The assumption about the
Hausdorff distance implies that the following condition holds:

Haus(Sk(x), T (x)) ≤ Haus(Tk(x), T (x)) + αk‖x‖, ∀x ∈ Ck, ∀k.

Therefore,

Haus(Snk(xnk), T (xnk)) ≤ (αnk + βnk)(q(xnk) + ‖xnk‖), ∀k.

Take η∗nk ∈ T (xnk) such that
‖η∗nk − x

∗
nk
‖ → 0. (4.4)

Let us now distinguish case 1. and case 2.
Case 1.: Since η∗nk ∈ T (xnk) and {xnk} is bounded, it follows by ii. that also the

sequence {η∗nk} is bounded. We have

0 ≤ 〈x∗nk , ynk − xnk〉 = 〈x∗nk − η
∗
nk
, ynk − xnk〉+ 〈η∗nk , ynk − xnk〉,

or, equivalently,

〈η∗nk , y − xnk〉 ≥ 〈η
∗
nk
, y − ynk〉+ 〈η∗nk − x

∗
nk
, ynk − xnk〉.

Taking into account the boundedness of {η∗nk}, the strong convergence of {yk} to y, (??)
and the boundedness of {ynk − xnk}, we easily get that

lim inf
k
〈η∗nk , y − xnk〉 ≥ 0. (4.5)

Case 2.: Since y ∈ Cnk for all k, by (??) we have

〈η∗nk , y − xnk〉 = 〈η∗nk − x
∗
nk
, y − xnk〉+ 〈x∗nk , y − xnk〉 ≥ −‖η

∗
nk
− x∗nk‖ · ‖y − xnk‖. (4.6)

This implies (??).
The rest of the proof can now be carried on in both cases in the same way. By choosing

in (??) y = x, we can apply the B−pseudomonotonicity of T. This implies that, for every
z ∈ C, there exists x∗(z) ∈ T (x) such that

〈x∗(z), x− z〉 ≤ lim inf
k
〈η∗nk , xnk − z〉.

From (??), by setting this time y = z, we have that lim infk〈η∗nk , z − xnk〉 ≥ 0, i.e.
lim supk〈η∗nk , xnk−z〉 ≤ 0. Therefore, 〈x∗(z), z−x〉 ≥ 0, i.e. x is a weak solution of VI(T,C).
In addition, if T has weakly compact and convex values, by the Sion minimax theorem every
weak solution is actually a strong solution. �
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Remark 1. Note that a weak cluster point of a sequence of strong solutions of VI(Tk +
αkJ,Ck) belongs to C if we assume that

C ⊇ w − lim supCk. (4.7)

This is true, in particular, if the sequence Ck Mosco-converges to C.

Remark 2. The condition w− lim supCk ⊆ C ⊆ Ck is satisfied in case ∅ 6= C = ∩kCk, and
Ck+1 ⊆ Ck, for all k. Indeed, take any sequence {xnk}, such that xnk ∈ Cnk and xnk ⇀ x.
We have, in particular, that xnk ∈ ∩i≤nkCi, for all k. Since ∩i≤nkCi is weakly closed, we
have that x ∈ ∩i≤nkCi, for every k; in particular, x ∈ ∩iCi = C.

For the reader’s convenience we collect the assumptions providing the solvability of
VI(T,C). In the sequel, Tk, T will denote, as before, operators from X to X∗, as well as
Ck, C will be subsets of X.

(A) i. Ck is nonempty, closed and convex for every k, and {Ck} Mosco converges to C;

ii. Ck is nonempty, closed and convex for every k, w − lim supCk ⊆ C ⊆ Ck, for all
k;

(B) dom(Tk) ⊇ Ck, Tk(x) is bounded, closed and convex for every x ∈ Ck, Tk is B-
pseudomonotone on Ck and satisfies the following property: for every finite dimen-
sional subspace Z of X, for every {xn} ⊂ Ck ∩Z, xn → x, and x∗n ∈ Tk(xn), there is
a subsequence {x∗nj} converging in the weak topology to some point in Tk(x), and,
in addition, if Ck is unbounded, there exists ỹk ∈ Ck such that

lim sup
‖x‖→+∞, x∈Ck

GTk(x, ỹk)

‖x− ỹk‖
< +∞; (4.8)

(C) i. dom(T ) ⊇ C ∪ {∪kCk}, T is bounded on ∪kCk, and B-pseudomonotone on C ∪
{∪kCk}, Haus(Tk(x), T (x)) ≤ βk

‖x‖+1 , for every x ∈ Ck, where βk > 0 and βk → 0,

and, in case ∪nkCnk is unbounded for every {nk}, there exists x̃ ∈ ∩kCk such that

lim sup
‖x‖→+∞, x∈∪kCk

GT (x, x̃) < 0.

ii. dom(T ) ⊇ C ∪ {∪kCk}, T is B-pseudomonotone on ∪kCk, Haus(Tk(x), T (x)) ≤
βk
‖x‖+1 , for every x ∈ Ck, where βk > 0 and βk → 0, and, in case ∪nkCnk is

unbounded for every {nk}, there exists x̃ ∈ ∩kCk such that

lim sup
‖x‖→+∞, x∈∪kCk

GT (x, x̃) < 0.

Taking into account what was proved in this and in the previous section, we get the following
final existence theorem that extends to B-pseudomonotone operators a result proved by
Alber et al. in the monotone framework (see [?], Theorem 3.1):
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Theorem 6. Let X be a reflexive Banach space, C ⊆ X be a nonempty, closed and convex
set, and T : X ⇒ X∗ be an operator such that dom(T ) ⊇ C. Given the sequence {Ck, Tk},
where Ck ⊆ X, Tk : X ⇒ X∗, under the assumptions: (A)-i, (B), (C)-i, or (A)-ii, (B), (C)-ii,
VI(T,C) has a weak solution. If in addition T has weakly compact and convex values, all
weak solutions of this problem are strong.

Let us stress that, in fact, under the assumptions of Theorem 6 we have proved more;
namely, that the regularized problem VI(Tk + αkJ,Ck) admits a strong solution xk for all
k ∈ N, the sequence {xk} is bounded and that each weak cluster point of it is a solution of
VI(T,C).

5 Strong convergence of the approximating solutions

In the last section we focused on conditions leading to the weak convergence of a sequence of
strong approximate solutions of VI(Tk +αkJ,Ck) to a weak (strong) solution of the original
variational inequality VI(T,C). The aim of this section is to find out results that guarantee
more, that is, the strong convergence to a strong solution of VI(T,C). Taking into account
that, from the beginning, the Banach space X is assumed to be locally uniformly convex, we
have that the Kadeč–Klee property is automatically satisfied (see, for instance, [?], p.28).
This means that every sequence {xn} satisfying the two conditions

xn ⇀ x, ‖xn‖ → ‖x‖,

is strongly convergent to x, i.e., xn → x. Consequently, since we already have a weakly
convergent sequence, we look for conditions guaranteeing the convergence of the norms.

In the sequel we will denote by S(T,C) the set of strong solutions of VI(T,C) and we
will assume that the set S(T,C) is nonempty.

Proposition 2. Let T : X ⇒ X∗ be an operator satisfying the conditions

i. T is B-pseudomonotone on C ⊆ dom(T );

ii. T (x) is weakly compact and convex, for every x ∈ C.

Then S(T,C) is weakly closed.

Proof: Let {xn} be a sequence in S(T,C), i.e., there exists x∗n ∈ T (xn) such that

〈x∗n, y − xn〉 ≥ 0, ∀y ∈ C.

If xn ⇀ x ∈ C, taking y = x we have that

lim sup
n
〈x∗n, xn − x〉 ≤ 0.

From i., for every y ∈ C there exists x∗(y) ∈ T (x) such that

〈x∗(y), y − x〉 ≥ lim sup
n
〈x∗n, y − xn〉 ≥ 0,
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therefore x is a weak solution of VI(T,C). From ii., it is also a strong solution. �

From the result above, since the function x 7→ ‖x‖ is weakly lower semicontinuous on X,
there exists at least one strong solution in C with minimal norm. Let r ≥ 0 be the minimal
norm.

Lemma 2. If in Theorem ?? we replace the coercivity condition (??) by the following:
there exist r > 0 and y0 ∈ C, ‖y0‖ ≤ r, such that

GT (x, y0) ≤ αr(r − ‖y0‖), ∀x ∈ C, ‖x‖ > r,

then all solutions x of VI(T + αJ,C) will satisfy ‖x‖ ≤ r.

Proof: If there is no x ∈ C such that ‖x‖ > r, there is nothing to prove. Hence,
suppose that such x exists. Note that, if C is unbounded, then obviously (??) is satisfied,
and therefore VI(T + αJ,C) admits solutions due to Theorem ??. For arbitrary x ∈ C,
‖x‖ > r, we have:

GTα(x, y0) = GT (x, y0) + α〈J(x), y0 − x〉
≤ αr(r − ‖y0‖)− α‖x‖2 + α〈J(x), y0〉
≤ αr(r − ‖y0‖)− α‖x‖2 + α‖x‖ · ‖y0‖
= α(r − ‖x‖)(r − ‖y0‖+ ‖x‖)
< 0.

Let now x be an arbitrary solution of VI(T + αJ,C). Then GTα(x, y) ≥ 0, for every y ∈ C,
thus GTα(x, y0) ≥ 0 implies ‖x‖ ≤ r. �

Let us consider the following coercivity assumption, that strengthens the previous (??):

if Ck is unbounded, there exists ỹk ∈ Ck such that

GTk(x, ỹk) < αkr(r − ‖ỹk‖), ∀x ∈ Ck, ‖x‖ > r. (5.1)

The next theorem provides conditions entailing that a suitable subsequence of approxi-
mate solutions strongly converges to a minimal norm solution of VI(T,C).

Theorem 7. Let X be a reflexive and locally uniformly convex Banach space. Let C ⊆ X
be a nonempty, closed and convex set, and T : X ⇒ X∗ be an operator with weakly
compact and convex values such that dom(T ) ⊇ C. Set r = min{‖x‖ : x ∈ S(T,C)}.
Given the sequence {Ck, Tk}, where Ck ⊆ X, Tk : X ⇒ X∗, suppose that (??) is fulfilled,
xk is a strong solution of VI(Tk + αkJ,Ck) for every k, and {xk} is bounded. Under the
assumptions of Theorem ??, together with condition (??), {xk} admits a strong cluster
point which belongs to S(T,C).
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Proof: Let us denote by {xnk} a subsequence of {xk} converging weakly to x. Note
that, by (??), x ∈ C. By Theorem ??, we have that x ∈ S(T,C). Furthermore, by applying
the previous lemma for any k, one obtains that ‖xnk‖ ≤ r. Since ‖ · ‖ is weakly l.s.c.,

r ≤ ‖x‖ ≤ lim inf
k
‖xnk‖ ≤ lim sup

k
‖xnk‖ ≤ r,

thus
r = lim

k
‖xnk‖ = ‖x‖. (5.2)

Therefore, by the Kadeč-Klee property, {xnk} converges strongly to a minimal-norm solution
of VI(T,C). �

6 The Navier-Stokes operator

In the following we provide an example of an operator T which is B-pseudomonotone, but
not monotone, and for this reason it does not fit into the framework of Alber et al. ([?]).
The Navier-Stokes operator is indeed an interesting example of B-pseudomonotone and
bounded operator.

Let us recall that an operator N : X → X∗ is called a Navier-Stokes operator if

Nu = Au+B[u],

where

i. A : X → X∗ is a linear, continuous and symmetric operator such that

〈Au, u〉 ≥ α‖u‖2, for all u ∈ X

for a suitable positive α;

ii. B[u] = B(u, u), where B : X×X → X∗ is a bilinear continuous operator satisfying the
conditions

a. 〈B(u, v), v〉 = 0, for u, v ∈ X,

b. the map B[·] : X → X∗ is weakly continuous.

In [?] it was proved that N is B-pseudomonotone. Concerning the boundedness, note that
A is obviously bounded, since it is linear and continuous, while the boundedness of B[·]
follows from ii.b. Indeed, suppose by contradiction that B[·] is not bounded. Thus there
exists a bounded set C, which can be assumed convex and closed without loss of generality,
such that B[C] = ∪u∈CB[u] is unbounded. Hence there exists {un}, un ∈ C such that
‖B[un]‖ → +∞. Let {unk} be a weakly convergent subsequence of {un}, unk ⇀ u ∈ C.
By the weak continuity of B[·], we get B[unk ] ⇀ B[u], and thus ‖B[unk ]‖ is bounded, a
contradiction.

Let us prove that for some suitable operators B such that B[·] is not identically 0, the
Navier-Stokes operator is not monotone. Take a functional b : X ×X ×X → R such that
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i. b is linear with respect to each of its variables;

ii. b(u, v, w) = −b(u,w, v), for all u, v, w ∈ X;

iii. there exists w ∈ X such that the function u→ b(w, u,w) is not identically 0;

iv. whenever un ⇀ u, then b(un, un, v)→ b(u, u, v) for all v ∈ X.

Such a functional does exist (see [?] for a specific example in Sobolev spaces), and we can
define via b the operator

B : X ×X → X∗, 〈B(u, v), w〉 = b(u, v, w).

From iii., the operator B[·] is not identically 0. The operator N turns out to be a Navier-
Stokes operator (see Lemma 2 in [?]). Let us now prove that N is not monotone. For any
u, v ∈ X by simple computation, taking into account the properties of b, we get

〈N(v)−N(u), v − u〉 = 〈A(v − u), v − u〉+ 〈B[v]−B[u], v − u〉
= 〈A(v − u), v − u〉 − 〈B(v, v), u〉 − 〈B(u, u), v〉
= 〈A(v − u), v − u〉 − b(v, v, u) + b(u, v, u).

Fix w ∈ X such that b(w, ·, w) is not identically 0, and set v = u+ w. Then,

〈N(u+ w)−N(u), w〉 = 〈Aw,w〉+ b(w, u,w).

From the linearity in each component, infu∈X b(w, u,w) = −∞, and thereby we reach a
contradiction.
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