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Let G be a (non compact) connected, simply connected, 
locally compact, second countable Lie group, either abelian 
or unimodular of type I, and let ρ be an irreducible unitary 
representation of G. Then, we define the analytic torsion of 
G localised at the representation ρ. The idea of considering 
localised invariants is due to Brodzki, Niblo, Plymen and 
Wright [5], and was exploited in [31] to define a localised eta 
function. Next, let Γ be a discrete co compact subgroup of 
G. We use the localised analytic torsion to define the relative 
analytic torsion of the pair (G, Γ), and we prove that the last 
coincides with the Lott L2 analytic torsion of a covering space. 
We illustrate these constructions analysing in some details 
two examples: the abelian case, and the case G = H, the 
Heisenberg group.
© 2024 The Author(s). Published by Elsevier Inc. This is an 
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1. Introduction

The aim of this note is to discuss some possible generalisation of analytic torsion [26]
to non compact Lie groups. First, we introduce and investigate the concept of localised 
analytic torsion for a non compact Lie group G. In brief, localised analytic torsion is 
the analytic torsion of the field of operators defined by localising the natural Hodge 
Laplace operator on G at some representation of G. This approach is suggested by work 
of J. Brodzki, G.A. Niblo, R. Plymen, and N. Wright [5], where the idea of operators 
localised at some representation of a non compact Lie group was originally introduced. 
The key point, for what we are concerned with, is that the spectrum of such operators 
turns out to be discrete. Following this approach, we introduced and studied in [31] the 
eta function of the Dirac operator localised at a representation of the universal covering 
group of SL(2, R). Second, assuming that G has a discrete co-compact subgroup Γ, we 
define what we call the relative analytic torsion of the pair (G, Γ). This is the natural 
analog of the L2 analytic torsion of a covering space introduced by J. Lott [19], and 
indeed we prove their equivalence. In order to illustrate these constructions, we present 
a detailed analysis of two particular examples: the abelian case, G = R, and the case of 
G = H, the Heisenberg group. We conclude by proposing a “geometric” interpretation 
of relative analytic torsion in terms of the classical analytic torsion. This interpretation 
works nicely in the abelian case, though it is less natural in the case of the Heisenberg 
group.

Now, let us look the plan of the work in more details. The Reidemeister torsion (R 
torsion) of a finite combinatorial complex K is a kind of determinant in the Whitehead 
group Wh(Zπ1(K)), which describes the way in which the ‘cells’ of the universal covering 
complex are fitted together with respect to the action of the fundamental group [21]. 
When K is a triangulation of a compact, connected, oriented Riemannian manifold (M, g)
(for simplicity without boundary), it is natural to ‘change’ the ring by some orthogonal 
representation α : π1(M) → O(V ) of the fundamental group. Then, R torsion is a 
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topological invariant of the triple (M, h, α), where h is a basis for the rational homology 
determinant line bundle of M . In this situation, Ray and Singer introduced an analytic 
object called analytic torsion, constructed from the de Rham complex of M twisted 
by α, and conjectured its equivalence with R torsion, when the homology basis h is 
the one fixed by an orthonormal graded basis of harmonic forms determined by g [26]. 
J. Cheeger [7] and W. Müller [22] independently proved this conjecture. The analytic 
torsion is defined as follows. Let (Ω•(M, Eα), d•) be the de Rham complex of the forms 
on M with coefficients in the real vector bundle Eα = M̃ ×α V , associated to α. The 
Riemannian metric on M provides an inner product and makes the de Rham complex a 
complex of Hilbert spaces. Let Δ•

α be the associated Hodge Laplace operator. Whence, 
Δ•

α will have a pure point spectrum, with unique accumulation point at infinity. Then, 
for complex s, with Re(s) large, the zeta function of Δq

α is defined by [26]

ζ(s,Δq
α) =

∑
0�=λ∈SpΔ(q)

α

λ−s.

Setting (that we call analytic torsion zeta function)

t(s;M,α) = 1
2

dimM∑
q=0

(−1)qqζ(s,Δ(q)
α ),

we define the analytic torsion of M in the representation α:

T (M,α) = t′(0;M,α).

If M is not compact, it is not clear what torsion would be. In [31], we proposed an 
analog of the eta function (that is a spectral invariant defined in terms of some zeta 
function for compact manifold, closely similar to analytic torsion), called localised eta 
function for non compact Lie groups. Here we consider the corresponding definition for 
analytic torsion. For let G be a (non compact) connected, simply connected, locally com-
pact, second countable Lie group, either abelian or unimodular of type I, equipped with 
a fixed Haar measure. Then G is a smooth Riemannian manifold with a particular metric 
determined by left invariance. For this reason we will omit explicit reference to the metric 
in the notation in the following. Let Δ denote (some self adjoint extension of the formal) 
Hodge Laplace operator on square integrable forms on G associated to this metric. Let ρ
be an irreducible unitary representation of G. There exists a measurable field of Hilbert 
spaces h �→ Hh, called the canonical field, and a field of measurable representations 
h �→ ρh, such that ρh belongs to the class h ∈ Ĝ, the dual group of G [11, 8.6.1, 8.6.2]. In 
this setting, Δ determines a continuous field of self adjoint operators, dρhΔ. Assuming 
that for each fixed h the spectrum SpdρhΔ of dρhΔ is a discrete sequence with some 
suitable properties (such sequences are called of spectral type in [30], see also [32]), we 
may associate to SpdρhΔ some spectral functions, and in particular the zeta function. 
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If one is able to prove that the analytic extension of this zeta function is regular at the 
origin, one can define the localised analytic torsion of dρhΔ as the derivative at the origin 
of the zeta function. All this is in Section 3.

Next, assuming that G has a discrete co-compact subgroup Γ, we may introduce some 
analogue of analytic torsion for the pair (G, Γ). The construction is inspired by the one 
proposed by Lott in [19] (see also [20] and [6]), for a covering space. This was largely 
based on the properties of the heat kernel. In fact, using the Mellin transform, the zeta 
function of the Hodge Laplace operator may be restated by

ζ(s,Δq
α) = 1

Γ(s)

∞∫
0

ts−1Tre−tΔ(q)
α dt,

and the knowledge of the behaviour of the trace of the heat operator for large and small 
t are the main tools to study the analytic properties of the zeta function. Hence, a key 
point in the construction of the analogue of the analytic torsion for covering is to replace 
the trace of the heat operator with a suitable alternative. This alternative is given by the 
Diximier trace. Our definition of what we call relative torsion of the pair (G, Γ) follows 
the alternative approach of exploiting the localised analytic torsion and gluing it along 
the dual group. For we need some technical result about traces and fields of operator 
that we develop in Section 2. The second part of Section 3 contains our definition of 
relative torsion for a pair (G, Γ).

Finally, we consider two examples to illustrate our results. The first is the abelian 
case, developed in Section 4. In the last Section 5, we study the case G = H the three 
dimensional Heisenberg group. Working out the abelian case, it turns out that the relative 
analytic torsion of the pair (R, Z) has a natural description as the continuous sum with 
respect to the Plancherel measure of the analytic torsion of the quotient space T = R/Z

over the irreducible representation of Z. We try to find out a similar interpretation for 
the relative torsion of the pair (H, Γ) (where Γ is the discrete integral Heisenberg group). 
Unfortunately, we succeed partially: specifically, the spectral invariants appearing are not 
so natural as in the abelian case, and do not have a geometric interpretation.

2. Traces and fields of operators

In this work we assume that G is a connected, simply connected, locally compact, 
second countable Lie group, either abelian or unimodular of type I, with a discrete co-
compact subgroup Γ, and a fixed Haar measure dg. These assumptions may appear quite 
overwhelming, however they cover the cases of interest in this work. A comprehensive 
approach for a larger family of Lie groups seems extremely unlikely, but other families 
may be tackled with the suitable technical arrangements.

Note that in the following we will use results of [11], given there for separable postlim-
inal groups. However, for second countable groups type I and postliminal are equivalent 
[11, 13.9.4].
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Let Ĝ denote the dual space of equivalence classes of unitary representations of G. 
There exists a measurable field of Hilbert spaces h �→ Hh, called the canonical field, and 
a field of measurable representations h �→ ρh, such that ρh belongs to the class h ∈ Ĝ

[11, 8.6.1, 8.6.2]. Then, the Plancherel theorem states that there exists a unique positive 
measure dμ(h) on Ĝ (the Plancherel measure), and an isomorphism [11, 18.8.1,2,3]

F : L2(G) →
⊕∫

Ĝ

Hh ⊗ H̄hdμ(h),

that extends to the following isomorphisms (all denoted by the same symbol)

F : L →
⊕∫

Ĝ

ρh ⊗ 1dμ(h), F : R →
⊕∫

Ĝ

1 ⊗ ρ̄hdμ(h),

F : L →
⊕∫

Ĝ

B(Hh) ⊗ Cdμ(h), F : R →
⊕∫

Ĝ

C⊗B(H̄h)dμ(h),

where L and R are the von Neumann algebras on L2(G) generated respectively by the 
left and right regular representations L and R of G, and B(Hh) denotes the space of the 
bounded operators on Hh.

In particular, if u ∈ L1(G) ∩ L2(G),

û(h) = F(u)(h) =
∫
G

u(g)ρh(g−1)dg,

the group Fourier transform, and we have the inversion formula [14, (7.38)]

u(g) = F−1F(u)(g) =
⊕∫

Ĝ

Tr (ρh(g)F(u)(h)) dμ(h).

The last point, that is the more relevant for our analysis, is the isomorphism

F : TrG →
⊕∫

Ĝ

Tr dμ(h),

where TrG is the natural Diximier trace on L2(G) (we described it in more details in 
the following), and Tr the standard trace of a trace class operator in (B(Hh) ⊗C)+ (the 
subspace of positive operators).

To proceed, take a positive operator T in L (or in R). Then, we have a measurable 
field of operators h → FAF−1(h) on 

∫ ⊕
ˆ Hh ⊗ Cdμ(h) (or 

∫ ⊕
ˆ C ⊗ H̄hdμ(h)), and
G G
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TrGT =
⊕∫

Ĝ

TrFTF−1(h)dμ(h). (2.1)

We explore this construction in some details, specialising to the family of operators 
we will be interested in.

2.0.1. The Diximier trace
We detail the definition of the traces TrG and TrΓ, and we provide a local description, 

main reference for this part are [1] [2] [10]. To begin with, take f ∈ L1(G) ∩ L2(G). By 
the Plancherel Theorem,

f(e) =
⊕∫

Ĝ

Trf̂(h)dμ(h),

is finite since the operator f̂(h) is Hilbert Schmidt, and therefore defines a trace on 
L1(G) ∩ L2(G). Since, C∞

0 (G) ⊆ L1(G) ∩ L2(G), we have that C∞
0 (G) ⊆ 〈R(L1(G) ∩

L2(G))〉 as subalgebras (the first with convolution product), and the inclusion is dense, 
and hence we may extend by closure and linearity, to have a trace on the von Neumann 
algebra 〈R(L1(G) ∩ L2(G))〉, that, viewed as a subalgebra of R(L1(G)), coincides with 
the subalgebra of the von Neumann algebra generated by R(G), i.e. RG. Therefore, we 
have a function with real values, and restricting to the family R+

G of the operators such 
that this value is positive, we have a trace:

TrG : R+
G → R+,

TrG : A �→ TrGA.

In particular, if A = R(f) ∈ R+
G,

R(f)(u)(h) =
∫
G

f(g)R(g)(u)(h)dg =
∫
G

f(g)u(hg)dg = u � f(h),

then,

TrGR(f) = f(e).

Next, since restriction of left multiplication defines a unitary action � of Γ on L2(G), 
we have the identification

L2(G) ∼= l2(Γ) ⊗ L2(Q) ∼= l2(Γ) ⊗ L2(Γ\G),
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where Q is a fundamental domain of �. Denote by B the von Neumann algebra of the 
bounded operators on L2(G) that commute with Γ, B = {T ∈ B(L2(G)) | T�(γ) =
�(γ)T, ∀γ ∈ Γ}.

Under the identification above, the action of Γ on L2(G) corresponds to the left regular 
representation LΓ of Γ on l2(Γ) extended by the identity on L2(Γ\G): � ∼= LΓ ⊗ 1. But 
then, the von Neumann algebra B is the von Neumann algebra generated by RΓ(Γ)
tensor the space of all bounded operators,

B ∼= RΓ ⊗B(L2(Γ\G)).

We may now define a trace on B as follows. A trace on RΓ is defined on the generators, 
i.e. on R(Γ), by

trΓ : R(Γ) → R+,

trΓ : R(γ) �→ δγ,e,

and extended by closure and linearity. A trace on B(L2(Γ\G)) is the Hilbert Schmidt 
trace Tr, so we put

TrΓ : RΓ ⊗B(L2(Γ\G)) → R+,

TrΓ : S ⊗ T �→ trΓS TrT,

and we say that S ⊗ T is of Γ-trace class if its trace is finite.
There is a local description, more suitable to work in the smooth category, of this 

trace as follows [1, pg. 58 and Proposition 4.16, pg. 63]. Any bounded operator A on 
L2(G) has a Schwartz kernel k(a, b; A) that is a distribution on G × G. If A is left Γ
invariant, then

k(γa, γb;A) = k(a, b;A),

and viceversa, and therefore k(a, b; A) may be viewed as a distribution on (G × G)/Γ. 
We have the following result [1]. Suppose that A ∈ B has a smooth kernel k(a, b; A), and 
is positive and self adjoint. Then, A is of Γ-trace class, and

TrΓA =
∫

Γ\G

k(g, g;A)dg.

These two traces, TrG and TrΓ, are indeed equivalent, up to a scalar factor. For observe 
that the von Neumann algebra B = RΓ⊗B(L2(Γ\G)) contains the von Neumann algebra 
RG. Suppose that A is an G-left invariant operator on L2(G). Whence, A ∈ L(G)′ =
RG ⊆ B, whence the Γ-trace of A is defined. Note that R(L1(G)) ⊆ RG, so we have in 
RG the operators R(f), with f ∈ L1(G) ∩ L2(G). Since,
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R(f)(u)(a) =
∫
G

f(g)R(g)(u)(a)dg =
∫
G

f(g)u(ag)dg =
∫
G

f(a−1t)u(t)dt,

R(f) is the integral operator with kernel k(a, g; R(f)) = f(a−1g). The Γ trace of R(f)
is well defined and

TrΓR(f) = k(e, e;R(f))
∫

Γ\G

dg = Vol(Γ\G)f(e) = Vol(Γ\G)TrGR(f).

Since R(L1(G)) is dense in RG, it follows that for all operators A ∈ RG:

TrΓA = Vol(Γ\G)TrGA.

2.0.2. The localised trace
We pass to give a suitable interpretation of the right side of equation (2.1). The key 

point is a suitable description of the group Fourier transform and of the dual Haar 
measure. This may depend strongly on the particular group. However, we pursue the 
general approach as far as possible.

We start by observing that the representation ρh has an associated representation [16]
[29, 3.1] [25]

dρh : g → L(H),

where L(H) is the Lie algebra of the skew symmetric operators on H, and formally 
(whenever the limit exists)

dρh(V )(u) = lim
t→0

ρh(etV )(u) − u

t
= d

dt
ρh(etV )(u)

∣∣∣∣
t=0

.

This representation extends to a representation of the universal enveloping algebra 
U(g), and we will use this fact implicitly, without further comment or variation of the 
notation. In particular, this means that we will apply dρh to polynomials on elements of 
g (at most of degree two with real coefficients) just by linearity [16, Theorem 3.1].

We recall a few important properties of dρh. Consider the subspace of H of the com-
pactly supported C∞ vector fields:

H0 = {v ∈ H | v = ρh(ϕ)(u), ϕ ∈ C∞
0 (G), u ∈ H} .

Then, if V ∈ g, we have the following facts:

(1) H0 is dense in H,
(2) H0 ≤ D(dρh(V )), for all V ∈ g,
(3) dρh(V )(H0) ≤ H0, for all V ∈ g,
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(4) ρh(g)(H0) ≤ H0, for all g ∈ G,
(5) the minimal closed extension of the restriction of dρh(V ) to H0 is dρh(V ).

Now, take a basis {Xk} of g, and let {xk(t) = γVk,e(t) = etXk} denote the correspond-
ing local coordinate system on G near e, i.e. the integral curves of the Xk at e. The 
infinitesimal generators dρh(Xk) of ρh at g are defined by

etdρh(Xk) = ρh(etXk).

Thus,

dρh(Xk) = d

dt
etdρh(Xk)

∣∣∣∣
t=0

= d

dt
ρh(etXk)

∣∣∣∣
t=0

= ∂xk
ρh(x)|x(0) = Xk(ρh)(e). (2.2)

Consider the operator valued smooth function ϕ(g)ρ(g−1), ϕ ∈ C∞
0 (G). Then

∂xk
(ϕ(x(g))ρ†h(x(g))) = ∂xk

(ϕ(x(g)))ρ†h(x(g)) + ϕ(x(g))∂xk
ρ†h(x(g))

= ∂xk
(ϕ(x(g)))ρ†h(x(g)) + ϕ(x(g))∂xk

ρ†h(x(g))

= Xk(ϕ)(g)ρ†h(x(g)) + ϕ(g)Xk(ρ†h)(g).

Since

d(ϕ(x(g))ρ†h(x(g)) =
∑
k

∂xk
(ϕ(x(g))ρ†h(x(g)))dxk,

and by the Stokes theorem on G, ∫
G

d(ϕ(g)ρ†h(g)) = 0,

we find that ∫
G

Xk(ϕ)(g)ρ†h(g)dg =
∫
G

ϕ(g)Xk(ρ†h)(g)dg. (2.3)

We use these facts as follows. First, observe that the left side of equation (2.3) is the 
group Fourier transform of Xk(ϕ):

F(Xk(ϕ))(h) =
∫
G

Xk(ϕ)(g)ρ†h(g)dg.

Second, about the right side, note that as a function of t,

d
ρh(etXk) = Xk(ρh)(g);
dt
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but then, with g = esXk ,

Xk(ρh)(g) = d

dt
ρh(e(s+t)Xk)

∣∣∣∣
t=0

= ρh(g) d
dt

ρh(etXk)
∣∣∣∣
t=0

= ρh(g)Xk(ρh)(e).

Whence∫
G

ϕ(g)Xk(ρ†h)(g)dg = Xk(ρ†h)(e)
∫
G

ϕ(g)ρ(g−1dg = −dρh(Xk)F(ϕ),

and we have proved that

FXkF−1(h) = dρh(Xk). (2.4)

Proposition 2.0.3. Let T be a positive operator in R, then

TrΓT = Vol(Γ\G)
⊕∫

Ĝ

Trdρh(T )dμ(h).

Furthermore, if T is a self adjoint integral operator with smooth kernel k(h, g; T ), then

∫
Γ\G

k(g, g;T )dg = Vol(Γ\G)
⊕∫

Ĝ

Trdρh(T )dμ(h).

3. Localised analytic torsion and relative analytic torsion

We are now ready to introduce the definitions of the main objects of interest in this 
work. Given an adjointable operator S acting on L2(G), and a representation (ρh, Hh), 
h ∈ Ĝ, we call the localisation of S at ρh the fibre S(h) of the field of operators h �→
FTF−1(h) acting on 

∫ ⊕
Ĝ

Hh⊗H̄hdμ(h). We call localised spectrum of S the spectrum of 
S(h) (these definitions are a particular instance of [5, 3.1]). Thus the localised spectrum 
of S is the fibre of a field of spectra, in particular in the cases of interest, the fibre of a 
continuous field of sequences of real numbers with unique accumulation point at infinity. 
Note that, by equation (2.4), S(h) = dρh(S).

In order to proceed, we fix the left invariant Riemannian metric on G that makes the 
basis {Xk} orthonormal, and denote by � the induced Hodge operator. Since G is a Lie 
group, we can fix global bases, and we have the decomposition

L2(γ(G,Λ•T ∗G)) = L2(G) ⊗ Λ•T ∗G.

We denote by Ω•(G) = Γ(G, Λ•T ∗G)) the space of smooth sections, and by Ω•
0(G) the 

space of the smooth sections with compact support. We denote by d the minimal closed 
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extension of the exterior derivative operator on Ω•
0(G), and by (D(d•), d•) the associated 

de Rham complex of Hilbert spaces and closed operators. We denote by δ the adjoint 
of d, and by Δ = dδ + δd the associated Hodge Laplace operator. This is a self adjoint 
non negative operator with maximal domain the Sobolev space H2(G) (equivalently we 
may construct the formal Hodge Laplace operator on the Ω•

0(G), that is essentially self 
adjoint [8] [24]). In particular, observe that Δ is left invariant by construction.

Since G is the universal cover of the compact manifold Γ\G, the heat operator e−tΔ, 
t > 0, is a bounded integral operator with smooth kernel by a form in G ×G [8]. Whence, 
it is in RG and it has finite G trace [1]. In particular, by the Plancherel Theorem, this 
means that dρh(e−tΔ(q)) is of trace class, and hence Δq(h) has discrete spectrum, denoted 
by SpΔ(q)(h). Therefore,

TrΓe−tΔ(q)
= Vol(Γ\G)

⊕∫
Ĝ

Trdρh(e−tΔ(q)
)dμ(h), (3.1)

and

Trdρh(e−tΔ(q)
) = Tre−tdρhΔ(q)

=
∑

λ(q)(h)∈SpΔ(q)(h)

e−tλ(q)(h). (3.2)

We set

Tre−tdρhΔ =
m∑
q=0

(−1)qqTre−tdρhΔ(q)
,

and

TrΓe−tΔ =
m∑
q=0

(−1)qqTrΓe−tΔ(q)
.

The main analytic properties of the function TrΓe−tΔ(q) as a function of t were inves-
tigated in [19]. In particular, it was proved that the behaviour for small t is the same 
as that of the trace of the heat kernel of the Hodge Laplace operator on the compact 
quotient Γ\G.

In this setting, we introduce the following definitions. We call zeta function of Δ(q)

localised at the representation ρh, h ∈ Ĝ, the function of the complex variable s defined 
for large Re(s) by the series

ζ(s,Δ(q)(h)) =
∑

λ(q)(h)∈Sp+Δ(q)(h)

λ(q)(h)−s,

and by analytic continuation elsewhere. Thus, ζ(s, Δ(q)(h)) is the fibre of a field of 
functions on Ĝ. The analytic properties of the localised zeta function are determined by 
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the asymptotic for small and large t of the trace of the localised heat operator by the 
Mellin transform

ζ(s,Δ(q)(h)) = 1
Γ(s)

∞∫
0

ts−1Tre−tΔ(q)
+ (h)dt.

We call analytic torsion zeta function of the group G localised at the representation 
ρh, h ∈ Ĝ, the graded sum

t(s;G, h) =
m∑
q=0

(−1)qqζ(s,Δ(q)(h)), (3.3)

and assuming that this is regular at s = 0, we call localised analytic torsion of G the 
complex vector field on Ĝ

T(G;h) = d

ds
t(s;G, h)

∣∣∣∣
s=0

. (3.4)

Next, let Ĝ0 denote the subspace of Ĝ determined by the following requirement: 
h ∈ Ĝ− Ĝ0 if and only if there exist real numbers Kh and K such that

Spdρh(Δ(q)) > Kh > K > 0,

for all q. Then, we call relative analytic torsion of the pair (G, Γ) the (possibly infinite) 
number

TΓ(G) = Vol(Γ\G) d

ds

⊕∫
Ĝ−Ĝ0

t(s;G, h)dμ(h)

∣∣∣∣∣∣∣
s=0

+ Vol(Γ\G)
⊕∫

Ĝ0

T(G;h)dμ(h). (3.5)

It will be useful to introduce also the relative analytic torsion zeta function

tΓ(s;G) =
⊕∫

Ĝ−Ĝ0

t(s;G, h)dμ(h), (3.6)

such that

TΓ(G) = Vol(Γ\G) d

ds
tΓ(s;G)

∣∣∣∣
s=0

+ Vol(Γ\G)
⊕∫

ˆ

T(G;h)dμ(h).

G0
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This definition is clearly inspired by Definition 2 of [19],

TΓ(G) = d

ds

ε∫
0

ts−1 1
Γ(s)TrΓe−tΔ+dt

∣∣∣∣∣∣
s=0

+
∞∫
ε

1
t
TrΓe−tΔ+dt.

where

TrΓe−tΔ+ =
m∑
q=0

(−1)qqTrΓe−tΔ(q)
+ ,

and in fact we prove that they are equivalent for a significant family of groups, see 
Proposition 3.0.4. This family is defined by the assumptions introduced below.

Assumption 3.0.1. In the following we omit the dependence on q in the constants.

(1) The space Ĝ is homeomorphic to a subset A of Rk, for some k.
(2) The Plancherel measure in A reads dμ(h(a)) = f(a)da, a ∈ A, where da is the clas-

sical Lebesgue measure, and f(a) some continuous (smooth) non negative function 
integrable on A.

(3) The eigenvalues λ(q)(h(a)) of dρh(a)Δ(q) are continuous (smooth) functions of a, 
monotone in ‖a‖ (by this we mean that if ‖a1‖ ≤ ‖a2‖, then λ(q)

n (h(a1)) ≤
λ

(q)
n (h(a2)), recall these eigenvalues are non negative real numbers).

(4) For all a ∈ A:

λ(q)
n (h(a)) > Cnα‖a‖β ,

for some positive constants C, α ≥ 1, β.
(5) For all a ∈ A:

f(a) ≤ ‖a‖κ,

with κ ≥ 1.
(6) For 0 < t ≤ 1:

Tre−tdρh(a)Δ(q)
=

J∑
j=0

c
(q)
j (a)tj−j0 + c(q)(a, t),

for integers j0 ≤ J , c(q)j ∈ L1(A, f(a)da), c(q) ∈ L1(A × (0, 1], f(a)dadt), with 
c(q)(a, t) ≥ 0, for a ∈ A, and

c(q)(a, t) ≤ c(q)tJ−j0 ,

for some positive constant c(q).
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Note that the requirement on the large t behaviour of TrΓe−tΔ assumed in [19], Note 
1.3, follows by these assumptions.

Note also that the measurable fields introduced above are continuous under assump-
tions (1) and (2).

Proposition 3.0.2. The localised torsion zeta function t(s; G, h) of G is analytic for s > j0, 
and has an analytic continuation to C with possible simple poles located at the integers 
points of type j − j0, j = 0, 1, 2, . . . , j �= j0.

Proof. This follows by assumption (4), using classical methods (see for example [18] or 
[31]). By definition

ζ(s,Δ(q)(h(a))) =
∑

λ(q)(h(a))∈Sp+Δ(q)(h(a))

λ(q)(h(a))−s.

with a ∈ A. Since Sp+Δ(q)(h(a)) is a discrete set of positive numbers, we write 

Sp+Δ(q)(h(a)) = {λ(q)
n (h(a))}∞n=1, where the λ(q)

n are smooth functions of a by As-
sumption (3). Thus,

ζ(s,Δ(q)(h(a))) =
∞∑

n=1
λ(q)
n (h(a))−s.

By the Mellin transform

ζ(s,Δ(q)(h(a))) = 1
Γ(s)

∞∫
0

ts−1
∞∑

n=1
e−tλ(q)

n (h(a))dt

= 1
Γ(s)

1∫
0

ts−1
∞∑

n=1
e−tλ(q)

n (h(a))dt + 1
Γ(s)

∞∫
1

ts−1
∞∑

n=1
e−tλ(q)

n (h(a))dt �

Proposition 3.0.3. Let G1 and G2 be two Lie groups as above, and [ρ1,h1 ] ∈ Ĝ1, [ρ2,h2 ] ∈
Ĝ2. Then, (with a little obvious change of notation)

T(G1 ×G2, ρ1,h1 ⊗ ρ2,h2) = χ(G1, ρ1,h1)T(G2, ρ2,h2) + χ(G2, ρ2,h2)T(G1, ρ1,h1),

where χ(G, ρh) =
∑dimG

q=0 (−1)q dim ker dρhΔ(q).

Proof. This follows as in the proof of Theorem 2.3 of [26] or point (2) pg. 268 of [22]. �
Proposition 3.0.4. If the Assumptions 3.0.1 are satisfied, then, when both defined, 
TΓ(G) = TΓ(G).
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Proof. Let A be the subset of Rk in Assumption 3.0.1(1). Let denote by A0 the inter-
section of A with an open ball of 0 with radius ε in Rk, by A∞ the intersection of A
with an open ball of infinity of radius δ. By Assumptions (1) and (3), it follows that Ĝ0
is homeomorphic to A0 (up to readjusting some constants).

We want to prove that

I1 = d

ds

∫
A−A0

∞∑
n=1

λ(q)
n (h(a))−sf(a)da

∣∣∣∣∣∣
s=0

+
∫
A0

d

ds

∞∑
n=1

λ(q)
n (h(a))−s

∣∣∣∣∣
s=0

f(a)da

coincides with

I2 = d

ds

1
Γ(s)

1∫
0

ts−1
∫
A

∞∑
n=1

e−tλ(q)
n (h(a))f(a)dadt

∣∣∣∣∣∣
s=0

+
∞∫
1

d

ds

1
Γ(s) t

s−1
∣∣∣∣
s=0

∫
A

∞∑
n=1

e−tλ(q)
n (h(a))f(a)dadt.

Using the Mellin transform in first equation

I1 = d

ds

∫
A−A0

1
Γ(s)

∞∫
0

ts−1
∞∑

n=1
e−tλ(q)

n (h(a))dtf(a)da

∣∣∣∣∣∣
s=0

+
∫
A0

d

ds

1
Γ(s)

∞∫
0

ts−1
∞∑

n=1
e−tλ(q)

n (h(a))dt

∣∣∣∣∣∣
s=0

f(a)da,

whence the proof essentially consists in proving that we can change the order of integra-
tion and derivation.

Split the t-integrals in I1:

I1,1 =
∫
A0

d

ds

1
Γ(s)

1∫
0

ts−1
∞∑

n=1
e−tλ(q)

n (h(a))dt

∣∣∣∣∣∣
s=0

f(a)da,

I1,2 =
∫
A0

d

ds

1
Γ(s)

∞∫
1

ts−1
∞∑

n=1
e−tλ(q)

n (h(a))dt

∣∣∣∣∣∣
s=0

f(a)da,

I1,3 = d

ds

∫
A−A0

1
Γ(s)

1∫
0

ts−1
∞∑

n=1
e−tλ(q)

n (h(a))dtf(a)da

∣∣∣∣∣∣
s=0

,

I1,4 = d

ds

∫ 1
Γ(s)

∞∫
ts−1

∞∑
n=1

e−tλ(q)
n (h(a))dtf(a)da

∣∣∣∣∣∣ ,
A−A0 1 s=0
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and the a-integral in I2:

I2,1 = d

ds

1
Γ(s)

1∫
0

ts−1
∫
A0

∞∑
n=1

e−tλ(q)
n (h(a))f(a)dadt

∣∣∣∣∣∣
s=0

,

I2,2 =
∞∫
1

d

ds

1
Γ(s) t

s−1
∣∣∣∣
s=0

∫
A0

∞∑
n=1

e−tλ(q)
n (h(a))f(a)dadt,

I2,3 = d

ds

1
Γ(s)

1∫
0

ts−1
∫

A−A0

∞∑
n=1

e−tλ(q)
n (h(a))f(a)dadt

∣∣∣∣∣∣
s=0

,

I2,4 =
∞∫
1

d

ds

1
Γ(s) t

s−1
∣∣∣∣
s=0

∫
A−A0

∞∑
n=1

e−tλ(q)
n (h(a))f(a)dadt.

Then, we verify that I1,j = I2,j . In particular, we use Assumptions 3.0.1(3) and (4) 
to verify this for j = 2 and j = 4, and Assumption 3.0.1(6) for j = 1 and j = 3. The 
verifications consist in proving that the classical conditions for changing the order of 
integration in multiple integrals and for changing the order of derivation and integration 
are satisfied. �
4. The abelian case

In this section we apply our construction to the simplest case of the real number 
field G = R considered as a Lie group with respect to the addition. This is a connected 
simply connected locally compact second countable space, and an abelian group (actually 
it is contractible and separable). The discrete subgroup Γ = Z has compact quotient 
T = R/Z. The irreducible representations are one dimensional, i.e. the characters

χh : R → U(C) = U(1), χh : g → e2πihg,

with h ∈ R. The action χh restricts to an action of Z with fundamental domain [0, 1]. 
The dual R̂ of R is isomorphic to R by the paring ĝh(g′) = e2πihg′ . The Plancherel 
measure is the Lebesgue measure dh, the direct integrals are Lebesgue integrals on R, 
and the group Fourier transform is the classical Fourier transform

f̂(h) =
∫
R

f(g)e−2πihgdg, f(g) =
∫
R

f̂(h)e2πihgdh.

As a differentiable manifold, we have a global coordinate {x}, with coordinate basis of 
the tangent space {∂x}, with dual {dx}. These are left invariant vector fields. The formal 
exterior differential on C∞(R) is du = d udx, and as usual we use the same notation for 
dx
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the minimal closed extension of its restriction on C∞
0 (R). A left invariant Riemannian 

metric is dx ⊗ dx, and with respect to it the previous bases are orthonormal. The Hodge 
star �dx = 1, the volume form dx. The inner product 〈ω, ϕ〉 =

∫
R
ω ∧ �ϕdx, and the 

Hodge Laplace operator (we just need it on functions)

Δ(0)ω = − d2

dx2ω.

The heat operator e−tΔ(0) is the integral operator with smooth kernel [27, pg. 6]

k(x, y; e−tΔ(0)
) = 1√

4πt
e−

|x−y|2
4t .

The Γ = Z trace is

TrZe−tΔ(0)
=

1∫
0

k(x, x; e−tΔ(0)
)dx =

1∫
0

1√
4πt

dx = 1√
4πt

.

In order to compute the C∞ vectors, using equation (2.2), we need to isolate the case 
h = 0. For h �= 0: dχh(∂x) = 2πih. Thus,

dχh(Δ(0)) = 4π2h2,

and

Spdχh(Δ(0)) = Spdχh(Δ(1)) = {4π2h2}.

When h = 0, χ0 = 1, the constant representation, so the tangent vector is the zero 
vector, and the Laplace operator is multiplication by 0, that has one eigenvalue 0 with 
infinite multiplicity. However, the space {0} has measure zero, whence we ignore this 
representation, and we proceed assuming h �= 0.

The heat operator localised at χh, h �= 0 is

dχh(e−tΔ(0)
) = e−4π2h2t,

and its trace is

Trdχh(e−tΔ(0)
) = e−4π2h2t.

The Γ = Z equivariant trace is

TrZe−tΔ(0)
= Vol(Γ\G)

∫
e−4π2h2tdh = 2

∞∫
e−4π2h2tdh = 1

2
√
πt

,

R−{0} 0
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since Vol(Γ\G) = 1. Note that this gives the Novikov Shubin invariant of G, that is 
α0(G) = 1, known by Proposition 43 of [19]. The localised analytic torsion zeta function 
is (h �= 0)

t(s;R, h) = −(2πh)−2s,

that is holomorphic for all s. Whence

T(R, h) = 2 log 2π|h|.

According to equation (3.6), the relative torsion zeta function, for large s, is

tZ(s;R) = −2
∞∫
ε

(2πh)−2sdh = 2 (2πε)1−2s

2π(1 − 2s) ,

that gives

TZ(R) = t′Z(0;R) + 2
ε∫

0

2 log(2πh)dh = 4ε− 4ε log 2πε + 4ε log 2πε− 4ε = 0.

On the other side (where the first term is defined for large s)

TΓ = d

ds

1
Γ(s)

ε∫
0

ts−1 1
2
√
πt

dt

∣∣∣∣∣∣
s=0

+
∞∫
ε

1
t

1
2
√
πt

dt = 0.

Next, we compare this with the classical analytic torsion. The irreducible representa-
tions χα : π1(T) = Z → U(1) of the fundamental group of the circle are the characters 
e2πiαn, with 0 ≤ α < 1. Fix α �= 0. The Hodge Laplace operator on function with values 
in Eα is positive definite, and its spectrum is SpΔ(0) = {(n +α)2}n∈Z. The torsion zeta 
function of T with coefficients twisted by χα, is

t(s;T, α) =
1∑

q=0
(−1)qqζ(s,Δ(q)

+ ) = −ζ(s,Δ(1)
+ ) = −(2π)−2s

∑
n∈Z

(n + α)−2s

= −(2π)−2sζH(2s, α) − (2π)−2sζH(2s, 1 − α).

(4.1)

Recalling that ζH(0, q) = 1
2 − q, and ζ ′H(0, q) = log Γ(q) − 1

2 log 2π, we compute the 
analytic torsion of T with coefficients twisted by χα:

T (T, α) = t′(0, α) = 2 log 2 sin πα.
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Reconsider the definition of the relative zeta function of R, with δ = 1:

tZ(s;R) = −2
∞∫
1

(2πh)−2sdh = −
−1∫

−∞

(2πh)−2sdh−
∞∫
1

(2πh)−2sdh

= −
−2∑

n=−∞

1∫
0

(2π(n + α))−2sdα−
∞∑

n=1

1∫
0

(2π(n + α))−2sdα

= −
1∫

0

∞∑
n=2

(2π(n− α))−2sdα−
1∫

0

∞∑
n=1

(2π(n + α))−2sdα

=
1∫

0

t(s;T, α)dα + 2
1∫

0

(2πα)−2sdα,

=
1∫

0

t(s;T, α)dα− 2
1∫

0

t(s;R, α)dα,

where the last equivalence follows because the series of function converges uniformly in 
α for α ∈ [0, 1) when Re(s) is large. Whence, collecting and using equation (4.1),

tZ(s;R) =
1∫

0

t(s;T, α)dα + 2
1∫

0

(2πα)−2sdα =
1∫

0

t(s;T, α)dα + 2(2π)−2s

1 − 2s .

Thus,

tZ(s;R) = −
1∫

0

(2π)−2sζH(2s, 1 − α)dα−
1∫

0

(2π)−2sζH(2s, α)dα + 2
1∫

0

(2πα)−2sdα.

Using for example the Hermite representation for the Hurwitz zeta function, we find 
that

−
1∫

0

(2π)−2sζH(2s, 1 − α)dα = −(2π)−2s
1∫

0

(
(1 − α)1−2s

2s− 1 + f(s, α)
)
dα,

where f(s, α) is a regular analytic function of s for all s, smooth and bounded in α for 
α ∈ [0, 1]. Therefore, for s near s = 0,

− d

ds

1∫
0

(2π)−2sζH(2s, 1 − α)dα = −
1∫

0

d

ds
(2π)−2sζH(2s, 1 − α)dα.
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According to the definition, equation (3.5), this gives

TZ(T) = d

ds
tZ(s;R)

∣∣∣∣
s=0

+ 2
1∫

0

T(R, α)dα

=
1∫

0

d

ds
t(s;T, α)

∣∣∣∣
s=0

dα− 4 log 2π + 4 + 2
1∫

0

T(R, α)dα

=
1∫

0

T (T, α)dα.

Recalling the multiplicative property of all the torsions, we have proved the following 
result (where we are assuming that G has trivial compact factor).

Proposition 4.0.1. Let G be a simply connected abelian real Lie group, with discrete co 
compact subgroup Γ, then

TΓ(G) =
1∫

0

T (G,α)dα.

5. The Heisenberg group

This section is devoted to our main application, i.e. the three dimensional Heisenberg 
group.

5.1. The Heisenberg group

There exist several equivalent definitions of the Heisenberg group, we chose the more 
suitable for our purpose. We call Heisenberg group H the three dimensional real space 
with the Lie group operation (this group is called polarised Heisenberg group by Folland 
[13, pg. 19], see also [9, pg. 47])

(a, b, t)(a′, b′, t′) = (a + a′, b + b′, t + t′ + ab′).

The discrete subgroup Γ is

Γ = {(l,m, n) ∈ H | l,m, n ∈ Z}.

Topologically, the Heisenberg group is a contractible space, locally compact and second 
countable, and as a Lie group is nilpotent unimodular of type I [14, Ex. 3, pg. 229]. As a 
real smooth manifold, H has a global coordinate system {a, b, t}, with coordinate basis 



A. Della Vedova, M. Spreafico / Journal of Functional Analysis 288 (2025) 110687 21
of TeH: {∂a, ∂b, ∂t}. The corresponding basis of left invariant vector fields in the Lie 
algebra h is

X(g) = ∂a, Y (g) = ∂b + a∂t, T (g) = ∂t,

with [X, Y ] = T , and dual basis {da, db, θ}, where θ = dt − adb. The formal exterior 
derivative operator on functions ω and one forms ω = ωada + ωbdb + ωθθ is

dω = ∂aωda + ∂bωdb + ∂tωdt = Xωda + Y ωdb + Tωθ,

dω = (Xωb − Y ωa − ωθ) da ∧ db + (Xωθ − Tωa) da ∧ θ + (Y ωθ − Tωb) db ∧ θ.

We fix the Riemannian structure on H determined by the left invariant Riemannian 
metric making the bases above orthonormal, that reads

da⊗ da +
(
1 + a2) db⊗ db + dt⊗ dt− ada⊗ db− adb⊗ da,

with volume form dvol = da ∧ db ∧ θ. The Hodge star � follows easily.
The (formal) Hodge Laplace operator on q-forms, Δ(q) = δd + dδ, where δ = − � d�, 

in terms of the orthogonal basis has the following explicit description (in the relevant 
degrees) [28] [23] [24]:

Δ(0)ω = − (X2 + Y 2 + T 2)ω,

Δ(1)(ωada + ωbdb + ωtθ) =(Δ(0)ωa − Tωb − Y ωt)da + (Δ(0)ωb + Tωa −Xωt)db

+ (Δ(0)ωt + Y ωa −Xωb + ωt)θ.

5.2. Dual group, irreducible representations and localised operators

The dual space Ĝ (with the Fell topology [12]) is homeomorphic with the set of 
the co adjoint orbits of h∗, with the natural quotient topology, where the last may be 
identified with real line private by the origin [14, Theorem 7.9, and example 7.6.1]. Thus, 
assumption (1) is satisfied with A = R − {0}. The Plancherel measure is dμ(h) = |h|dh, 
h ∈ A, and thus also assumption (2) is satisfied. The group Fourier transform on H may 
be described explicitly as [13, pg. 43]:

Trf̂(h)ρh(a, b, t) = 1
|h|

∫
R

f(a, b, t)e−2πih(t−s)ds.

The irreducible (infinite dimensional, the finite dimensional ones do not matter since 
they determine a set of measure zero in Ĝ) unitary representations of the Heisenberg 
group are the Schrödinger representations ρh : H → U(S) ⊆ U(L2(R)),

ρh(a, b, t)(f)(x) = e2πiht+2πibxf(x + ha),
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on L2(R), where h ∈ R −{0} is the parameter described above for the dual group Ĝ [13, 
3(1.25), pg. 22, Th. 1.59, pg. 37] (see also equation (4.1), pg. 47 of [9]). The infinitesimal 
generators of the associated representations of universal enveloping algebra U(h) are

dρh(X) = h∂x, dρh(Y ) = 2πix, dρh(T ) = 2πih,

that gives the (continuous) field of operators dρhΔ(q). Our aim is to give an explicit 
description of the spectrum of these operators. For functions, this is quite easy, see next 
section. A similar calculation for Δ(1) is more involved, so we prefer to follow the easier 
alternative approach delineated in [23] and based on the Bergmann Fock representation, 
described in Section 5.4.

5.3. The localised Hodge Laplace operator on functions and its spectrum

A direct calculation gives

dρh(Δ(0)) = −h2∂2
x + 4π2x2 + 4π2h2.

We aim to determine a spectral resolution of Δ0. For consider the eigenvalues equation

−∂2
xf + 4π2

h2 x2f =
(

λ

h2 − 4π2
)
f. (5.1)

Let un(x) = Hn(x) the Hermite polynomial. It satisfies the differential equation

u′′
n − 2xu′

n + 2nun = 0.

By the Liouville transform un(x) = e x2
2 vn(x) = k(x)vn(x), with

u = kv, u′ = k′v + kv′, u′′ = k′′ + 2k′v′ + kv,

we end up with

−v′′n + x2vn = (2n + 1)vn.

Set x =
√
at, fn(t) = vn(

√
at), and a = 2π

|h| , then f satisfies

−f ′′
n − 4π2

h2 t2fn = (2n + 1)2π
|h|fn.

Comparing the last equation with equation (5.1), we find:

f(x) = vn(
√

2π/hx) = e−
πx2
|h| Hn(

√
2π/|h|x) = (−1)ne

πx2
|h|

dn

dxn
e−

2πx2
|h| ,

λ = λn = 2π|h|(2n + 1) + 4π2h2,
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with n = 0, 1, 2, . . . , and h ∈ R − {0} (compare with [13, Section 7, pg. 51]).

5.4. The Bargmann Fock representation and the spectrum of the localised Hodge 
Laplace operator on one forms

Fix h > 0, and let

‖f‖2
Fh

= h

∫
C

|f(z)|2e−πh|z|2dz,

and

Fh = {f : C → C, f entire, ‖f‖Fh
< ∞},

then, the Bargmann transform is the map [13, pg. 47]

Bh : L2(R, dx) → Bh(L2(R)) = Fh ⊆ L2(C, he−πh|z|2dz), Bh : f �→ Bh(f),

where

Bh(f)(z) =
(

2
h

) 1
4

+∞∫
−∞

f(x)e2πxz−π
hx2−πh

2 z2
dx,

and is a unitary map intertwining the Shrodinger representation with the Bargmann 
representation βhBh = Bhρh. To see this is better to complexify all the construction. 
Setting z = a + ib, we find

βh(z, t)(f)(w) = e2πiht−πh
2 |z|2−πh

4 (z2−z̄2)−πhwz̄f(z + w).

If h < 0, the representation space is

F̄h = {f | fj ∈ F−h},

where j denotes conjugation, i.e. j(z) = z̄; the Bargmann transform is the map

B̄h : L2(R, dx) → F̄h ⊆ L2(C, |h|eπh|z|2dz), B̄h : f �→ B(f),

where

B̄h(f)(z) =
(

2
|h|

) 1
4

+∞∫
−∞

f(x)e−2πxz+π
hx2+πh

2 z2
dx.

and a direct calculation as the previous one gives
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β̄h(z, t)(f)(w) = e2πiht+πh
2 |z|2−πh

4 (z2−z̄2)+πhwzf(z̄ + w).

We compute the infinitesimal generators of the coordinate basis vectors:

h > 0 : dβh(∂z) = ∂w, dβh(∂z̄) = −πhw, dβh(∂t) = 2πih,

h < 0 : dβ̄h(∂z) = hπw, dβ̄h(∂z̄) = ∂w, dβ̄h(∂t) = 2πih.

An orthonormal basis of left invariant vector fields is

Z =
√

2∂z −
i

2
√

2
(z + z̄)∂t, Z̄ =

√
2∂z̄ + i

2
√

2
(z + z̄)∂t, T,

with [Z, Z̄] = i[X, Y ] = iT , and

X = 1√
2
(Z + Z̄), Y = i√

2
(Z − Z̄);

the dual basis is

ζ = 1√
2
dz = 1√

2
(da + idb), ζ̄ = 1√

2
dz̄ = 1√

2
(da− idb),

β = dt + i

2
√

2
(z + z̄)(ζ − ζ̄) = θ,

Then, we compute

Δ(0) = −X2 − Y 2 − T 2 = −ZZ̄ − Z̄Z − T 2.

and

Δ(1) =(−(ZZ̄ + Z̄Z + T 2)ωz − iTωz − iZωt)ζ

+ (−(ZZ̄ + Z̄Z + T 2)ωz̄ + iTωz̄ + iZ̄ωt)ζ̄

+ (−(ZZ̄ + Z̄Z + T 2 + 1)ωt − iZ̄ωz + iZωz̄)θ.

The infinitesimal generators read

h > 0 : dβh(Z) =
√

2∂w, dβh(Z̄) = −
√

2πhw, dβh(∂t) = 2πih,

h < 0 : dβ̄h(Z) =
√

2hπw, dβ̄h(Z̄) =
√

2∂w, dβh(∂t) = 2πih,

and, setting k = 2πh, the localised Hodge Laplace operator is

dβh(Δ(1)) =

⎛⎜⎝ 2kw∂w + k2 + 2k 0 −
√

2i∂w
0 2kw∂w + k2 − ik√

2w
ik√
2w

√
2i∂w 2kw∂w + k + k2 + 1

⎞⎟⎠
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and

dβ̄h(Δ(1)) =

⎛⎜⎝−2kw∂w + k2 0 − ik√
2w

0 −2kw∂w + k2 − 2k
√

2i∂w
−
√

2i∂w ik√
2w −2kw∂w − k + k2 + 1

⎞⎟⎠ .

We want to compute the spectrum of these operators. Since the analysis for positive 
and negative h is analogous, we give details for h > 0. First, observe that

dβh(Δ(1)) − xI =

⎛⎜⎝ 2kw∂w + k2 + k 0 0
0 2kw∂w + k2 + k 0
0 0 2kw∂w + k2 + k

⎞⎟⎠

+

⎛⎜⎝ k − x 0 −
√

2i∂w
0 −k − x − ik√

2w
ik√
2w

√
2i∂w 1 − x

⎞⎟⎠ .

Next, observe that the homogeneous polynomials belong to Fh, more precisely the set 
of the monomials

χl(w) = (hπ) l
2

√
l!

wl,

l = 0, 1, 2, . . . , is an orthonormal basis of Fh [13, (1.63), pg. 40]. Thus, apply the Lapla-
cian to the vectors (Aχl1(w), Bχl2(w), Cχl3(w)). We end up with the system of equations⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(2kl1 + k2 + 2k) (hπ)
l1
2√

l1!
wl1A−

√
2i (hπ)

l3
2√

l3!
l3Cwl3−1 = x (hπ)

l1
2√

l1!
wl1A,

(2kl2 + k2) (hπ)
l2
2√

l2!
wl2B − ik√

2
(hπ)

l3
2√

l3!
Cwl3+1 = x (hπ)

l2
2√

l2!
wl2B,

ik√
2

(hπ)
l1
2√

l1!
Awl1+1 +

√
2i (hπ)

l2
2√

l2!
l2w

l2−1B + (2kl3 + k2 + k + 1) (hπ)
l3
2√

l3!
wl3C

= x (hπ)
l3
2√

l3!
wl3C.

We have the particular solutions: if A = C = 0, then l2 = 0 and we have the equation

k2B = xB,

that gives {k2; (0, χ0(w), 0)}; if A = 0, and C �= 0, we have l3 = 0, l2 = 1, that gives{
(2k + k2)

√
πhwB − ik√

2wC = x
√
πhwB,√

2i
√
πhB + (k2 + k + 1)C = xC,

with eigenvalues k2 + k, and (k + 1)2. Otherwise, assuming ABC �= 0, l1 = l3 − 1, 
l2 = l3 + 1, and we find
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⎧⎪⎪⎨⎪⎪⎩
((2l3 + 1)k + k2 − k − x)A− i

√
2πhl3C = 0,

((2l3 + 1)k + k2 + k − x)B − ik
√

l3+1
2πh C = 0,

ik
√

l3
2πhA + i

√
2πh(l3 + 1)B + ((2l3 + 1)k + k2 + 1 − x)C = 0.

The matrix of the coefficients of this system reads⎛⎜⎜⎝
(2l3 + 1)k + k2 − k − x 0 −i

√
2πhl3

0 (2l3 + 1)k + k2 + k − x −ik
√

l3+1
2πh

ik
√

l3
2πh i

√
2πh(l3 + 1) (2l3 + 1)k + k2 + 1 − x

⎞⎟⎟⎠ .

Setting x = y + (2l3 + 1)k + k2,⎛⎜⎜⎝
−k − y 0 −i

√
2πhl3

0 k − y −ik
√

l3+1
2πh

ik
√

l3
2πh i

√
2πh(l3 + 1) 1 − y

⎞⎟⎟⎠ .

The characteristic equation is

y(y2 − y − (2l + 1)k − k2) = 0,

with solutions

y = 0, y = 1
2 ± 1

2
√

1 + 4(2l + 1)k + 4k2,

that give respectively

x = (2l + 1)k + k2, x =
(√

k(2l + 1) + k2 + 1
4 ± 1

2

)2

with l = 0, 1, 2, . . . . Note that when l = 0 we find the eigenvalue k + k2, with the same 
eigenvector as found in the particular case A = 0 considered above, thus we do not 
list this eigenvalue separately. This completes the determination of the spectrum of the 
Hodge Laplace operator.

Proposition 5.4.1. The spectrum of the Hodge Laplace operator Δ(q) on H localised at 
the representation ρh is as follows (k = 2πh ∈ R − {0}):

Spdρh(Δ(0)) ={(2m + 1)|k| + k2}∞m=0,

Spdρh(Δ(1)) ={k2, (|k| + 1)2} ∪ {(2m + 1)|k| + k2}∞m=0

∪

⎧⎨⎩
(√

|k|(2m + 1) + k2 + 1
4 ± 1

2

)2
⎫⎬⎭

∞

m=0

.
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Moreover, Spdρh(Δ(2)) = Spdρh(Δ(1)), and Spdρh(Δ(3)) = Spdρh(Δ(0)). Each eigen-
value has multiplicity one.

5.5. The localised heat operator

The localised heat operator in degree q is

dρhe−tΔ(q)
= Fe−tΔ(q)F−1(h).

This is a trace class operator, and

Trdρhe−tΔ(0)
=

∞∑
m=0

e−t((2m+1)k+k2),

Trdρhe−tΔ(1)
=e−tk2

+ e−t(k+1)2 +
∞∑

m=0
e−t((2m+1)k+k2)

+
∞∑

m=0
e−t

(√
k(2m+1)+k2+ 1

4+ 1
2

)2

+
∞∑

m=0
e−t

(√
k(2m+1)+k2+ 1

4− 1
2

)2

.

By some estimates we verify that

Tre−tdρhΔ(0)
= e−t(k+k2)

1 − e−2kt ,

and

Tre−tdρhΔ(1) ≥ e−tk2
+ e−t(k+1)2 + e−t(k+k2)

1 − e−2kt ,

Tre−tdρhΔ(1) ≤ e−tk2
+ e−t(k+1)2 + e−t(k+k2) + e−t(k2+2k+1)

1 − e−2kt + 1
k

1
t

+ π

2k
1√
t
.

This shows that the condition in Assumption 3.0.1(6) is satisfied. Note that these 
estimates may be used to determine the Novikov Shubin invariants of H (computed in 
Proposition 53 of [19]): α0(H) = 4, α1(H) = 2.

5.6. The localised analytic torsion

According to the definition, the analytic torsion of the Heisenberg group H localised 
at the representation ρh, is T(h) = t′(0; H, h), where the localised analytic torsion zeta 
function is

t(s;H,h) =
3∑

(−1)qq d

ds
ζ(s, dρh(Δ(q)))

∣∣∣
s=0

,

q=0
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and

ζ(s, dρhΔ(q)) =
∑

λ(h)∈Sp+dρh(Δ(q))

λ(h)−s.

The last function is clearly defined by the uniformly convergent series when Re(s) > 1, 
and otherwise by its analytic extension. Note that, by direct substitution, cancellations 
appear in the function t that reduces to

t(s;H,h) = k−2s + (1 + k)−2s − 2t0(s) + t1(s),

where

t0(s) =
∞∑

m=0
((2m + 1)k + k2)−s,

t1(s) =
∞∑

m=0

(√
k(2m + 1) + k2 + 1

4 + 1
2

)−2s

+
∞∑

m=0

(√
k(2m + 1) + k2 + 1

4 − 1
2

)−2s

.

In order to study the analytic extension of t and to compute the localised analytic 
torsion, we proceed as follows. First, the case of t0(s) = ζ(s, Δ(0), πh) is quite easy. 
Indeed,

t0(s) =k−sζH(s, k) − (2λ)−sζH(s, k/2),

where ζH is the Hurwitz zeta function. It follows that the analytic extension of t0(s) has 
a unique simple pole at s = 1, it is regular at s = 0, and we compute

t0(0) = − k

2 ,

t′0(0) =1
2k log k +

(
1
2 − k

2

)
log 2 + log Γ(k) − log Γ(k/2).

Next, we consider t1. This requires a bit more work. With

am =
√
k(2m + 1) + k2 + 1

4 ,

and b = k + 1
4k , we define

z(s) =
∞∑

m=0
a−2s
m =

∞∑
m=0

(
k(2m + 1) + k2 + 1

4

)−s

= k−s
∞∑

m=0
(2m + 1 + b)−s,

and
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ζ±(s) =
∞∑

m=0

(
am ± 1

2

)−2s

=
∞∑

m=0

(√
k(2m + 1) + k2 + 1

4 ± 1
2

)−2s

.

Proceeding as above, we write:

z(s) = k−s
∞∑

n=0
(n + b)−s − k−s

∞∑
n=0

(2n + b)−s = k−sζH(s, b) − (2k)−sζH(s, b/2).

It follows that the analytic extension of z has a unique pole at s = 1 with residuum

Res1
s=1

z(s) = 1
2k ,

Res0
s=1

z(s) = 1
k

(
1
2ψ(b/2) − ψ(b)

)
,

and

z(0) = − b

2 = −k

2 − 1
8k ,

z′(0) = log Γ(b)
Γ(b/2) + 1

2(1 − b) log 2 + b

2 log k.

We use this information as follows. Expanding (for Re(s) large)

ζ±(s) =
∞∑

m=0
a−2s
m

∞∑
j=0

(
−2s
j

)
(±1)j2−ja−j

m ,

we have

t1(s) =ζ+(s) + ζ−(s)

=2
∞∑

m=0
a−2s
m − s

2

∞∑
m=0

a−2s−2
m + 2

∞∑
j=2

(
−2s
2j

)
2−2j

∞∑
m=0

a−2s−2j
m

=2z(s) + 1
2s(1 + 2s)z(s + 1) + 2

∞∑
j=2

(
−2s
2j

)
2−2jz(2s + 2j).

Note that this means that the possible poles of (the analytic continuation of) t1(s)
are simple and are located at s = 1 and at the negative half integers s = −3

2 , −
5
2 , . . . .

Near s = 0

1
2s(1 + 2s)z(s + 1) = 1

2s(1 + 2s)
(
r0 + r1

s
+ O(s2)

)
= r1

2 + 1
2(r0 + 2r1)s + O(s2),

where rk denote the residues, and therefore
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t1(s) =2z(s) + 1
2 Res1

s=1
z(s) + 1

2

(
Res0
s=1

z(s) + 2 Res1
s=1

z(s)
)
s + O(s2)

+ 2
∞∑
j=2

(
−2s
2j

)
2−2ja−2s−2j

m .

This gives

t1(0) = 2z(0) + 1
2 Res1

s=1
z(s) = −k.

In order to compute the derivative, note that

d

ds

(
−2s
2j

)∣∣∣∣
s=0

= 1
j
,

then

t′1(0) =2z′(0) + 1
2

(
Res0
s=1

z(s) + 2 Res1
s=1

z(s)
)

+ 2
∞∑
j=2

1
j

∞∑
m=0

2−2ja−2j
m .

We deal with the last term as follows. Observing that:

∞∑
j=2

1
j

(
1

2am

)2j

=
∞∑
j=1

1
j

(
1

2am

)2j

−
(

1
2am

)2

= − log
(

1 − 1
4a2

m

)
e

1
4a2

m ,

we compute

2
∞∑
j=2

1
k

∞∑
m=0

2−2ja−2j
m = − 2 log

∞∏
m=0

(
1 − 1/4k

(2m + 1) + k + 1
4k

)
e

1/4k
(2m+1)+k+ 1

4k

+ 1
2k

∞∑
m=0

(2m + 1)−1 − 1
2k

∞∑
m=0

(2m + 1)−1

= − 2 log
∞∏

m=0

(
1 − 1/4k

(2m + 1) + b

)
e

1/4k
2m+1

− 1
2k

∞∑
m=0

((2m + 1) + b)−1 + 1
2k

∞∑
m=0

(2m + 1)−1.

We tackle the two terms separately. For the second one

1
2k

( ∞∑
m=0

(2m + 1)−1 −
∞∑

m=0
((2m + 1) + b)−1

)

= 1
2k

(
ζR(s) − 2−sζR(s) − ζH(s, b) + 2−sζH(s, b/2)

)∣∣
s=1 .
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Near s = 1,

ζH(s, b) = −ψ(b) + 1
s− 1 ,

and therefore (ψ(1) = γ)

1
2k

( ∞∑
m=0

(2m + 1)−1 −
∞∑

m=0
((2m + 1) + b)−1

)
= 1

2k

(
γ

2 + ψ(b) − 1
2ψ(b/2)

)
.

For the first term, we recall the definition of the Euler Gamma function,

−2 log
∞∏

m=0

(
1 − 1/4k

(2m + 1) + b

)
e

1/4k
2m+1

= − 2 log
∞∏

n=0

(
1 − 1/(4k)

n + b

)
e

1/(4k)
n + 2 log

∞∏
n=0

(
1 − 1/(8k)

n + b/2

)
e

1/(8k)
n

= − 2 log eγ/(4k)Γ(b + 1)
Γ(k + 1) + 2 log eγ/(8k)Γ(b/2 + 1)

Γ(k/2 + 1) .

Thus,

t′1(0) =(1 − b) log 2 + b log k + 1
2k + 2 log Γ(k) − 2 log Γ(k/2).

We have proved the following results.

Proposition 5.6.1. The analytic torsion zeta function t(s; H, h) of the Heisenberg group 
H localised at the representation ρh, 0 �= h ∈ Ĥ, is a regular analytic function of s for 
all s with a simple poles at s = 1, and possible simple poles at s = −3

2 , −
5
2 , . . . . Near 

s = 0, we have the expansion

t(s;H,h) = t(0;H,h) + t′(0;H,h)s + O(s2),

where

t(0;H,h) = 2,

t′(0;H,h) = −2 log k − 2 log(1 + k) + 1
4k log k − 1

4k log 2 + 1
2k .

Corollary 5.6.2. The analytic torsion of the three dimensional Heisenberg group H lo-
calised at the representation ρh, h �= 0, is

T(H,h) = −2 log 2πh(1 + 2πh) + 1 log πh + 1
.
8πh 4πh
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5.7. The relative analytic torsion I

By Assumption 3.0.1 (1), (2), and according to equation (3.5), the relative analytic 
torsion of (H, Γ) is (recall that t(s; H, h) = t(s; H, −h), and that Vol(Γ\G) = 1)

TΓ(H) = d

ds
tΓ(s;H)

∣∣∣∣
s=0

+ 2
δ∫

0

T(H,h)|h|dh, (5.2)

where the relative analytic torsion zeta function (equation (3.6) is

tΓ(s;H) = 2
∞∫
δ

t(s;H,h)|h|dh. (5.3)

We would like to find a geometric interpretation of this invariant as in Section 4 for 
the abelian case. Take δ = 1, then, for large Re(s), by uniform convergence of the series 
of function for α ∈ (0, 1) when Re(s) is large, this gives

tΓ(s;H) =
−1∫

−∞

t(s;H,h)|h|dh +
∞∫
1

t(s;H,h)hdh

=
1∫

0

−2∑
n=−∞

t(s;H,n + α)|n + α|dα +
1∫

0

∞∑
n=1

t(s;H,n + α)(n + α)dα.

After some simplifications, we find

tΓ(s;H) =
1∫

0

∑
n∈Z

t(s;H,n + α)|n|dα−
1∫

0

t(s;H, 1 − α)dα

+
1∫

0

∞∑
n=1

t(s;H,n + α)αdα−
1∫

0

−2∑
n=−∞

t(s;H,n + α)αdα.

(5.4)

We would like to identify the integrands in the previous formula with the analytic 
torsion of some smooth Riemannian manifold. Unfortunately, we are only able to partially 
accomplish this purpose. This is the subject of the next sections.

5.8. Some quotients of the Heisenberg group: Hred and Hcpt

Following the line indicated in the abelian case, we would like to rewrite the integrands 
appearing in equation (5.4) as the analytic torsion of some Riemmanian manifold. Un-
fortunately, this does not work so nicely: the spectral invariant appearing are not the 
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analytic torsion but some less natural ones. In order to proceed we need first some quo-
tient spaces, and second to identify the spectrum of the Hodge Laplace operator on these 
quotient spaces.

We start by describing the quotient spaces. The first is the reduced Heisenberg group, 
Hred = Z\H, that is the quotient space of H by the action of the centre of Γ, i.e. 
the subgroup Z = {0} × {0} × Z, see for example [13, pg. 23]. This is a complete 
smooth Riemannian manifold, with the quotient metric, universal covering space H, and 
fundamental group π1(Hred) = Z.

The second quotient is Hcpt = Γ\H obtained by taking the quotient of H by the left 
action of Γ, and is usually called compact Heisenberg space [13, pg. 68] (see also [15]
for the complete classification of the lattices of H). Hcpt is a compact smooth Rieman-
nian manifold, with the quotient metric, universal covering space H and fundamental 
group π1(Hcpt) = Γ, homeomorphic to a circle bundle over the torus T2 (more precisely 
such bundle are classified by H1(Hcpt) = [Hcpt, BZ] = Z, and Hcpt corresponds to the 
generator).

In both cases, since we are taking left actions, invariant vector fields, exterior derivative 
and Hodge Laplace operator descend to the quotient manifolds.

Accomplished the geometric first step, we pass to analysis: we would like to identify 
the spectrum of the Hodge Laplace operator on Hred and on Hcpt and to use it to define 
some spectral invariants. In order to identify the spectrum we proceed adapting the 
approach of Folland, Auslander and Tolimieri for the compact Heisenberg group [13, pg. 
68] [15] [3, Section 1] and [4].

5.9. The spectrum of the Hodge Laplace operator and a spectral invariant on Hred

Since Hred is not compact, in order to develop spectral analysis we need to work with 
square integrable forms. In particular, since Hred is complete, we work with the unique 
self adjoint extension in the space of the square integrable forms of the restriction of the 
formal Hodge Laplace operator on the space of smooth forms with compact support [17].

Consider the representation π of H on L2(Hred) determined by right translation:

π(g)(f)(Zx) = f(Zxg),

and the π invariant subspaces of L2(Hred), n ∈ Z,

Hn = {f ∈ L2(Hred) | π(0, 0, t)f = e2πintf}.

According to the Stone Von Neumann Theorem, the restriction πn of π to Hn is a 
direct sum of ρn. This proves that the eigenvalues of the Hodge Laplace operator on Hred
coincide with those of the Hodge Laplace operator on H, with h = n �= 0 (this is known 
by [23]). Next, we consider multiplicity. Let see in some details the case of functions 
when h = n = 1. We define the function
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Φ1 :L2(R) → H1 ⊆ L2(Hred),

Φ1 :f �→ Φ1(f),

where

Φ1(f)(p, q, t) = e2πit
∞∫

−∞

f(p + s)e2πiqsds = e2πite−2πiqp
∫
R

f(v)e2πiqvdv

= e2πite−2πiqpF(f)(q) = e2πitF(f(_ − p))(q).

Recall that, as observed above, we are thinking to function in S, and to the usual 
completion to square integrable function. Also note that Φ1 is obviously Z invariant. It 
is clear that Φ1 preserves the L2 norms, and is therefore and isometry of L2(R) into 
L2(H1).

We show that this map intertwines ρ1 restricted to H1 with π. For compute on one 
side

ρ1(a, b, c)(f)(x) = e2πice2πibxf(x + a),

and

Φ1ρ1(a, b, c)(f)(p, q, t) = e2πite2πic
∫

f(p + s + a)e2πib(p+s)e2πiqsds,

and on the other

Φ1(f)(p, q, t) = e2πit
∞∫

−∞

f(p + s)e2πiqsds,

and

π(a, b, c)Φ1(f)(p, q, t) = e2πite2πice2πipb
∫

f(p + s + a)e2πi(q+b)sds.

To conclude we need to verify that Φ1 is onto. For take f ∈ H1, then we write

f(p, q, t) = e2πitg(p, q),

and let

F (x) =
∫
R

e2πi(p−x)tg(p, t)dt = F2(g(p, p− _))(x) = F−1
2 (g(p,_ − p))(x).

Then,

Φ1(F )(p, q, t) = e2πitF(F−1
2 (g(p,_ − p))(_ − p))(q) = e2πitg(p, q) = f(p, q, t).
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This construction extends to h = n as follows. Define

Φn :L2(R) → Hn ⊆ L2(Hred),

Φn :f �→ Φn(f),

where

Φn(f)(p, q, t) = e2πint
∞∫

−∞

f(n(p + s))e2πinqsds.

Also Φn is Z invariant. We show that this map intertwines π restricted to Hn with 
ρn. For compute on one side

ρn(a, b, c)(f)(x) = e2πince2πibxf(x + na),

and

Φnρn(a, b, c)(f)(p, q, t) = e2πinte2πinc
∫

f(n(p + s) + na)e2πinb(p+s)e2πinqsds,

and on the other

Φn(f)(p, q, t) = e2πint
∞∫

−∞

f(n(p + s))e2πinqsds,

and

π(a, b, c)Φn(f)(p, q, t) = e2πinte2πince2πinpb
∫

f(n(p + a + s))e2πin(q+b)sds.

To conclude we need to verify that Φn is onto. For take f ∈ Hn, then we write

f(p, q, t) = e2πintg(p, q),

and expand g in its Fourier transform

f(p, q, t) = e2πint
∞∫

−∞

∞∫
−∞

ĝ(p̂, q̂)e2πip̂pe2πiq̂qdp̂dq̂.

Define the function f ∈ L2(R):

F (n(x + q̂)) = n

∫
ĝ(p̂, nq̂)e2πip̂xdp̂,
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then we verify that Φn(F ) = f , for compute

Φn(F )(p, q, t) = e2πint
∞∫

−∞

F (n(p + q̂))e2πinqq̂dq̂

= e2πint
∞∫

−∞

∞∫
−∞

ĝ(p̂, nq̂)e2πip̂pdp̂e2πinqq̂ndq̂

= e2πintg(p, q).

This proves that the eigenvalues of the Hodge Laplace operator on Hred all have 
multiplicity one.

The last point is to twist the coefficients. For consider the finite irreducible represen-
tation of Z: χα(0, 0, n) = e2πiαn, and the induced bundle Eα over Hred. The smooth 
sections of this bundle may be identified with the function on Hred satisfying the condi-
tions

f((0, 0, 1)(x, y, t)) = e2πiαf(x, y, t).

It follows that the space of the square integrable sections of Hred with values in Eα, 
L2(Hred, Eα) decomposes in the π invariant subspaces

Hn+α = {f ∈ L2(Hred, Eα) | π(0, 0, t)f = e2πi(n+α)tf}.

We may repeat the previous construction and show that π restricted to Hn+α is 
equivalent to ρn+α; this concludes the determination of the spectrum and the proof of 
the following proposition.

Proposition 5.9.1. The spectrum of the Hodge Laplace operator Δ(q)
α on forms on Hred

with values in Eα, 0 < α < 1, is as follows:

SpΔ(0)
α ={(2m + 1)|n + α| + (n + α)2}∞m=0,n=−∞,

SpΔ(1)
α ={(n + α)2, (|n + α| + 1)2} ∪ {(2m + 1)|n + α| + (n + α)2}∞m=0,n=−∞

∪

⎧⎨⎩
(√

|n + α|(2m + 1) + (n + α)2 + 1
4 ± 1

2

)2
⎫⎬⎭

∞

m=0,n=−∞

.

Moreover, SpΔ(2)
α = SpΔ(1)

α , and SpΔ(3)
α = SpΔ(0)

α . Each eigenvalue has multiplicity 
one.

Then, a direct verification gives the following result.
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Lemma 5.9.2. The spectrum SpΔ(q)
α of the Hodge Laplace operator Δ(q) on forms on Hred

with values in Eα, 0 < α < 1, is a sequence of spectral type of genus 2. In particular, 
the associated zeta functions have analytic expansion regular at s = 0.

In order to proceed with our interpretation of the second line of equation (5.4), we 
need to introduce a suitable spectral invariant on Hred. This invariant “measures” the 
spectral asymmetry of the Fourier group decomposition of L2(Hred, Eα) into the sub-
spaces Hn+α, and is defined as follows. Let λ(q)

m,n(α) denote the eigenvalue of the Hodge 
Laplace operator Δ(q)

α on Hred with indices n and m given in Proposition 5.9.1. Consider 
the function of the complex variable s, defined for Re(s) large by the series

e(s;Hred, α) =
3∑

q=0
(−1)q

∑
m∈N,n∈Z

sgn(n)(λ(q)
m,n(α))−s,

and by analytic extension elsewhere. By Lemma 5.9.2, e(s; Hred, α) is regular at s = 0, 
so we define

E(Hred, α) = e′(0;Hred, α).

5.10. The spectrum of the Hodge Laplace operator and a spectral invariant on Hcpt

We generalise the approach in Section 10 of [13], see also [15, 3] and [23]). Consider 
the representation P of H on L2(Hcpt), determined by the right translation,

P : H → U(L2(Hcpt)),

P : g �→ P(g)(f)(Γx) = f(Γxg),

and the P invariant subspaces of L2(Hcpt)

Hn = {f ∈ L2(Hcpt) | P(0, 0, c)f = e2πincf}.

According to the Stone Von Neumann Theorem, the restriction Pn of P to Hn is a 
direct sum of ρn. This proves that the eigenvalues of the Hodge Laplace operator on 
Hcpt coincide with those of the Hodge Laplace operator on H, with h = n �= 0.

Next, we consider multiplicity. We proceed adapting the construction in Chapter 1 of 
[3]. Define the function

Ψn :L2(R) → H1 ⊆ L2(Hcpt),

Ψn :f �→ Ψn(f),

where
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Ψn(f)(p, q, t) = e2πint
∑
k∈Z

e2πikqf(np + k).

Here (p, q, t) is in H, but we verify that Ψn(f) is Γ invariant, and therefore defines a 
function on Hcpt as claimed.

We show that Ψn intertwines Pn with ρn. For compute on one side

ρn(a, b, c)(f)(x) = e2πince2πibxf(x + na),

and

Ψnρn(a, b, c)(f)(p, q, t) = e2πin(t+c)
∑
k∈Z

e2πikqe2πib(np+k)f(n(p + a) + k),

and on the other

Ψn(f)(p, q, t) = e2πint
∑
k∈Z

e2πikqf(np + k),

and

P(a, b, c)Ψn(f)(p, q, t) = e2πin(t+c+pb)
∑
k∈Z

e2πik(q+b)f(n(p + a) + k).

We verify that Ψn is unitary:

‖Ψn(f)‖L2(M) =
1∫

0

1∫
0

1∫
0

∣∣∣∣∣e2πint
∑
k∈Z

e2πikqf(np + k)

∣∣∣∣∣
2

dpdqdt

=
1∫

0

∑
k∈Z

|f(np + k)|2 dp

= 1
n

∑
k∈Z

n∫
0

|f(p + k)|2 dp

= ‖f‖L2(R).

The next step is to compute multiplicity. Take f ∈ Hn, then we write

f(p, q, t) = e2πintg(p, q),

and expand g in its Fourier transform

f(p, q, t) = e2πint
∑

gl,ke2πilpe2πikq.

l,k∈Z
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Define the functions Fj ∈ L2(R), 1 ≤ j ≤ n, 0 ≤ u ≤ 1, m ∈ Z:

Fj(ju + jm) =
∑
l∈Z

gl,jme2πi lju
n ,

then, we verify that Ψn(Fj) = f , for all j. For identifying ju + jm = np + k

Ψn(Fj)(p, q, t) = e2πint
∑
k∈Z

e2πikqFj(np + k)

= e2πint
∑
k∈Z

e2πikq
∑
l∈Z

gl,ke2πilp.

This proves that the representation Pn = P|Hn
is equivalent to the sum of n copies 

of ρn, and therefore the eigenvalue with index n of the Hodge Laplace operator on Hred
has multiplicity n, and therefore the following proposition.

Proposition 5.10.1. The spectrum of the Hodge Laplace operator on forms Δ(q) over Hcpt, 
is as follows:

SpΔ(0) ={(2m + 1)|n| + n2}∞m=0,n=−∞,

SpΔ(1) ={n2, (|n| + 1)2} ∪ {(2m + 1)|n| + n2}∞m=0,n=−∞

∪

⎧⎨⎩
(√

|n|(2m + 1) + n2 + 1
4 ± 1

2

)2
⎫⎬⎭

∞

m=0,n=−∞

,

plus a number of eigenvalues when n = 0 that are not of interest here. SpΔ(2) = SpΔ(1), 
and SpΔ(3) = SpΔ(0). Each eigenvalue with index n has multiplicity |n|.

The last effort is to twist the coefficients. However, we do not have finite represen-
tations of π1(Hcpt) = Γ that may twist the construction along the fibre of Hcpt. We 
proceed as follows. For each 0 < α < 1, we consider the families S(q)

α = {sqα;m,n}n,m:

S(0)
α = S(3)

α ={(2m + 1)|n + α| + (n + α)2}∞m=0,n=−∞,

S(1)
α = S(2)

α ={(n + α)2, (|n + α| + 1)2} ∪ {(2m + 1)|n + α| + (n + α)2}∞m=0,n=−∞

∪

⎧⎨⎩
(√

|n + α|(2m + 1) + (n + α)2 + 1
4 ± 1

2

)2
⎫⎬⎭

∞

m=0,n=−∞

.

Then, we define a spectral invariant on Hcpt precisely as we do with analytic torsion 
assuming the family above to be the spectrum of the Hodge Laplace operator with 
twisted coefficients, namely we set
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ζ(s, S(q)
α ) =

∞∑
m=0,n=−∞

|n|(sqα;m,n)−s,

z(s;Hcpt, α) =
3∑

q=0
(−1)qζ(s, S(q)

α ),

and

Z(Hcpt, α) = z′(0;Hcpt, α).

5.11. The relative analytic torsion II

We may use the results in the last two sections to deal with the terms in formula (5.4)
as in the abelian case. First, rewrite the last equation as

tΓ(s;H) =
1∫

0

∑
n∈Z

t(s;H,n + α)|n|dα− 2
1∫

0

t(s;H,α)dα

+
1∫

0

∞∑
n=0

t(s;H,n + α)αdα−
1∫

0

−1∑
n=−∞

t(s;H,n + α)αdα.

Next, from one side observe that we have the equivalence

∑
n∈Z

t(s;H,n + α)|n| = z(s;Hcpt, α),

where z(s; Hcpt, α) was defined at the end of Section 5.10, and from the other that

∞∑
n=0

t(s;H,n + α) −
−1∑

n=−∞
t(s;H,n + α) = e(s;Hred, α),

where e(s; Hred, α) is the invariant introduced at the end of Section 5.9.
Whence,

tΓ(s;H) =
1∫

0

z(s;Hcpt, α)dα− 2
1∫

0

t(s;H,α)αdα +
1∫

0

e(s;Hred, α)αdα.

Proceeding as in Section 4, and according to equation (5.2), we have the following 
result.
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Proposition 5.11.1.

TΓ(H) =
1∫

0

Z(Hcpt, α)αdα +
1∫

0

E(Hred, α)dα.

Data availability

No data was used for the research described in the article.
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