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Key points: 15 

 A sediment recycling event starting at ~8 Ma is confirmed by new 16 

magnetostratigraphic and detrital apatite fission-track data. 17 

 A new syntectonic sediment recycling model is proposed to explain the origin of 18 

eolian deposition in eastern Asia.  19 

 A connection between sediment recycling and eolian deposition is supported by 20 

multi-proxy datasets of fluvio-lacustrine deposits. 21 

 22 
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Abstract 23 

  Global cooling and/or Tibetan Plateau uplift have long been regarded as the 24 

principal drivers of late Cenozoic central Asian aridification and the resulting 25 

widespread accumulation of eolian deposits in eastern Asia. However, these two 26 

factors are unable to form large source areas of fine-grained sediments enhancing 27 

eolian deposition synchronously from northern Tibet to North Pacific. Here we 28 

provide magnetostratigraphic and detrital apatite fission-track evidence for a major 29 

sediment recycling event in northern Tibet at ~8 Ma, coeval with a sudden increase in 30 

eolian deposition, which we ascribe to syntectonic erosion of uplifted friable 31 

fluvio-lacustrine sediments and selective entrainment by the westerly winds during 32 

basin deformation. Our results emphasize the importance of widespread and persistent 33 

occurrence of fine-grained sediments along the pathway of westerlies to produce 34 

voluminous dust deposits. These findings suggest that the onset of eolian deposition 35 

may not be directly related to global cooling or uplift of mountain ranges. 36 

Plain Language Summary 37 

A proper analysis of tectonic events and sedimentological processes is key to 38 

understanding the controlling factors of enhanced eolian deposition documented 39 

synchronously from northern Tibet to the North Pacific since ~8 Ma. In addition to 40 

the hypothesized sizable inland deserts, potential dust sources have been considered to 41 

be piedmont fluvial sediments and dry lake sediments in northern Tibet and central 42 

Asia. However, almost all these suggestions fail to explain the rapid expansion of 43 

eolian deposition in the Chinese Loess Plateau, which required a substantial increase 44 



in the availability of fine-grained silts and clays in the source areas.  45 

Here we confirm a major sediment recycling event favored by basin deformation in 46 

northern Tibet through an integrated analysis of magnetostratigraphy and detrital 47 

apatite fission tracks. This event led to the uplift of a large amount of friable 48 

fluvio-lacustrine sediments along the fold-thrust belts of northern Tibet, which 49 

coincided with this sudden increase of eolian deposition at ~8 Ma. We suggest a 50 

causal link, favored by the action of the westerly winds, between uplift of basin strata 51 

in northern Tibet, sediment recycling and the substantial expansion of eolian 52 

deposition in eastern Asia, which gains support from multi-proxy analyses of 53 

fluvio-lacustrine sedimentary successions.  54 

 55 

1 Introduction 56 

  The origin of arid environments in central Asia remains highly debated, with 57 

dominant causal factors suggested to be Cenozoic cooling (Lu et al., 2010), Tibetan 58 

Plateau uplift (Rea et al., 1998), or the retreat of the Paratethys Sea (Ramstein et al., 59 

1997). Eolian deposits, as direct evidence for inland Asian aridification, are widely 60 

distributed in northern Tibet (Li et al., 2018; Licht et al., 2016), the Chinese Loess 61 

Plateau (CLP) (Guo et al., 2002; Liu, 1985; Qiang et al., 2011), the marginal seas of 62 

East Asia (Shen et al., 2017; Wan et al., 2007), and even the North Pacific (Rea et al., 63 

1998). The major eolian deposits show a notable three-stage increase in spatial extent 64 

and accumulation rate, as exemplified by three loess and red clay sequences in the 65 

CLP, with depositional onset ages at 25-22 Ma (Guo et al., 2002; Qiang et al., 2011), 66 



~8 Ma (Ding et al., 2001; Sun, 1998), and ~2.6 Ma (Liu, 1985). However, Earth's 67 

climate has undergone progressive long-term cooling since the latest Oligocene 68 

(Zachos et al., 2008), and the Himalaya-Tibetan orogen has experienced a prolonged 69 

uplift history since the collision of India with southern Eurasia at 60-50 Ma 70 

(Tapponnier et al., 2001; Yin, 2010). Northern Tibet, in close proximity to the CLP, 71 

has undergone substantial surface uplift since ~15 Ma (Molnar et al., 2010), at a time 72 

when no comparable expansion of eolian deposits is evident. Therefore, there is no 73 

clear correlation between the evolution of eolian deposition and global cooling or 74 

Tibetan Plateau uplift. This implies that the dynamics of loess accumulation in eastern 75 

Asia are not well understood yet. 76 

Recent research has increasingly emphasized the importance of determining the 77 

source areas of these eolian deposits. In addition to the sizable inland deserts (Guo et 78 

al., 2002; Liu, 1985), potential dust sources have been considered to be piedmont 79 

fluvial sediments (Nie et al., 2014, 2018; Sun, 2002), and dry lake sediments in 80 

northern Tibet and central Asia (Kapp et al., 2011; Pullen et al., 2011). However, these 81 

would fail to explain the rapid expansion of eolian deposition in the CLP, which 82 

requires a substantial increase in the availability of silts and clays in the source areas. 83 

  In order to shed light on this issue, we performed a new magnetostratigraphic study 84 

of the ~6 km thick sedimentary succession of the Qaidam Basin (QB), the biggest 85 

intermontane basin in Tibet (Dahonggou section in Fig. 1), coupled with detrital 86 

apatite fission-track (AFT) analyses in two different sections exposed along the 87 

northern margin of the QB (Dahonggou and Lulehe sections in Fig. 1). The aim of our 88 



analyses is to better define the timing and regional extent of a Late Miocene sediment 89 

recycling event proposed by recent work (Pang et al., 2019; Wang et al., 2017), and to 90 

assess its relationships with tectonic deformation in northern Tibet and eolian 91 

deposition in eastern Asia. When critically discussed within the framework of 92 

available tectonic and stratigraphic data, our results allow us to propose a genetic 93 

linkage between syntectonic recycling of uplifted Miocene sediments in northern 94 

Tibet and the rapid expansion of eolian deposition documented in eastern Asia since 95 

~8 Ma, providing new insights on the impact of global climate, regional tectonics, and 96 

central Asian aridification on the formation of the largest loess deposits worldwide. 97 

 98 

2 Materials and Methods 99 

A nearly continuous 5300-m composite stratigraphic section was sampled for 100 

magnetic measurements. It is composed of the western Dahonggou section, spanning 101 

from the lower part of the Ganchaigou Fm to the lower part of the Shizigou Fm, and 102 

the eastern Dahonggou section mainly including the Lulehe Fm (Fig. 1). We collected 103 

a total of 2244 samples from the same section studied by Wang et al. (2017), but with 104 

a 2.3 times higher sampling density. We also collected medium- to coarse-grained 105 

sandstone samples for detrital apatite fission-track analysis, including 8 samples from 106 

the 9-7 Ma stratigraphic interval of the Dahonggou section, and 11 samples from the 107 

~5-km-thick Lulehe section (Fig. 1, S5). Details on the analytical methods employed 108 

for magnetic and fission-track analysis can be found in the Supplementary 109 

Information (Fig. S2-S5). 110 



 111 

3 Results 112 

3.1 Stratigraphic age model 113 

A total of 1717, out of 2244 samples, yielded stable ChRM directions 114 

(Supplementary Dataset 1). The mean normal and reversal polarity directions of the 115 

1717 samples are D=357.7°, I=39.8°, κ=12.3, α95=1.4 and D=184.3°, I=-35.6°, 116 

κ=10.9, α95=1.6 after tilt correction, respectively. The overall mean direction is D 117 

=3.7°, I =-29.1°, κ=10.5, α95 =1.1 before tilt adjustment and D =1.0°, I =37.8°, 118 

κ=11.4, α95 =1.1 after tilt adjustment. However, application of the reversal test for all 119 

the 1717 samples is negative, with gamma (6.69) being larger than gamma-critical 120 

(2.14) (McFadden and McElhinny, 1990). In order to pass the reversal test, we divide 121 

1419 component directions clustering within 40° of the mean into 14 intervals (each 122 

one comprising 91-104 samples) (Table S1; Fig. S6). These grouped data pass a Class 123 

A reversal test, with gamma (2.53) being less than gamma-critical (3.98) (McFadden 124 

and McElhinny, 1990). The positive reversal test indicates that the magnetic 125 

remanence is most likely primary, though the monoclinal structure of the Dahonggou 126 

section (Fig. S1) precludes the application of a fold test. In total, 44 pairs of normal 127 

and reversed polarity intervals are identified (Fig. 2).  128 

The age of the QB basal strata has long been debated and either referred to 52 Ma 129 

(Ji et al., 2017) or 25.5-21 Ma (Wang et al., 2017; Nie et al., 2020). Our new 130 

magnetostratigraphic data for the ~5300-m-thick Dahonggou section of the QB 131 

confirm the magnetozone sequence of Wang et al. (2017). In the correlation of the 132 



observed polarity zones to the Geomagnetic Polarity Time Scale (Hilgen, 2012), we 133 

emphasize the importance of the Mid-Miocene mammalian fossils discovered in the 134 

upper Ganchaigou Formation (Fm.) of the Dahonggou section (Li and Wang, 2015) as 135 

a reliable tie point. The results indicate that the deposits span the time interval of 136 

~24-4.8 Ma (Fig. 2).  137 

 138 

3.2 Magnetic susceptibility and grain-size data 139 

  Bulk magnetic susceptibility (MS) values range from 19.7 to 752.2 μSI, with an 140 

average of 220 μSI (Fig. 2; Supplementary Dataset 2). MS values gradually increase 141 

from ~24 to 10.8 Ma. They remain rather constant between 10.8 and ~8 Ma, and 142 

finally show a rapid decrease starting from ~8 Ma, with relatively low values since 143 

then (128 μSI on average). In a similar fashion, grain-size data show a sharp decrease 144 

in the finest (<63 μm) sediment fraction starting from ~8 Ma (Fig. 2 and 145 

Supplementary Dataset 3). 146 

 147 

3.3 Detrital AFT data 148 

A recent detrital AFT study of the Dahonggou section (Wang et al. 2017, Fig. 3A) 149 

revealed a Late Miocene age-trend reversal that was interpreted as the evidence for 150 

exhumation and erosional recycling of basin sediments into younger strata caused by 151 

thrusting and basin segmentation. A similar age-trend reversal was identified by Pang 152 

et al. (2019) in the Huaitoutala section at 9-7 Ma (Fig. 3B). The eight detrital AFT 153 

samples we have analyzed along the Dahonggou section in the 9 to 7 Ma stratigraphic 154 



interval not only provide additional compelling evidence for a major sediment 155 

recycling event in the Late Miocene in the QB, but conclusively restrict its age to 8 156 

Ma. Our results are summarized in Fig. 3C. Grain-age distributions are polymodal, 157 

which provides evidence of a mixed provenance (e.g., Malusà and Fitzgerald, 2020), 158 

and include 112 to 123 single-grain ages ranging from 22.6 to 626 Ma. They were 159 

deconvolved into best-fit grain-age populations by BinomFit (Brandon, 2002) based 160 

on the automatic mode for searching and identifying the optimal number of significant 161 

peaks (Table S2-3; Fig. S7-8). All the analyzed samples yielded peak ages that are 162 

significantly older than the corresponding depositional age, which ensures that they 163 

reflect the thermochronologic age structure of the eroded bedrock. Different color 164 

intensities in the diagram of Fig. 3C indicate the different size of each grain-age 165 

population. Notably, in the 9 to 8 Ma stratigraphic interval, the age of all the 166 

populations systematically decreases moving upsection, as normally expected for the 167 

progressive unroofing of the eroding sources (Malusà and Fitzgerald, 2020). However, 168 

starting from 8 Ma, peak ages start increasing upsection, almost mirroring the age and 169 

size of the peaks characterizing the underlying strata deposited at 9-8 Ma, as expected 170 

in case of temporary storage and recycling of sediment previously deposited in the 171 

QB. 172 

Similar results are provided by our detrital AFT data set from the Lulehe section 173 

(Fig. 3D), in the western portion of the northern QB (Fig. 1, S1), where the 11 174 

sandstone samples yielded single grain-ages in the range of 16.4 to 684 Ma after 175 

dating 83 to 113 grains per sample. Magnetostratigraphic data for the Lulehe section 176 



are not available yet, and we thus performed a comparison with the Dahonggou 177 

section, exposed ~80 km apart, based on lithology, sediment thickness and 178 

sedimentological features (Zhuang et al., 2011; Fig. 1, S1). Also in this case, the 179 

stratigraphic interval likely corresponding to a depositional age of ~8 Ma displays a 180 

remarkable AFT age-trend reversal for all the grain-age populations detected by 181 

BinomFit, which confirms the regional extent of the sediment recycling event first 182 

detected in the Dahonggou section. 183 

 184 

4 Discussion 185 

Our results shed light on the relations between tectonic and sedimentary process in 186 

the study area. They are particularly relevant when discussed within the framework of 187 

existing studies on the tectonic evolution of northern Tibet and available time 188 

constraints on loess deposits in eastern Asia. 189 

4.1 Evidence for basinward deformation onset at ~8 Ma in northern Tibet  190 

  A number of previous studies have suggested a marked thrust front-propagation and 191 

rapid uplift of Cenozoic sedimentary successions along the northern and southern 192 

margins of the QB (e.g., Wei et al., 2016; Fig. 4), taking place in the ~8 to 4.8 Ma 193 

(Wang et al., 2017) or even <2 Ma (Pang et al., 2019) time interval. A similar event is 194 

recorded in the smaller Linxia basin, northeastern Tibet (Zheng et al., 2003). 195 

Syntectonic growth strata are described in the Kumkol (Lu et al., 2018), Gonghe 196 

(Craddock et al., 2011), and Guide basins (Fang et al., 2005) (Fig. 4). Deformation 197 

likely led to sedimentary rocks exposure above the level of lakes previously located in 198 



the QB. 199 

 200 

4.2 Rapid expansion of eolian deposits in eastern Asia at ~8 Ma 201 

  A marked expansion of wind-blown deposition occurred at widely separated places 202 

from northeastern Tibet to the North Pacific around 8 Ma (Figs. 4, 5). The most 203 

striking example is the initial accumulation of red clay deposits in the eastern part of 204 

the CLP at ~8 Ma (Ao et al., 2016; Ding et al., 2001; Qiang et al., 2001; Song et al., 205 

2001; Sun, 1998; Fig. 4). The concurrent basal ages and extensive distribution of the 206 

red clay deposits indicate an abrupt increase in dust supply from the source areas. A 207 

period of high dust accumulation rate is observed in the western part of the CLP at 8-7 208 

Ma (Guo et al., 2002; Fig. 5E). A major provenance shift in the CLP at 9.5-7 Ma is 209 

also suggested by analysis of the crystallinity index of fine-grained quartz grains (Ma 210 

et al., 2015; Fig. 5H). 87Sr/86Sr ratios and clay mineralogy of fluvial-lacustrine 211 

sequences in the Linxia and Xining basins also reveal an increase in eolian dust input 212 

at ~8 Ma, suggesting intensified eolian activity in northern Tibet at that time (Yang et 213 

al., 2019; Yang et al., 2017; Fig. 5F, G). Farther to the east, clay mineral assemblages 214 

of the silicate fraction of sediments from the southern Japan Sea indicate a rapid 215 

increase in eolian input from central Asia at ~8 Ma that was transported by the 216 

high-altitude westerly circulation (Shen et al., 2017; Fig. 5C). Additionally, a 217 

pronounced increase in mass accumulation rate of eolian dust transported by the East 218 

Asian winter monsoon was detected at ~8 Ma in the northern South China Sea (Wan 219 

et al., 2007; Fig. 5D), as well as in the central North Pacific where mass accumulation 220 



rates of eolian dust show a four-fold increase at that time (Rea et al., 1998; Fig. 5B).  221 

 222 

4.3 Source-to-sink dynamics and the role of the mid-latitude westerly winds 223 

  Syntectonic uplift of fluvio-lacustrine sediments and their exposure to wind 224 

deflation in northern Tibet seem to have occurred concurrently with the rapid 225 

expansion of eolian deposition in eastern Asia around 8 Ma. Some studies have 226 

indicated the persistent occurrence of the westerly winds blowing across the QB and 227 

along the northern margin of the Tibetan Plateau since at least 42 Ma (Caves et al., 228 

2015; Licht et al., 2016). Low-level winds can entrain and carry dust which is 229 

deposited downwind in the fluvial-lake systems of the Linxia and Xining basins in 230 

northeastern Tibet, forming pure eolian sequences on relatively flat and stable 231 

topography. Jet stream flows over Japan Sea and the North Pacific. This suggests a 232 

connection between the orogen-basin systems of northern Tibet and the downwind 233 

eolian deposits of East Asia by the mid-latitude westerly winds (Fig. 4). 234 

In addition to the striking coincidence in timing, three lines of evidence can be used 235 

to support this linkage: 236 

1) detrital zircon age spectra are very similar in the Cenozoic sediments of the QB and 237 

in the late Miocene-Pliocene loess-red clay sequences of the CLP (Bush et al., 2016; 238 

Gong et al., 2016; Nie et al., 2018; Wang et al., 2017; Fig. S9), both showing two 239 

major populations at 300–200 Ma and 500–400 Ma beside three minor age 240 

populations at 1.0–0.7 Ga, 2.0-1.5 Ga and 2.7–2.2 Ga. 241 

2) the percentage of the 0-63 μm grain-size fraction that can be transported in 242 



suspension by wind (Pye, 1987) shows a sharp decrease from > 80% to ~40 % in the 243 

Dahonggou section between ~8 and 7.2 Ma (Fig. 2). In combination with the sediment 244 

recycling event discussed above, it is possible that many fine-grained clastic particles 245 

were removed during sediment recycling in the northern Tibet fold-thrust belts by the 246 

the westerly winds to be deposited farther east, where a coeval sharp increase in mean 247 

grain size is observed, for example in the Zhuanglang section (Sun et al., 2015; Fig. 248 

4B). 249 

3) Magnetic susceptibility values also decrease rapidly in the Dahonggou section 250 

since ~8 Ma (Figs. 2 and 4), despite the observation that synorogenic coarse-grained 251 

sediments that are primarily derived from metamorphic and magmatic rocks are 252 

generally associated with high magnetic susceptibility values (Lu et al., 2014; Sun et 253 

al., 2005; Fig. S10). Such abrupt decrease can be explained by a selective removal of 254 

the finest (<63 μm) particles from the recycled coarse-grained strata since ~8 Ma, as 255 

these particles are usually enriched in magnetic minerals (e.g., Malusà and Garzanti, 256 

2019). Entrainment of <63 μm magnetic grains by the westerly winds, and their 257 

deposition farther east, might also explain the dramatic increase in magnetic 258 

susceptibility values observed in the Qin’an section (Guo et al., 2002; Fig. 4B). 259 

Moreover, the low magnetic susceptibility of Qin’an sediments before 8 Ma provides 260 

further support to the proposed linkage between syntectonic sediment recycling and 261 

the entrainment of fine-grained particles by the westerly winds, because the sediment 262 

source providing dust after 8 Ma was not available before 8 Ma, until the uplift of the 263 

sedimentary successions at the margin of the QB. 264 



5 Conclusions 265 

The Miocene unconsolidated fluvio-lacustrine sediments exposed along the basin 266 

margin in northern Tibet were likely the largest source of airborne dust on Earth at ~8 267 

Ma. Sediment recycling events revealed by detrital AFT dating of the QB strata 268 

indicate that at least 1500 m of dominantly fine-grained lacustrine sediments were 269 

exposed continuously above lake level along the northern margin of the QB since ~8 270 

Ma, although their spatial extent is difficult to determine precisely. A total of 271 

~1500-m-thick sediments in the northern QB may have acted as a sustained source of 272 

material for wind erosion and dust generation. However, the potential source area is 273 

not limited to the QB. Uplifted friable sediments along the margins of the Tarim, 274 

Junggar, and Hexi Corridor basins, as well as other sub-basins in northern Tibet, may 275 

have also contributed dust materials now preserved between northern Tibet and the 276 

North Pacific.  277 

An important implication of our basin deformation-driven hypothesis is that the 278 

well-known eolian deposits in Asia may not be simply related to changes in plateau 279 

topography or global climate as previously suggested. Our results point instead to a 280 

major potential role of basin deformation and sediment recycling in controlling the 281 

onset and evolution of eolian deposition from northern Tibet to the North Pacific. 282 

 283 
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Figure captions 300 

Fig. 1. Location maps of the study area and sampling sites. A: Digital elevation model 301 

(DEM) of the QB and surrounding orogenic belts. B: Geological map of the 302 

Dahonggou section, showing the distribution of different sampling sections (Ji et al., 303 

2017; Wang et al., 2017; This study). 304 

Fig. 2. Magnetic polarity stratigraphy of the Dahonggou section and its correlation to 305 

the geomagnetic polarity time scale (GPTS; Hilgen, 2012) and the polarity zone 306 

sequences of Wang et al (2017). Also shown are lithostratigraphy, the percentage of 307 

the <63 μm fraction of sediment grain size, magnetic susceptibility, declinations, 308 



inclinations, and virtual geomagnetic pole (VGP) latitudes. The blue lines show 309 

5-point average and the broken red lines represent general evolution trend. 310 

Fig. 3. Detrital AFT data of the Dahonggou (A, C; Wang et al., 2017; this study), 311 

Huaitoutala (B; Pang et al., 2019), and Lulehe (D; this study) sections in the QB, and 312 

a schematic illustration of sediment recycling within the northern QB (E, F). Red, 313 

green and gray continuous curves indicate age trends (not best-fit lines) referred to 314 

progressive source-rock exhumation, whereas dashed curves indicate age trends 315 

referred to sediment recycling.   316 

Fig. 4. Sketch diagrams showing a source-sink relationship between uplifted strata 317 

and downwind eolian deposits linked by the westerly winds. A: Relief map of West 318 

China. The hypothetical areal extent of elevated strata in the QB is based on the 319 

balanced cross-section restorations of Wei et al (2016). B: Block diagram 320 

demonstrating an integrated relationship among tectonic uplift, dust entrainment, and 321 

sediment recycling in the northern QB at ~8 Ma. The lower-right inset shows the 322 

evolution trends of lithology, the percentage of 0-63 μm grain size, magnetic 323 

susceptibility and the youngest detrital AFT population peak ages (P1) of the 324 

Dahonggou section between 11 and 5 Ma. The upper-right inset indicates the mean 325 

grain size data of the Zhuanglang sction between 10 and 6 Ma (Sun et al., 2015) and 326 

the magnetic susceptibility data of the uppermost 100 m of the Qin’an section (Guo et 327 

al., 2002). 328 

Fig. 5. Time series of multi-proxy records showing increased eolian dust input at ~8 329 

Ma. The stacked global deep-sea oxygen isotope record (A; Zachos et al., 2008) is 330 



shown for comparison. The sites are in the North Pacific (B; Rea et al., 1998), Japan 331 

Sea (C; Shen et al., 2017), South China Sea (D; Wan et al., 2007), Chinese Loess 332 

Plateau (E, H; Guo et al., 2002; Ma et al., 2015), and northeastern Tibet (F, G; Yang et 333 

al., 2019; Yang et al., 2017). 334 
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