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In a recent paper we described a novel approach to the detection and parameter estimation of a non-
Gaussian stochastic background of gravitational waves. In this work we propose an improved version of the
detection procedure, preserving robustness against imperfect noise knowledge at no cost of detection
performance; in the previous approach, the solution proposed to ensure robustness reduced the
performances of the detection statistics, which in some cases (namely, mild non-Gaussianity) could be
outperformed by Gaussian ones established in literature. We show, through a simple toy model, that the
new detection statistic performs better than the previous one (and than the Gaussian statistic) everywhere in
the parameter space. It approaches the optimal Neyman-Pearson statistics monotonically with increasing
non-Gaussianity and/or number of detectors. In this study we discuss in detail its efficiency. This is a
second, important step towards the implementation of a nearly optimal detection procedure for a realistic
non-Gaussian stochastic background. We discuss the relevance of results obtained in the context of the toy
model used, and their importance for understanding a more realistic scenario.

DOI: 10.1103/PhysRevD.107.124044

I. INTRODUCTION

The non-Gaussian stochastic gravitational wave (GW)
background is an interesting and promising target for GW
detectors. It originates from a superposition of many
uncorrelated and unresolved events. An interesting exam-
ple is the background originating from compact binary
coalescences, which is within reach of the current gen-
eration detector network [1], but several others can be
observed in the future, both of astrophysical [2] and
cosmological origin [3].
The statistical properties of a non-Gaussian background

are related to astrophysically relevant quantities of great
interest, such as the event rate and the population distri-
bution of source parameters. In the presence of strong
overlap between individual signals generated by the differ-
ent events, the stochastic background is well modeled by a

Gaussian stochastic process, fully characterized by its
second order statistic. In absence of it,the statistical dis-
tribution of the strain signals measured by the detectors
becomes non-Gaussian and contains larger information that
can be in principle extracted. For example, accordingly
with the rate estimates based on recent LVK observa-
tions [4] the background generated by binary black hole
coalescences is expected to be strongly non-Gaussian, with
a product between the length of the observable coalescence
signal and the event rate Oð10−3Þ. The same parameter is
Oð10Þ for binary neutron star coalescences, and non-
Gaussianity is expected to be less important.
Several detection strategies to efficiently detect a non-

Gaussian background have been proposed in the literature.
Drasco and Flanagan [5] devised a likelihood appropriate
for the superposition of burstlike signals; therein optimal
detection statistics was derived assuming well-separated,
burstlike signals, coaligned and colocated detectors, and
white noise. An approach applicable without these assump-
tions, but only with a negligible superposition probability
for different events has been proposed by Thrane [6]; Smith
and Thrane [7] further proposed an optimal Bayesian
parameter estimation method suitable for a background
of astrophysical events in the low overlap regime.
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In all the above proposals the basic building block is the
probability distribution p for a convenient statistics of the
data ρ that can be evaluated for each segment of a measured
signal. This is written as a weighted sum

pðρÞ ¼ ξp1ðρÞ þ ð1 − ξÞp0ðρÞ; ð1Þ
where ρ ∼ p1 when the given segment contains an astro-
physical event and ρ ∼ p0 otherwise. The weight ξ is just
the probability of having an event in the segment.
Other approaches, based on semiparametric models [8]

or higher-order statistics [9,10] have also been explored. A
comprehensive review can be found in [11].
In a recent paper [12] we discussed a direct approach for

detection and parameter estimation of a non-Gaussian
stochastic background of GWs through a network of detec-
tors. The core idea was to try to follow, as much as possible,
an optimal approach. The targetwas to implement an optimal
detection statistics (DS), and similarly a Bayesian approach
to parameter estimation based on a realistic likelihood L. To
circumvent the lack of analytical closed-form expressions for
theDS and forLweopted to numerically evaluate them.This
approach implies approximations of relevant integrals, that
can be reduced at will with a large enough computational
power. We proposed a Monte Carlo importance sampling
procedure to achieve this objective. In this paper we focus on
a further improvement of the DS, while not investigating
parameter estimation anymore. In Sec. II we summarize the
our previous relevant findings, leading to the improvement
presented in this paper.

II. SUMMARY OF PREVIOUS RESULTS

As a first step in [12] we studied the optimal Neyman-
Pearson DS for a simple toy model, where the stochastic
signal is a sequence of independent pulses with amplitudes
distributed as a Gaussian mixture. In this particular case the
DS can be evaluated in a closed form as a nonlinear function
of the data.
A conceptual issue arose in this context; the optimal

Neyman-Pearson DS, which is obtained under the assump-
tion of known noise, contains contributions proportional to
single-detector data autocorrelations (of arbitrary order).
These contributions are dominated by the noise,1 and in a
realistic regime the noise amplitude cannot be assumed
known with a precision high enough to not spoil the DS
effectiveness.
The same shortcoming has been encountered in literature

also in the Gaussian case, and we will clarify it with an
example. Let us supposewewant to discriminate between the
models

H0∶ sAi ¼ σnAi ; ð2Þ

H1∶ sAi ¼ σnAi þ Ahi; ð3Þ

where sAi are measured values (1 < A < ND is an index
labeling the detector and i ≤ 1 ≤ N), σ and A are the
noise and signal amplitudes. The stochastic variables nI, h
are normally distributed and independent. Under the
assumption of a known σ2 the Neyman-Pearson test is easily
found from

pðsAi jσ2; A2Þ
pðsAi jσ2; 0Þ

> λ ð4Þ

which is equivalent to

Y ¼ 1

N

XN
i¼1

�
2
X
A>B

sAi s
B
i þ

X
A

ðsAi Þ2
�
> λ: ð5Þ

The mean of Y is

μY ¼ ½NDðND − 1ÞA2 þ NDðA2 þ σ2Þ�: ð6Þ

Wesee that the first term, originating fromcross-correlations,
is noise independent while the second, originating from
autocorrelations, depends both upon signal and noise. As a
matter of fact. for a realistic stochastic background σ2 is
uncertain with an uncertainty larger thanA2. This means that
we will not be able to detect confidently a stochastic
background from the DS in (5); a given value of Y could
be explained both by a background contribution or by a noise
fluctuation. The problem disappears when the noise-domi-
nated diagonal components are removed, obtaining

Y ¼ 1

N

XN
i¼1

�
2
X
A>B

sAi s
B
i

�
> λ: ð7Þ

This is a very simplified version of the statistic commonly
employed to detect aGaussian stochastic background, see for
example Eq. (3.73) in [13] which defines the optimal cross-
correlation in the Gaussian case

S ∝
Z

∞

−∞

γðfÞΩGWðfÞ
f3SAn ðfÞSBn ðfÞ

sAðfÞ�sBðfÞdf: ð8Þ

A simplification comes from the assumption of co–located
and co–oriented detectorswhichmakes the overlap reduction
function γðfÞ equal to one. Furthermore, both the stochastic
signal and the noise are assumed here to have a white
spectrum, soΩGW ∝ f3, SA;B

n are frequency independent and
Eq. (8) becomes equivalent to Eq. (5). It is interesting to note
that if we use a generalized likelihood ratio test like

pðsAi jσ̂21; Â2
1Þ

pðsAi jσ̂20; 0Þ
> λ; ð9Þ

1We always assume a Gaussian noise.
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where σ̂i and Âi are the maximum-likelihood estimates of σ
and A under the H1 hypothesis we obtain, when σ2 ≫ A2,

Y ¼
ffiffiffiffiffi
Â2
1

σ̂20

s
¼

1
N

P
i

P
A>B s

A
i s

B
i

1
N

P
i

P
AðsAi Þ2

> λ: ð10Þ

For large enough N, relative fluctuations in the denominator
become negligible, and we recover the DS in Eq. (7).
Under the assumption that noises across different detec-

tors are uncorrelated, the modified statistic has by con-
struction a zero expectation value in the hypothesisH0 (i.e.,
absence of signal), and a detection procedure robust against
noise mismodeling can be defined (see for example [13],
or [14] and references therein).
Removing analogous contributions2 from the nonlinear

statistic, appropriate for a non-Gaussian background, is

tricky. In [12] we defined a procedure involving the sub-
traction of a set of auxiliary data constructed from the original
ones. The basic idea was to construct a set of data streams
(one for eachdetector)with the same autocorrelationbutwith
zero cross-correlation among themselves and with the
original set. This can easily be done, for example by
introducing a time shift larger than the correlation length
of the stochastic background. In this way autocorrelations
can be independently estimated and subtracted.
However our approach was suboptimal; auxiliary data

have by construction zero average estimates for cross-
correlation, but these estimates—which are subtracted from
the ones of the original data—carry additional fluctuations.
These are summed to the ones of the original set; as a
consequence, we obtain more noisy DS and the detection
performance is reduced. In [12] this was evident in the
regime where non-Gaussianity was not too high. It was
quantified by the reduction of detection probability for a
given false alarm, which in some cases was worse than
the one of the Gaussian DS. We show these results again in
this paper, comparing them with the improved ones (see
Figs. 1, 2, 4, and 5).

FIG. 1. Comparison between detections statistics; each panel contains the probability of detection PD as a function of the number of
data points N. We show the “Exact,” “Improved,” “Scrambled,” and “Gaussian” statistic as solid-red, dashed-green, dashed-blue, and
solid-black lines, respectively. Several different signal models are considered, parametrized by σþ=σh and σ−=σh, of increasing non-
Gaussianity, going from bottom-right to top-left panel. We fix ND ¼ 2 and PFA ¼ 10−15. Shaded red areas delimit regions with beyond-
optimal performances, right-bounded by the “Exact” DS. Shaded gray area delimit statistics with performances worse than the
“Gaussian” one. We observe uniform improvement over the whole parameter space of the “Improved” statistics as compared to the
Gaussian one. By contrast, the scrambling procedure introduced in [12] outperforms the Gaussian one for strong non-Gaussianities,
only. In Figs. 2, 4, and 5 similar results for increasing number of detectors are shown, with the “Improved” statistics approaching the
“Exact” one.

2Because of the analogy with the Gaussian case we will
henceforth refer to these terms as diagonal. The generalized
definition of a diagonal term is the following; a correlation
between the data, of arbitrary order, that has a nonzero average in
the H0 hypothesis of no background.
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In this work we define a different, straightforward
procedure to remove diagonal contributions from the
nonlinear statistics. This procedure does not introduce
additional fluctuations, and has improved performances
compared to [12], when measured in term of figures of
merit related to detection probability, as will be discussed
extensively in Sec. IV. We apply the new procedure to the
same toy model used previously, and we quantify the
resulting improvement. Finally, we show that the new
procedure can be applied to a realistic background.
Henceforth, we will discuss and compare a number of

detections statistics, with the following naming convention:
(i) The “Exact” DS is constructed via the Neyman-

Pearson lemma [15]. It is formally the optimal one,
but the presence of diagonal terms makes it unusable
in a realistic setup, i.e., when uncertainty on the
noise amplitude is larger than the target GW signal
under the hypothesis H1.

(ii) The “Scrambled” DS is obtained from the “Exact”
statistic with the subtraction procedure defined and
characterized in [12], and shortly described in this
section.

(iii) The “Improved” DS is obtained from the “Exact”
statistic with the new subtraction procedure de-
scribed in Sec. III.

(iv) The “Gaussian” DS is the optimal Neyman-Pearson
detector for a Gaussian stochastic background with a
spectrum matching that of the toy model described
in Sec. III, the same considered in [12]. It is
suboptimal when applied to a non-Gaussian stochas-
tic background, and is used as a fiducial reference
for performance comparison.

In this work we provide only minimal details on the
“Exact,” “Scrambled,” and “Gaussian” DSs construction.
The interested reader will find relevant ones in [12] and
references therein. We will instead focus on the “Improved”
statistics. In Sec. III we construct it explicitly, providing a
proof of its optimality with respect to a set of robustness
requirements. In Sec. IVAwe present performance compar-
isons between the above statistics, exploring their behavior
for varying signal duration, their amount of non-
Gaussianity, and the number of detectors. In Sec. IV B,
we briefly discuss a realistic implementation of the pro-
cedure, highlighting its advantages. Finally, in Sec. V we

FIG. 2. Comparison between detections statistics: each panel contains the probability of detection PD as a function of the number of
datapoints N. We show the “Exact,” “Improved,” “Scrambled,” and “Gaussian” statistic as solid red, dashed green, dashed blue, and
solid black lines, respectively. Several diffent signal models are considered, parameterized by σþ=σh and σ−=σh, of increasing non-
Gaussianity, going from bottom right to top left panel. We fix ND ¼ 3 and PFA ¼ 10−15. Shaded red areas delimit regions with beyond-
optimal performances, right-bounded by the “Exact” detections statistic. Shaded gray areas delimit statistics with performances worse
than the “Gaussian” one. We observe uniform improvement over the whole parameter space of the “Improved” statistics as compared to
the “Gaussian” one. By contrast, the scrambling procedure introduced in [12] outperforms the Gaussian one for strong non-
Gaussianities, only.
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draw conclusions and prospects for further developments of
our approach.

III. IMPROVED DETECTION

Our discussion will be mainly in the context of the toy
model studied in [12]. It allows for a quantitative com-
parison of detector performances. In this model, the data
measured by each detector are time series of the form

sAi ¼ nAi þ hi; ð11Þ

where i is a discrete time index, 1 ≤ i ≤ N, and ti ¼ iδt
being the measurement time and δt the sampling time. We
suppose to have a network of ND detectors labeled by the
index A, with 1 ≤ A ≤ ND. The noise component of the
data is nAi , and h we will assume that nAi s are Gaussian,
zero-average random numbers with covariances defined by

hnAi nBj i ¼ σ2Aδijδ
AB: ð12Þ

The signal hi is the same on each detector, so they can be
thought as identical, aligned, and colocated. It follows a
Gaussian mixture model distribution

hi ∼
X
α

pαN ð·j0; σαÞ; ð13Þ

σ2h ¼ hh2i i ¼
X
α

pασ
2
α: ð14Þ

By hypothesis, different signal data points are therefore
independent; the waveform associated to our events are
very short, deltalike burst, without a resolved structure. Let
us write the single event in the form

hiðh; jÞ ¼ hδij: ð15Þ

We have two parameters; the amplitude h and the index j
associated to the event time. As the model is time
independent, all the values of j have the same probability.
If pðhÞ is the probability distribution for the amplitude
parameter, hi will be distributed as

hi ∼ e−Γδt
�
δð·Þ þ

X∞
n¼1

ðΓδtÞn
n!

ðp⋆p⋆ � � �⋆p|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
n terms

Þð·Þ
�
; ð16Þ

where Γ is the event rate. This can be approximated by the
toy model with two mixture components α ∈ fþ;−g
introduced in [12] if p ∼N ð·j0; σþÞ and Γδt ≪ 1, in
such a way that terms with n > 1 can be neglected in
Eq. (16)

hi ∼ ð1 − ΓδtÞδð·Þ þ ΓδtN ð·j0; σþÞ: ð17Þ

This corresponds to σ− ¼ 0, pþ ¼ Γδt and σþ=σh ¼ 1=ffiffiffiffiffiffiffi
Γδt

p
. The parameter Γδt is the average number of events

that contribute to a given hi, a measure of overlap and
Gaussianity. For our deltalike signals the approximation
Γδt ≪ 1 is not a problem, because the sampling time δt is a
parameter unrelated to the physics and could be assumed to
be small. The two main limits of the model are the lack of
any time structure for the event waveform, which does not
allow for relevant overlap structure, and the approximation
of identical (coaligned and colocated) detectors. To accom-
modate for the general case our model should be interpreted
as a superposition of an astrophysical contribution like the
previous one, with p ∼N ð·j0; σþÞ, and of a Gaussian
contribution with variance σ2−. In this case (again in the
approximation Γδt ≪ 1) we obtain

hi ∼ ð1 − ΓδtÞN ð·j0; σ−Þ þ ΓδtN
�
·j0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ σ2−

q 	
ð18Þ

with σh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2− þ Γδtσ2

p
and σþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ σ2−

p
. We sum-

marize the relation between the model parameters and
physical quantities in Table I. The Neyman-Pearson opti-
mal DS for the two-component mixture model, Ŷ, reads

Ŷ ¼
X
i

ŷðwiÞ; ð19Þ

where

ŷðwÞ ¼ log

�X
α

pασffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ σ2α

p exp

�
1

2

σ2αw
σ2 þ σ2α

��
; ð20Þ

wi ¼
X
AB

uAi u
B
i ; ð21Þ

uAi ¼ σsAi
σ2A

; ð22Þ

1

σ2
¼

X
A

1

σ2A
: ð23Þ

TABLE I. Relation between physical quantities and model
parameters.

Physical quantity Definition Model parameters

Γ Astrophysical background
events rate

1
δt

σ2h−σ
2
−

σ2þ−σ2−
¼ pþ

δt

Sh;Astro Astrophysical background
power spectrum

ðσ2þ − σ2−Þδt

Sh;Gauss Gaussian background
power spectrum

σ2−δt

T Observing time Nδt
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We can expand the DS as

ŷðwÞ ¼
X∞
n¼0

1

n!
ŷðnÞð0Þ

�X
A

uA
�

2n
; ð24Þ

¼
X∞
n¼0

1

n!
ŷðnÞð0ÞZðn;NDÞ; ð25Þ

with

Zðn;NDÞ ¼
X

k1þ���þkND
¼2n

�
2n

k1;…; kND

� YND

A¼1

ðuAÞkA ; ð26Þ

where kA are non-negative integers. Following the argu-
ment provided in Sec. II we want to remove from Eq. (25)
all terms with nonzero expectation value under the hypoth-
esis H0 (i.e., in absence of GW signal). Under such a
hypothesis, the uAs are independent normal variables and
by virtue of Isserlis’ theorem the terms to be canceled are
those in the large sum of (26) with all even kAs.
This can be written explicitly, up to an irrelevant

multiplicative constant, as

ŷs ¼ ŷ

��X
A

uA
�

2
�

−
1

2ND

X
ε1¼−1;1

� � �
X

εND
¼−1;1

ŷ

��X
A

εAuA
�

2
�
: ð27Þ

A formal proof that this is the desired DS follows.
Theorem III. 1. For a given statistics Sðu1;…; uNDÞ,

where uA ¼ hA þ nA, if nA are statistically-independent
stochastic variables (i.e., the noise in our context) with
nonzero even momenta and zero odd momenta, we con-
sider the formal Taylor expansion in powers of uA. A
modified statistics where under H0 terms with nonzero
expectation values are canceled while preserving others is

Ssðu1;…; uNDÞ ¼ Sðu1;…; uNDÞ þ −
1

ND

X
ε1¼−1;1

� � �

×
X

εND
¼−1;1

Sðε1u1;…; εND
uNDÞ: ð28Þ

Proof.—Let us consider a generic term of the Taylor
expansion, which reads

ðu1Þk1 � � � ðuNDÞkND ; ð29Þ

where ki are positive indices. If hA ¼ 0, its expectation
value is different from zero if and only if all the kis are
even. In fact,

hðn1Þk1 � � � ðnNDÞkND i ¼ hðn1Þk1i � � � hðnNDÞkND i; ð30Þ

as the nA are statistically independent. We observe that

1

ND

X
ε

ðε1n1Þk1 � � � ðεNDnNDÞkND

¼



1

ND

X
ε

εk11 � � � εkND
ND

�
ðn1Þk1 � � � ðnNDÞkND ; ð31Þ

and the expression between curly braces is equal to one if
and only if all the ki are even, and equal to zero otherwise.
Therefore, the statistics in Eq. (28) cancels the fully even
terms, while preserving all the others. ▪
It is worth noting that the Gaussian noise assumption is

not mandatory; independence and zero odd momenta are
required, only. Gaussian, zero average noise is a particular
case. We focus on two particular examples, ND ¼ 2, 3. For
ND ¼ 2 we get

ŷs ¼
1

2
ŷ½ðu1 þ u2Þ2� − 1

2
ŷ½ðu1 − u2Þ2�: ð32Þ

The first two nonzero orders in a power expansion are
given by

ŷs ¼ 2ŷ0sð0Þu1u2 þ 2ŷ00s ð0Þ½ðu1Þ3u2 þ u1ðu2Þ3� þOððuÞ6Þ;
ð33Þ

and we see that for a linear function ŷ the usual Gaussian
optimal DS is recovered, while higher-order corrections are
proportional to higher order correlation of the measured
data. As desired, diagonal terms such as ðu1Þ2, ðu1Þ2ðu2Þ2
etc., are canceled under the null hypothesis.
We also note here that under the competing hypothesis

(h ≠ 0), Oðu4Þ terms proportional to h2n2 and to h4 are
preserved. The first provide additional information on the
GW spectra, boosted by the noises’ spectra frequently
assumed to be much larger. The other contains information
about non-Gaussianity. Similar contributions will appear at
higher orders.
In the same way for ND ¼ 3 we have

ŷs ¼
3

4
ŷ½ðu1 þ u2 þ u3Þ2�− 1

4
ŷ½ð−u1 þ u2 þ u3Þ2�þ

−
1

4
ŷ½ðu1 − u2 þ u3Þ2�− 1

4
ŷ½ðu1 þ u2 − u3Þ2�; ð34Þ

and the first two nonzero orders are
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ŷs ¼ 2ŷ0sð0Þ½u1u2 þ u2u3 þ u3u1�
þ 2ŷ00sð0Þ½3ðu1Þ2u2u3 þ 3u1ðu2Þ2u3 þ 3u1u2ðu3Þ2
þ ðu1Þ3ðu2 þ u3Þ þ ðu2Þ3ðu1 þ u3Þ þ ðu3Þ3ðu1 þ u2Þ�
þOððuÞ6Þ: ð35Þ

We get again the Gaussian optimal DS at the lowest order,
which is just a sum over all pairings of the weighted cross-
correlations

u1u2 þ u2u3 þ u3u1 ¼ σ2
�
s1s2

σ21σ
2
2

þ s2s3

σ22σ
2
3

þ s3s1

σ23σ
2
1

�
; ð36Þ

and no diagonal higher-order terms.

IV. RESULTS

In order to contextualize the performances of the
improved DS, we first discuss the connection between
the toy model used for the tests and a realistic stochastic
background. Let us remind that the former can be described
as a superposition of statistically independent events. Each
event will produce a contribution to the strain

hμνðx; tÞ ¼ uμνðx; t − τI; λIÞ; ð37Þ

where τI is the event time and λI ¼ ðλ1I ;…; λ
Np

I Þ an
appropriate set of parameters describing the event.
These can be intrinsic (e.g., the chirp mass of a

coalescing binary) or extrinsic (e.g., the source luminosity
distance or its position in the sky). It is convenient for our
modeling to isolate the arrival time and not describe it on
the same footing as other parameters.
An useful formalism for the description of a sequence of

independent events with a fixed rate is based on the
introduction of a function QðλÞ [16].
We will not give the explicit derivations (see [16] for

details); the interesting final result is that the statistical
cumulants of strain field can be written as

⟪hμ1ν1ðx1; t1Þ � � � hμnνnðxn; tnÞ⟫ ð38Þ

¼
Z

dτ
Z

dλQðλÞ ð39Þ

×uμ1ν1ðx1; t1 − τ; λÞ � � � uμnνnðxn; tn − τ; λÞ; ð40Þ

where we assumed that the average value hhμνðx; tÞi is zero.
The quantityQðλÞdλ can be interpreted as the rate of events
in a given infinitesimal volume of the parameter space. This
is more evident if we write

QðλÞ ¼ ΓPðλÞ; ð41Þ
where Γ is the event rate and PðλÞ the probability density of
λ over its parameter space. We use this notation to also
rewrite (38) as

⟪hμ1ν1ðx1; t1Þ � � � hμnνnðxn; tnÞ⟫

¼ Γ
Z

dτuμ1ν1ðx1; t1 − τ; λÞ…uμnνnðxn; tn − τ; λÞ ð42Þ

or, in the frequency domain,

⟪h̃μ1ν1ðx1;ω1Þ…h̃μnνnðxn;ωnÞ⟫
¼ 2πΓδðω1 þ � � � þ ωnÞũμ1ν1ðx1;ω1; λÞ…ũμnνnðxn;ωn; λÞ:

ð43Þ

Here X̄ is the average over the parameters λ of X.
Note that, from an observational point of view, we are

interested in cumulants of the strain measured by the
detectors, namely

hAðtÞ ¼
Z

DA
ijðt; t0Þhijðt0; xAðt0ÞÞdt0: ð44Þ

Here DA
ij is a generalized detector tensor of the Ath

interferometer located in xA, where we included the time
dependency connected to the detector’s movement and a
whitening transformation that can be chosen in such a way
to normalize the signal to a white noise spectrum. Moments
of measured strains defined in Eq. (44) can be easily
recovered from (38).
All the information of astrophysical interest are encoded

in QðλÞ. Q functions are additive; if a given stochastic
background is the sum of several contributions, each
described by QðaÞðλÞ, we have

QðλÞ ¼
X
a

QðaÞðλÞ: ð45Þ

This mathematical description let us highlight an impor-
tant fact; let us suppose that the rate is increased
QðλÞ → ηQðλÞ, and at the same time individual events
amplitudes are scaled accordingly with uμν → η−1=2uμν.
The second order cumulant ⟪hμ1ν1ðx1; t1Þhμ2ν2ðx2; t2Þ⟫
does not change, while higher-order ones are rescaled as

⟪hμ1ν1ðx1; t1Þ � � � hμnνnðxn; tnÞ⟫
→ ηð2−nÞ=2⟪hμ1ν1ðx1; t1Þ � � � hμnνnðxn; tnÞ⟫ ð46Þ

and become less and less important in the η → ∞ limit.
This offers a straightforward interpretation; when the
background is generated by a very large number of weak
events, it becomes a Gaussian stochastic field—only its
second-order cumulant, which is related to spectral char-
acteristics, is relevant.
Let us now connect the formalism above with the

proposed toy model. Considering σ− ¼ 0 [Eq. (17)] we
have
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h̃ðωÞ ¼ hδt ð47Þ

and we can use Eq. (43) directly to get the even cumulants

⟪h̃A1ðω1Þ � � � h̃AnðωnÞ⟫ ¼ 2πΓδðω1 þ � � � þ ωnÞhn
¼ 2πΓðn − 1Þ!!pþσnþδtnδðω1 þ � � � þ ωnÞ ð48Þ

while the odd ones are zero. The general case in Eq. (18)
can be obtained by substituting in this result σ2þ → σ2þ − σ2−
and a by adding the contribution of Gaussian background
with variance σ2−. This contributes only to the n ¼ 2
cumulant and we get

⟪h̃A1ðω1Þ � � � h̃AnðωnÞ⟫
¼ 2πΓðn − 1Þ!!ðpþðσ2þ − σ2−Þn=2 þ σ2−δn;2Þ
× δtnδðω1 þ � � � þ ωnÞ: ð49Þ

In particular the power spectrum is flat and given by

ShðfÞ ¼ σ2hδt ð50Þ

which corresponds to an adimensional energy density for
logarithmic interval of frequency

ΩGWðfÞ ¼
4π2

3H2
0

f3σ2hδt: ð51Þ

It is important to note that the distribution of signal
amplitudes for each event depends on the specific details
of QðλÞ: e.g., it is sensitive to the redshift z distribution of
the sources. The signal power spectrum depends only on
σh, while higher-order momenta carry information, and
therefore can distinguish additional signal properties.
The noise power spectrum can be written similarly as

SAn ðfÞ ¼ σ2Aδt. Finally, we write the signal-to-noise ratio
for a pair of detectors as a function of the toy model
parameters

SNR2 ¼ 8

25
TΔf

σ4h
σ21σ

2
2

; ð52Þ

where T is the observing time and Δf is the sensitivity
bandwidth of the detectors. We stress that this is an
appropriate figure of merit for the performances of the
Gaussian analysis.
In order to compare DSs’ performances, we follow the

procedure in [12] closely. In addition, we observe that
momenta of the DS can be evaluated as an explicit integral,
therefore we avoid a direct simulation of the data underH1.
For the “Exact” DS we write

hŷKi ¼
Z

� � �
Z Y

A

dsA log


 X
α¼þ;−

pασffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2α þ σ2

p
× exp

�
σ2α

2ðσ2α þ σ2Þ
�
σ
X
A

sA

σ2A

���
K

×

� X
α¼þ;−

pαe−
1
2
½C−1

α �ABsAsBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞND detCα

p �
; ð53Þ

where C� are matrices in detector space with entries
defined by

CAB
� ¼ σ2AδAB under H0; ð54Þ

CAB
� ¼ σ2AδAB þ σ2� under H1: ð55Þ

and they describe the two multivariate Gaussian distribu-
tions entering the competing hypothesis. Similar expres-
sions can be obtained for the other DSs listed in Sec. I
(detailed derivations are provided in [12]).

A. Performance comparison

When a series of Nd data is collected from each detector,
the DS is the sum of Eq. (19) and for large enough Nd, Ŷ is
approximately Gaussian distributed. Using this property
and the connected momenta being proportional to Nd, i.e.,

μjNd¼N ¼ NμjNd¼1; ð56Þ

σ2jNd¼N ¼ Nσ2jNd¼1; ð57Þ

we write a relation between false alarm probability,
detection probability, and N in the form

PD ¼ 1

2
erfc

�
σH0

σH1

����
Nd¼1

erfc−1ð2PFAÞþ

−
ffiffiffiffi
N
2

r
μH1

− μH0

σH1

����
Nd¼1

�
: ð58Þ

We note that this relation is valid for all the DS considered,
for a large enough number of dataNd (or, equivalently, for a
large enough data taking time T ¼ δtNd). It follows that a
naive definition of a signal-to-noise ratio

SNR ¼ μH1
− μH0

σH1

ð59Þ

can always be used. However, it is also clear that this
signal-to-noise ratio does not describes completely the
performances of a given DS, as the ratio

σH0

σH1

is also relevant.

For this reason, we argue that the best and unambiguous
figure of merit for a comparison between the Gaussian and
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the non-Gaussian case is the value of the detection
probability.
Performances are presented in Figs. 1, 2, 4, and 5 using

Eq. (58) for ND ¼ 2, 3, 4 and 5, respectively. We plot the
detection probability against the number of data points N,
for PFA ¼ 10−15. The advantage of the procedure is that it
gives precise estimates of the relevant quantities also for
very small values of PFA, otherwise inaccessible through
simulated data. On the other hand, the functional form of
Eq. (58) is based on the assumption that the statistic is
Gaussian, so it should considered reliable only for high
enough number of data.
Every figure shows several plots with different choices of

σþ=σh and σ−=σh, to explore different levels of non-
Gaussianity, from negligible (bottom right panel) to strong
(top left panel). The “Improved” DS systematically out-
performs the “Scrambled” one studied in [12], with greater
probabilities of detections for every N and level of signal
Gaussianity. In particular, the “Improved” performances are
always equal to or better than the “Gaussian” ones. The
“Improved” DS does not suffer of the loss of performances
affecting the “Scrambled” one, even for signals very close
to Gaussian.
Remarkably, increasing the number of DSs (i.e., in

Fig. 2) we see that the “Improved” DS has performances
similar to the “Exact” one, showing an important gain in
having greater ND. The improved DS performances con-
verge to those of the “Exact” one for large ND.
A semiquantitative understanding of this behavior is

obtained as follows: we notice that for a given order
Oðu2nÞ, there are

Nn;ND
¼

�
2nþ ðND − 1Þ

2n

�
ð60Þ

possible terms in the Taylor expansion of a DS. The number
of terms with even powers of all variables is

NðsÞ
n;ND

¼
�
nþ ðND − 1Þ

n

�
ð61Þ

and the ratio NðsÞ
n;ND

=Nn;ND
scales as N−n

D in the large ND

limit,

NðsÞ
n;ND

Nn;ND

¼ 2nð2n − 1Þ!!Q
n
i¼1ðND þ 2n − iÞ : ð62Þ

This suggests that subtracted terms impact less and less the
performances when ND grows larger, the “Improved” DS
getting closer and closer to the “Exact” one. We note that a
network with ND ¼ 5 is not unrealistic [17], and is already
large enough to make the “Exact” and “Improved” DSs
nearly equivalent.

A further argument in support of such behavior follows:
we rewrite Eq. (58) as

Nd ¼
�

σH1

μH1
− μH0

����
Nd¼1

×

�
σH0

σH1

����
Nd¼1

ercf−1ð2PFAÞ− ercf−1ð2PDÞ
��

2

; ð63Þ

and we define NG and NI its value computed for the
“Gaussian” and “Improved” DSs, respectively. Therefore,
the ratio NG=NI gives the multiplicative factor for the
number of data needed for the “Gaussian” DS to reach the
same detection probability of the “Improved” one, for fixed
competing hypotheses and probability of false alarm.
We show a plot of such ratio at fixed PD ¼ 0.5 and

PFA ¼ 10−15 in Fig. 3 (right panel) for a set of ND values.
The ratios σþ=σh and σ−=σh are shown on the vertical and
horizontal axis, respectively. The improved statistic has
always better performances than the Gaussian statistic, as
NG=NI is globally greater than one. Such improvement
grows larger in the upper-left corner, where the signal
kurtosis is larger, as expected. In the right panel of Fig. 3 we
represent the relation between the reduced kurtosis and
NG=NI, for a uniform sampling in the parameters σþ=σh,
σ−=σh of the region shown in the right panel. Results for
ND ¼ 2, 3, 4, 5 can be compared, and we see again that the
performance of the “Improved” DS relative to the
“Gaussian” one increase with ND. This is equivalent to a
comparison of the time required to achieve a detection at
the same level of significance using the two-detection
statistics. From Fig. 3 we see that a confident detection
would require a data taking time three times larger with the
standard “Gaussian” DS compared with the “Improved”
DS we introduced with two detector and a mild non-
Gaussianity. Larger improvements are obtained with larger
non-Gaussianities and more that two detectors.
We note that having NG=NI ≥ 1 is a priori expected. In

fact, the “Improved” version of the optimal statistic is
obtained subtracting nonzero mean terms from the “Exact”
one, which is optimal in the Neyman-Pearson sense. In the
Gaussian limit the “Improved” statistic becomes exactly the
“Gaussian” one, as discussed in the previous section [see
Eq. (36) for a specific example], and can be considered its
natural generalization. However, we do not provide a
rigorous proof here.

B. Subtraction for realistic backgrounds

Given the effectiveness of the new procedure, we explore
its application to a realistic non-Gaussian stochastic back-
ground. We consider the model

sAi ¼ nAi þ hAi ; ð64Þ

where the GW signals measured by each detector are now
different, and the joint probability distribution reads
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FIG. 4. Comparison between the detection probability of the considered DSs as a function of the number of used data N. Several
different signal models are considered, parametrized by σþ=σh and σ−=σh. Here ND ¼ 4 and PFA ¼ 10−15.

FIG. 3. (Right panel) Contour levels of the improvement factor NG=NI in a range of the model parameters σþ=σh, σ−=σh. Solid, dot-
dashed, dashed, and dotted lines denote the improvement factor for ND ¼ 2, 3, 4, 5, respectively. Pixels shading denotes the model-
reduced kurtosis. We observe NG=NI greater than one, up to a few tens, over the explored parameter space, systematically increasing for
increasing number of detectors. (Left panel) The above performances are shown as a function of the reduced kurtosis and NG=NI .
Uniform grids over the signal parameter space are plotted as teal, orange, purple, and blue meshes for ND ¼ 2, 3, 4 and 5, respectively.
We fix as fiducial values PD ¼ 0.5 and PFA ¼ 10−15.
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dP ¼ DðhÞ
Y
A;i

dhAi ; ð65Þ

where DðhÞ is some generic function of the data hAi (a
probability density) and

Q
A;i dh

A
i a measure in the space

(of dimension ND × N) of possible signal time series.
We first observe that the statistical properties of h are

irrelevant, because we only want to obtain the cancellation
of diagonal terms under the H0 hypothesis. However,
realistic detector noises can have nontrivial time-domain
correlations, and non-Gaussian contaminations are
expected. A generic term of a Taylor expansion of the
DSs with degree κ1 þ � � � þ κND

reads

ðn1i1;1 � � � n1i1;κ1 Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Detector 1

� � � ðnND
iND;1

� � � nND
iND;κND

Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
DetectorND

; ð66Þ

and its expectation is

hn1i1;1 � � �n1i1;κ1 i � � � hn
ND
iND;1

� � � nND
iND;κND

i ð67Þ

as we assume again statistically independent noises across
different detectors. After applying the subtraction pro-
cedure defined in Eq. (27) we get

ðn1i1;1 � � � n1i1;κ1 Þ � � � ðn
ND
iND;1

� � � nND
iND;κND

Þ

→

�
1 −

1

2ND

X
ε

εκ11 � � � εκND
ND

�

× ðn1i1;1 � � � n1i1;κ1 Þ � � � ðn
ND
iND;1

� � � nND
iND;κND

Þ:

As in the simplified case, a given term is cancelled if all the
κAs are even and is preserved otherwise. The expectation
values of all the preserved contributions are zero, unless
some odd-order noise momenta are non-null. Therefore, the
subtraction procedure is effective in a very general sense,
and is also applicable when non-Gaussian contaminations
(without nonzero odd momenta) are present. In particular,
this procedure can be incorporated easily in the general DS
defined in Eq. (17) of [12]. However, it should be noted that
non-Gaussian noise contributions can change the expect-
ation value of the statistic under H1.

V. CONCLUSIONS AND PERSPECTIVES

The “Improved” DS introduced in this paper can be seen
as the natural generalization to the non-Gaussian case of the
optimal statistic used for a Gaussian stochastic background.
As a study of a realistic model is computationally expen-
sive, we performed an exploration based on a simplified
toy model, and focused in this manuscript on our findings.
The toy model we used to quantify its performances is

FIG. 5. Comparison between the detection probability of the considered DSs as a function of the number of used data N. Several
different signal models are considered, parametrized by σþ=σh and σ−=σh. Here ND ¼ 5 and PFA ¼ 10−15.
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simplified. In particular, it completely neglects the non-
trivial time structure of the signals associated to a realistic
event. However, we showed that the core procedure to
remove diagonal contributions is applicable to the general
case, since it is insensitive to time or frequency structure,
and only performs a transformation in the detector space.
Performance results are promising, and we expect that the

improvement with respect to the “Gaussian” DS will be
preserved in a realistic situation. We observed that the
“Improved” DS becomes nearly equivalent to the “Exact”
one for a large enough (although reasonable) number of
detectors in the network. For completeness, it should be
noted that the improvement that can be obtained in a real
scenario depends on the details of the background non-
Gaussianity, so one should extrapolatewith care our findings,
and ultimately support them through direct investigation.
From a practical point of view, the main difference in a

realistic scenario where no analytical expression for the
“Improved” DS is available, arises from the computational
cost in evaluating it as discussed in [12] [e.g., the
discussion following Eq. (17) therein], which requires an
efficient numerical procedure. The computational cost is
related to the number of configurations needed for an
accurate statistic estimate, which we investigated in our

previous work using the importance-sampling procedure.
On this ground, we expect a large number of detectors to
help in reducing the effective computational cost.
Computational cost estimate of the method in a realistic

case is a key step that needs to be fully addressed to assess
the applicability of our method. We argue that an expen-
sive, although manageable, computational cost would
certainly be justified by the prospect of an earlier and
more confident detection of an astrophysical stochastic
background, e.g., generated by a superposition of binary
coalescence events, within reach in the near future [1]. We
expect that no major additional obstructions will forbid the
application of the method to other detectors, such as LISA
or pulsar timing arrays.
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