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Abstract

This paper deals with the issue of concept-drift in machine learning in the context of high dimen-
sional problems. In contrast to previous concept drift detection methods, this application does not
depend on the machine learning model in use for a specific target variable, but rather, it attempts
to assess the concept drift as an independent characteristic of the evolution of a dataset. This major
achievement enables data to be tested for the presence of drift, independently of the specific problem
at hand. This is extremely useful when the same dataset is utilized for different classifications simul-
taneously, as it is often the case in a business environment. Moreover, unlike previous approaches,
this method does not require the re-testing of each new model; a strategy which could prove expensive
in computational terms. The fundamental intention of this work is to make use of graphical models
to elicit the visible structure of data and represent it as a network. Specifically, we investigate how
a graphical model evolves by looking at the creation of new links, and the disappearance of existing
ones, in different time periods. We perform this task in four steps. We compute the adjacency matrix
of a graph in each period, we apply a function that maps each possible state of the adjacency matrix
over time into a transition matrix. We use the information in the transition matrix to produce a
metric to estimate the presence of a drift in the data. Eventually, we evaluate this method with both
three real-world datasets and a synthetic one.

Keywords: Drift Estimation, Graphical Models, Unsupervised Learning, Bayesian Logistic Re-
gression

1 Introduction

Over the last several decades, the use of machine learning has become widespread across different indus-
tries due to both the increased availability of digitized information and improvements in algorithms. In
particular, machine learning has become a standard tool for predicting key information in various or-
ganizational processes such as individual and corporate risk default, fraudulent claims, customer churn,
machine failures [Nuccio and Guerzoni, 2019], and even COVID-19 variants specifications [Hussain et al.,
2021]. The assessment of model uncertainty within a supervised machine learning exercise is based on
testing its accuracy on a validation-set whose observations have not been used in the model training.
This practice allows for flexibility in the choice of model and averts the risk of over-fitting. However, this
process relies on the assumption that the data generating structure is common to both the test-set and
future observations. While this assumption is rarely debatable in relation to physical processes, social
processes are subject to change over time and so a model trained on past data might suffer a deteriora-
tion in its predictive power [Gama et al., 2014]. This phenomenon, which is known as concept or model
drift, describes a situation in which there exists a hidden context of the data-generative structure, i.e any
effect of the outcome variable which is not captured by the model features and which changes abruptly,
incrementally, or periodically, over time [Widmer and Kubat, 1996, Webb et al., 2016]. Scholars have
addressed this issue and developed a battery of techniques for concept drift detection. As reviewed in
Klinkenberg and Joachims [2000] and Elwell and Polikar [2011], traditional techniques typically rely on
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adopting different time windows or size of the training data [Klinkenberg and Renz, 1998, Gama et al.,
2013] or on explaining how the weights of different features of a predicted outcome change over time
[Klinkenberg and Renz, 1998, Taylor et al., 1997, Klinkenberg, 2004, Zhao et al., 2020]. A recent re-
view [Althabiti and Abdullah, 2020] surveys methods that can also deal with model update with stream
data [Bose et al., 2011]. However, most of these techniques make use of a statistical comparison of the
changes in classification error and, from this evidence, they deduce the presence of concept drift [Widmer
and Kubat, 1996]. In this paper, we approach this problem from a different angle. We apply graphical
models[Lauritzen, 1996] to elicit the visible structure of the data and we estimate its changes over time.
Thus, as distinct from previous concept drift detection methods, this application does not depend on the
machine learning model in use, but rather, it assesses concept drift as an independent characteristic of
the data. For instance, Barros and Santos [2018]’s test of 14 different detector methods had to be per-
formed using just two specific classifiers and nothing could be inferred from either one. Thus, the method
presented in this paper releases drift detection from specific classifiers. This approach belongs to the
body of work that uses graphical models to represent concept drift [Borchani et al., 2015, Cabañas et al.,
2018], although it departs from this in that we attempt to model the entire joint distribution of variables
instead of focusing solely on the relation with a specific label variable to be predicted. Eventually, we
propose an algorithm capable of computing the drift and apply it to real-world datasets.

2 Problem statement and related literature

2.1 Problem statement

In this paper, we aim to estimate the concept drift of a dataset. If we take a dataset Xt = (X1,t, . . . , Xp,t)
observed in different points in time, t = 1, 2, . . . , T and define its concept at time t as the joint distribution
P (Xt). A concept drift exists if P (Xt) ̸= P (Xk ̸=t). The aim of the paper is to provide an estimation βt

of the magnitude of the concept drift from P (Xt=1) to P (Xk ̸=t) with t = 1, 2, . . . , T .

2.2 Related literature

The definition of ”concept” adopted in this paper is one of the two provided in the related literature.
According to Webb et al. [2016], a narrow definition of concept implies a specific, supervised, exercise in
which one variable is not a feature but a label to be classified. Thus, for the specific classification problem
of the variable C, the concept is defined as the joint distribution P (X1,t, . . . , Xp−1,t|Ct), where the variable
pth is considered a label to be classified, C. Alternatively, for cases beyond classification, as for instance, in
unsupervised learning, the broad definition of concept is the joint distribution P (X1,t, t, . . . , Xp−1,t, Ct).
Borchani et al. [2015] define the concept drift as when there is a change in the joint distribution over
time P (·)t ̸= P (·)k ̸=t. This general definition applies to both cases of concept drift introduced by Webb
et al. [2016]. However, when Borchani et al. [2015] discuss available tools in concept drift detection, and
distinguish between real and virtual concept drift, they clearly refer to the supervised case only. To be
exact, the real concept drift is when the joint distribution P (X1,t, . . . , Xp−1,t|Ct) changes over time and
the virtual concept drift i.e. P (X1,t, . . . , Xp−1,t) changes, but P (X1,t, . . . , Xp−1,t|Ct) remains constant.
The former case describes the situation where the drift changes the relationship between variables and
the label to be predicted, while in the latter situation, the drift changes the relationships among variables,
but that between variables and the label remains unaltered. In both cases, the elicitation of a drift always
refers to the concept drift for a specific classification problem of the label C.

The idea behind this characterization is that the focus is on detecting the change, which eventually
impacts upon the accuracy of the specific classification model at hand. For this reason, all of the recent
contributions reviewed in Klinkenberg and Joachims [2000], Elwell and Polikar [2011], Althabiti and
Abdullah [2020], rely on this definition of concept drift. For its estimation, they measure, over time, the
increase in the classification error for the target variable C.

However, this useful simplification does not come without a cost, since the measure of the drift is
wholly specific to both the prediction of the label variable and the supervised model adopted: when
the same dataset is used for different classification problems, the researcher needs to evaluate different
concept drifts for different problems.

For this reason, while other methods are specific to a certain problem, in this paper, we approach a
situation rarely discussed in related literature but encompassed in Webb et al. [2016]’s definition of the
most general category of concept drift. Specifically, any change in the joint distribution of the random
variables in a dataset P (X1, t, . . . , Xp−1,t, Ct) regardless of the specific problem under consideration
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and a related target variable. In other words, we consider variable Ct as pth variable in the dataset
Xt = (X1,t, . . . , Xp−1,t, Xp,t) and we are interesting in analyzing whether the joint distribution changes
over time P (Xt) ̸= P (Xk ̸=t).

Therefore, both in the approach and in the notation we follow Borchani et al. [2015] by describing
the problem of drift detection as a comparison of different distributions overtime, but we radically depart
from them in that we consider P (Xt) without making a distinction between variables and labels. Our
approach, which does not delimit the computation of drift solely for a specific classification model, makes
it possible to measure how the joint probability P (Xt) drifts over time and has the following advantages.
First, we address the drift in the dataset without imposing any a-priori classification problem. This is
useful in many contexts, such as in a business environment in which the same data are employed for
different exercises, both supervised and unsupervised. Second, and pragmatically, the theoretical case of
virtual drift is very unlikely to occur in datasets representing highly complex interactions. Third, we do
not make the simplistic assumption, as in [Borchani et al., 2015, Cabañas et al., 2018], that variables in
X are mutually independent1.

3 A measure of dynamic stability as proxy for the concept drift

The task of estimating a measurement of the absence of a drift from time t to T , βt, for the dataset Xt

consisting of p variables observed at different points in t = 1, 2, . . . , T (hours, days, weeks, months, years,
...) require the following steps: first, we compute an approximation of the joint probability P (Xt) over
T periods whit the support of the graphical models, second, we present a method by which to compare
P (Xt) over time t, with the use of a transition matrix and, finally, we provide an estimator βt which can
be considered as an empirical proxy for concept drift.

3.1 Graphical models and the estimation of the joint distribution

The first step in our approach requires the encoding of the joint probability P (Xt) into a graphical
model, which maps the conditional dependence relationships in a undirected graph G. G = (V,E) is a
mathematical object where V is a finite set of nodes {V1, . . . , Vp}, with a one-to-one correspondence with
the p random variables {X1, . . . , Xp}, E ⊂ V × V is a subset of ordered couples of V representing the
conditional dependence between any two nodes Vi and Vj , mapping the p variables [Jordan et al., 2004].
We encode, on the graph, a very simple approximation of the joint distribution: if a link between two nodes
is absent, the two variables represented by the nodes are independent conditional upon the dependence
of the remaining variables, and are not independent otherwise [Lauritzen, 1996]. Therefore, we do not
take the magnitude of these links into account. Moreover, to reduce the space taken up by possible
graphs, which in the case of p variables can add up to 2p(p−1)/2, we make the further assumption that the
approximation of the joint distribution is encoded in a ”tree” or a ”forest”. A tree is ’a decomposable
graph with cliques of size two (or less) and such that any two non-adjacent nodes are separated by a set
of (at most) size one’ [Carota et al., 2014]. In order words, the graphs does not display any triangulation
as in Figure 1. A forest is a set of disconnected trees.

In this paper, we derive the graph with the approach adopted by Edwards et al. [2010], an extension of
the Chow and Liu [1968] algorithm which can be applied with each type of dataset variable composition
(discrete, continuous or mixed). Furthermore, Edwards et al. [2010] suggest penalizing the tree/forest
maximum likelihood with the AIC or BIC criterion2, in order to avoid the inclusion of links not supported
by data3.

1Actually [Cabañas et al., 2018] suggest that this assumption can be easily removed. However, the computation can
become really cumbersome, while, as explained below, our approach enables the algorithm to deal with very large datasets

2IAIC = I(xi, xj)− 2kxi,xj or IBIC = I(xi, xj)− log(n)kxi,xj where kxi,xj are the degrees of freedom associated with
the pair of variables, that are defined according to the nature of the variables involved [Akaike, 1974, Schwarz, 1978]

3Details about graphical model can be found in [Lauritzen, 1996]’s textbook and they are also discussed elsewhere by
the authors [Edwards et al., 2010]
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Figure 1: Example min BIC tree, from a dataset X with p = 5 variables and N observation at time t

Graph G approximates the joint probability of the entire dataset X, observed at a generic time t
(as in Figure1) and, as with graph, can be always represented by its adjacency matrix AMt, which is
a symmetric matrix, with dimension (V × V ), in which each element takes value of 1 if an edge exists
between two of the p variables, and zero otherwise. Elements in the main diagonal are zeros, since self-
loops are not allowed [Edwards et al., 2010]. For example the, the Adjacency Matrix of the graph in
Figure 1 is equal to:

AMt =

X1 X2 X3 X4 X5


0 1 1 0 1 X1

1 0 0 0 0 X2

1 0 0 1 0 X3

0 0 1 0 0 X4

1 0 0 0 0 X5

In the approach proposed here, the detection of changes over time in AMt, is the cornerstone of the
strategy to measure the concept drift.

3.2 Transition Matrix Processes

A second step in the computation of the drift is the detection of changes in the adjacency matrices AMt

with t = 1 . . . T . We introduce a function that maps all the observed changes in AMt∈(1,T ), over time,
into a transition matrix TMT = f(AMt∈(1,T )), denoted TMT , of dimension (V ×V ). Its generic element
wi,j registers, for each couple of node/variable i and j, the possible sequence of 0 and 1 occurred in T
periods.

Definition 3.1 (Transition Matrix Process). Given a temporal period of observation t = 1, 2, . . . , T , the
transition matrix process TMT :

TMT =

T∑
t=1

2(T−t)AMt, (1)

records any possible states of the AM1,AM2,. . . ,AMT .
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In order to illustrate definition 3.1, the following paragraph depicts the transition matrix process up
to T = 3 and, thereafter, generalizes for T periods. As a starting point, in t = 1 the transition matrix
TM1 is equal to the adjacency matrix AMt=1, where wi,j;1 = 0 means that the i -node and j -node are not
connected, while when wi,j;1 = 1 means that the Vi node and Vj node are connected. At t = 2 existing
links may or may not persist, while non-existing links may or may not appear. From Equation 1,

TM2 = 2×AM1 +AM2 (2)

Thus, TM2 maps any possible evolution of the connections between the Vi and Vj nodes, with wi,j;2

able to take values {0, 1, 2, 3}. When Vi and Vj are never connected, that is AMi,j;t=1 = AMi,j;t=2 = 0,
then wi,j;2 = 0. If Vi and Vj stay connected, that is AMi,j;t=1 = AMi,j;t=2 = 1, then wi,j;2 = 3. For
AMi,j changing from 0 in t = 1 to 1 in t = 2 we have wi,j;2 = 1, while wi,j;2 = 2 for AMi,j changing from
1 in t = 1 to 0 in t = 2. Table 1 shows the possible scenarios at T = 2.

Table 1: All possible AMt values for two nodes Vi and Vj and the resulting wi,j in TMT function for
T = 2

AMi,j;1 AMi,j;2 TMi,j;2 = wi,j;2

0 0 0
0 1 1
1 0 2
1 1 3

At time T = 3 the possible evolution of AMt can be described by 8 values:

TM3 = 22 ×AM1 + 21 ×AM2 + 20 ×AM3 (3)

Table 2 summarizes all possible combinations between two generic nodes (Vi, Vj) of binary values of
the AMi,j;1, AMi,j;2, AMi,j;3, mapped into TMi,j;3. Generally, for time T we can derive Eq. 1:

TM2 = 2×AM1 +AM2

TM3 = 2× TM2 +AM3

TM3 = 2× (2×AM1 +AM2) +AM3

TM3 = 22 ×AM1 + 21 ×AM2 + 20 ×AM3

TM3 =

3∑
t=1

2(3−t)AMt

. . .

TMT =

T∑
t=1

2(T−t)AMt

(4)

Table 2: All possible AMt values for two nodes Vi and Vj and the resulting wi,j in TMT function for
T = 3

AMi,j;1 AMi,j;2 AMi,j;3 TMi,j;3 = wi,j;3

0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

In general, the value of the generic element wi,j;t ∈ Wt ⊂ N0 of TMt, can be considered a realization
of a discrete random variable Wt with density f(wi,j;t):
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f(wi,j;t) = P (Wi,j;t = wi,j;t), t = 2, . . . , T (5)

Thus, TMi,j;T represents the evolution of the connection between the i -node and the j -node at time
T , for each node V. The numerosity of the set WT = {0, 1, 2.., 2T − 1} is 2T .

3.3 From the transition matrix to stability

The main idea of the paper is to measure the appearance or disappearance of connections between nodes
as a proxy for model drift. For this reason, we are especially interested in two specific levels which
describe the absence of change. That describing the state of the word in which a connection between
two nodes never exist, i.e. AMi,j;t = 0 ∀ t and that which describes a stable connection over time, i.e.
AMi,j;t = 1 ∀ t. In the case where T = 3, the two cases map into wi,j;3 = 0 and wi,j;3 = 7, as showed
in Table 2. In general for a generic t, we have a stability of connections when connections are always
absent, with wi,j;t = 0, or always existing, with wi,j;t = 2t − 1. Thus, for each value of t the transition
matrix introduces a partition within the set of all possible V connections:

V =
V (V − 1)

2

between the V nodes in the undirected, graph as shown in Figure 2.
Indeed, each transition at time t generates a subsequent partition, V, dividing the possible connections

in two groups: stable ones, with wi,j;t = 0 or wi,j;t = 2t − 1 and the others. This process, encoded in
the transition matrix can be seen as a particular case of a tail-free processes such as proposed by Jara
and Hanson [2011]. Consider a sequence T1 = {V}, T2 = {A0, A1}, T3 = {A00, A01, A1}, and so on, of
measurable partitions of the V elements, obtained by slitting every set in the preceding partition into two
new sets for the node on the left and maintain the same node for the others.

Partition of Transition Matrix Process

V

A0

A00

A000 A001

A01

A01

A1

A1

A1

t = 2

t = 3

t = 4

Figure 2: Representation of Transition Matrix process with Tail-free processes

At each time t, we can partition the connections between stable and unstable ones. Figure 2 shows
a tree diagram representing the distribution of mass over time V = A0 ∪ A1 = (A00 ∪ A01) ∪ A1 of the
elements of the transition matrix at each time. At time t = 2, A0 contains elements wi,j;2 = {0, 3},
indicating stable connections, while A1 includes the remaining ones. At the subsequent period, A0 is
partitioned between A00 and A01. The former includes stable connections, wi,j;3 = {0, 7}, while the
latter ones, wi,j;3 = {1, 6}, prove unstable at time t = 3, like those already present in A1. This partition
process, registered in the transition matrix TMt, can generate a simplified version of transition matrix
Qt with values :

Qt =

{
qi,j;t = 1 if wi,j;t = 0 ∨ wi,j;t = 2t − 1

qi,j;t = 0 otherwise
, t = 2, . . . , T (6)

Thus, Qt indicates, for each pair of variables, whether the status of their dependence is consistent,
over time, with qi,j;t = 1 or inconsistent with qi,j;t = 0. We define Yt as the half-vectorization of Qt

without the main diagonal elements, Yt = vech(Qt)\diag(Qt) with length V. As TM1 tallies with AM1,
the partition starts from t = 2, which means that T − 1 transition matrices turn out to be associated to
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T adjacency matrices, as explained in Figure 3:

AM1 AM2 AM3 AMT

TM2

TM3

TMT

Figure 3: From the adjacency matrices to the transition matrices

It is worth noting that the structure of the transition matrix process turns out to be dependent on
the min BIC spanning tree/forest at time t = 1. For each period t = 2, . . . , T , the normalized partition
of V is given by:

λt =

∑
i∈t Yi

V
, t = 2, . . . , T (7)

Therefore, we pool together by rows binding the T − 1 transition periods and define Stability, the
resulting variable Y with length V × (T − 1):

Qt =


q1,1;t q1,2;t . . . q1,V ;t

q2,1;t q2,2;t . . . q1,V ;t

...
...

. . .
...

qV,1;t qV,2;t . . . qV,V ;t

 Half−vectorization−−−−−−−−−−−−−−−−−−→
without the main diagonal

Yt =


q1,2;t
q1,3;t
...

qV−1,V ;t

 Pooling−−−−−−−→
different t

Y =


Y2

Y3

...
YT


We also take the half-vectorization of the values TMt, t = 2, . . . , T , without the elements of the main

diagonal: Wt = vech(TMt)\diag(TMt), a variable with length V. Similarly we pool together the T − 1
Wt and obtain the variable W with length V × (T − 1):

TMt =


w1,1;t w1,2;t . . . w1,V ;t

w2,1;t w2,2;t . . . w1,V ;t

...
...

. . .
...

wV,1;t wV,2;t . . . wV,V ;t

 Half−vectorization−−−−−−−−−−−−−−−−−−→
without the main diagonal

Wt =


w1,2;t

w1,3;t

...
wV−1,V ;t

 Pooling−−−−−−−→
different t

W =


W2

W3

...
WT


Stability is the cornerstone of our strategy and in the next paragraph we explain how we can use it

together with W to estimate an empirical measure of model drift.

3.4 Drift Estimation

In this section, we explain how can we use the Stability Y as a latent variable to estimate both the
presence and the magnitude of the drift.
Consider the following variable with same length n, where n = V × (T − 1):

• Y , as defined above

• W , as defined above

• T the corresponding time for each Y .

Then, we build a dataset with these variables and designate itD. Note that by definition, the observations
of D is exchangeable since we have built D respecting the temporal period of the adjacent matrices, thus:

P (D1, . . . ,Dn) = P (Dσ(1), . . . ,Dσ(n))

for all n ≥ 1 and all permutations σ of (1, . . . , n). In other words, the order of appearance of the
observations does not matter in terms of their joint distribution. In order to exploit this property, we
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implement a Bayesian Regression Model using the dataset D [Albert and Hu, 2019]. One advantage of
a Bayes perspective is the opportunity to consider the context of the analysis with the support of prior
distribution. This approach functions to discern the situations in which the data generating structure
is common to the test-set and future observations as a physical process, with respect to a social process
that can change very quickly and abruptly over time [Box, 1980]. Furthermore, as Gelman et al. [2008]
suggest, non-identifiability is a common problem in classical logistic regression. In addition to the problem
of collinearity, typical in linear regression, discrete-data regression can also become unstable due to
separation, which arises when a linear combination of the predictors can perfectly predict the outcome
[Albert and Anderson, 1984, Lesaffre and Albert, 1989]. Separation is surprisingly common in applied
logistic regression especially with binary predictors [Zorn, 2005]. In this context, Bayesian inference is a
valid alternative approach to obtaining stable coefficients [Gelman et al., 2008].

Let θi be the probability of a realization of Yi = 1 with odds θi
1−θi

. Thus the dichotomous variable Y
can be described by a Bernoulli distribution defined as follows:

Yi|θi
ind∼ Bern(θi), i = 1, .., n

Now, consider a logistic regression model4, in which the logit of the probability θi, or the log of its
odd, is a linear function of some predictors xi:

Logistic(θi) = log

(
θi

1− θi

)
= β0 +

2T∑
j=1

βjxj,i (8)

For the case under exam, the j predictors are 2T , with T , time of the of Y and the different levels of the
variable W . Since W has 2T levels, we regress 2T −1 dummy variable and keep W = {0} as the reference
category:

log

(
θi

1− θi

)
= β0 + βt × ti +

2T−1∑
j=1

βjwj,i (9)

By construction, the intercept of this model β0 can be interpreted as the baseline risk for Stability.
A high β0 suggests that the underlying graphical model does not change much over time. βt captures
the effect of the drift over time. It can be shown that Stability is slightly decreasing over time and,
thus βt defines the speed of convergence towards the absence of Stability, or alternatively the presence
of the drift. Finally, since the variable Y takes value 1 for W = {0, 2t−1}, the coefficient β2T−1, i.e. the
coefficient for W = {2T−1} with reference W = {0} captures component of Stability which originates in
the persistence of existing connections, rather than in the continuing absence of connections.

The computation is straightforward: by rearranging the logistic regression in Equation 9, it is possible
to express it as a nonlinear equation for the probability of success θi :

log

(
θi

1− θi

)
= β0 + βt × ti +

2T−1∑
j=1

βjwj,i

θi
1− θi

= exp

β0 + βt × ti +

2T−1∑
j=1

βjwj,i


θi =

exp
{
β0 + βt × ti +

∑2T−1
j=1 βjwj,i

}
1 + exp

{
β0 + βt × ti +

∑2T−1
j=1 βjwj,i

}
(10)

From the Equation 10, we can define the likelihood of the sequence of Yi over data set of n subjects:

p(Yi|β0, βt, . . . , β2T−1) =

n∏
i=1

 exp
{
β0 + βt × ti +

∑2T−1
j=1 βjwj,i

}
1 + exp

{
β0 + βt × ti +

∑2T−1
j=1 βjwj,i

}
yi

1−
exp

{
β0 + βt × ti +

∑2T−1
j=1 βjwj,i

}
1 + exp

{
β0 + βt × ti +

∑2T−1
j=1 βjwj,i

}
(1−yi)


(11)

4The logistic regression seems the most natural way to describe this phenomenon. However, according to the type of
expected drift, we could employ other functions, without loss of generalization.
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The set of unknown parameters consists of β0, βt, . . . , β2T−1. Generally, any prior distribution can be
used, depending on the available prior information [Carlin and Louis, 2008]. As it is usually implemented
(ibid.), if something is known about the likely values of the unknown parameters, this information can
allow for the use of informative prior distribution. Alternatively, the use of non-informative prior is
common when little is known about the coefficient values or where the goal is to exploit data-driven
inference [Kass and Wasserman, 1996, Box, 1980]. Numerous proposals and divergent opinions exist as
to the choice of prior for logistic regression. For example, Hanson et al. [2014] provide a simple Gaussian
g-prior for logistic regression coefficients according to variants of the g-prior proposed by Rathbun and
Fei [2006], Marin et al. [2007] and Bové and Held [2011], while Gelman et al. [2008] suggest standardizing
non-binary covariates and then placing independent Cauchy priors on regression coefficients based on
how covariates could reasonably affect the odds of the response. However, their insightful approach does
not take into account correlations between the predictor variables [Hanson et al., 2014]. The selection of
the prior is a key point of the Bayesian framework. Indeed the choice of an improper prior can lead to an
improper posterior. According to Syversveen [1998],a way of overcoming problems with improper prior is
to use proper approximations to improper priors. Examples are normal distributions with large variance
or a uniform distribution on a compact set. The fundamental disadvantage of using the uniform distribu-
tion as our non-informative prior, is that uniform distribution is not invariant under reparametrization
[Syversveen, 1998]. For these reasons, in this case, we suggest the use of the normal distribution, which
is the most common distribution for establishing priors for logistic regression parameters [Cramer, 2002,
Genkin et al., 2007]:

β0 ∼ N (µ0, σ
2
0)

βt ∼ N (µt, σ
2
t )

βj ∼ N (µj , σ
2
j ), j = 1, . . . , 2T−1

(12)

The most common choice for µ is zero with σ2 large enough to be considered non-informative in the
range from σ = 10 to σ = 100 [Albert and Hu, 2019]. However, if we have sufficiently deep and detailed
knowledge of the problem we are studying, the choice of informative priors will not change the innovative
process proposed in this paper. In order to make this paper easier to read, we synthesize the variance
vector of the priors with σ2, in this way we have σ2 = (σ2

0 , σ
2
t , . . . , σ

2
2T−1), while with the vector µ we

define the mean of the priors µ = (µ0, µt, . . . , µ2T−1), finally whit β we define the coefficient vector of the
logistic regression β = (β0, βt, . . . , β2T−1). According to these specifications, the following hierarchical
model emerges:

Yi|θi
ind∼ Bern(θ)

θi|β ∼ Logistic(β)

β ∼ N2T+1(µ,diag(σ
2))5

The posterior distribution of β is extrapolated by combining likelihood Equation 11, with the priors in
Equation 12 [O’brien and Dunson, 2004]:

p(Yi|β0, βt, . . . , β2T−1) =

n∏
i=1

 exp
{
β0 + βt × ti +

∑2T−1
j=1 βjwj,i

}
1 + exp

{
β0 + βt × ti +

∑2T−1
j=1 βjwj,i

}
yi

1−
exp

{
β0 + βt × ti +

∑2T−1
j=1 βjwj,i

}
1 + exp

{
β0 + βt × ti +

∑2T−1
j=1 βjwj,i

}
(1−yi)

×

×
2T−1∏
j=0

1√
2πσj

exp

{
−1

2

(
βj − µj

σj

)2
}

× 1√
2πσt

exp

{
−1

2

(
βt − µt

σt

)2
}
(13)

However, the regression parameters βj , with j = 1, . . . , 2T−1, are of limited interest. In fact, our
interest is captured by the parameter βt which defines the evolution of the Stability over the time and

5which is the multivariate normal distribution 2T + 1-dimensional.
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thus an estimation of the drift. Furthermore, the Bayesian approach gives us the opportunity to compute
the prediction of the Stability over a specific time t [Gelman et al., 1995]. If ỹi represents the number of
similarity connection between n nodes at time t, then one would be interested in the posterior predictive
distribution of the fraction ỹi/n One represents this predictive density of ỹi as:

f(Ỹi = ỹi|y) =
∫

p(β|Y,µ,σ)p(ỹi,ϕ)dϕ (14)

where p(β|Y,µ,σ) is the posterior density and p(ỹi, β) is the Binomial sampling density of ỹi conditional
of regression vector ϕ = (β0, βt) [Genkin et al., 2007, Albert and Hu, 2019]. Figure 4 represents the
Bayesian graphical model of the drift estimation, which synthesizes the entire process from the adjacent
matrices to the estimation of the Bayesian logistic parameters.

Stability Process

AMt TMt
wi

ti

yi

µσ2

θi

βi = 1, . . . , n

t = 2, . . . , T

t = 1, . . . , T

Figure 4: Bayesian Graphical Model of the Stability

4 Empirical experiments

As a testbed for this theoretical approach, we will apply the Stability index by using four different
examples, three of which belong to real-world datasets, while the final example is a simulated dataset.
For the first three, we know when the drift occurs from previous literature, while for the third we know
by definition. The first two datasets, ELEC2 and Airlines, are commonly used in various papers that
evaluate the presence of drift [Baena-Garcıa et al., 2006, Webb et al., 2018], while the third dataset Ozone
Level [Zhang and Fan, 2008] shows how the index Stability can be applied to high dimensional fields.
The fourth dataset, Harvard mixed gradual drift dataset, belongs to a collection of datasets proposed by
López Lobo [2020], in order to know beforehand where a drift occurs. A direct comparison with others’
methods, applied in the first two datasets, is not straightforward since the present method evaluates the
drift of the overall joint-probability structure and does not concern one label variable only. However, this
method appears to be remarkably efficient at identifying when the drift occurs. The third dataset has not
previously been employed for drift detection. However, Zhang and Fan [2008] suggest the presence of an
incremental drift and the year on year prediction they need to calibrate the model in each period. The
fourth dataset is a synthetic one and we precisely know when the drift occurs and we can evaluate that
the Stability index spot the right moment. All in all, the choice of these datasets covers both abrupt and
incremental changes as well as domains with few, or numerous, variables. For all examples, not having
detailed knowledge about these datasets, we used non-informative priors for the logistic regression [Albert
and Hu, 2019], that is from a normal distribution with with µ = (0, 0, . . . , 0) and σ2 = (100, 100, . . . , 100).

4.1 ELEC2 dataset

The first example is ELEC2 dataset [Harries, 1999], which is a benchmark for drift evaluation [Baena-
Garcıa et al., 2006, Kuncheva and Plumpton, 2008, among many others]. This dataset is available on R
and contains information about the Australian New South Wales (NSW) Electricity Market, consisting of
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27552 records, dated from May 1996 to December 1998, each referring to a period of 30 minutes. These
records have 5 fields: a binary class label and four covariates capturing different aspects of electricity
supply and demand. In order to compute the empirical evolution of the drift over time, we group
observations into one week periods. Thus, for each week we have a panel dataset of 5 variables with 336
observations for T = 82 periods. First, we realize a graphical model for each period t. Table 7 shows the
label of the node and its corresponding variable. Figure 5 portrays the graphs for selected periods and
shows that the structure of the graph changes over time. We thus expect the presence of a drift. Figure
6 depicts the evaluation of the Stability overtime. We can observe 5 moments of non-stationarity which
correspond to the presence of the drift (t = 8, t = 12, t = 14, t = 19, and t = 41). The red dots are the
ratio of stable relations among variables to all possible connections for a given period λt (Equation 7).
The blue line is the estimation of Equation 13 with its related credible interval represented by the gray
contour. In Table 3 are reported the posterior summaries for the regression parameters. The presence of
the drift over time is given by the mean of βt = −0.3, while the mean of β0 = 7.7 identifies the stability
within the dataset. Figure 6 shows also that in the last period of observation Stability is close to 0 and
the credibility interval includes negative values, since the initial concept drifted a lot. However, this
deterioration is slow and punctuated by precise moments in which the drift occurs.

4.2 Airlines dataset

A second empirical exercise is based on the Airlines dataset6 [Webb et al., 2016]. This dataset is a useful
test-bed for evaluating machine learning algorithms for real-world, non-stationary, streaming problems.
The Airlines dataset consists of a large number of records, around 116 million, containing flight arrival
and departure details for all commercial flights, within the U.S.A., from October 1988 to April 2008. It
contains 14 variables, including the variable Year. In order to compute the empirical evolution of the
drift over time, we split observations in respect of each year from 1988 to 2008, giving T = 21 temporal
periods. Thus, we have a collection of datasets with the same number of p = 13 variables, with the
variable Year removed and utilized to identify time periods. For each year t = 1988, . . . , 2008, we realize
graphical models with Table 8 reporting the names of the variables and the labels of the nodes. Figure 7
features graphs for selected periods suggesting that the structure of the graph changes over a period of
several years. As expected from Webb et al. [2016], figure 8 depicts 3 moments of non-stationarity which
correspond to the presence of drift, the first of which pertains to the period 1990 to 1993. The second
drift is present in 1995 and the last in 2002. The mean of coefficient βt = −0.2 indicates a slight drift.
In this example, the dataset is more stable than that of the previous example, therefore the mean value
of the intercept is β0 = 307.0. Table 4 displays the posterior summary for the regression parameters.

4.3 Ozone Level dataset

The example is based on the Ozone Level Detection dataset [Zhang and Fan, 2008]7. This dataset contains
2536 observations and 73 variables that include the variable Date, and 72 variables describing various
measures of air pollutants and meteorological information for the Houston area. The period of observation
covers the period from 01/1998 to 12/2004 and with this information we identify T = 7 periods (1998,
1999, 2000, 2001, 2002, 2003 and 2004). We group observations for each of these years and we build a
panel dataset with the same variables p = 72 for T = 7. Figure 9 displays the structure of the graphs for
each of the years from 1998 to 2003 showing that the behavior of the variables changes over time. Table
9 reports the names of the variables and the labels of the nodes. Figure 10 shows a constant slope of
Stability. Despite the levels of stability being high, we note the presence of constant incremental drift.
Table 5 shows the posterior summaries for the regression parameters in this example: the intercept mean
β0 = 2766.30 indicates that despite the presence of drift, the Stability index is high in the periods under
observation, while the mean of βt = −1.4 portrays a risk of drift over the longer term. The functionality
of this example is twofold: first, it is possible to apply this approach in a somewhat high dimensional
situation. Second, the approach proposed here allows for computing the drift in a dataset with variables
having relationships that are easily subject to change, but without an actual significant change in the
joint distribution between all variables.

6Source: https://moa.cms.waikato.ac.nz/datasets/
7Source: https://archive.ics.uci.edu/ml/datasets/Ozone+Level+Detection
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4.4 Harvard mixed gradual drift dataset

This example is based on a dataset proposed by López Lobo [2020]. The authors have generated 20 diverse
synthetic datasets (10 abrupt and 10 gradual) by using several stream generators and functions, with
different numbers of features and amounts of noise. In the proposed dataset, we select that of López Lobo
[2020], which belongs to the gradual dataset that comprises 41000 observations and 5 variables (X1,X2

and C dichotomous variable X3 and X4 continuous variables). We split the dataset into T = 82 periods,
while grouping together 500 observations for each period. First, we realize the graphical model for each
period t. Figure 11 shows the graphs for selected periods, specifically for t = 1, t = 20 and t = 21. In
period t = 22, the minimum BIC forest has the same structure as before the occurrence of drift. Figure
12 illustrates all these considerations, in which we can observe two distinct moments of stationarity. In
Table 6 are reported the posterior summaries for the regression parameters. The mean of the coefficients
βt = −0.05 notes a slight presence of drift, while the mean of the intercept β0 = 6.8 identifies the Stability
within the dataset. With this controlled example, we show that our model is capable of recognizing the
presence of drift in a punctual manner.
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minimal BIC tree t = 1 minimal BIC tree t = 8

minimal BIC tree t = 12 minimal BIC tree t = 14

minimal BIC tree t = 19 minimal BIC tree t = 41

Figure 5: Evolution of the graphs, ELEC2 dataset
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Figure 6: Evolution of Stability ELEC2 dataset, red points represent the real values (λt) and the grey
area indicates the credible interval

Table 3: Posterior summaries for the regression parameters, ELEC2 dataset

Coefficients mean s.d. lower C.I.10% upper C.I.90%
β0 7.70 0.76 6.71 8.70
βt -0.30 0.02 -0.32 -0.27

β2T−1 20.40 4.15 15.78 25.77
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minimal BIC forest t = 1988 minimal BIC forest t = 1989

minimal BIC forest t = 1990 minimal BIC forest t = 1992

minimal BIC forest t = 1995 minimal BIC forest t = 2002

Figure 7: Evolution of the graphs, Airline dataset
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Figure 8: Evolution of Stability Airline dataset, red points represent the real values (λt) and the grey
area indicates the credible interval

Table 4: Posterior summaries for the regression parameters, Airline dataset

Coefficients mean s.d. lower C.I.10% upper C.I.90%
β0 307.0 73.0 214.7 400.7
βt -0.2 0.1 -0.2 -0.1

β2T−1 7.0 6.6 -0.5 16.3
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minimal BIC forest t = 1998 minimal BIC forestt = 1999

minimal BIC forest t = 2000 minimal BIC forest t = 2001

minimal BIC forest t = 2002 minimal BIC forest t = 2003

Figure 9: Evolution of the graphs, Ozone Level dataset
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Figure 10: Evolution of Stability Ozone Level dataset, red points represent the real values (λt) and the
grey area indicates the credible interval

Table 5: Posterior summaries for the regression parameters, Ozone Level dataset

Coefficients mean s.d. lower C.I.10% upper C.I.90%
β0 2766.5 656.2 1960.7 2636.4
βt -1.4 0.3 -1.8 -1.0

β2T−1 7.0 6.5 -0.3 16.1
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minimal BIC forest t = 1 minimal BIC forest t = 20

minimal BIC tree t = 21

Figure 11: Evolution of the graphs, Harvard mixed gradual drift dataset

Figure 12: Evolution of Stability Harvard mixed gradual drift, red points represent the real values (λt)
and the grey area indicates the credible interval
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Table 6: Coefficients of logistic regression Harvard mixed gradual drift

Coefficients mean s.d. lower C.I.10% upper C.I.90%
β0 6.8 1.1 5.5 8.2
βt -0.05 0.1 -0.1 0.1

β2T−1 7.0 6.5 -0.3 16.1

5 Conclusion

This paper has presented an algorithm for estimating the magnitude of model drift in the context of ma-
chine learning. While present solutions in relevant literature rely on the manner in which the classification
errors of a specific target variable change over time, the present method describes the underlying, hidden,
context with the use of graphical models, and estimates how observable context changes over time. A key
step in the estimation of this underlying hidden context is the use of high dimensional graphical models
as approximations of the joint distribution of the variables in the dataset. While the high dimensional
graphical models make it possible to understand the overall dependency structure of discrete and/or
continuous data, our intention is to investigate how these dependencies change over time. We exploit the
underlying matrix representation of graphical models and we present an empirical method to measure
the magnitude of the change of a graph’s adjacency matrix over time. Specifically, we provide not only
an assessment of the drift, which is independent from the model in use, but also an estimation of the
confidence interval of this prediction. These two characteristics combined, allow us to signal when a data
driven process shows an excessive risk due to drift and, therefore, needs to be retrained or re-calibrated.
There are numerous possible applications such as predicting defaults, online recommendation systems, or
spam filtering. More specifically, any prediction related to human behavior is prone to constant change in
the data generating process, while biological and physical phenomena tend to be more stable over time.
There are two limitations that arise from this application. In the first instance, although graphical models
are powerful structural learning tools, we might, in the future, develop superior estimation techniques
for encoding the structure of a dataset in a graph. This not withstanding, it will still be possible to
apply this algorithm. The second limitation concerns the loss of information due to the multiple levels
that can be assumed by the variable W . A possible extension of this work could be to conduct in-depth
investigation into situations in which the links between two nodes appear and disappear. Further lines
of research in this area include improvements in the estimation of different types of drift, allowing for
temporary drift, and testing the index on a wider array of applications.
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Appendices

A Label of nodes

Table 7: Name of the variables ELEC2 dataset

Label
Node

Name of
Variables

X1 Nswprice
X2 Nswdemand
X3 Vicprice
X4 Vicdemand
Y Class

Table 8: Name of the variables Airline dataset

Label
Node

Variable
Name

1 Month
2 Day of Month
3 Day of Week
4 CRS Departure Time
5 CRS Arrival Time
6 Unique Carrier
7 Flight Number
8 Actual Elapsed Time
9 Origin
10 Destination
11 Distance
12 Diverted
13 Arrival Delay
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Table 9: Name of the variables Ozone Level dataset

Label
Node

Variable
Name

Label
Node

Variable
Name

1 WSR0 37 T10
2 WSR1 38 T11
3 WSR2 39 T12
4 WSR3 40 T13
5 WSR4 41 T14
6 WSR5 42 T15
7 WSR6 43 T16
8 WSR7 44 T17
9 WSR8 45 T18
10 WSR9 46 T19
11 WSR10 47 T20
12 WSR11 48 T21
13 WSR12 49 T22
14 WSR13 50 T23
15 WSR14 51 T PK
16 WSR15 52 T AV
17 WSR16 53 T85
18 WSR17 54 RH85
19 WSR18 55 U85
20 WSR19 56 V85
21 WSR20 57 HT85
22 WSR21 58 T70
23 WSR22 59 RH70
24 WSR23 60 U70
25 WSR PK 61 V70
26 WSR AV 62 HT70
27 T0 63 T50
28 T1 64 RH50
29 T2 65 U50
30 T3 66 V50
31 T4 67 HT50
32 T5 68 KI
33 T6 69 TT
34 T7 70 SLP
35 T8 71 SLP
36 T9 72 Precp

B Library

The trees were build using the R library gRapHD which is available to the R community via the CRAN
repository [Abreu et al., 2010].
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