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in the worst-case scenario for the seller. We derive an analytical solution
of the problem in a Black and Scholes scenario. Then, we use Reinforce-
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solution are compatible with those obtained by applying path-wise the
analytical solution previously derived.
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1 Introduction

In the recent years portfolio managers were exposed to very low interest rates
and quickly changing market volatilities. An effective solution to control risks
under such an environment is given by target volatility strategies (TVSs), also
known as constant volatility targeting, which are able to preserve the portfolio at
a predetermined level of volatility. A TVS is a strategy for managing a portfolio
of risky assets (typically equities) and a risk-free one dynamically re-balanced
with the aim of maintaining the overall portfolio volatility level close to some
target value. The strategy is designed to achieve a stable level of volatility for
the underlying portfolio in any market scenario, and to allow a free selection of
the relative allocation weights among the risky assets. The constant volatility
approach can help investors to obtain desired risk exposures over the short and
long term and possibly it increases the risk-adjusted performance of the portfolio.

Financial products embedding this strategy were initially offered in the Asian
markets, see for instance [3] and [28], which highlight the pros and cons for
investors, to be adopted in the following years in many other markets in North
America and Europe as depicted in [21]. At the present day, we can observe some
new market indices based on the mechanism of the target volatility strategy such
as Dow Jones Volatility Control Index, and S&P 500 Risk Control Index. In the
recent literature, TVS-based portfolios are investigated with respect to their
performances in terms of realized returns, see for instance [17] and [22], and the
soundness of the volatility targeting algorithm, as described in [18], where the
authors propose the use of artificial neural networks for volatility forecasting to
enhance the performance of an asset allocation strategy.

The success of TVS-based products has led to the emergence of derivative
contracts, known as target volatility options (TVO), where the TVS itself is used
as underlying asset of the contract. In the derivative pricing literature TVOs are
reviewed in [1], [6], [7], and [13].

This paper aims to enrich the pricing framework of the TVOs by studying
for the first time, to the best of our knowledge, the funding costs coming from
hedging (or simply hedging costs) the risky assets underlying the target volatility
strategy. In particular, we consider the point of view of an option writer (for
example a bank) selling a call option to a portfolio manager as protection on
the capital invested in a TVS. During her activity the portfolio manager has
the freedom of changing the relative weights of the risky assets during the life
of the TVS depending on how the market evolves. Since the fund manager’s
decisions cannot be known a priori and since the risky assets have different
hedging costs, the option writer shall adjust the price of the protection to include
these costs in the worst-case scenario, i.e. the most expensive strategy in term of
the hedging costs. Hence, the pricing problem becomes a continuous dynamical
control problem over the risky portfolio composition: the problem of finding the
manager’s optimal strategy that leads to the maximum protection price.

In our work, we provide the reader with a formal description of the stochastic
control problem and we show that it can be solved only numerically considering a
general state-dependent dynamics for the risky assets. However, we prove that an
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analytical solution to the problem exists, assuming that the risky asset, dynamics
underlying the TVS portfolio follow a Black and Scholes (BS) model [2] and that
the derivative contract is a European-style option. As our first contribution, we
derive the BS closed solution in two different ways: either applying the Gyongy
Lemma or the Hamilton-Jacobi-Bellman equation.

In the second part of our work we tackle the problem in the general case
of a state-dependent dynamics for the risky assets for which only the numer-
ical approach is admissible. More precisely we numerically study the problem
assuming a local volatility (LV) dynamics [5], [9] for the risky assets. The reason
for selecting the LV model is its widespread adoption in the industry to value
derivatives, especially those related to asset baskets [11]. The LV investigation
is based on a Reinforcement Learning approach due to the high dimensionality
of the problem we deal with. In particular, we compare the performances of a
plain direct policy search gradient-based algorithm [27] with those of the more
sophisticated proximal policy optimization technique developed in [25]. At the
end of our study, we show that the solution found in the BS scenario provides a
good approximation of the LV solution, which could be favored by practitioners
if computational time is valued.

The paper is organized as follows. In Section 2 we introduce more in detail the
contract between the option-writer and the manager and provide the description
of the TVS dynamics in presence of valuation adjustments such as the hedging
costs. Then, in Section 3 we introduce the structured class of derivative contracts
linked to TVSs, where we describe the arising dynamical control problem for
pricing those options. Moreover, in this section we derive the BS closed solution
for European TVOs in two different ways: one applying the Gyongy Lemma
and the other through the Hamilton-Jacobi-Bellman equation. In Section 4 we
illustrate how we have applied RL to solve the dynamic control problem, giving
a description of the algorithm we have built. We conclude the paper with Section
5 where we present the numerical results obtained in this work for the Black and
Scholes model and the local volatility one.

2 Target volatility strategy

As mentioned before, this work aims to enrich the TVS pricing literature by
studying the aspect related to the funding costs coming from hedging the under-
lying risky assets. In the following, we will refer to these costs simply as hedging
costs. We consider the following scenario: an option writer selling a protection
to a portfolio manager who has her capital invested according to a TVS. In our
case the fund manager has the freedom of changing the relative weights of the
risky asset during the life of the TVS; once the allocation strategy is selected
then the volatility targeting algorithm rebalances the risky component of the
portfolio with the risk-free one in order to keep the overall portfolio volatility
close to a target value. Clients investing in the fund pay a running fee for the
service of the fund manager and their capital is protected.
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The fund manager usually buys from a counterpart an option on the TVS to
ensure capital protection. For instance, the capital can be protected by buying
a put option. In this case, we can write the undiscounted net asset value (NAV)
A, of the strategy as given by!

Ay =max{V, K} =V, + (K - V)", (1)

where V; is the price process of the strategy, and K is the guaranteed capital.
On the other hand, the fund manager can replicate the payoff by means of the
put-call parity by investing the capital in a low-risk asset and buying a call on
the strategy

A=K+ (V;, - K)". (2)

In this way, the TVS is only defined in the two contracts client-fund and fund-
option writer. The fund manager is not implementing the strategy by trading in
the market, and she is not subject to additional costs to access the market. On
the other way, the writer is paying such costs since she is actively hedging the call
option sold to the manager. The writer trading activity implemented to hedge
the option requires funding the collateral procedures of the hedging instruments
along with any lending/borrowing fee. We refer to [10] for a discussion of how
to explicitly calculate hedging costs in equity trading.

We remark that, upon entering into the contract, the choices of the manager
trading activity can be seen as stochastic processes since they are not known
a priori and will depend on the market evolution. Thus, neither the manager
strategy nor the writer hedging costs can be written in the fund-writer contract:
the only contractual elements are the protection strike and maturity, the market
in which the manager can trade and the target volatility of the TVS portfolio.
For this reason, the price of a financial product sold by the writer is adjusted to
include any valuation adjustment due to the trading activity, such as the hedging
costs.

Our aim is to find the most expensive investing strategy from the point
of view of hedging costs for the writer that the manager could choose in the
market. In other words, we want to determine the worst-case scenario for the
option-seller. In the current section, we proceed by defining the price process of
the TVS so that we can highlight the impact of valuation adjustments.

2.1 The strategy price process

We work on a filtered probability space (£2, F,{F;}i=0,P) satisfying the usual
assumptions for a market model, where P is the physical probability measure.
We consider a fund trading a basket of n risky securities with price process
S; = {Si,i = 1,...,n} funded with a cash account B; accruing at r;. Any
dividend paid by the securities is re-invested in the fund. Here, we assume that
the TVS is implemented in continuous time, even if in the practice we can

! Here we neglect discounting factors for sake of clarity.
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implement the strategy only on a discrete set of dates. We introduce the deflated
gain process G} associated with the risky securities as given by

i 51+ D ®)

where we define the deflated price and cumulative dividend processes as

S ttda tdyy
Sz — Mt , D= J u +J u , (4)
t Bt t 0 Bu 0 Bu

where 7} represents the cumulative contractual-coupon process paid by the se-
curity, and ! represents the cumulative valuation adjustments. Since fund man-
agers allocating TVS usually rely on equity assets, here we use the results of [10]
that analyze the valuation adjustments for equity products. We can write

t
v ::f Siuidu, (5)
0

where we call u¢ cost of carry, which basically represents the hedging costs for
the i-th security.

Then, we introduce the strategy price process V;, and we define the deflated
gain process G} as

t
GY - Vi +J Vu¢“du, (6)

t-:E 0 Bu

where ¢; are the running fees earned by the fund manager for her activity. We
assume that the strategy is self-financing, so that we can write

dé}f/ =dqt- dét 5 (7)

where ¢} is the quantity invested in the i-th security.?

Now, in order to prevent arbitrages, we assume the existence of a risk-neutral
measure Q equivalent to P under which the deflated gain processes of all traded
securities are martingales. Under this assumption, we are able to derive the drift
conditions on the security price processes, and in turn on the strategy price
process, that is

Vu>t Gj=E.[G)] = dS}=nSidt—dri—dy;+dM;, (8)

where M/ are martingales under Q. If we substitute this expression for the se-
curity dynamics into the definition of the strategy we can check that the price
process of the strategy is accruing at the following cash account rate r; compen-
sated for the fund manager fees

dVi = Vi(ry — ¢y)dt + dMY (9)

2 In all formulae we use dot notation for scalar product between vectors, i.e. a-b =
2. aibi, or between matrix and vector, i.e. A-b =3 aibj orb-A =3} biai;.
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with M} martingale under Q. Notice that, as expected from non-arbitrage con-
siderations, the coupons paid by each security appear only in the drift of the
security price process, but they do not impact the drift of the strategy.

Yet, the strategy priced by V; cannot be described in the contract between
the parties, since Equation (7) depends via the security gain processes on the
valuation adjustment 1!, which is specific to the investor pricing the strategy.
Thus, the TVS defined in the contract will be

, o d _
dl, == g, (dst + ;) — Ligdt with Iy =Vp, (10)
t

leading to the following price process dynamics
Al = I(re — du)dt — qp - dipy + dM (11)

with M} martingale under Q. In this case, we observe that I; depends explicitly
both on the valuation adjustments and on the allocation strategy. Indeed, if we
substitute the valuation adjustments with their explicit expression (5), we get

dI; = Ii(ry — ¢y)dt — qp - Sppedt + dM] (12)

where we can see the dependency on the cost of carry u; and on the allocation
strategy.

2.2 The volatility targeting constraint

In a typical TVS, the fund manager selects a risky-asset portfolio with a specific
time-dependent allocation strategy expressed by means of the vector of relative
weights «;, along with a risk-free asset, which we can identify with the bank
account B;. In the following, for sake of simplicity in exposition, we consider
only total-return securities, namely we set m; = 0, which means that the security
is not paying dividends. Thus we can write Equation (10) as given by

dIt dSt dBt

— = —+ (1 1) —— — ¢udt 13

I, Welet S, ( wray - 1) B, on (13)
where 1 is a n-dimensional vector of ones and w; € [0, 1] is determined so that
the strategy log-normal volatility is kept constant, namely

wy:  Varg[dl] = ¢*I7dt (14)

where & is the target volatility value. In practice, this means that the fund
manager will select a risky-portfolio choosing a; equities from the universe where
she can trade, and after that, her choices will be scaled by the automatic target
volatility algorithm w; (14).3

3 We recall that the universe of assets where the manager can trade and the value of
& are written in the contract.
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It is possible to derive the expression for w; assuming a generic continuous
semi-martingales dynamics under the risk-neutral measure for the underlying
securities, so that Equation (8) can be written as

ds: ) )
Sit = (rt — ui) dt + vy - dWy , (15)
t

where 1, is an adapted matrix process ensuring the existence of a solution for the
stochastic differential equation and W; is a n-dimensional vector of Brownian
motions under Q. Under these assumptions we can derive an expression for wy,
and we get?

g
Wy = —— . 16
" aw - o)
Hence, putting this last result in the dynamics of I; we obtain
dI oa loge’
t—(Tt—@—t'Mt>dt+t'Vt'th7 (17)
Iy et - 24| [|cee - 4]

where we can see, as expected, that the strategy grows at the risk-free rate but
for the valuation adjustments, given by the hedging costs expressed by the term
proportional to y; in (17), and the fees, given by the term ¢, in (17).

We highlight that, to derive the dynamics expressed in Equation (17), we
have not made any assumptions on the risky allocation strategy; thus all this
argument is valid for any constraints on the process a; as, for instance, the
case of contracts in which the fund manager is restricted to holding only long
positions meaning that ai > 0 Vi = 1,...,n, or situations where the combined
total of long and short trades must be capped at a specific contractual amount.

3 Derivative pricing: target volatility options

In this section, we analyze TVO contracts, namely contracts linked to the TVS
described previously. In particular, we will focus on European style options, and
we will show that under appropriate assumptions it is possible to find a closed
form solution for the optimal allocation strategy which maximizes the contract
price.

In a general framework, a derivative contract on the TVS with maturity T
can be defined as

T
Vo = supEy l L D(O,u;(u)dﬂu(a)] , (18)

where D(0,T;¢;) is the discount factor with rate (;, inclusive of the derivative
valuation adjustments, and 7; is the cumulative coupon process paid by the
derivative, and it depends on the allocation strategy since in turn the TVS
depends on it via the valuation adjustments. We take the supremum over the

4 In all formulae the norm for a vector a is defined as |al := v/a - a.
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strategies since we do not have any information on the future activity of the
fund manager and we wish to calculate the worst-case scenario for the option
seller, as discussed in the introduction of Section 2.

3.1 European options

If the derivative contract depends only on the marginal distribution of I at
maturity (i.e., a European payoff), we are able to simplify the pricing problem.
We consider the following pricing problem

Vo = sup Eo [D(0,T; ()P(Ir(a))] , (19)

where & is the payoff function of the derivative.
We start by introducing the Markovian projection of the dynamics followed
by I;. We name it IMF and we get by applying the Gyéngy Lemma [14]
" (re — Lo (¢, 1}'7)) dt + cdW T with )" =1 (20)
Mp a M5t t o =40,

t
where the local drift is defined as

Mt - O
o - 1]

Ly (t, K) == GEq [

I = K] , (21)

and WMF is a Brownian motion under the risk-neutral measure Q. Notice that
the diffusion coefficient collapses to the target volatility value &. Since Euro-
pean payoffs depend only on the marginal distribution at maturity, they can be
calculated only by means of the Markovian projection IMF, namely

Vo :=supEq [D (0,T;¢) @ (I} ()] - (22)
Hence, we have our first result valid only if valuation adjustments can be ne-
glected:

Proposition 1. A European TVO can be calculated by assuming any allocation
in the underlying risky basket if all the underlying securities grow under the risk-
neutral measure at the risk-free rate without any valuation adjustment, namely
if we can write py = 0.

3.2 Stochastic optimal control problem

In presence of valuation adjustments, we need to solve the full optimization
problem. We discretize the optimal strategy a; as®

oy = Z Lite[T 1,70} YTk (23)
%

5 We use the symbol 14 for the indicator function of a subset A.



Optimal strategies for options on target volatility funds 9

according to a time grid T = {Ty, ..., Tk, ..., Tyn} with Ty = t the pricing date
and T;, = T the maturity of the option. Therefore we can apply the dynamic
programming principle to express the optimal oy at time T;_1 as

QaTy,_, = argmax {ETk—l [D (Tk—lka) VTk (XTk:7ITk (O‘)) | XTk—l’ITk—l]} )

(24)
where Vp, is the option value at time T} and X is any Markovian state such
that the drift and the diffusion coefficient of I; are a function of (X, Iy, o) and
we indicated with I, («) the value of the strategy at time T}, for a given choice
of the weights a at time T;_;. We calculate the strategy value for the optimal
weights a7, ,, namely Iy, (aTk,—l) by a suitable discretization of (17) starting
from X7,_, and Ir,_,. Thus, once collected the elements {Xr,, I, (ar,_,)}, the
derivative price is given by:

VTIc—l (XTk—17ITk—1> =
Ep,_, [D (kalaTk) Vr, (XTk7ITIc (aTk—l)) | XTk—17ITk—1:| )

while the iteration starts from maturity date where the boundary condition is
set equal to the payoff function:

Vi, =@ (Ir,,) . (26)

(25)

3.3 Black and Scholes scenario

In the time-dependent Black and Scholes model with deterministic rates, we can
work with empty X, since in this case the portfolio dynamics (17) is Markovian,
leading to an optimal strategy «f which depends in principle only on I;. As a
consequence, the local drift defined in Equation (21) can be written as

_ o n)-atK)
e (LK) =00 Ry v

so that the optimization problem can be solved by looking only at the Markovian
projection without simulating all the Brownian motions W;. Notice that we are
indicating the dependency on time in parenthesis to highlight that in this formula
all the quantities are deterministic functions of time.

A direct consequence is the following proposition, which is relevant for plain
vanilla options on TVS.

(27)

Proposition 2. When the underlying securities follow a Black and Scholes model
with deterministic rates, the optimal strategy for a non-decreasing European pay-
off consists in minimizing the local drift function, independently of the current
state I; ®

% . oot

o (t) argofmn o v (28)

Analogously, the optimal strategy for a non-increasing European payoff consists
in mazimizing the local drift function:

a*(t) == arg max

e PO (29)
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The absence of stochastic elements in Equation (28) makes the optimal strategy
known a priori with no numerical simulation needed to solve the control problem;
in fact, the functions u(t) and v(t) can be directly derived from the market
quotes of the risky assets and of its derivative contracts, and then we can apply
Equation (28) Vt € T to retrieve the deterministic optimal strategy. Once a* is
known, then one can price the payoff by the following BS formula

Vo™ = BS(FTYS(0,T;0%), K, T,5, D(0, T3 () , (30)
where FTVS(t,T; ) is the TVS forward curve defined by

T
FTVS(t,T;a) = I exp lJ (r(u) — £y (w)) du] , (31)
t
while BS(F, K, T, 0, D) is the standard BS formula for a European option with
forward curve F, strike K, time to maturity 7', volatility o and discount factor
D.

In Figure 1 we provide a comparison among the option price obtained with
the optimal strategy (BS*) of Equation (28) and those with the below expert-
based single-asset strategies (Sa, Sp, Sc¢). Here we consider the case of an at-
the-money call option with spot Iy = 1 EUR, maturity 7' = 5yr, target volatility
& = 5%, and a nonnegative constraint on «. The intuitive strategies are

— S4: invest all in the asset with the maximum forward curve at maturity; this
strategy consists of selecting a static portfolio that is never rebalanced, such
that the TVO moneyness is maximized;

— Sp: Vt e T invest all in the asset with minimum p(¢); in this case we consider
a fund manager who rebalances the weights a(t) over the life of the portfolio
by selecting the asset with the highest expected return at a given point in
time;

— Sc: YVt e T invest all in the asset with minimum p(¢)/|v(¢)|; the strategy is
akin to Sp, with the exception being that the manager endeavors to maximize
the expected return that has been adjusted to account for the target volatility
mechanism.

As the reader can observe, our strategy outperforms any other expert-based one
a practitioner might adopt to face the control problem.

In the next subsection we derive the analytical solution of the problem (28)
under the assumption of unconstrained allocation strategy «;.

Unconstrained allocation strategy: closed form solution In absence of
constraints on the allocation strategy, we are able to derive a closed form solution
to the BS problem (28).

Lemma 1. Let p,a € R", v € R™*™ be a full rank matriz and X = vvT. Then
the closed solution of the optimization problem (28) is

R
(X1 p) v

*

o (32)
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Fig. 1. Comparison of plain vanilla prices on the TVS by adopting different allocation
strategies: the optimal Black and Scholes solution (BS*) of Equation (28) and three
expert-based single-asset strategies (Sa, Sg, Sc)

Option Price [EUR

Se

Proof. Since the argument of the minimum (28) is zero-homogeneous, then we
can rewrite the problem as

minimize a - i

33
subject to |a-v|? =1. (33)
By setting the Lagrangian function associated with the problem
[Z(a,)\):a-u—/\(Ha-yHQ—l) , (34)
we obtain the first order conditions
oL
Pl 20X - a=0
e
or , (35)
S =llavP-1-0,

Then, by applying simple algebra, we obtain the analytical form for the free
optimal strategy
rt.
o = tre— H .
(2= p) v
We take the minus sign to get the minimum value of the TVS local drift while
the plus sign for the maximum one (put payoff). []

(36)

In the following subsection we prove that an analytical solution of (28) exists
also assuming a nonnegative constrained allocation strategy. Under this assump-
tion, we show that the optimal strategy consists in investing in a single asset.
We name this strategy the bang-bang solution.
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Active asset (or bang-bang) solution A closed form solution to the mini-
mization of the local drift correction (28) can also be derived in the common case
that all costs of carry p are nonnegative, so they represent true hedging costs
and not benefits, and the only constraint on portfolio weights is nonnegativity,
which would mean a long-only strategy by the fund manager.

Lemma 2. Let € R be a vector with nonnegative components, v € R™™ be
a full rank matriz, and X = vvT. Then
ey M
inf = min ; 37
aER”\{O} ||Oé Z/H i<n 4/ ’ ( )
if T is the index which realizes the min, then the infimum is realized by a vector
concentrated on the T component: a; = d;7.

Proof. Let us first consider the case in which g = 1. Since the argument of
the infimum is zero-homogeneous, normalizing by « - 1 > 0 we can restrict to
the affine hyperspace {« - 1 = 1}, where the minimization (37) reduces to the
maximization of its denominator: the required infimum will be the square root
of the reciprocal of

sup {|la-v|* | eRY, a1 =1} . (38)

Now we can note that ¥ is positive definite, hence X;; < 4/X32; < X%, which
implies

vl = 3 a5y Y iy Sa = S (39)
4,j=1 4,j=1
because »}; a; = 1. Since we trivially have equality for a; = d;;, this concludes
the proof of the case pu = 1.
Next, let us consider the case in which all components of p are strictly posi-
tive, and define M as the diagonal matrix with diagonal . Then we can rewrite
the infimum as a function of f = Ma:

g-1
inf ——— 40
ety 8- 3] o
which by the first part of the proof equals
1 , .
min——— =min -, $i=M 1T M = MlZM . (41)

i<n 4 /i‘ii i<n Eii’
Finally, let us consider the general case in which y may have some components
equal to zero. For an arbitrary € > 0 let us define

a-(p+e)
lloc-vll

fela) = (42)
One can easily note that as e — 0, f. tends to fy uniformly on the compact set

{a € R} | a-1 = 1}, so that the minimum converges to the minimum on that
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set. Since we know by homogeneity that the minimum on {a € R} | -1 = 1}
equals the minimum on R’} \{0}, we conclude

. T . o N R
aetilio P 7 Bl @ = I Tt s @)

O

3.4 Hamilton-Jacobi-Bellman equation for target volatility options

In this section, we provide to the reader a formal description of the dynamic
problem associated with options on target volatility strategies by writing the
Hamilton-Jacobi-Bellman (HJB) equation for the derivative price. We prove that
from this equation we can recover the same closed formula (28) derived above
from the Gyongy Lemma for the time-dependent BS model.

In full generality, we assume that the time evolution of the Markovian factors
governing the problem dynamics is given by a stochastic multidimensional pro-
cess in R™, X;, which is the unique strong solution to the following It6 stochastic
differential equation

dX; = M(X,)dt + 2(X,) - dW; (44)

where W; is a n-dimensional Wiener process with independent components. We
point out to the reader that with this notation we are including general dynamics
models like those with stochastic drift M (X;) and stochastic diffusive X'(X;)
coefficients.

Let be the dynamics of the securities S; a generic function of the Markovian
factors, namely

Sy = f(X4) . (45)

In this framework, the TVS price process dynamics is given by the stochastic
differential equation

dly _ r _ oo L-V :
T = (000~ et 0 )+ ey K0 ()

where the expression of u(X;) and v(X;) can be recovered by applying the Ito
formula to Equation (45).

Given X := X; and I := I;, we can write the HJB equation for V := V (¢, I, X)
as follows

oV a- (X ov 1, 2V
ar —&—mgx{(r(X) _Uowl:EX;H) Iﬁ +(VxV) - M(X) + 56 I a7z
+% Tr (2(X)T(HxV)2(X)) + (Vx.1V) - 2(X) - (m%)} —0,
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where Tr(A) is the trace operator of A, VxV the gradient of V w.r.t. X, HxV
the Hessian matrix of V w.r.t. X and Vx ;V is the vector defined by:

>V vV \T
VxrV = <8X18]’ T aXnaI)

(48)

We take out from the maximum operator all the elements that do not depend
on the risky allocation strategy «

%‘tf + (X)I%/ +(VxV)- M(X) + %621 57+ 3 T (ZO)THXV)X(X))

T max ] -V @ X)) , a-v(X) )] _
Folm; { o oo TV XrV) EE) (na V(X >||>} 0

Equation (49) is the HIB equation describing the TVS dynamic problem for a
generic dynamics of the risky securities underlying the portfolio.

If we assume a time-dependent BS dynamics for the risky equities (p, ¢
and v, deterministic), then V' = V (¢, I) and all the derivatives w.r.t. X are zero.
Therefore the reduced HJB equation is

ov ov 1_2 , 02V oV oa-p(t) | .
i +r ()16] +3 I FIE +0]m3x{ o vl =0; (50)

if the payoff is non-decreasing in I, by homogeneity of the stochastic differential
equation we get that V' is non-decreasing. Thus the solution is given by

o p(t)
lac-v (@)

which is the same result expressed in Equation (28). On the other hand, if the
payoff is non-increasing in I then the solution will be the arg max.

Conversely, if we deal with a dynamic model for which the derivative contract
V depends on X then the volatility versor term, namely the second one, in the
max operator of Equation (49) is no longer zero and thus one must solve the
entire control problem numerically. Indeed, one can check by direct substitution
that the natural generalization of (51)

2V 1

a*(t) = argr min ———— (51)

o pu(Xe)

a*(X;) = argmin ————+
o o r(X]

(52)
fails to satisfy (49).

In what follows we tackle the non-trivial case of a local volatility model for
the Si-dynamics, such that vy = v(¢,.S;). We have chosen the LV model since it
is well known in financial literature and among practitioners [11].

4 Reinforcement learning

As we have discussed in the previous sections, the analytical solution described
in Proposition 2 crucially relies on the assumption that the underlyings evolve
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according to a Black and Scholes model, and on a monotonicity assumption
on the payoff. Therefore, one must resort to numerical approaches to solve the
stochastic control problem related to the TVS in the case of general payoffs
or risky securities dynamics. The standard approach could be to use classical
techniques based on backward recursion (24)-(25) such as American Monte Carlo
[20]. However, their performances degrade exponentially as the dimension n of
the problem increases, making prohibitively costly finding the solution to the
problem. In our contribution, we adopt a novel technique which is free from the
curse of dimensionality and is gaining popularity in many scientific branches for
solving stochastic optimal control problems: Reinforcement Learning (RL) [27].

RL is a branch of Machine Learning which allows an artificial agent to interact
with an environment through actions and observations in order to maximize some
notion of cumulative reward called value function. In RL, the agent is not told
which actions to take but instead, it has to discover by trial and error which
are the behaviors yielding the highest reward. This is obtained by updating
the agent policy m which is a mapping from the environment states to the set
of actions. Thus RL is independent of pre-collected data as opposed to other
Machine Learning techniques, that have to be fed with a pre-existing dataset to
learn from. Because of its nature, RL has been successful in quantitative finance
for solving control problems; among the most important RL applications in this
field, we refer to [4] as the pioneers in studying self-taught reinforcement trading
problems, while to [15] and [19] for hedging derivatives with RL under market
frictions.

In our work we adopt two learning strategies to compare their performances
in terms of overall reward: a plain direct policy search algorithm [27] and the
state of the art proximal policy optimization (PPO) developed in [25] and [24].

The first method is well-known in RL literature: it is based on the direct up-
date of the agent policy via a gradient-based optimization of the value function.
We will go into details in Section 4.1.

On the other hand, the PPO is a high-level actor-critic algorithm well-suited
for continuous control problems. It collects a small batch of experiences inter-
acting with the environment to update its decision-making policy. From those
interactions with the environment, PPO is able to compute the expected reward
and the value function. We will not provide a complete description of this so-
phisticated learning strategy; for more details, we refer to the authors’ papers.
In our work, we adopt the PPO implementation found in OPENAI BASELINES.S

In the following sections, we describe the way we have formalized the TVS
problem in the Reinforcement Learning framework.

4.1 Direct policy search approach

In RL, the learning phase takes place within a set of so-called episodes, which
refer to a single run or instance of interaction between the RL agent and an

5 https://github.com/opernai/baselines.
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environment, where the agent takes a sequence of actions to achieve a specific
goal.

For our problem, we consider an episode 7 of length m+ 1 that unfolds over a
discrete time-grid of fixing times expressed in year fractions T = {Tp, ..., Tk, ...,
T} with Ty == 0 and Ty, := T maturity of the option. At a given episodic time
T;, the RL agent interacts with the environment: it receives a representation of
the environment called state s, and on the basis of that it selects an action
ar, sampling from the current policy 7% . Here with 0; we refer to the set of
parameters through which we parameterize the agent policy at the j-th algorithm
iteration. In our case of study, the RL agent, representing the fund manager, has
the right to select the composition of the risky asset portfolio, so that the policy
is the allocation strategy « introduced in Equation (13):

ap = oy, VTk € T, ap € AcR"™. (53)

Since the value function of the problem depends on the Markovian state X,
the portfolio level I; and time ¢, our natural choice for the observation state is
the following block

sk = [Xnp, I, Te] VTweT, speScR™?. (54)

In this way, the state contains all the information needed by the agent to select
the optimal action, leading to the maximum plain vanilla TVO price.

Once the agent has selected the action ap sampled from the current policy,
it receives at the next time Ty, a reward r;41 generated by the environment.
In this algorithm we have defined the reward function as follows

Po {D(U,T; OUr(a0;) = K)" it Ty =T

0 otherwise (55)

Therefore, during the whole episode, the agent receives a nil reward except at
maturity when the reward coincides with the option intrinsic value. This choice
may seem too daring because the agent receives a real feedback of its actions
only at the end of the episode, which could result in a slower learning. However,
if the agent has learnt the optimal policy 7* = 7T0*, the average cumulative
reward per episode will coincide with the optimal TVO price.

In this algorithm, we parameterize the agent policy with a feed forward neural
network (FFNN), such that 6; coincides with the hidden weights, s with the
input neurons, and aj with the output ones. In this way, we are dealing with
a deterministic policy, that maps each state directly to a single action without
any additional randomness or probability distribution; the map functional form
is given by the neural network. The parameters update is performed as follows:
the agent collects a finite batch of experiences interacting with the environment
in a set of episodes 7, then the loss-value function is evaluated as

L(6) - B lmZ mle] , (56)

k=0
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where the expectation E[. . .] indicates the empirical average on the batch. Then
the parameters are updated by plugging the policy into a stochastic gradient
ascent algorithm [27] with the aim of maximizing Equation (56).

Once the training phase is ended and the agent has selected the optimal
policy, we can run a Monte Carlo (MC) simulation with never seen scenarios
to price the optimal target volatility option and test if the algorithm has not
overfitted the data.

4.2 Proximal policy optimization approach

As for the direct policy search approach, we model the pricing problem consid-
ering an episode that takes place on the time-grid T := {Ty, ..., Tk, ..., Tn} with
Ty :== 0 and T}, := T. Again we choose as observation state the block defined in
Equation (54) and the agent policy coincides with the risky allocation strategy
a (53). As the PPO algorithm is more sophisticated than the previous one, we
have decided to test its performance by means of two different reward functions.
The former is the same as defined by Equation (55), while the latter is given by

riet = 7 [Vas(Tes1) — Vas(Tw)] (57)

where « € [0,1] is an hyper-parameter of the PPO, while Vgg(7}) is a proxy of
the residual option price defined by

VBS(Tk) = BS(FTVS(TIC,T; aESvK)vaT - Tk757D(TkaT; C)) 9

Ves(To) =0, (58)

with o ¢ the BS optimal strategy (28) evaluated at the state si. In this form the
agent actions are hidden inside the term I; used to compute the TVS forward
curve FTVS defined by Equation (31). In this case, the reward function does not
suffer of nil values for 0 < T}, < T": the RL agent always gets a feedback from the
environment for its choices. Notice that the hyper-parameter v plays the role of
a discount factor in the sense that, as v approaches to zero, the RL agent will
tend to maximize immediate rewards while neglecting possible larger rewards
in the future. If we take the cumulative reward per episode and set the PPO
parameters’ v = A = 1 we obtain

m—1 m—1
R(r) = ), e 5. > Ves(Tir) = Vas(Tw)] = Vas(T) = (Ir - K)*
k=0 T k=0

(59)
which is equal to the intrinsic value of the option. This result does not depend
on the definition of Vg VT < T, but we conjecture that the closer Vg is to the
value function, the easier the agent is in learning.

Thus one can train the agent choosing the optimal value for v, A € [0,1],
and then run, as test phase, a Monte Carlo simulation with v = A = 1 and the

7 We refer to [24] for a more detailed description for the generalized advantage esti-
mation parameter \.
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optimized 0 fixed, where, if the agent has learnt 7*, the average of R(7) along
different episodes will match the optimal undiscounted price of the derivative
contract on the TVS.

In the OPENAI BASELINES implementation of the PPO, the agent policy is
parameterized again by a neural network; as for the previous method we have
chosen an FFNN. More precisely, training is based on a stochastic policy, i.e.
the action is drawn from a probability law, and the neural network is used to
determine its parameters. In settings like ours where the action has a continuous
domain, such law is a multivariate diagonal Gaussian distribution where the
mean pf(s;,) is the output vector of the FFNN and the log-standard deviation
log o is an additional trainable parameter:

7 (s1) ~ N (1’ (si), €'%7) . (60)

As one can observe, log o is state-independent, but it is reduced as the number of
the PPO update iterations increases. The idea is that the log-standard deviation
will be higher at the beginning of the training phase in order to guarantee a good
exploration of the action space while it will be lower at the end to avoid too much
noise in the proximity of the optimal policy. Eventually at the end of training, the
standard deviation is put to zero, so that the action becomes deterministically
equal to the output of the FFNN.

The fact that the PPO implementation exploits a stochastic policy ensures
us a better exploration of the action space than with the previous approach.
Moreover, the algorithm tries to learn an approximator of the on-policy value
function as control variate for the training phase. This approximator is an FFNN
with the same architecture as the one for the policy.

5 Numerical investigations

Here we present the numerical results obtained with our proposed methods. We
focus our analysis on a European call option on a TVS with the following product
details

Iy=K=1EUR, T=2yr, &=5%,

where Ij is the starting value of the TVS-based portfolio. Moreover, without
loss of generality, we consider the case of an unconstrained allocation strategy
a. The extension to the constrained case is easy.

It is our aim to investigate the control problem under non-trivial dynamics
like the local volatility model where the volatility of the risky asset is also a
function of the state. By looking at the HJB equation (49), we expect that the
volatility versor will play a role in finding the optimal solution, giving rise to a
non-trivial strategy.

Although in Section 3.3 we have proved that under the Black and Scholes
model the Equation (28) solves the control problem, we want to take advantage
of this a priori solution as a benchmark to gather evidence on the robustness of
our RL approach and to check if our analytical result is correct. Moreover, we



Optimal strategies for options on target volatility funds 19

use the BS model as numerical laboratory to perform fine-tuning tests for the
RL algorithms hyper-parameters and analyze how they impact the final results
and performances.

We recall that in both the algorithms we parameterize the agent policy
with an FFNN; thus this is completely characterized by the following hyper-
parameters: number of hidden layers, number of neurons per hidden layer, and
activation function per hidden layer. This is due to the fact that in this RL
problem the number of the input neurons is equal to the state space dimension
(54), while the number of the output ones coincides with the action space di-
mension (53). It is well known in the literature that neural networks give better
performances in the training phase if the input data are well normalized [23],
[26]. Thus we choose as state s, the following normalized block

[log(STk/F(Oa Tk)>, ITk/IO7 Tk] VTk eT y (61)

where F(¢,T) is the forward curve vector of the risky assets from ¢ to T. In
Equation (61) we have chosen as Markovian state X7, the martingale term of
the securities dynamics. In this way, we have that in the input block the variables
have the same order of magnitude.

5.1 Black and Scholes: hyper-parameters fine tuning

We use the BS environment as a toy model to understand which parameters
of the RL algorithm play key roles in the training and testing phase. Our first
approach has been the direct policy one since it represents a natural way to tackle
the problem: since our goal is to find the allocation strategy that maximizes the
option price, we update the FFNN weights following the gradient direction of
the loss function defined in Equation (56).

We try to investigate the following hyper-parameters: the FFNN architecture,
in particular which feature between the depth and the width of the network is
more important, the activation function, and the learning rate of the optimizer.
Moreover, we compare the performances of two well-known optimizers in Ma-
chine Learning literature: Nadam [8] and RMSprop [16]. Since we deal with
a free allocation strategy « that can assume negative values, we have chosen
among the wide variety of activation functions[12] the tanh and the elu. In this
way, we can analyze the performance of a saturating activation function and a
non-saturating one. Firstly we have performed a grid search on the learning rate
starting value and we have found 10~ a good choice in terms of speed of learning
and avoiding over-fitting. Note that to detect over-fitting one typically compares
the performance on one or more training sets with that on corresponding val-
idation sets. Since our environment is simulated, there is no need to explicitly
set aside training data for such task, nor to perform K-fold validation: indeed
we can always generate for the purpose a set of new scenarios which were not
seen during optimization.

In Figures 2 and 3 we present the learning curves of our fine-tuning tests
for RMSProp and Nadam respectively. The three lines of each plot display the
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Optimizer: Nadam -- Learning rate: 103 -- Activation: tanh
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Fig. 2. Learning curves of the direct policy algorithm applied to the Black and Scholes
scenario. The solid lines are the loss functions defined in Equation (56) in function
of the number of training epochs. Each continuous line represents a different neural
network architecture with tanh activation function (top) and elu activation function
(bottom). The optimizer adopted is the Nadam with a learning rate of 1073, The

horizontal grey-dashed line is the conservative option price obtained by maximizing
the TVS drift through Equation (36)

learning curves for different FFNN architectures: a one hidden layer network with
50 neurons, a 2 hidden layers with 30 and 20 neurons respectively, and a deeper
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Optimizer: RMSprop -- Learning rate: 1073 -- Activation: tanh
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Fig. 3. Learning curves of the direct policy algorithm applied to the Black and Scholes
scenario. The solid lines are the loss values defined in Equation (56) in function of the
number of training epochs. Each continuous line represents a different neural network
architecture with tanh activation function (top) and elu activation function (bottom).
The optimizer adopted is the RMSprop with a learning rate of 1072. The horizontal

grey-dashed line is the conservative option price obtained by maximizing the TVS drift
through Equation (36)

one with three layers with 20, 15, and 5 neurons. Each learning curve is compared
with the optimal option price (grey-dashed line) that we have computed with
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the closed form solution we have derived for the BS model in Section 3.3. We
can see that all the learning curves converge to our expected price, providing
a numerical finding of our theoretical result. More deeply, from the plots we
observe that the RMSprop optimizer outperforms the Nadam. Moreover, the
tanh activation function seems to be more preferable than the non-vanishing
elu. However, more importantly, we have evidence that a deeper architecture of
the neural network outperforms the shallow one. All the learning curves we have
presented are the best-in-sample results, in terms of performance, of four runs
with different random starting guesses for the hidden weights #. This procedure
is necessary since the objective function is not convex.

We take the 20 x 15 x 5 network with tanh from RMSprop as the best
optimized network, and we run a Monte Carlo simulation with 10% never-seen
scenarios to check if the agent overfits the new data. We report the results in

Table 1. Comparison of TVO prices under Black and Scholes scenario: analytical
solution price and direct policy reinforcement learning. The option parameters are:
In=K=1[EUR], T = 2[yr] and 7 = 5%

Pricing method TVO price [EUR]

Analytical Solution 4.2634 x 1072
Direct policy RL  (4.2624 + 0.005) x 1072

Table 1: the RL price is compatible with the closed formula price. Thus the RL
agent did not overfit the data during the training phase.

We will take advantage of those fine-tuning results to tackle the local volatil-
ity problem.

5.2 Local volatility dynamics

In this section, we study the TVS control problem assuming a local volatility
model for the dynamics of the risky assets. Thus in this case we have a diffusive
term in Equation (15) that is a deterministic function both of time and state,
i.e. the spot price, vy = v(t,S;). This additional dependency of volatility makes
the problem of finding the optimal strategy non-trivial, as a closed form formula
cannot be derived under this scenario; in fact if we consider the whole volatility
smiles of the securities, then the second-order term in the HJB equation (49)
does not elide and consequently the only way to derive o* is through a numerical
method. The additional dependence on the state S; under LV dynamics will
cause the agent to consider also the X; component value in the state block (54),
unlike under the BS scenario where this information is redundant as the optimal
strategy was function only of time (see Proposition 2). Here we consider the
same market data (r¢, u; and ;) as in the Black and Scholes environment to
study how the optimal solution changes with the dynamics model.
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Direct Policy Learning Curve
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Fig. 4. Learning curves of the direct policy algorithm applied to the local volatility
scenario. The solid line with triangles is the learning curve of an agent with free actions,
while the solid one is the learning curve of an agent whose actions are parameterized
with the maximum drift strategy. The two agents are parameterized by a 20 x 10 x
5 FFNN with tanh activation function. The loss function is computed according to
Equation (56). The optimizer adopted is the RMSprop with a learning rate of 10~ for
the solid line with triangles while 10~ for the solid one. The horizontal grey-dashed
lines delimit the 99% confidence interval of the MC price obtained by maximizing path-
wise the TVS drift through Equation (36)

Our first way to tackle the problem is to exploit the results obtained in the
BS case. Thus we train by direct policy algorithm a deep 20 x 10 x 5 neural
network with tanh activation function and a RMSprop optimizer. We report in
Figure 4 the corresponding learning curve (solid line with triangles). From this,
we observe that the network has learnt some good policy since the curve grows
as the number of training epochs increases until it saturates at a certain value.
To try to measure the performance of the policy selected by the agent, we can
build a néif strategy called “baseline”. By looking at the Markovian projection
in (20)-(21) and the first term in the HJB equation (49), we see that the control
problem is similar to the BS one with an additional second order term. Thus a
natural choice for the baseline is to maximize the TVS local drift by applying
the path-wise the Black and Scholes solution of Equation (28). Since here we
deal with a free allocation strategy, we can simply use our analytical result (36).
In the same Figure 4 we report the 99% confidence interval of the MC price
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obtained with the maximum drift baseline as two red-dashed lines. As we can
see, the optimized loss function is compatible with the baseline price. Following
the theoretical result of the HJB equation, we can assert that the agent has learnt
a sub-optimal policy. Since we LV model differs from the BS one for a corrective
term in the HJB equation (49), we expect that the optimal solution in the LV
framework will be in a close region of the maximum drift strategy. Thus we
train another agent with the direct policy learning by parameterizing its action
with the baseline strategy and choosing a smaller learning rate of 10~4. With
this parameterization, the RL agent actions, constituting the risky allocation
strategy, are computed by summing at each observational time T}, € 7 the FFNN
output with the Equation (36). Even in this case, the corresponding learning
curve (solid black line in Figure 4) is stuck in the maximum drift strategy. The
first possible reason for this behaviour is that the learning strategy of the direct
policy approach is too simple for the learning task. The second interpretation is
that the volatility versor in the HJB does not affect significantly the optimum
location since it is a second-order term and is lost in the MC error.

Because of that, we change the learning strategy by adopting a more sophis-
ticated one: the PPO algorithm. The big advantage of PPO is that, in addition
to the policy, a guess of the value function in Equation (49) is also computed by a
parameterization through an FFNN. As for the direct policy approach, we use the
BS environment to fine-tune the PPO hyper-parameters. Again we experienced
that deeper FFNNs outperform shallow ones and tanh is the most preferable.
We report for completeness the values of the other PPO hyper-parameters, for
the description of which we refer to [25]: learning rate 3 x 1074, A = 0.95, ¢ = 0.2,
c1 = 0.7, co = 0 and mini-batch® size of 2048 episodes.

We have trained a 5 layer FFNN with 8 neurons each with the PPO algorithm
in two different environments: one environment generates the reward according
to Equation (55), while the other exploits the reward function (57) where we
set v = 0.98 as discount factor to make the agent prefer immediate rewards
more than in the previous simulations. Again, for both environments, we train
two different agents: one whose action is given by Equation (53), while the other
implements the action parameterization with the baseline. We report in Figure 5
the results of the learning curves. In all the PPO cases, the trained agents seem
to be stuck in the sub-optimal maximum drift strategy policy. For the case of
the immediate reward function (Figure 5 on the right), we can not compare the
saturation values reached by the learning curves with the baseline price, since
the former are discounted due to A,y # 1. Thus, to compare the performance
of PPO with the baseline price in the test phase and ensure consistency in unit
of measurement, it is necessary to conduct a MC simulation with freezed agents
and set A and v values to 1. We report the results in Table 2. The RL agents we
have trained with PPO give all prices compatible with the baseline one.

8 A minibatch is a subset of a larger dataset, which is used to train a machine learning
model. The model updates its parameters based on the error calculated from the
predictions it makes on each minibatch. This allows for more efficient memory use,
faster convergence of the model, and better generalization to new data.
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PPO Learning Curve: reward (a)
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Fig. 5. Learning curves of the PPO algorithm applied to the local volatility scenario.
On the horizontal axis the number of training episodes. The solid lines are the moving
average of the realized rewards on the last 10° episodes. The shadows represent the
98% confidence intervals. The label reward (a) indicates that the RL agent is trained
in an environment where the reward function is defined by Equation (55), while reward
(b) refers to the reward function in Equation (57). The solid black lines are the learning
curves of an agent with free actions, while the grey solid ones are the learning curves
of an agent whose actions are parameterized with the maximum drift strategy. In both
plots, the agents are parameterized by an FFNN with 5 hidden layers with 5 neurons
each with tanh activation function. The horizontal grey-dashed lines delimit the 99%
confidence interval of the MC price obtained by maximizing path-wise the TVS drift
through Equation (36)

6 Conclusion and further developments

In this paper, we described a non-trivial control problem related to derivative
contracts on target volatility strategies. In particular, we have considered an
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Table 2. Comparison of TVO prices under local volatility scenario. The baseline price
is obtained by applying path-wise the maximum drift strategy (36). The RL free agent
implements the policy defined by Equation (53), while the parameterized agent chooses
its actions in terms of the baseline strategy. We label with letter (a) the agents trained
in environments with the reward function (55), while with (b) the reward function (57).
The option parameters are: Iy = K = 1[EUR], T' = 2[yr] and 6 = 5%

Pricing method TVO price [EUR]

Baseline (4.138 + 0.005) x 1072
RL free (a) (4.127 4+ 0.005) x 1072
RL parameterized (a) (4.131 & 0.005) x 1072
RL free (b) (4.130 + 0.005) x 10~2
RL parameterized (b) (4.135 & 0.005) x 1072

option writer selling a call option to a fund manager as protection on the capital
invested on the TVS. We showed how the presence of different funding costs
coming from hedging the risky assets underlying the TVS, obliges the writer to
solve a stochastic optimal control problem to price the protection. This is due
to the fact that the option-seller’s strategy is not self-financing. This kind of
control problem is hard to solve because here the control process affects both
drift and diffusive coefficients of the controlled process. Despite its complexity,
our first contribution is the derivation of a closed form solution of the control
problem in a Black and Scholes framework, which could represent a useful tool for
practitioners since it outperforms intuitive trading strategies. We have derived
this solution in two different ways: first by applying the Gyoéngy Lemma and
then by writing the HJB equation. We numerically studied the problem in the
more general local volatility model where the solution is not available and thus
a numerical investigation is needed. We tackled the problem by means of the
novel RL techniques, by both the direct policy learning and the proximal policy
optimization one. We used the BS model, where the solution is a priori known,
as benchmark to perform a series of fine-tuning of the RL algorithm hyper-
parameters, such as the artificial neural network architecture. We have tested in
the LV model the two RL approaches and from our simulations, we have evidence
that nor the simple direct policy learning strategy nor the sophisticated PPO are
able to outperform our analytical solution applied path-wise. Thus our analytical
result for the Black and Scholes model seems to be a good proxy solution also
for the local volatility one.

This result seems to be a local optimum from the HJB equation of the prob-
lem, since in the LV model the volatility versor term should influence the RL
agent actions. Thus natural development of this work could be to solve the HJB
numerically in low dimension in order to check why such sophisticated algo-
rithms are not able to find the global optimum of the problem, or to understand
which are the key elements of the problem, such as market data or the payoff
function, that can give rise to a solution far from the intuitive one.
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