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Abstract 13 

The capacity to discriminate safe from dangerous compounds has played an important role in the 14 

evolution of species, including human beings. Highly evolved senses such as taste receptors allow 15 

humans to navigate and survive in the environment through information that arrives to the brain 16 

through electrical pulses. Specifically, taste receptors provide multiple bits of information about the 17 

substances that are introduced orally. These substances could be pleasant or not according to the taste 18 

responses that they trigger. Tastes have been classified into basic (sweet, bitter, umami, sour and 19 

salty) or non-basic (astringent, chilling, cooling, heating, pungent), while some compounds are 20 

considered as multitastes, taste modifiers or tasteless. Classification-based machine learning 21 

approaches are useful tools to develop predictive mathematical relationships in such a way as to 22 

predict the taste class of new molecules based on their chemical structure. This work reviews the 23 

history of multicriteria quantitative structure-taste relationship modelling, starting from the first 24 

ligand-based (LB) classifiers proposed in 1980 by Lemont B. Kier and concluding with the most 25 

recent studies published in 2022. 26 
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1.1. Taste chemistry 30 

1.1.1. Introduction 31 

Considering the incredible variability of environmental conditions on the planet, the availability of 32 

specific foods has played a key role in the adaptive evolution and conservation of species. Indeed, the 33 

availability of specific types of nutrition may be one of the most important variables in the evolution 34 

of species. Taste and olfaction are the two senses that allow the discrimination of chemical substances 35 

(Schieberle & Hofmann, 2016). Dangerous tastes have been empirically correlated with bitterness; 36 

however, some of the most ancient medicines include bitter substances (Bayer et al., 2021). Recently, 37 

scientific approaches have been replacing empiric ways to understand and to assess the safety of food 38 

products. While these scientific approaches have been shown to be useful in the analysis and 39 

categorizing of tastes, some foods that are considered safe may illicit, intolerances and allergies in a 40 

few people. For instance, human intolerances to gluten and lactose are well known, along with the 41 

life threatening anaphylactic allergic response to seafood and peanuts. These relatively rare reactions 42 

to food are related to specific digestive enzymes concentrations, and to the human immune system, 43 

respectively. 44 

Beyond safety considerations, each person has specific preferences for tastes that can change over 45 

one’s lifetime. This variation in personal taste preferences could be related to biochemical, as well as 46 

environmental, psychological and cultural factors. This diversity of factors makes it difficult to 47 

describe the taste mechanisms, e.g. psychologists might consider taste preferences to be related 48 

mainly to psychological stimulus, while chemists might think that tastes are perceived primarily 49 

through the consequence of chemical reactions that occur in tissues (Behrens & Ziegler, 2020), 50 

contributing to kind and intensity of sensations. In this framework, the identification of the healthiest, 51 

safest and most preferred foods is of fundamental importance to the food and pharmaceutical 52 

industries. Research related to the mechanisms underlying the human perception of tastes is 53 

increasing in the last few years (Damodaran & Parkin, 2017). Importantly, current research into tastes 54 

and sensory perceptions are being studied from different, but related and interconnected directions, 55 

such as chemical, biochemical, anatomical, physiological, and psychological standpoints. 56 

It is common to identify “tastes” or “flavors” as the combination of taste, olfactory, tactile and thermal 57 

sensations (Di Lorenzo et al., 2009), while sensomics is the mapping of the combinatorial code of 58 

aroma and taste by active key molecules. These molecules are sensed by human chemosensory 59 

receptors (Schieberle & Hofmann, 2016). The extraordinary developments in foodinformatics 60 

(computational food chemistry) and bioinformatics (computational biochemistry) are providing new 61 
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tools to assess and to explain the receptor/ligand binding affinity and how the structures of the 62 

receptors interact with the chemical structures of the compounds and how to achieve a particular taste 63 

of interest (Martinez-Mayorga & Medina-Franco, 2014; Rojas et al., 2016a). At the beginning of 64 

sensory research, the greatest efforts were focused on the chemical structure of compounds, their 65 

characteristics and the cultural particularities of populations. It was considered that chemical analysis 66 

of taste molecules in raw ingredients and in end-products for human consumption could play an 67 

important role for the assurance of food quality and desirability preventing defects in products (Ley 68 

et al., 2012). However, this approach was not sufficient to explain all the taste phenomena. Later, the 69 

importance of the complex anatomy and physiology of taste receptors and how they interact with 70 

specific tastant molecules were recognized as key factors to better understand and model the 71 

phenomenon of taste. 72 

A molecular tastant is considered to be a water-soluble chemical able to produce taste sensations by 73 

activating taste receptor cells (TRCs) and thus activate taste-related pathways at within the nervous 74 

system (Di Lorenzo et al., 2009; Rojas et al., 2022). Tastants are elicited not only in water, but also 75 

in organic and inorganic acids and amino acids, all of which are able to facilitate the interactions of 76 

tastants with receptors (Chaudhari et al., 2009). Chemosensory receptors located in the taste buds of 77 

the tongue are fundamental to the regulation of taste sensation. Other mechanisms to recognize 78 

molecular tastants are, for example, the opening of ion channels or through secondary messenger 79 

channels associated with nucleotides or phosphorylated inositol (Damodaran & Parkin, 2017; Morini 80 

et al., 2011; Wong, 2018). 81 

Taste measurement is preferably performed by an experienced panel of assessors. Panelists are trained 82 

with standard solutions of the basic tastes by means of the sip and spit methodology (Kelly et al., 83 

2005; Spillane et al., 2006). The concentrations of standard solutions should be prepared at a 84 

minimum of their recognition threshold to ensure taste detection (Deng et al., 2021; Liu et al., 2020; 85 

Shiyan et al., 2021; Spillane et al., 2006; Yu et al., 2018). The pH of the standard solutions also 86 

influences taste perception. Then, a solution of an unknow analyte (generally at concentration of 0.01 87 

M) is provided to members of the panel who are asked to identify the basic taste and aftertaste. The 88 

taste potency of the unknown analyte can be estimated by the amount that the solution should be 89 

diluted to be equal to the standard. The evolution of technology led to the development of some 90 

analytical procedures based on sensors for the sensory evaluation of foods; for instance, electronic 91 

noses and tongues, in which their operation is based on the measurement of potential differences that 92 

are related to the tastes and aromas that humans can sense (Deng et al., 2021; Liang et al., 2022a; 93 

Suárez-Estrella et al., 2021; Xiu et al., 2022). 94 
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1.1.2. Basic tastes 95 

Currently, five basic tastes have been identified: sweet, bitter, umami, sour and salty, which are 96 

referred to as basic taste modalities, taste qualities or receptor-mediated tastes (Chandrashekar et al., 97 

2006; Damodaran & Parkin, 2017; Di Lorenzo et al., 2009; Morini et al., 2011; Wong, 2018). Among 98 

the basic tastes, sweetness is probably the most important one, since sweeteners evoke a high caloric 99 

intake and a pleasant sensation in many foods and medicines (Chandrashekar et al., 2006; Damodaran 100 

& Parkin, 2017). Most sweet foods contain mono- and disaccharides (Di Lorenzo et al., 2009), which 101 

are responsible for their sweetness and quick sources of energy for the body. On the other hand, 102 

several non-caloric substances capable of providing a sensation of sweetness to food are currently 103 

known and are used in the industry. Those substances may have both natural or artificial origins 104 

(Chattopadhyay et al., 2014). 105 

Sweetness perception is related to the presence of a glycophore unit in the sweetener’s scaffold. It 106 

forms the tripartite model (AH, B and γ units), which interacts with the sweetness receptor along a 107 

multipoint attachment (MPA) construct. The sweet taste chemoreceptor is a G-protein coupled 108 

receptor (GPCR) of class C composed of the T1R2 (Type 1 Receptor 2) and T1R3 (Type 1 Receptor 109 

3) subunits, which are composed of three structural domains (Chandrashekar et al., 2006; Morini et 110 

al., 2011; Wong, 2018). The presence of the AH-B sites in a tastant molecule is a necessary, but not 111 

a sufficient condition alone to elicit sweetness; for example, the sweetness taste can be viewed as a 112 

function of the size, shape and functionality of the compounds (Spillane & Sheahan, 1989). In other 113 

words, a large molecule must be able to fit specifically into the receptor site to generate sweetness. A 114 

small molecule with the AH-B site might be unable to match the construct of the receptor site, and 115 

the sweet stimulus may not be produced. 116 

Sucrose has a clean (no aftertastes) sweet sensation (even at high concentrations), and consequently 117 

it is frequently used as the standard to quantify the relative sweetness (RS) or sweetness potency (Sw) 118 

of sweet-tasting molecules (Liu et al., 2020; Rojas et al., 2022; Shiyan et al., 2021; Yu et al., 2018). 119 

Sweet potency is defined as the concentration ratio between a sucrose solution standard labeled as 1 120 

(or 100%), and the solution of a sweetener exhibiting the same intensity (iso-sweet concentration) 121 

(Rojas et al., 2016a; Rojas et al., 2016b). Sweeteners could be classified as natural (nutritive or 122 

carbohydrate) and artificial (non-nutritive or non-carbohydrate) (Ley et al., 2012; Wong, 2018; Yang 123 

et al., 2022). On the other hand, certain amino acids and proteins are detected as sweet compounds 124 

and some salts taste sweet at low concentrations, including NaCl, KCl, NaOH, KOH, salts of 125 

beryllium and lead acetate and carbonate (Di Lorenzo et al., 2009). 126 

Bitterness has been defined as an unpleasant taste. The unpleasant sensation is related to a rejection 127 

of some foods, many of which are toxic compounds for humans (Chandrashekar et al., 2006; Di 128 
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Lorenzo et al., 2009). Thus, bitter perception might be related to an evolved “alert” system to prevent 129 

the intake of high concentration of toxic compounds through food or drink, avoiding their undesirable 130 

and potential lethal effects (Ley et al., 2012). On the other hand, not all bitter compounds are toxic 131 

and not all toxic compounds are bitter. In fact, some of them have proven beneficial effects for human 132 

health, for instance, polyphenols, glucosinolates and terpenes (Bayer et al., 2021). Moreover, some 133 

bitter tastes may be perceived as pleasant (Dagan-Wiener et al., 2019) as well as associated food 134 

products, such as coffee, beer, olives, and unsweetened chocolate. Plants that are perceived as slightly 135 

bitter are commonly used for food, while plants perceived as highly bitter are more commonly used 136 

in medicines. Plants perceived as having intermediate bitterness might be used for both alimentation 137 

and/or medical purposes (Pieroni et al., 2007; Pieroni et al., 2002). 138 

Bitter molecules generally require the presence of a polar (electrophilic or nucleophilic) group and a 139 

hydrophobic group to interact with the bitter receptor. Bitter taste stimuli are associated with 25 140 

receptors (TAS2Rs), which are G protein-coupled (Adler et al., 2000; Chandrashekar et al., 2006; 141 

Matsunami et al., 2000). Most of them are located in the same taste receptor cells (TRCs) 142 

(Chandrashekar et al., 2006; Damodaran & Parkin, 2017; Di Lorenzo et al., 2009; Wong, 2018). 143 

TAS2Rs have not only been identified in the mouth cavity, but also in gastrointestinal, respiratory, 144 

reproductive and urinary tract tissues (Bayer et al., 2021). The physiological function of TAS2Rs 145 

outside the oral cavity have not been identified. Bitter receptors can be specific for one or a few 146 

compounds, while others are able to react to a large number of bitter substances (Di Pizio & Niv, 147 

2015). Some bitter compounds are agonists for some TAS2R subtypes, but antagonists for others 148 

(Brockhoff et al., 2011). Bitterness is a common taste reaction to alkaloids and heavy metal salts. 149 

Quinine sulfate is the standard used for comparisons among the bitterness of compounds (Dagan-150 

Wiener et al., 2017; Damodaran & Parkin, 2017). Quinine sulfate (Liu et al., 2020; Rojas et al., 2022) 151 

and L-isoleucine (Shiyan et al., 2021; Yu et al., 2018) are the most frequently used standards for 152 

bitterness identification. Quinine is an alkaloid used in the food industry as a component of some soft 153 

drinks to infuse them with bitter taste, for example, tonic water. Substances used as sweeteners, such 154 

as sodium saccharine and acesulfame K can become bitter at high concentration and also produce a 155 

bitter aftertaste (Di Lorenzo et al., 2009). 156 

Umami is the most recently recognized basic taste. Umami is a Japanese word that means 157 

deliciousness. This taste is associated with L-amino acids (such as monosodium glutamate MSG), 158 

that are umami enhancers (potentiators) (Baines & Brown, 2016; Damodaran & Parkin, 2017; Suess 159 

et al., 2015; Wong, 2018). For instance, MSG exhibits a synergistic effect (enhancement) with the 160 

guanosine 5’-monophosphate or inosine 5’-monophosphate nucleotides, although these compounds 161 

also show a weak intrinsic umami taste on their own (Ley et al., 2012; Wong, 2018). Also, L-aspartate 162 
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produces an umami sensation. Umami taste is detected in meats, cheeses, some mushrooms along 163 

with fish, kelp and tomatoes. The umami taste stimuli of peptides and their molecular interactions is 164 

associated with G-protein coupled receptors (GPCRs) comprised of the subunits T1R1 (Type 1 165 

Receptor 1) and T1R3 (Type 1 Receptor 3) (Liang et al., 2022a; Liang et al., 2022b; Morini et al., 166 

2011). An umami nucleotide binds with the corresponding receptor at three points: two of them are 167 

electrophilic (A and B) that interact with the two phosphoryl oxygens and the C6 oxygen, 168 

respectively, while site X interacts with the substituent at C2, particularly when the substituent is 169 

delocalized (Wong, 2018). The standard used to quantify umami intensity is MSG (Baines & Brown, 170 

2016; Liu et al., 2020; Rojas et al., 2022; Shiyan et al., 2021; Yu et al., 2018). 171 

Sour taste is associated with the presence of organic and inorganic acids in food. Acidity in raw food 172 

tends to change with time; for example, acidity in soft fruit decrease as the fruit becomes ripe. A sour 173 

taste is associated with unripe soft fruit. Sourness increases also after fermentation processes applied 174 

for the production of foods, such as yogurt, wine, vinegar and bread. Initially, sourness perception 175 

was related to the capacity of substances to release hydrogen ions in water. However, hydrogen ion 176 

release is not the mechanism that produces sourness for organic and diluted inorganic acids (Breslin 177 

& Huang, 2006; Roper, 2007). Other mechanisms include proton exchange, a stimulus-gated Ca++ 178 

channel and the direct entry through an H+ channel that has not been identified (Di Lorenzo et al., 179 

2009). A sour taste can also be induced by the passage of electric current through the tongue that 180 

probably generates hydrogen ions from the hydrolysis of acid or water (Damodaran & Parkin, 2017; 181 

Wong, 2018). In addition, undissociated acids play an important role in sour perception. For instance, 182 

some weak organic acids that naturally occur in foods, such as citric, succinic, malic, or lactic acid, 183 

are perceived to be more sour than hydrochloric acid at the same pH (Ley et al., 2012). On the other 184 

hand, other acid molecules (i.e., potassium acid oxalate or protocatechuic acid) exhibit both sour and 185 

bitter tastes (Wong, 2018). The standard used to assess the sourness in food is citric acid (Liu et al., 186 

2020; Rojas et al., 2022; Shiyan et al., 2021; Yu et al., 2018). 187 

Saltiness is the sensation produced by some soluble salts, such as those with low molecular-weight, 188 

mainly chlorides from sodium, potassium or calcium (Damodaran & Parkin, 2017; Wong, 2018). 189 

NaCl is the only compound exhibiting an intense and clean (no after taste) salty taste and it is 190 

consequently used as the saltiness standard (Liu et al., 2020; Rojas et al., 2022; Shiyan et al., 2021; 191 

Yu et al., 2018). Potassium chloride can be considered a replacement for NaCl, however it can be 192 

perceived as a sweet/bitter taste at low concentrations (Di Lorenzo et al., 2009). In contrast, high 193 

molecular-weight salts elicit bitter rather than salty taste, such as lithium chloride and ammonium 194 

chloride. However, they are limited for human consumption due to safety and their offensive tastes, 195 

respectively (Ley et al., 2012; Wong, 2018). 196 
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The physiological function of the salty taste is to maintain the body’s electrolyte balance. In taste 197 

buds, ion channels allow the passage of chemical species that trigger stimuli perceived as salty, and 198 

there is a relationship between the number of fungiform papillae and sensitivity to salty taste (Doty 199 

et al., 2001). Apparently, the salty taste is related to the body’s ability to detect sodium, thanks to the 200 

specific transduction mechanism of this cation, and its passage through the epithelial-sodium channel 201 

(ENaC) in the apical membrane of the receptor cells of taste. The epithelial-sodium channel is the 202 

mammalian Na+ specific taste receptor. Most mammals have at least one type of salt taste receptor 203 

that is cation nonselective, apparently from the salty taste evoked by KCl and NH4Cl molecules. At 204 

the same time, high circulating aldosterone levels suggest aldosterone modulated epithelial cell 205 

membrane Na+ transporters as candidate for salt taste receptors (DeSimone & Lyall, 2006). Moreover, 206 

one or more receptors, such as a variant of TRPV1 (TRPV1t), may be able to respond to various 207 

cations including K+, Ca2+, 
+

4NH  and to Na+ (DeSimone & Lyall, 2006; Rhyu et al., 2021). 208 

1.1.3. Non-basic tastes 209 

Some compounds or combinations of compounds can produce tastes considered as non-basic or 210 

secondary tastes, such as astringent, chilling, cooling, heating and pungent (Damodaran & Parkin, 211 

2017; Ley et al., 2012; Wong, 2018). Moreover, other sensations have also been described as non-212 

basic tastes, such as fattiness, or the definition of water as a tastant. Other characteristics of substances 213 

have led to the classifications of compounds as multitastes, taste modifiers or tasteless. 214 

The definition of fattiness as a taste has been triggered by the transduction mechanisms that are 215 

sensitive to fatty acids in the TRCs membranes (Gilbertson et al., 1997). The transduction 216 

mechanisms are associated with the inhibition of delayed rectifying K+ channels and through the fatty 217 

acid CD36 (Di Lorenzo et al., 2009). Evidence suggests that fatty acids (e.g. linoleic acid, oleic acid 218 

and stearic acid) could be considered as tastants and that their tastes are detectable without the need 219 

for other sensory cues such as texture, viscosity or smell (Di Lorenzo et al., 2009). On the other hand, 220 

water has its own taste, even though it could be affected by temperature and easily affected by diluted 221 

compounds even at low concentration. Moreover, it could be considered as a tastant because of the 222 

role of water in eliciting compounds in TRCs and in taste nerves of some species (Di Lorenzo et al., 223 

2009). It has been suggested that an aquaporin, AQP5, a membrane channel, allows the water 224 

molecules to get into the cell by activating and regulating the volume of water through the anion 225 

channel (Di Lorenzo et al., 2009). Moreover, when the mouth is rinsed after the application of a sweet 226 

taste blocker, water elicited a sweet aftertaste (Di Lorenzo et al., 2009). 227 

Multitaste is a complex sensation of tastes elicited by combining more than one basic taste at the 228 

same time (Rojas et al., 2022). It is triggered by a variety of different compounds. Some examples of 229 
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multitaste compounds are the potassium acid oxalate and protocatechuic acid, which produce 230 

sour/bitter tastes (Wong, 2018), calcium phenolsulfonate (bitter/astringent tastes) and benzyl acetate 231 

(bitter/pungent tastes) (Dagan-Wiener et al., 2019). Some compounds are able to alter and even block 232 

the taste of other compounds. Na+ channel blockers reduce the saltiness of sodium chloride, thaumatin 233 

and adenosine monophosphate block bitterness, while lactisol proprionate blocks sweetness. On the 234 

other hand, some compounds increase the taste of others (taste enhancers); for example chlorogenic 235 

acid and cynarin enhance the sweetness (Di Lorenzo et al., 2009). In contrast, some compounds have 236 

antagonist effects, that is, they tend to suppress the taste sensation of other compounds. This is what 237 

occurs with citric acid and sucrose tastants in lemonade. It is also possible to find synergistic effects, 238 

for instance the enhancement of umami taste by the addition of IMP or GMP to MSG (Di Lorenzo et 239 

al., 2009). 240 

The expression “tastelessness” is used to categorize molecules as lacking any particular taste. These 241 

are also classified as non-sweet, non-bitter, non-sour, non-salty or non-umami compounds (Rojas et 242 

al., 2017; Rojas et al., 2022). Some changes in the chemical structure of substances may modify their 243 

sweet taste to a bitter one or make them tasteless. For example, the saccharin sweetener becomes 244 

bitter by the introduction of a nitro group onto carbon five (5-nitrosaccharin), while the introduction 245 

of this group on the four-carbon position produces a sweet/bitter tastant (p-nitrosaccharin). On the 246 

other hand, the presence of the amino group produces a sweet/tasteless compound (6-aminosaccharin) 247 

or a tasteless molecule (5-aminosaccharin) (refer to Figure 1) (Rojas et al., 2022). Interestingly, some 248 

tasteless compounds like miraculin and circulin act as taste modifiers, in particular, these compounds 249 

change the sense of sour in substances to sweet. In contrast, gymnemic acid, ziziphin and hodulcin 250 

block the sensation of sweetness (Di Lorenzo et al., 2009). 251 

 252 

Figure 1 should be inserted around here 253 

 254 

1.2. Machine learning to uncover Structure-Taste Relationships 255 

Studies of Quantitative Structure-Property Relationships (QSPRs) enhance the definition of 256 

mathematical relationships between molecular structures and specific properties of chemical 257 

compounds, such as taste. These approaches have played an important role in the evaluation and study 258 

how molecular features are related to the taste of chemical substances through the development of 259 

empirical data-driven models. QSPR models require molecular descriptors, which are numerical 260 

indices that encode the detailed chemical and structural information of molecules. They can be both 261 

experimental physicochemical properties of molecules and theoretical indices, which are calculated 262 
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through mathematical algorithms (Todeschini & Consonni, 2009). Molecular descriptors are used as 263 

independent variables in QSPR models. The relationships between descriptors and the property of 264 

interest (e.g., the taste of chemicals) are calculated by means of chemometrics and machine learning 265 

approaches. 266 

The QSPR workflow starts with an appropriate description of the molecular structures and ends with 267 

the prediction of the behavior of the chemicals. This approach relies on the assumption that the 268 

molecular structure of a substance encodes the chemical features that are responsible for its physical, 269 

chemical, and biological behavior. If these features are correctly encoded into numerical descriptors, 270 

then QSPR strategy allows first to establish the empirical relationships between descriptors and the 271 

property of interest by means of statistical multivariate modeling, and subsequently infers the 272 

property of a new substance or untested chemical through the QSPR model. 273 

There are several multivariate statistical methods to process molecular descriptors and achieve 274 

reliable estimates of chemical properties. Depending on the nature of the modeled property, 275 

classification and regression methods can be used to calculate models both for reproducing the known 276 

experimental data and predicting the unknown data for qualitative and quantitative responses, 277 

respectively. If chemicals belong to defined qualitative classes; for example, molecules labelled as 278 

positive or negative, then supervised classification models can be applied. Classification approaches 279 

define mathematical relationships between descriptors and classes and can thus be used to predict the 280 

class of new substances that are associated with unknown experimental class labels. If chemicals are 281 

associated with a quantitative response, regression methods are used to define the mathematical 282 

model that relates descriptors and the response to obtain quantitative predictions for new chemicals. 283 

The two main operational steps in the development of QSPR models are the definition of their 284 

applicability domain and the implementation of proper validation protocols, as proposed by the 285 

OECD (Organization for Economic Co-operation and Development) in the framework of the five 286 

general principles for QSARs (Gramatica, 2007). These principles are used as the criteria to evaluate 287 

and accept QSPRs, especially for regulatory purposes, and state that each model should have: 1) a 288 

defined endpoint; 2) an unambiguous algorithm; 3) a defined domain of applicability; 4) appropriate 289 

measures of goodness-of-fit, robustness and predictivity; 5) a mechanistic interpretation, if possible. 290 

The Applicability Domain (AD) of a QSPR model is the chemical space where predictions can be 291 

considered as reliable (Mathea et al., 2016; Sahigara et al., 2012). If the properties of a new untested 292 

molecule are predicted through QSPRs, then it is considered to share the same mechanisms and/or 293 

modes of action as the molecules used to build the model provided that it is structurally similar to the 294 

training molecules and falls inside the AD. In this case, the properties of predicted chemical are 295 

considered as interpolated by the model and its predicted properties can be assumed to be reliable. In 296 
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contrast, the predictions for molecules falling outside the AD can be considered as model 297 

extrapolations, and consequently they are considered to be unreliable. 298 

Moreover, the attention to effective and reliable estimates through predictive models has a crucial 299 

role in the QSPR workflow. When supervised qualitative (classification) or quantitative (regression) 300 

approaches are used to establish structure-property relationships, the primary goal of the process is to 301 

achieve reliable models that are able to correctly predict the properties of new untested molecules. 302 

QSPR modeling could also have explanatory purposes, that is, allowing the interpretation of the 303 

relationship between descriptors and the modeled property to deepen the knowledge about the specific 304 

problem in analysis. In both cases, validation protocols for the assessment of the predictive ability of 305 

models and the reliability of the established relationships should be always applied (Oliveri, 2017; 306 

Wold & Eriksson, 1995). This step is necessary also to avoid overfitted models, that is, models in 307 

which mathematical relationships accurately predict properties for the training compounds, but not 308 

for new untested substances. 309 

The predictive abilities of the models are usually evaluated by splitting the available compounds into 310 

training and test sets. Training compounds are used to establish the mathematical model, which is 311 

then used to predict the responses of the chemicals included in the test set. Finally, the agreement 312 

between of experimental and predicted responses for the test substances is evaluated to assess the 313 

model’s predictive ability. Several validation protocols exist and the usage of a particular one usually 314 

depends on how many chemicals are available for model development. A general requirement is that 315 

molecules in the test chemical space should be reasonably similar to that of the training space. 316 

However, large degrees of similarities could produce an excessively optimistic evaluation of a 317 

model’s predictive ability. For this reason, when dealing with classification models, it is preferable 318 

to keep the class balance equal in the training and test sets; that is, the same distribution of chemicals 319 

in the modeled classes should be preserved in both sets. 320 

1.2.1. Classification approaches 321 

In the framework of machine learning applied to QSPR, classification methods are fundamental 322 

techniques aimed at finding mathematical relationships that recognize the class membership of 323 

molecules on the basis of a set of molecular descriptors. Once a classification model has been trained, 324 

the membership of unknown chemicals to one of the defined classes can be predicted. Thus, for 325 

discrete molecular properties, like qualitative properties distinguishing between different tastes, a 326 

general representation of classification models is the following: 327 

 328 

  1 2 pC f x ,x , ,x  (1) 329 
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 330 

where C is the class, x1, ..., xp are p (number) of molecular descriptors, and f is a function representing 331 

the relationship between the class and the descriptors. 332 

Several classification methods have been proposed in the last decades, with different characteristics, 333 

advantages and limitations (Lavine & Rayens, 2009). A preliminary distinction among classification 334 

methods can be defined on the basis of the mathematical form of the decision boundary: linear 335 

methods calculate the best linear boundary for class discrimination, while non-linear methods 336 

discriminate classes by non-linear boundaries. 337 

Another important difference can be made between discriminant (pure classification) and class-338 

modeling methods. Discriminant methods divide the whole chemical space defined by the molecular 339 

descriptors in as many regions as the number of the modeled classes. Thus, each compound is 340 

assigned the class corresponding to the region of the chemical space where it falls. On the other hand, 341 

class-modeling methods (also known as one-class classifiers) define the boundary to separate a 342 

specific class from the rest of the chemical space. Thus, a target class is modeled independently of 343 

the others; compounds fitting the class model are considered members of the class, while chemicals 344 

that are outside the class space are classified as non-members of the target class. 345 

Among classification methods, Discriminant Analysis (DA) is the most widely used (Hand, 1997; 346 

McLachlan, 1992). DA finds the directions in the multivariate space that maximizes the ratio of the 347 

between-class to within-class variances; these are called discriminant functions and from a 348 

mathematical point of view, these directions are linear combinations of the original variables. 349 

Depending on the choice of the class-covariance representation, two different discriminant methods 350 

can be distinguished: Quadratic Discriminant Analysis (QDA) and Linear Discriminant Analysis 351 

(LDA), which define quadratic and linear boundaries between classes, respectively. One major 352 

drawback for DA is that it cannot be applied to datasets with the number of samples lower than the 353 

dimension of the measurement space. However, to overcome this limitation, DA can be combined 354 

with methods for dimensionality reduction, such as variable selection approaches or principal 355 

component analysis (PCA). 356 

Another option to deal with highly dimensional spaces is the application of Partial Least Squares 357 

Discriminant Analysis (PLSDA) (Barker & Rayens, 2003; Brereton & Lloyd, 2014). PLSDA benefits 358 

from the properties of PLS (Partial Least Squares) regression, since it searches for the latent variables, 359 

that is, the directions of maximum covariance with the response to be modeled. The difference from 360 

PLS is that the response encodes class membership with binary codes and class thresholds have to be 361 

defined to predict samples in one of the modeled classes. 362 
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Unlike DA and PLSDA, which are discriminant classifiers, the Soft Independent Modeling of Class 363 

Analogy (SIMCA) method is one of the most useful and popular class-modeling approaches. It is 364 

based on PCA carried out on the samples of the target class. To predict the class of test samples, the 365 

sample distances from the class PCA model are calculated on the basis of normalized Q residuals and 366 

Hotelling’s T2 values, which measure how well each sample conforms to the model. Only samples 367 

with distances lower than a defined threshold are classified into the class space. 368 

Another class modeling approach consists of the calculation of Potential Functions (PFs), where the 369 

assignment of a new sample to the target class is based on the cumulative potential of the class, which 370 

is calculated as the sum of the individual potentials of the target class samples in the point of the 371 

chemical space where the new sample is projected. The shape of the potential depends on the choice 372 

of the type of potential function (kernel) and smoothing parameter (Brereton, 2011). 373 

Tree-based algorithms exploit different classification approaches. They recursively divide data into 374 

smaller subgroups, which contain samples belonging to as few classes as possible. In each split, the 375 

partition is achieved by maximizing the purity of the new subsets. The final classification model 376 

consists of a collection of nodes that define the classification rule. One of the most common tree-377 

based approaches is the Classification and Regression Tree (CART), which selects the variables that 378 

provide the purest subsets of samples in each node (Breiman et al., 1984). The Random Forest (RF) 379 

method represents a subsequent development of tree-based approaches (Breiman, 2001). It is a meta-380 

classifier based on an ensemble of classification trees, each trained on various subsamples of the 381 

training set, which are built by bootstrapping. The prediction is then obtained by majority vote among 382 

the classifications provided by the trees of the forest. 383 

Another approach, based on the ensemble of models, is AdaBoost (Adaptive Boosting), where 384 

predictions provided by many “weak” classifiers are pooled to produce a better classification. 385 

Predictions are combined through an adaptive iterative algorithm that exploits the weighted majority 386 

voting (Freund & Schapire, 1997). Besides the original boosting method, other approaches have been 387 

proposed and applied for the prediction of molecular taste, especially when dealing with big datasets, 388 

such as XGBoost (eXtreme Gradient Boosting) (Chen & Guestrin, 2016). This is again a classification 389 

algorithm that uses sequential iterations, where decision trees are combined to increase classification 390 

accuracy. 391 

Often QSPRs exploit similarity-based classification, since compounds with similar molecular 392 

structures are expected to have similar properties. These methods calculate distance measures to 393 

provide a classification in terms of similarity among samples. The most known approach in this 394 

framework is the k-Nearest Neighbors (kNN) classifier: it classifies a sample according to the most 395 

frequent class of its k most similar training samples (Kowalski & Bender, 1972). The N3 (N-Nearest 396 
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Neighbors) approach is an evolution of kNN, which uses locally-weighted information to classify 397 

new samples. The Binned Nearest Neighbors (BNN) method is similar to kNN, but the prediction is 398 

based on a flexible number of neighbors (Todeschini et al., 2015a). 399 

Another classification approach, which is relatively frequent in QSPR applications, is the Support 400 

Vector Machine (SVM) method (Vapnik, 1998). It defines the boundary between two classes by 401 

maximizing the distance between the support vectors and the decision boundary, where support 402 

vectors are those training samples located in the proximity of the class border. Moreover, SVM can 403 

use non-linear kernel functions for defining non-linear decision boundaries. 404 

To visually exemplify the different ways classification methods can define boundaries between 405 

classes, a dataset of 324 chemicals was generated from the ChemTastesDB database (Rojas et al., 406 

2022), including 61 chemicals labelled as sweeteners and 263 as bitterants. Their molecular structures 407 

were encoded through the binary molecular access system (MACCS) keys (Durant et al., 2002). The 408 

chemical space was represented by the first two t-Distributed Stochastic Neighbor Embedding (t-409 

SNE) dimensions (van der Maaten & Hinton, 2008), calculated by using the Jaccard-Tanimoto metric 410 

as the distance measure (Todeschini et al., 2015b). Finally, different classification approaches were 411 

calculated to show how the class boundaries can vary in a 2D space according to the adopted method 412 

(Figure 2). SIMCA and PFs, which are class-modeling approaches, define a boundary around the 413 

target class (sweet class in this example), while the discriminant methods, for instance, LDA, QDA 414 

and PLSDA, divide the entire chemical space into two sub-spaces, each associated with one of the 415 

two modeled classes, with linear or non-linear boundaries, depending on the adopted classification 416 

algorithm. 417 

 418 

Figure 2 should be inserted around here 419 

 420 

1.2.2. Classification measures 421 

QSPR models must be assessed through measures of goodness-of-fit and goodness-of-prediction. In 422 

this framework, several indices can be used to evaluate the quality of models, which are based on the 423 

number of misclassifications (molecules assigned to the wrong class) (Ballabio et al., 2018). 424 

Classification metrics are derived from the confusion matrix, which is a square matrix with 425 

dimensions G × G, where G is the number of modeled classes. Each entry cgk of this matrix represents 426 

the number of samples belonging to class g and assigned to class k. Consequently, the diagonal 427 

elements cgg denote the counts of the correctly classified samples while the off-diagonal elements 428 

represent those erroneously classified. In the simplest binary case where two classes (positive and 429 
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negative) are modeled, the confusion matrix is a 2 × 2 numerical table with four entries labelled as 430 

follows: true positive and true negative (TP and TN, the number of positive and negative samples 431 

correctly classified, respectively), false positive (FP, the number of negative samples classified as 432 

positive) and false negative (FN, the number of positive samples classified as negative). 433 

The most common classification measures derived from the confusion matrix are sensitivity (Sng), 434 

precision (Prg), specificity (Spg), as well as their combination, such as the F-score (Fg) (also known 435 

as the F1-score or F-measure). These indices are associated to each modeled g-th class and defined 436 

as: 437 
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 439 

where ng is the number of samples of the g-th class,
gn  is the number of samples that are classified 440 

in the g-th class and n is the total number of samples. Higher values of sensitivity, specificity and 441 

precision are associated with better class discrimination. 442 

Beside measures assigned to each class, global classification indices have been proposed to provide 443 

an overall assessment of the discrimination ability of classifiers. The Non-Error Rate (NER, also 444 

called balanced accuracy or recall) corresponds to the arithmetic mean of class sensitivities: 445 
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while accuracy corresponds to the fraction of correctly classified samples: 448 
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 450 

Note that accuracy is considered a biased estimate when classes are unbalanced, that is, samples are 451 

distributed in classes with significantly different frequencies. 452 

Alternatively, classification performance can also be evaluated through the Matthew Correlation 453 

Coefficient (MCC), which ranges between -1 and 1 and has originally been defined to assess binary 454 

classification tasks: 455 
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 457 

Another way to assess discrimination capability of classification models is through ROC (Receiver 458 

Operating Characteristics) curves. These are graphic plots of sensitivity and 1 - specificity (also known 459 

as False Positive Rate, FPR) for a classification system when its discrimination threshold is changed. 460 

For each threshold value, the corresponding TPR and FPR values are calculated. The optimal 461 

classifier will provide a full ROC curve, while a random classification rule would give a line along 462 

the diagonal of the ROC space. To quantitatively compare classification models trough ROC curves, 463 

a common approach is to calculate the area under the curve (AUC), also known as AUROC or ROC-464 

AUC. 465 

2. Classification models for taste prediction 466 

In this section, ligand-based (LB) classifiers for taste prediction are described. The classifiers were 467 

retrieved from 52 published studies, which were found through critical screening of the Web of 468 

Science citation indexing service. To the best of our knowledge, the first work published on this topic 469 

was by Lemont B. Kier in 1980. In addition to the models described below, there are several 470 

multicriteria reviews that are focused on QSAR-based prediction of tastes by means of diverse 471 

classification-based machine learning approaches (De León et al., 2021; Malavolta et al., 2022; Rojas 472 

et al., 2016a; Spillane et al., 1996; Walters, 2006). Ligand-based models are presented on the basis 473 

of the basic tastes to be predicted. 474 

2.1. Sweet and bitter tastants 475 

The discrimination between sweet and bitter compounds has probably been the most important task 476 

in quantitative structure-taste relationship studies. Twelve ligand-based (LB) models for the 477 

discrimination of these two tastes are summarized in Table 1. 478 

 479 

Table 1 should be inserted around here 480 

 481 

Earlier studies had been focused on the use of simple modeling approaches, such as discriminant 482 

analysis. In 1980, Kier (Kier, 1980) performed a two-variable linear discriminant analysis (LDA) to 483 

discriminate sweet and bitter aldoximes taken from the data published by Acton and Stone (Acton & 484 

Stone, 1976). For each class, 10 tastants were selected on the basis of the largest percentage of the 485 

taste and the most potent taste response. Each molecule was represented by two connectivity indices 486 
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named 
1  and 

4

p . The classifier was used to predict the taste of nine external molecules, achieving 487 

seven correct predictions, one incorrect prediction and one tastant labelled as ambiguous. After this 488 

pioneering work, Takahashi and Miyashita’s group (Miyashita et al., 1986a; Takahashi et al., 1984; 489 

Takahashi et al., 1982) developed new models, based on LDA and SIMCA. In the first study 490 

(Takahashi et al., 1982), three molecular descriptors were used to correctly classify 22 perillartines 491 

(11 in each class) through a LDA classifier. In a subsequent study (Takahashi et al., 1984), a test set 492 

of nine compounds (five sweet and four bitter) retrieved from Acton’s dataset (Acton & Stone, 1976) 493 

was included. Two LDA classifiers, one based on three descriptors and one with just two descriptors, 494 

were developed, achieving similar performances on both training and test sets. In the last study, 495 

Miyashita (Miyashita et al., 1986a) used 70 sweet and 21 bitter aspartyl dipeptides (L−Asp−NH−R) 496 

to calibrate a five-variable SIMCA model. 497 

Drew (Drew et al., 1998) used a dataset of 21 sweeteners, 20 sweet/bitter and 9 bitter mono- and di-498 

substituted sodium sulfamates, which were properly optimized by the semiempirical PM3 method to 499 

calculate 11 molecular descriptors. Then, they performed a discriminant analysis (DA), which was 500 

able to perfectly discriminate all the compounds. In addition, a cluster analysis was carried out in the 501 

space of the first two principal components, where a linear separation could be found only between 502 

sweet and sweet/bitter tastants. Two years later, Spillane (Spillane et al., 2002) synthetized and 503 

characterized 23 meta-phenylsulfamate derivatives. The equilibrium geometry of the tastants were 504 

obtained by means of the AM1 semi-empirical method, in such a way as to calculate diverse 505 

descriptors, which were used to calibrate a discriminant plot, an LDA and a quadratic discriminant 506 

analysis (QDA). The first model was obtained by plotting the values of length (x, Å) against the 507 

volume VCPK (xyz, Å3). The best LDA classifier was obtained with the x, width (z, Å), aqueous 508 

solvation energy (Esolv) and HOMO descriptors; while the best QDA model used the x, z, Esolv and 509 

LUMO descriptors. Among these models, the QDA exhibited the best performance in terms of the 510 

NER. In a further analysis, these three models were used for predicting the taste of 9 unsynthesized 511 

meta-compounds. 512 

Other models to discriminate sweetness and bitterness were based on the k-Nearest Neighbors (kNN) 513 

approach. The first model was proposed by Takahashi (Takahashi et al., 1982) to classify 22 514 

perillartines. The kNN method misclassified only two bitter molecules in the entire dataset. Several 515 

years later, kNN was used by Rojas (Rojas et al., 2016c) with 508 curated and filtered tastants (427 516 

sweet and 81 bitter), which were split into training (356 tastants) and test sets (152 molecules). 517 

Molecules were represented by means of 3,763 conformation-independent Dragon molecular 518 

descriptors (Kode srl., 2018), which were initially analyzed by means of the V-WSP unsupervised 519 
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variable reduction approach (Ballabio et al., 2014). Then, the training set was used for model 520 

development using the 5-fold cross-validation approach to determine the optimal k value during the 521 

genetic algorithms-variable subset selection (GAs-VSS). A four-descriptor model was selected as 522 

optimal, with a balanced performance in prediction (NER = 0.789, Snsweet = 0.953 and Snbitter = 0.625). 523 

In addition, the applicability domain (AD) of the model was calculated. In a further analysis, the 524 

sweeteners database was used to perform a quantitative structure-property relationship (QSPR) for 525 

predicting the relative sweetness (RS) or sweetness potency (Sw) of the sweeteners (Rojas et al., 526 

2016b). 527 

Starting from 2017, the random forest (RF) classifier started to be applied to discriminate sweet and 528 

bitter tastants. Chéron (Chéron et al., 2017) merged 316 sweeteners from SweetenersDB and 680 529 

bitterants from the BitterDB (Wiener et al., 2012), which were represented by 244 conformation-530 

independent Dragon descriptors (Kode srl., 2018). One hundred trees with a tree depth of five 531 

molecular descriptors and the Gini splitting criterion were set up during the calibration of the RF 532 

classifier, which exhibited good performance on the test set, constituted by the 20% of tastants (NER 533 

= 0.914 and MCC = 0.848). In a further analysis, the model was used to identify 4,585 natural 534 

molecules of the SuperNatural II database (Banerjee et al., 2015) as potential sweet agents and their 535 

relative sweetness was predicted by means of a support vector regression (SVR). One year later, 536 

Banerjee and Preissner (Banerjee & Preissner, 2018) calibrated a RF model, named 537 

BitterSweetForest, for 517 sweeteners from SuperSweet (Ahmed et al., 2011) and 685 bitterants from 538 

the BitterDB (Wiener et al., 2012). Compounds were represented by means of the extended 539 

connectivity fingerprints ECFP4 (Morgan, 1965; Rogers & Hahn, 2010) calculated using RDKit. The 540 

best model achieved good predictive ability of the 241 test set molecules (AUC = 0.98, F-score = 541 

0.92, ACC = 0.967, and Cohen’s Kappa = 0.92). In addition, the BitterSweetForest model was used 542 

to virtually screen the SuperNatural II (Banerjee et al., 2015) and DrugBank databases. Goel (Goel 543 

et al., 2021) developed a dataset of 1,179 sweeteners and 743 bitterants (retrieved from the 544 

BitterSweet database (Tuwani et al., 2019)) and used the recursive feature elimination approach to 545 

identify eight descriptors from 1,613 conformation-independent Mordred descriptors (Moriwaki et 546 

al., 2018). The best RF classifier exhibited good prediction on the test set (20% molecules), with NER 547 

= 0.855, ACC = 0.865 and MCC = 0.785. In addition, 478 structurally diverse sweeteners (334 in the 548 

training set and 144 in the test set) were used to predict the relative sweetness (log RS) by means of 549 

a 3D regression-based RF model, which was then submitted to a molecular docking simulation to 550 

calculate the binding conformation and associated free binding energy with the T1R2/T1R3 receptor. 551 

In a subsequent step, compounds from the Universal Natural Products Database (UNPD) (Gu et al., 552 
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2013) were virtually screened following the above mentioned workflow, which was coupled with 553 

toxicity scaffold analysis as well. 554 

Recently, other advanced classifiers were used for sweetness and bitterness discrimination. In 2022, 555 

Bo (Bo et al., 2022) curated a dataset of 797 bitterants and 1,249 sweeteners retrieved from the 556 

BitterDB (Dagan-Wiener et al., 2019), SuperSweet (Ahmed et al., 2011) and FlavorDB. The 2D 557 

RDKit molecular descriptors and fingerprints were used to calibrate multilayer perceptron (MLP) 558 

models, while 2D-RGB color images (32 × 32 pixels) were used to train convolutional neural 559 

networks (CNN). Among the three models, the best one (BitterSweetMLP-Fingerprint) was obtained 560 

with 17 fingerprints (selected by means of the PCA using oblique rotation), with good performance 561 

for predicting the 409 test set tastants (NER = 0.880, AUC = 0.950, ACC = 0.880, and MCC = 0.750). 562 

Molecular charges and their surface interaction descriptors were retained since they were relevant for 563 

classifying sweeteners/bitterants. Maroni (Maroni et al., 2022) calibrated a gradient boosting machine 564 

model (LightGBM implementation), along with other well-known classifiers: kNN, RF, logistic 565 

regression (LR) and multilayer perceptron (MLP). These authors filtered and curated a database of 566 

2,195 tastants, which were represented by 1,402 conformation-independent features calculated in the 567 

RDkit, Pybel (O'Boyle et al., 2008) and Mordred (Moriwaki et al., 2018). A sequential descriptor 568 

selection combined with hierarchical clustering in the descriptor’s Spearman rank-order index was 569 

used. The GBM classifier was optimal with good results in calibration (NER = 0.893, AUC = 0.950 570 

and F-score = 0.883). Furthermore, the SHapley Additive exPlanations (SHAP) allowed the 571 

identification of the most suitable descriptors. 572 

2.2. Sweet and non-sweet tastants 573 

Several classification-based machine learning models have been built to discriminate between sweet 574 

and the non-sweet molecules, as well as to use them in order to predict and synthesize novel 575 

sweeteners. Nineteen ligand-based classifiers for sweet taste predictions are summarized in Table 2. 576 

 577 

Table 2 should be inserted around here 578 

 579 

As presented in the sweet/bitter section, the sulfamate sweetness prediction was based on models 580 

using biplot discriminant analysis (DA) published mainly by Spillane’s research group. In the first 581 

application, Spillane and McGlinchey (Spillane & McGlinchey, 1981) used the length (x, Å) and 582 

volume VCPK (xyz, Å3) descriptors to construct a DA-biplot for the discrimination of 47 sweet and 583 

non-sweet carbosulfamate (
3RNHSO ) derivatives. In a second study, Spillane and Sheahan (Spillane 584 

& Sheahan, 1989) again used the x and VCPK descriptors to classify 17 carbosulfamates. In a 585 
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subsequent DA-plot application (Spillane et al., 1993), the VCPK and   descriptors were used for 586 

40 synthesized ring disubstituted phenylsulfamates as sodium salts (no classification performances 587 

were reported for this discriminant plot). Between 1983 and 2009, the same research group developed 588 

six models based on linear discriminant analysis (LDA) and four models based on quadratic 589 

discriminant analysis (QDA). In the first LDA application, 33 sweet and non-sweet heterosulfamates 590 

were used (Spillane et al., 1983). Twenty molecules were retrieved from the Acton’s database (Acton 591 

& Stone, 1976), while another 13 tastants were synthesized and evaluated by the authors for taste 592 

sensation. The best model was composed of the length (x, Å), width (z, Å) and the first-order valence 593 

connectivity index (
1 v ) descriptors. In a subsequent study, Spillane and Sheahan (Spillane & 594 

Sheahan, 1989) used the same pool of descriptors to calibrate a LDA model for other 23 595 

heterosulfamates and an extended dataset of 56 heterosulfamates. 596 

Starting from 2000, the classification and regression tree (CART) method was also used for sweetness 597 

prediction. Spillane (Spillane et al., 2000) augmented previous datasets in order to include 101 598 

heterosulfamate sodium salts (32 were synthesized for this study). The datasets contained 20 599 

sweeteners and 81 non-sweet derivatives. LDA and QDA models were calibrated with four molecular 600 

descriptors (x, y, z and and 
1 v ), while with CART, three features were used (x, y and 

1 v ). Among 601 

these models, the QDA classifier showed the best performance. Three years later, the dataset was 602 

further augmented by including newly synthesized compounds (15 sweet and 16 non-sweet) (Spillane 603 

et al., 2003). In this case, CART provided better results than LDA and QDA using the y, z, VCPK and 604 

LUMO descriptors. In 2005, Kelly (Kelly et al., 2005) merged 63 sweeteners available in the 605 

literature with 19 cyclamate derivatives that were synthesized and tasted in this work. The sweetness 606 

value was used to define three classes of the predominant tastes: non-sweet (0 to 39), sweet/non-607 

sweet (40 to 60) and sweet (61 to 100). The dataset was randomly split (maintaining the class 608 

proportion) into a training set and a test set of 75 molecules and 8 molecules, respectively. In this 609 

work, an external validation was used for the first time for the sweet/non-sweet discrimination. The 610 

LDA and QDA models exhibited poor predictive ability, while CART based on six descriptors (x, 611 

HOMO, LUMO, Esolv, VSpartan and σ) exhibited acceptable prediction performance. 612 

One year later, Spillane (Spillane et al., 2006) developed three CART models to study a dataset of 82 613 

tastants (42 newly synthesized disubstituted phenylsulfamates). The best classifier used 70 molecules 614 

in the training set and 12 test set compounds randomly selected. Molecules in the test set were only 615 

the newly synthesized non-sweet (11 compounds) and sweet/non-sweet (1 compound), while the four 616 

newly synthesized sweeteners were placed in the training set. This model used seven descriptors and 617 

provided good prediction ability. Finally, 28 five-membered aromatic ring thiazolyl-, benzothiazolyl-, 618 
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and thiadiazolylsulfamates were synthesized and merged together with 30 well-known heterocyclic 619 

sulfamates to create a database (Spillane et al., 2009). Compounds were grouped into three classes 620 

according to the predominant taste: sweet, non-sweet and sweet/non-sweet. LDA and QDA were 621 

initially used considering all the molecules as training chemicals. Then, the authors calibrated two 622 

CART models by randomly splitting the dataset into a training set (48 tastants) and a test set (10 623 

molecules). Between these two models, the best CART classifier used six descriptors and exhibited 624 

a moderate performance when applied to the test set. 625 

In another two studies, Miyashita’s group (Miyashita et al., 1986b; Okuyama et al., 1988) also used 626 

sulfamate derivatives to calibrate structure-taste relationships based on the SIMCA classifier. In the 627 

first work, 14 sweet and 36 non-sweet carbosulfamates described by molar refractivity (MR), five 628 

geometrical STERIMOL features and the Taft’s σ* descriptor were used (Miyashita et al., 1986b). 629 

The SIMCA model correctly predicted 13 sweet and 24 non-sweet molecules. In addition, a set of 630 

alkyl groups were proposed as potential substituents, from which six alkylsulfamates were predicted 631 

as potential sweeteners. Among these compounds, one was synthesized and exhibited a relative 632 

sweetness of three times greater with respect to sucrose. Two years later, the same authors used 25 633 

acyclic and 20 cyclic carbosulfamates represented by different graph theoretical invariants (Okuyama 634 

et al., 1988). In addition, the acyclic sulfamates were also represented by the weighted path numbers 635 

for the rooted atom (path length from 1 to 8) and counts of self-returning walks for the rooted atom 636 

(number of steps from 2 to 13), while the atomic path numbers for the rooted atom (path length from 637 

1 to 8) and the counts of self-returning walks for the rooted atom were also computed for cyclic 638 

sulfamates. In both cases, the SIMCA model achieved similar performance for the acyclic 639 

carbosulfamates and the cyclic derivatives. 640 

The first kNN model for the discrimination between sweet and non-sweet tastants was published in 641 

2016 (Rojas et al., 2016c). A nine-descriptor kNN model provided the best discrimination between 642 

433 sweet and 133 tasteless curated molecules, with similar performances for training (NER = 0.838) 643 

and test sets (30% of compounds), NER = 0.752. One year later, the same research group (Rojas et 644 

al., 2017) developed an expert system that integrated unsupervised and supervised machine learning 645 

approaches. To this end, a database of 435 sweet and 214 non-sweet (bitter and tasteless) molecules 646 

were represented by means of 875 conformation-independent descriptors (Todeschini & Consonni, 647 

2009) and extended connectivity fingerprints (ECFPs) (Rogers & Hahn, 2010), calculated by the 648 

Dragon software (Kode srl., 2018). Similarity analysis was based on the ECFPs and multidimensional 649 

scaling (MDS), while the supervised classification was carried out with the consensus predictions 650 

provided by N-Nearest Neighbors (N3) and partial least squares discriminant analysis (PLSDA), with 651 

good predictive accuracy on the test chemicals (NER = 0.848, non-assigned = 19.3%). A new 652 
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consensus model was published in 2019 by Zheng (Zheng et al., 2019) for a curated database of 530 653 

sweet and 850 non-sweet molecules, which were represented by four types of ECFPs (Rogers & 654 

Hahn, 2010): 1024bit-ECFP4, 2048bit-ECFP4, 1024bit-ECFP6 and 2048bit-ECFP6. They used the 655 

kNN classifier, along with support vector machine (SVM), random forest (RF), gradient boosting 656 

machine (GBM) and deep neuron network (DNN) approaches to developed 1,312 individual models, 657 

as well as 96 averaged classification models. As a result, four consensus models were constructed 658 

(CM01 - CM04), and the best one (using 19 best individual models) was selected to construct the e-659 

Sweet model. This model achieved good results in predicting the 221 test set compounds (NER = 660 

0.900, F-score = 0.878 and MCC = 0.807). In a further step, a consensus regression was developed 661 

to predict the relative sweetness of 352 sweeteners. 662 

In addition, Tuwani (Tuwani et al., 2019) calibrated diverse models based on RF, ridge logistic 663 

regression and AdaBoost for the classification of sweet/non-sweet and bitter/non-bitter molecules 664 

(refer to bitter and non-bitter section). These models were named BitterSweet. For sweetness 665 

prediction, a dataset of 1,205 sweeteners and 1,171 non-sweeteners were represented by means of 666 

diverse molecular descriptors calculated in Dragon (Kode srl., 2018), Canvas (Schrödinger LLC, 667 

2017) and ChemoPy (Cao et al., 2013). The best model in terms of classification accuracy for the test 668 

set (7% of molecules) used the 2D/3D Dragon descriptors reduced by means of the Boruta algorithm 669 

and subsequently coupled with AB machine learning: NER = 0.834, AUC = 0.883 and F-score = 670 

0.856. 671 

Two years later, Fritz (Fritz et al., 2021) developed the VirtualTaste prediction platform for predicting 672 

the sweet taste of molecules based on the RF classifier (VirtualSweet model). The database included 673 

2,011 sweet and non-sweet (bitter and tasteless) molecules that were curated and standardized from 674 

the SuperSweet database (Ahmed et al., 2011) and from their previous BitterSweetForest database 675 

(Banerjee & Preissner, 2018). Molecules were represented by MACCS keys (Durant et al., 2002) and 676 

Morgan molecular fingerprints (Morgan, 1965; Rogers & Hahn, 2010). The RF model achieved good 677 

external prediction on the 403 test set tastants (NER = 0.893, AUC = 0.951, F-score = 0.888 and ACC 678 

= 0.893). Furthermore, the VirtualSweet model was used to virtually screen molecules from the 679 

DrugBank database and from the SuperNatural II database (Banerjee et al., 2015). One year later, 680 

Yang (Yang et al., 2022) used the RF and the XGBoost classifiers, along with other approaches, to 681 

calibrate diverse models for a database named Taste DB. However, this name was previously 682 

proposed by Ruddigkeit and Reymond (Ruddigkeit & Reymond, 2014). This dataset contained six 683 

families of compounds: natural (973 sweeteners and 687 non-sweeteners), artificial (402 positive and 684 

798 negative), carbohydrate (220 sweet and 238 non-sweet), non-carbohydrate (1,155 positive and 685 

1,476 negative), nutritive (226 sweet and 268 non-sweet) and non-nutritive (1,149 positive and 1,464 686 
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negative). For validation purposes, the datasets were divided into training and test set in a proportion 687 

of 8:2. The best artificial sweeteners model (in terms of accuracy for the test set prediction) used the 688 

RF classifier and MACCS structural keys (NER = 0.920 and AUC = 0.971), while for the carbohydrate 689 

family of compounds, the XGBoost approach and Atom pairs descriptors (NER = 0.926 and AUC = 690 

0.974) were used. The remaining four models were developed by means of the XGBoost classifier 691 

and MOE2d descriptors with the following performances for the test set: 1) natural molecules (NER 692 

= 0.841 and AUC = 0.920); 2) non-carbohydrate compounds (NER = 0.867 and AUC = 0.947); 3) 693 

nutritive sweeteners (NER = 0.876 and AUC = 0.956); and 4) non-nutritive molecules (NER = 0.889 694 

and AUC = 0.961). In further analysis, these authors developed regression models to predict sweetness 695 

potency (log Sw). 696 

More recently, Bo (Bo et al., 2022) developed diverse quantitative structure-taste relationships based 697 

on MLP and CNN deep learning classifiers, following the same workflow as previously described in 698 

the sweet/bitter section. In this case, the dataset contained 1,119 sweeteners and 1,101 non-sweeteners 699 

(tasteless and bitter). The best two models, in terms of their predictive ability, are the SweetMLP-700 

Fingerprint (NER = 0.900, AUC = 0.940, ACC = 0.880 and MCC = 0.800) and SweetCNN (NER = 701 

0.850, AUC = 0.900, ACC = 0.840 and MCC = 0.660). These models were used to predict the taste 702 

of 902 tastants of the bitter data set. Lee (Lee et al., 2022) used a fully connected network (FCN), 703 

along the RF, XGB and LGBM classifiers, to propose the soft-vote ensemble approach. The curated 704 

dataset included 1,237 sweeteners and 1,054 non-sweeteners retrieved from the BitterSweet database 705 

(Tuwani et al., 2019), which were represented by means of eight 2D fingerprints and diverse 706 

molecular descriptors. Among the 44 different models, the best models were LGBM applied to 707 

layered fingerprints and alvaDesc descriptors (Mauri & Bertola, 2022). These two models were used 708 

to assemble the BoostSweet model for sweetness prediction by means of the soft-vote method that 709 

averages the prediction of each model. The BoostSweet classifiers achieved good performance for 710 

the test set (211 sweeteners and 248 non-sweeteners): NER = 0.899, AUC = 0.961 and F-score = 711 

0.907. 712 

2.3. Bitter and non-bitter tastants 713 

The prediction of sweetness has been the predominant goal for research in the computational taste 714 

framework, probably because bitterness was usually linked to toxic compounds (as described for the 715 

alkaloids). However, in the last few years, models that predict bitterness have received considerably 716 

more attention due to the use of bitterants in several applications, particularly in food and 717 

pharmaceutical industries. In contrast to the sweet/bitter models, where the main purpose was 718 

sweetness prediction, comprehensive classification models for bitterness prediction are focused on 719 
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discriminating bitter from non-bitter tastants. The 14 ligand-based models found to date in the 720 

literature are summarized in Table 3. 721 

 722 

Table 3 should be inserted around here 723 

 724 

In 2006 Rodgers (Rodgers et al., 2006) used the Naïve Bayes (NB) classifier for the bitterness 725 

prediction of small molecules. The curated dataset was composed of 649 bitterant taken from 726 

scientific literature and patents, and 13,530 hypothetical non-bitter molecules randomly selected from 727 

the MDL Drug Data Repository (MDDR). All the compounds were represented by MOLPRINT 2D 728 

circular fingerprints (aka Atom Environments) (Bender et al., 2004), which were subjected to a 729 

variable subset selection. Ten years later, Huang released the first online tool, namely BitterX (Huang 730 

et al., 2016), for bitterness prediction based on support vector machine (SVM) classifiers. Data of 731 

bitterants and bitterant-TAS2R interactions were retrieved from the PubMed (Sayers et al., 2021) and 732 

BitterDB (Wiener et al., 2012) databases. In this work, a ligand-based model and a receptor-based 733 

model were developed. In both cases, datasets were randomly split into training (80%) and test sets 734 

(20%) three times to avoid bias in the data splitting, while genetic algorithms (GAs) were used for 735 

the supervised descriptor selection. The ligand-based model was developed from a database of 539 736 

bitterant and 539 non-bitter molecules and 46 physicochemical descriptors. The mean accuracy and 737 

the area under the curve used in the prediction of the three models were ACC = 0.915 and AUC = 738 

0.950. On the other hand, the TAS2R receptor recognition model used 260 bitterants and 260 non-739 

bitter molecules (negative), and 20 physicochemical and 15 receptor descriptors with slightly lower 740 

prediction quality (ACC = 0.798 and AUC = 0.823). 741 

RF classifiers were also used for bitterness prediction (Fritz et al., 2021; Tuwani et al., 2019). Tuwani 742 

published the BitterSweet model (Tuwani et al., 2019) for the classification of bitterants, in which 743 

they followed the same workflow as presented in the sweet/non-sweet section. The RF classifier, 744 

coupled with PCA reduction of ChemoPy descriptors, achieved a higher non-error rate in prediction 745 

for the test set (154 molecules): NER = 0.819, AUC = 0.880 and F-score = 0.838. This was then used 746 

to predict the taste of external molecules available in the FlavorDB, FooDB, SuperSweet (Ahmed et 747 

al., 2011), Super Natural II (Banerjee et al., 2015), DSSTox (Richard & Williams, 2002) and 748 

DrugBank libraries. In a further analysis, molecular taste of Bitter new, UNIMI set and Phytochemical 749 

dictionary databases (Dagan-Wiener et al., 2017) were also predicted. Fritz (Fritz et al., 2021) 750 

implemented the VirtualBitter model following the same workflow as for the sweetness prediction 751 

(refer to the sweet and non-sweet section). They retrieved molecules from the BitterDB (Dagan-752 

Wiener et al., 2019) and from their BitterSweetForest model (Banerjee & Preissner, 2018), in order 753 
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to model 1,612 bitterants and non-bitter (sweet and tasteless) molecules. The RF classifier exhibited 754 

acceptable performances in prediction (20% test compounds): NER = 0.898, AUC = 0.956, F-score 755 

= 0.882 and ACC = 0.901. In addition, when a molecule is predicted as bitterant, the webserver 756 

provides the potential bitter target prediction for the 25 human bitter receptors (hTAS2Rs) based on 757 

a similarity-based analysis. Finally, the VirtualBitter model was used to virtually screen diverse 758 

molecules from the DrugBank database and the SuperNatural II database (Banerjee et al., 2015). 759 

Between 2020 and 2021, Charoenkwan’s group published three webservers for taste prediction of a 760 

curated database of 320 bitter peptides and 320 non-bitter peptides (BTP640), randomly generated 761 

from BIOPEP (Minkiewicz et al., 2008). The dataset was split into a training set and a test set (80:20). 762 

NB and RF classifiers as well as several other classifiers were used: kNN, scoring card method 763 

(SCM), bidirectional encoder representation from transformers (BERT), support vector machine 764 

(SVM), decision tree (DT), extremely randomized trees (ETree), linear support vector classifier 765 

(SVC), logistic regression (LR), multi-layer perceptron (MLP) and extreme gradient boosting (XGB). 766 

The SCM classifier (Huang et al., 2012), which was used through the dipeptide propensity score 767 

(PDS) and optimized with GAs, achieved good results in prediction (ACC = 0.844, AUC = 0.904 and 768 

MCC = 0.688) when compared to the SVM, RF, NB, kNN and DT, and it was included in the iBitter-769 

SCM webserver application (Charoenkwan et al., 2020a). The authors stated that iBitter-SCM 770 

constituted a useful tool for the high-throughput prediction and de novo design of novel bitterant 771 

peptides. Another webserver, named BERT4Bitter (Charoenkwan et al., 2021a), automatically 772 

generates feature descriptors for peptides through the BERT algorithm. This model achieved the best 773 

test set performance (ACC = 0.922, AUC = 0.964 and MCC = 0.844) with respect to the other 774 

calibrated classifiers (DT, ETree, kNN, SVC, LR, MLP, NB, RF, SVM and XGB). For the webserver 775 

iBitter-Fuse (Charoenkwan et al., 2021b), five groups of molecular features were calculated: 20 776 

amino acid composition (AAC), 400 dipeptide composition (DPC), 21 pseudo amino acid 777 

composition (PAAC), 22 amphiphilic pseudo amino acid composition (APAAC), 531 778 

physicochemical properties from AAindex (AAI), as well as a new group achieved by fusing features 779 

(994 descriptors). Ten SVM models were calculated, providing excellent prediction quality (ACC = 780 

0.930, AUC = 0.933 and MCC = 0.859). As described in their previous work, the authors calibrated 781 

other machine learning models and demonstrated that the iBitter-Fuse model was superior in any case 782 

(refer to Table 3 for the comparison between the iBitter-Fuse and the iBitter-SCM and BERT4Bitter 783 

classifiers). 784 

Dagan-Wiener used the Adaptive Boosting (AdaBoost) classifier for the first time in this framework 785 

to create the BitterPredict model (Dagan-Wiener et al., 2017). The dataset was composed of 691 786 

bitterants (632 from the BitterDB (Wiener et al., 2012)) and 1,917 non-bitter compounds retrieved 787 
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from several sources, which included 1,360 non-bitter flavors, 336 sweeteners, 186 tasteless 788 

molecules and 35 molecules labelled as non-bitter (molecules not described by the word bitter in the 789 

source). Each compound was represented by 59 molecular descriptors. The model was finally trained 790 

with 16 molecular descriptors and demonstrated predictive ability for the test set (30% of molecules) 791 

with NER = 0.812 and ACC = 0.832. Subsequently, the bitter class was evaluated for three external 792 

datasets, namely Bitter New (Sn = 0.739), UNIMI set (Sn = 0.783) and Phytochemical Dictionary 793 

(Baxter et al., 1999) (Sn = 0.980 and Sp = 0.692). In a further step, the BitterPredict classifier was 794 

applied to achieve prospective predictions of compounds from the FooDB, DrugBank, ChEBI and 795 

the database of natural products. One year later, Zheng (Zheng et al., 2018) developed several models 796 

based on the gradient boosting machine (GBM), as well as kNN, SVM, RF and two deep neuron 797 

networks (DNN2 and DNN3). These authors used a curated dataset of 707 bitterants and 592 non-798 

bitter compounds (132 tasteless, 17 non-bitter and 443 sweet). Molecules were represented by means 799 

of several extended connectivity fingerprints (ECFPs): 1024bit-ECFP4, 2048bit-ECFP4, 1024bit-800 

ECFP6 and 2048bit-ECFP6. In order to avoid bias due to partition, the splitting of the dataset was 801 

repeated 19 times for the kNN, SVM, GBM and RF models, and three times for the DNN2 and DNN3 802 

models. Thus, 1,312 individual models and 96 average models were calibrated and consensus voting 803 

was used to obtain nine models (CM01 - CM09), which were integrated in the server e-Bitter tool. 804 

The best model (CM01) exhibited the following parameters for the test set (20% of compounds): F-805 

score = 0.936, ACC = 0.929 and MCC = 0.856. 806 

The XGBoost classifier was also used for bitterness prediction. Margulis proposed the BitterIntense 807 

model (Margulis et al., 2021) for the classification of bitter molecules into very bitter and non-very 808 

bitter (including non-bitter) classes. A dataset of 721 compounds were obtained from behavioral 809 

studies using the rat brief access taste aversion (BATA), BitterDB (Dagan-Wiener et al., 2019), 810 

Analyticon repository of natural compounds on Kaggle, as well as from their previous dataset 811 

BitterPredict (Dagan-Wiener et al., 2017). Subsequently, 3D structures were used to calculate Canvas 812 

molecular descriptors (Schrödinger LLC, 2017) and QikProp features (ADME descriptors) 813 

(Schrödinger LLC, 2015). The XGBoost model achieved acceptable prediction on the test set (105 814 

tastants): NER = 0.790, F-score = 0.700 and ACC = 0.800. Moreover, the BitterIntense model was 815 

used for analyzing the connection between toxicity and the level of bitterness of molecules, as well 816 

as for potential repurposing of COVID-19 targets. Independently, Bai developed the Children’s Bitter 817 

Drug Prediction System’ (CBDPS) (Bai et al., 2021) for the bitterness prediction of medicines. The 818 

experimental dataset was retrieved from published works and the BitterDB (Dagan-Wiener et al., 819 

2019), which consisted of 1,732 tastants with a balanced number between bitter and non-bitter tastants 820 

(ratio of 1:1). Then, 166 MACCS structural keys and 114 ChemoPy descriptors (Cao et al., 2013) 821 
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were used to calibrate four models based on the XGBoost and RF classifiers. Among these models, 822 

the optimal one was obtained with the XGBoost classifier and the MACCS structural keys, and 823 

achieved the following performance in cross-validation: F-score = 0.881 and ACC = 0.882. In a last 824 

step, the CBDPS model was applied to the screening of the external dataset of 222 children’s oral 825 

medicines. 826 

The XGBoost classifier was also applied to develop the BitterMatch model (Margulis et al., 2022). 827 

A curated dataset of 303 bitterants resulted in 4,501 pairs of ligand-receptor associations (740 828 

positives and 3,761 negatives). Optimized bitterants were used to calculate Canvas descriptors 829 

(Schrödinger LLC, 2017), while 3 sets of features were computed for receptors. The BitterMatch 830 

algorithm was divided into two scenarios: filling the gaps and new ligands. In both cases, 20% of the 831 

molecules were considered as test sets, keeping in mind the proportion of the classes (repeated 100 832 

times). In filling the gaps, the best model included chemical properties and neighbor-informed 833 

chemical similarity features with an average recall-precision of 0.759. In contrast, the new ligands 834 

scenario considered only chemical properties of ligands and receptors, as well as neighbors-informed 835 

ligand similarity features (average recall-precision of 0.699). Afterwards, it was used to predict 836 

associations for 12 external bitterants and drugs from the DrugBank. 837 

More recently, Bo (Bo et al., 2022) calibrated quantitative structure-taste relationships based on MLP 838 

and CNN deep learning classifiers (as described before in the sweet/bitter and sweet/non-sweet 839 

sections). In this work, a dataset of 797 bitterants and 1,436 non-bitterants (sweet and tasteless) was 840 

used. The BitterMLP-Descriptor classifier with seven RDKit descriptors exhibited similar validation 841 

performance (NER = 0.820, AUC = 0.940, ACC = 0.840 and MCC = 0.660) with respect to the 842 

BitterCNN classifier (NER = 0.790, AUC = 0.880, ACC = 0.810 and MCC = 0.600). As described in 843 

the sweet/non-sweet models, these two classifiers were used to analyze 1,229 tastants from the sweet 844 

data set. De León (De León et al., 2022) calibrated SVM, RF, AdaBoost and kNN models for a curated 845 

dataset of 932 bitterants and 1,908 non-bitter molecules retrieved from BitterDB (Dagan-Wiener et 846 

al., 2019), Fenaroli’s Handbook of flavours (Burdock, 2010) and the dataset of Rojas (Rojas et al., 847 

2016c). The compounds were represented by ECFPs and 22 selected Mordred descriptors (Moriwaki 848 

et al., 2018) on the basis of their probability density. For validation purposes, 20% of the molecules 849 

were included in the test set. The two best classifiers turned out to be SVM (ACCtrain = 0.836 and 850 

ACCtest = 0.870) and AdaBoost (ACCtrain = 0.842 and ACCtest = 0.847) based on ECFPs and 851 

descriptors, respectively. In addition, the UNIMI dataset (Dagan-Wiener et al., 2017) was used as the 852 

external set to validate the performance of Premexotac models. 853 

2.4. Umami and non-umami tastants 854 
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There are fewer ligand-based (LB) machine learning models that have been developed for the 855 

discrimination between umami and non-umami peptides. This could be due to the higher complexity 856 

of sensory evaluation and related costs than those related to the evaluation of sweet and bitter 857 

molecules. 858 

For the first model, named iUmami-SCM (Charoenkwan et al., 2020b), the experimental information 859 

for umami peptides was retrieved from the literature and from the BIOPEP-UWM database, while 860 

bitter peptides, previously studied by the authors, were considered as non-umami molecules. The 861 

UMP442 database (140 umami and 302 non-umami peptides) was used to calibrate a SCM classifier 862 

based on a dipeptide propensity score (PDS), as described in the iBitter-SCM model (Charoenkwan 863 

et al., 2020a). The best model achieved good results in prediction (20% of test molecules): AUC = 864 

0.898, ACC = 0.865, MCC = 0.679, Sn = 0.714 and Sp = 0.934. In addition, the model’s performance 865 

was compared with six ML classifiers (SVM, RF, MLP, NB, kNN and DT). In the second application, 866 

the same group of Charoenkwan combined six well-known ML classifiers (ETree, kNN, LR, PLS, 867 

RF and SVM) in the UMPred-FRL model (Charoenkwan et al., 2021c). To this end, they used 868 

molecules of the UMP442 database (Charoenkwan et al., 2020b), which were represented by seven 869 

feature descriptors: amino acid composition (AAC), amphiphilic pseudo-amino acid composition 870 

(APAAC), dipeptide composition (DPC), composition (CTDC), transition (CTDT), distribution 871 

(CTDD) and pseudo-amino acid composition (PAAC). The UMPred-FRL predictor was assembled 872 

by the best 7 informative features (SVM-AAC, PLS-AAC, SVM-CTDC, RF-DPC, RF-CTDC, PLS-873 

APAAC and LRDPC), and exhibited better performances when compared to the iUmami-SCM 874 

classifier prediction (AUC = 0.919, ACC = 0.888 and MCC = 0.735). 875 

In 2022, Pallante developed the Virtuous Umami platform (Pallante et al., 2022) for umami prediction 876 

based on SVM classifiers and the Charoenkwan’s UMP442 database (Charoenkwan et al., 2020b). 877 

Due to the unbalanced classes, umami peptides were randomly duplicated to balance the class 878 

cardinalities. Subsequently, 1,613 conformation-independent Mordred features (Moriwaki et al., 879 

2018) were subjected to feature selection by means of different approaches, which were used to 880 

calibrate diverse SVM models. The best prediction was achieved by consensus between two models 881 

(12 features), which exhibited a slightly lower performance in prediction (AUC = 0.850, F-score = 882 

0.793 and ACC = 0.876) when compared to the iUmami-SCM and UMPred-FRL predictors. The 883 

effectiveness of the model was visually shown by means of t-SNE. Finally, the umami predictor was 884 

used to virtually screen the FooDB, FlavorDB, PhenolExplorer, Natural Product Atlas and PhytoHub 885 

databases. 886 

Recently, Dutta proposed the identification of optimal sequential residue patterns for umami and 887 

bitter peptides (Dutta et al., 2022a). These authors used a curated database of 292 bitter and 146 888 
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umami compounds retrieved from Charoenkwan’s UMP442 database (Charoenkwan et al., 2020b) 889 

and others sources. Each peptide was represented by the following coarse-grained representation: 890 

hydrophobic (H), polar and hydrophilic (P), positively charged (+) and negatively charged (−). 891 

Afterwards, seven libraries of peptides were created by repeating a fixed set of coarse-grained 892 

patterns. To select the best length, the dataset of taste-labeled peptides was split into a training set 893 

(80%) and a test set (20%) by means of stratified random sampling. A length of five (N = 5) was 894 

selected as the best coarse-grained pattern, where bitter peptides were represented by one 895 

hydrophobic followed by four polar residues (HPPPP), while umami peptides had two negative 896 

followed by three polar residues (−−PPP). In a further step, the authors tested this method by using 897 

two bitter proteins (Patatin-T5 and Legumin-A), where 8 and 5 peptide sequences with the 898 

aforementioned course-grain pattern were identified. This approach allowed the rapid screening and 899 

identification of sequential information patterns hidden in long chain peptides and proteins, rather 900 

than predicting the taste class of peptides (no classification performances were reported). 901 

2.5 Bitter, sweet and umami tastant 902 

Dutta developed the first deep learning classifier to discriminate among sweet, bitter and umami 903 

tastants (Dutta et al., 2022b). The curated dataset was composed of 1,938 bitterants, 2,079 sweeteners 904 

and 98 umami compounds, which were retrieved from the ChemTastesDB database (Rojas et al., 905 

2022) and the BitterSweet dataset (Tuwani et al., 2019). Afterwards, 102 RDKit molecular 906 

descriptors were used after a filtering process. For pattern recognition, the authors developed two 907 

chemical spaces based on PCA and t-SNE, along with a functional group analysis by computing the 908 

frequency of predefined fragments. Then, a deep neural network (DNN) with two hidden layers of 909 

100 neurons was trained with 200 epochs. For balancing the cardinality of the umami class, the 910 

synthetic minority oversampling technique (SMOTE) for data augmentation was used. The DNN 911 

model was interpreted by means of the Shapley additive explanations (SHAP). The DNN model 912 

achieved good predictive performance (15% of compounds): NER = 0.901 and ACC = 0.887. 913 

Moreover, a graph neural network (GNN) was also tested with a slightly lower quality on external 914 

prediction (NER = 0.865 and ACC = 0.896). Independently, Xiu (Xiu et al., 2022) used the 915 

BitterSweet dataset (Tuwani et al., 2019) to develop the PyUmami model, which combined sweet 916 

and bitter classifiers based on multilayer perception (MLP) and Mordred descriptors. Then, the sweet-917 

MLP (ACC = 0.830 and AUC = 0.897) and bitter-MLP models (ACC = 0.81 and AUC = 0.895) were 918 

used to predict the sweetness of 1,040 bitterants from the BitterDB, and the bitterness of 14,175 919 

sweeteners from the SWEET-DB, respectively. Only 169 tastants predicted as both sweet/bitter by 920 

the PyUmami model were submitted to docking analysis with the T1R2/T1R3 and hT2R1 receptors. 921 
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Finally, 18 targets were experimentally verified for sweet, bitter and umami intensities by means of 922 

electronic tongue analysis, and only 8 tastants were predicted to be non-toxic by means of twelve 923 

QSAR approaches and three virtual Adverse Outcome Pathway (vAOP) models. 924 

2.6. Sour and non-sour tastants 925 

Only one LB classifier for the discrimination between sour and non-sour compounds has been 926 

proposed (Fritz et al., 2021). Information of molecules was retrieved from ChEMBL (Gaulton et al., 927 

2012) and curated from the PubMed database (Sayers et al., 2021). The dataset consisted of 1,347 928 

compounds divided into a training set and a test set of 1,214 and 133 molecules, respectively. The 929 

model, named VirtualSour, was a ligand-based approach considering the RF classifier integrated with 930 

the augmented random data sampling method. The model achieved good results in cross-validation 931 

(NER = 0.955, AUC = 0.998, F-score = 0.980 and ACC = 0.978,) and prediction (NER = 0.896, AUC 932 

= 0.994, F-score = 0.842 and ACC = 0.977). 933 

2.7 General trends in taste modelling 934 

When looking at the evolution of modelling approaches for predicting the different tastes, common 935 

trends and tendencies can be seen. Figure 3 shows the number of molecules (included in both training 936 

and test set) used for the development of structure-property models as a function of the publication 937 

year, starting from the very beginning of the modelling era (1980) up to 2022. First of all, it is apparent 938 

that the number of chemicals used to train or test QSAR models has greatly increased (note that the 939 

y axis of Figure 3 is in log10 units). While the first modeling attempts considered a few dozen 940 

chemicals, the number increased to several hundreds from 2000 to 2010. In addition, models were 941 

initially developed considering only small families of compounds (for instance aldoximes, 942 

perillartines, aspartyl dipeptides and sulfamates), which established restricted chemical spaces for 943 

only these types of compounds. The most relevant increase in the number of chemicals occurred after 944 

2015, when scientists started to use several thousand molecules to develop new models for taste 945 

prediction. Interestingly, the study for bitter prediction published by Rodgers in 2006 (Rodgers et al., 946 

2006) used 13,530 molecules randomly selected from the MDL Drug Data Repository under the 947 

assumption that this was representative of the bitterness chemical space. However, these molecules 948 

were not validated with experimental sensory data as considered in the most recently published works. 949 

 950 

Figure 3 should be inserted around here 951 

 952 
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The large growth of the number of molecules used in the development of models that started in 2015 953 

is probably due to several research groups who concentrated their efforts on creating more extensive 954 

and comprehensive databases, such as SuperSweet (Ahmed et al., 2011), BitterDB (Wiener et al., 955 

2012), ChEMBL (Gaulton et al., 2012) and Super Natural II (Banerjee et al., 2015). These databases 956 

collected and cataloged a greater number of substances associated with their molecular structures and 957 

experimental taste values, which enabled the subsequent development of models based on a 958 

significantly higher number of chemicals in the years after 2015. These large databases included 959 

heterogeneous molecules, which allowed the extension of chemical spaces and, in fact, some attempts 960 

were made for virtual screening of potential new tastants in several available databases, which were 961 

complemented, in some cases, with docking analysis and experimental sensory evaluation of the 962 

elicited tastants. 963 

Another general trend is related to the type of analyzed taste. Figure 3, shows that in the first 29 years 964 

from the first model developed in 1980, sweetness was the principal interest. Within this modelling 965 

framework, only models for the discrimination of sweet chemicals versus bitter or non-sweet 966 

molecules were taken into account. Afterwards, due to the development of more comprehensive 967 

databases, models for the prediction of bitterness were proposed in addition to sweetness. The interest 968 

in bitterness prediction could be related to the increasing interest of using bitterants as food and 969 

pharmaceutical additives along with other applications. Starting from 2020, umami prediction proved 970 

to be another attractive topic in the scientific community. The increasing interest in modelling this 971 

taste is mainly related to Asian research groups, due to the importance of umami in oriental 972 

gastronomy. On the other hand, modelling of sourness and saltiness is limited by the reduced number 973 

of molecules that imprint these tastes. 974 

The increasing number of molecules used to model tastants also enabled a better estimation of 975 

predictive performance; that is, the accuracy in the prediction of the taste of chemicals which were 976 

not used for model training. Validation is fundamental in the development of QSARs and usually 977 

consists of the use of some chemicals, with known experimental taste values but not involved in the 978 

model training, as the test molecules. The first studies did not generally account for model validation. 979 

Until 2016 less than 10 chemicals were used in a couple of studies to validate models for 980 

discrimination between sweet and bitter tastants (Table 1), while for the classification of sweet and 981 

non-sweet chemicals, no test compounds were considered until 2005 and just a few in the studies 982 

published between 2006 and 2009 (Table 2). On the other hand, the number of substances used for 983 

model validation has grown enormously in recent years and now, hundreds of molecules are normally 984 

used for validation purposes. 985 
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Finally, the increasing availability of newly synthesized chemicals has influenced the type of machine 986 

learning approaches that have been used to establish molecular structure-taste relationships. Initially 987 

only simple classification algorithms were used (such as Discriminant Analysis and CART), whereas 988 

in the last decade, advanced approaches have been frequently applied, such as RF, SVM, boosting 989 

algorithms and Neural Networks. This is a general trend in the framework of machine learning, which 990 

has been supported by the computational and technological advancements of the latest decades. 991 

However, unlike traditional approaches, the newer and novel classification methods require a tuning 992 

phase for the selection of optimal values of their hyperparameters. This tuning phase is executed by 993 

optimizing the models on a further set of chemicals, usually named an evaluation set, which has to be 994 

added to the training set (used for the learning phase) and the test set (used for the final validation 995 

phase). Therefore, execution of the tuning phase requires a more extended number of chemicals for 996 

their calculation. 997 

It is interesting to note that although a very limited number of descriptors was used in the first 998 

developed models, the evolution of modeling approaches has not caused a considerable increase in 999 

the complexity of the models. In many cases the total number of descriptors used for the development 1000 

of models is measured in the 10s, and only a few hundred descriptors have been used in some models 1001 

for the discrimination of sweet and non-sweet tastants. Of course, molecular fingerprints are a special 1002 

case, since the thousands of binary bits they include have to be considered simultaneously as a holistic 1003 

description of the molecular structure. As in other modelling frameworks, the limited number of 1004 

descriptors is probably due to the maintenance of a correct balance between the model complexity, 1005 

predictive ability and interpretability. 1006 

In earlier models for sweet prediction, descriptors mainly related to molecular size and bulkiness were 1007 

used while recently, quantum-chemical descriptors were considered as well as different types of 1008 

fingerprints and descriptors calculated by means of different software including Dragon, RDKit, 1009 

Mordred, Pybel, alvaDesc and MOE2d. From an analysis of the most frequent molecular descriptors 1010 

in models for bitterness, the relevant structural features are the presence of carbon/oxygen groups, 1011 

sugar moieties, quaternary carbon centers and highly branched carbon centers, physicochemical 1012 

properties, specific properties of the molecular surface and hydrophobicity. More specifically, the 1013 

bitterness of peptides is strongly related to composition of amino acids, dipeptides and pseudo amino 1014 

acids. Finally, molecular descriptors used for modelling umami taste are mainly linked to the presence 1015 

of hydrophilic amino acids with negative charge and low molecular weights. In addition, patterns in 1016 

the scaffolds related to amino acid composition; specifically glutamic acid (Glu) and aspartic acid 1017 

(Asp) amino acid, were found to be crucial for umami prediction of peptides. 1018 
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3. Conclusions 1019 

In this paper, we present a logical, comprehensive and critical review of the current state of ligand-1020 

based models of quantitative structure-property relationships along with the history of the prediction 1021 

of the taste of molecules. Models detailed here complement previously published reviews available 1022 

in the literature. Although the main modeling applications presented in this review relate to the 1023 

prediction of molecular sweetness and bitterness, there is a notable increase in the interest and 1024 

proposed application of QSAR models for the prediction of umami and sour tastants. It is notable that 1025 

many authors cited in this review attempted to use the largest possible databases of tastants, as well 1026 

as to improve the chemical representation of these databases through the use of several molecular 1027 

descriptors, structural keys and fingerprints. In addition, this review reflects the wide variety of 1028 

machine learning approaches used by investigators in order to calibrate more general models used in 1029 

the prediction of properties of new molecules. In the future, it is expected that in silico methods will 1030 

increase the application of predictive models in food chemistry (foodinformatics) in order to better 1031 

understand the mechanisms involved in taste prediction. In addition, predictive models may provide 1032 

useful tools to discover new molecular tastants with potential uses as raw-materials or additives in 1033 

the food and pharmaceutical industries. Finally, our recommendation to chemists involve in taste 1034 

prediction is to develop the largest possible molecular tastant databases to be used with novel 1035 

classifiers in order to develop models able to predict more than two classes at a time. This expanded 1036 

capability will greatly advance the science of foodinformatics. 1037 
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Figure 1. Taste changes of saccharin when introducing the nitro and amino molecular fragments in 

diverse position of the chemical scaffold. 

 

Figure 2. Representation of classification boundaries (black lines) between sweet (blue) and bitter 

(red) chemicals in the space of the first two t-SNE dimensions (latent variables for PLSDA). The 

results are presented for different classifiers. 

 

Figure 3. Number of molecules (expressed as log10) used for the calculation of models for taste 

prediction vs publication year. 
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Table 1. Classification-based machine learning models for the discrimination between sweet and 

bitter tastants. d is the number of descriptors, n is the number of molecules. 

 

Table 2. Classification-based machine learning models for the discrimination between sweet and 

non-sweet tastants. d is the number of descriptors, n is the number of molecules. 

 

Table 3. Classification-based machine learning models for the prediction of bitterness. d is the 

number of descriptors, n is the number of molecules. 
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Table 1 

reference URL Model name Classifier d 

training test 

n NER AUC F-

score 

n NER AUC F-

score 

(Kier, 1980) -- -- LDA 2 20 0.850 -- -- 9 0.875 -- -- 

(Takahashi et al., 1982) 
-- 

-- 
kNN 

3 22 
0.909 -- -- -- -- -- -- 

LDA 1 -- -- -- -- -- -- 

(Takahashi et al., 1984) -- -- LDA 
3 

22 
1 -- -- 

9 
0.775 -- -- 

2 0.955 -- -- 0.775 -- -- 

(Miyashita et al., 1986a) -- -- SIMCA 5 91 0.840   -- -- -- -- 

(Drew et al., 1998) -- -- DA 11 50 1 -- -- -- -- -- -- 

(Spillane et al., 2002) -- -- 

Biplot 2 

23 

0.862 -- -- -- -- -- -- 

LDA 4 0.850 -- -- -- -- -- -- 

QDA 4 0.900 -- -- -- -- -- -- 

(Rojas et al., 2016c) -- -- kNN 4 356 0.864 -- -- 152 0.789 -- -- 

(Chéron et al., 2017) http://sebfiorucci.free.fr/SweetenersDB/ -- RF 5a 796 0.997 -- -- 200 0.914 -- -- 

(Banerjee & Preissner, 

2018) 
-- BitterSweetForest RF 2,048 961 0.950b 0.980 0.940 241 0.967b 0.980 0.920 

(Goel et al., 2021) -- -- RF 8 1,537 0.908 -- -- 385 0.855 -- -- 

(Bo et al., 2022) -- 
BitterSweetMLP-

Fingerprint 
MLP 17 1,637 0.870 0.950 -- 409 0.880 0.950 -- 

(Maroni et al., 2022) 
https://github.com/gabribg88/VirtuousSweetBitter 

https://virtuoush2020.com/ 
-- GBM 9 2,195 0.893 0.950 0.883 -- -- -- -- 

a number of descriptors for the tree depth; b calculated as Accuracy (ACC) 
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Table 2 

reference URL Model name Classifier d 

training test 

n NER AUC F-

score 

n NER AUC F-

score 

(Spillane & McGlinchey, 1981) -- -- DA-plot 2 47 0.957b -- -- -- -- -- -- 

(Spillane et al., 1983) -- -- LDA 3 33 0.807 -- -- -- -- -- -- 

(Miyashita et al., 1986b) -- -- SIMCA 4 50 0.798 -- -- -- -- -- -- 

(Okuyama et al., 1988) -- -- SIMCA 1a 
25 0.868 -- -- -- -- -- -- 

20 0.808 -- -- -- -- -- -- 

(Spillane & Sheahan, 1989) -- -- 

DA-plot 2 17 0.824b -- -- -- -- -- -- 

LDA 3 
23 0.642 -- -- -- -- -- -- 

56 0.773 -- -- -- -- -- -- 

(Spillane et al., 1993) -- -- DA-plot 2 40 -- -- -- -- -- -- -- 

(Spillane et al., 2000) -- -- QDA 4 101 0.801 -- -- -- -- -- -- 

(Spillane et al., 2003) -- -- CART 4 132 0.815 -- -- -- -- -- -- 

(Kelly et al., 2005) -- -- CART 6 75 0.768 -- -- 8 0.750 -- -- 

(Spillane et al., 2006) -- -- CART 7 70 0.807 -- -- 12 0.909 -- -- 

(Spillane et al., 2009) -- -- CART 6 48 0.950 -- -- 10 0.625 -- -- 

(Rojas et al., 2016c) -- -- kNN 9 396 0.838 -- -- 170 0.752 -- -- 

(Rojas et al., 2017) -- -- 
Expert 

System 
-- 488 0.892 -- -- 161 0.848 -- -- 

(Zheng et al., 2019) 
https://www.dropbox.com/sh/1fmlv7nf6wofgcp/ 

AADBJzFbbbiNRJUP0806wSyna?dl=0 
e-Sweet Consensus -- 883 0.870 -- 0.850 221 0.900 -- 0.878 

(Tuwani et al., 2019) 
https://github.com/cosylabiiit/bittersweet/ 

https://cosylab.iiitd.edu.in/bittersweet/ 
BitterSweet AdaBoost -- 2,205 0.856 0.918 0.858 161 0.834 0.883 0.856 

(Fritz et al., 2021) http://virtualtaste.charite.de/VirtualTaste/ VirtualSweet RF -- 1,608 0.970 0.990 0.870 403 0.893 0.951 0.888 

(Yang et al., 2022) -- RF 241 959 0.873 0.958 -- 241 0.920 0.971 -- 

https://www.dropbox.com/sh/1fmlv7nf6wofgcp/AADBJzFbbbiNRJUP0806wSyna?dl=0
https://www.dropbox.com/sh/1fmlv7nf6wofgcp/AADBJzFbbbiNRJUP0806wSyna?dl=0
https://github.com/cosylabiiit/bittersweet/
https://cosylab.iiitd.edu.in/bittersweet/
http://virtualtaste.charite.de/VirtualTaste/
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https://github.com/ifyoungnet/ChemSweet 

XGBoost 

95 366 0.905 0.956 -- 92 0.926 0.974 -- 

105 1,327 0.834 0.926 -- 333 0.841 0.920 -- 

124 2,104 0.870 0.947 -- 527 0.867 0.947 -- 

102 394 0.893 0.937 -- 100 0.876 0.956 -- 

122 2,091 0.875 0.949 -- 522 0.889 0.961  

(Bo et al., 2022) -- 
SweetMLP-

Fingerprint 
MLP 

-- 1,776 
0.860 0.930 -- 

444 
0.900 0.940 -- 

SweetCNN CNN 0.860 0.900 -- 0.850 0.900 -- 

(Lee et al., 2022) 
-- 

BoostSweet 
Soft-vote 

consensus 
-- 1,832 -- -- -- 459 0.899 0.961 0.907 

a number of principal components (PCs); b calculated as Accuracy (ACC) 

 

 

Table 3 

reference URL Model name Classifier d 

training test 

n NER AUC F-

score 

n NER AUC F-

score 

(Rodgers et al., 

2006) 
-- -- 

Naïve 

Bayes 
10 14,179 0.805 -- -- -- -- -- -- 

(Huang et al., 

2016) 
http://mdl.shsmu.edu.cn/BitterX BitterX SVM 

46 862 0.879b -- -- 216 0.915b 0.950 -- 

35 416 0.767b -- -- 104 0.798b 0.823 -- 

(Dagan-Wiener 

et al., 2017) 
https://github.com/Niv-Lab/BitterPredict1 BitterPredict AdaBoost 16a 1,827 0.921 -- -- 781 0.812 -- -- 

(Zheng et al., 

2018) 

https://www.dropbox.com/sh/3sebvza3qzmazda/AADgpCRXJtHAJzS8DK_P-

q0ka?dl=0 
e-Bitter Consensus -- 1,040 -- -- -- 259 0.929b -- 0.936 

(Tuwani et al., 

2019) 

https://github.com/cosylabiiit/bittersweet/ 

https://cosylab.iiitd.edu.in/bittersweet/ 
BitterSweet RF -- 2,257 0.754 0.852 0.698 154 0.819 0.880 0.838 

https://github.com/ifyoungnet/ChemSweet
https://github.com/Niv-Lab/BitterPredict1
https://www.dropbox.com/sh/3sebvza3qzmazda/AADgpCRXJtHAJzS8DK_P-q0ka?dl=0
https://www.dropbox.com/sh/3sebvza3qzmazda/AADgpCRXJtHAJzS8DK_P-q0ka?dl=0
https://github.com/cosylabiiit/bittersweet/
https://cosylab.iiitd.edu.in/bittersweet/
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(Charoenkwan 

et al., 2020a) 
http://camt.pythonanywhere.com/ iBitter-SCM SCM -- 512 0.871b   128 0.844b   

(Margulis et 

al., 2021) 
-- BitterIntense XGBoost 8 616 0.870b -- 0.820 105 0.790 -- 0.700 

(Charoenkwan 

et al., 2021a) 
http://pmlab.pythonanywhere.com/BERT4Bitter BERT4Bitter BERT -- 512 0.861b 0.915 -- 128 0.922b 0.964 -- 

(Fritz et al., 

2021) 
http://virtualtaste.charite.de/VirtualTaste/ VirtualBitter RF -- 1,289 0.960 0.975 0.946 323 0.898 0.956 0.882 

(Charoenkwan 

et al., 2021b) 
http://camt.pythonanywhere.com/iBitter-Fuse iBitter-Fuse SVM 36 512 0.918b 0.937 -- 128 0.930b 0.933 -- 

(Bai et al., 

2021) 
-- CBDPS XGBoost -- 1,296 0.882b -- 0.881 112 -- -- -- 

(Bo et al., 

2022) 
-- 

BitterMLP-

Descriptor 
MLP 15 

1,787 
0.830 0.920 -- 

446 
0.820 0.940 -- 

BitterCNN CNN -- 0.770 0.870 -- 0.790 0.880 -- 

(Margulis et 

al., 2022) 
https://github.com/YuliSl/BitterMatch BitterMatch XGBoost 20 

3,601 0.759c -- -- 900 -- -- -- 

242 0.699c -- -- 61 -- -- -- 

(De León et 

al., 2022) 
-- Premexotac 

SVM 512 
2,272 

0.836b -- -- 
568 

0.870b -- -- 

AdaBoost 18 0.842b -- -- 0.847b -- -- 
a descriptors with the most significant contribution; b calculated as Accuracy (ACC), c reported as recall-precision 
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