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Evolutionary signatures of human cancers
revealed via genomic analysis of over 35,000
patients

Diletta Fontana 1,8, Ilaria Crespiatico1,8, Valentina Crippa1,8,
Federica Malighetti 1, Matteo Villa 1, Fabrizio Angaroni2,3, Luca De Sano 2,
Andrea Aroldi1,4, Marco Antoniotti 2,5, Giulio Caravagna6, Rocco Piazza 1,
Alex Graudenzi 2,5,7 , Luca Mologni 1 & Daniele Ramazzotti 1

Recurring sequences of genomic alterations occurring across patients can
highlight repeated evolutionary processes with significant implications for
predicting cancer progression. Leveraging the ever-increasing availability of
cancer omics data, here we unveil cancer’s evolutionary signatures tied to
distinct disease outcomes, representing “favored trajectories”of acquisitionof
driver mutations detected in patients with similar prognosis. We present a
framework named ASCETIC (Agony-baSed Cancer EvoluTion InferenCe) to
extract such signatures from sequencing experiments generated by different
technologies such as bulk and single-cell sequencing data. We apply ASCETIC
to (i) single-cell data from 146 myeloid malignancy patients and bulk
sequencing from 366 acute myeloid leukemia patients, (ii) multi-region
sequencing from 100 early-stage lung cancer patients, (iii) exome/genome
data from 10,000+ Pan-Cancer Atlas samples, and (iv) targeted sequencing
from 25,000+MSK-METmetastatic patients, revealing subtype-specific single-
nucleotide variant signatures associated with distinct prognostic clusters.
Validations on several datasets underscore the robustness and generalizability
of the extracted signatures.

Cancer development is a stochastic evolutionary process that involves
large populations of cells. Random genetic and epigenetic alterations
that commonly occur in any cell can occasionally be beneficial to
neoplastic cells, leading to the selection of clones with increased
proliferation and survival abilities, eventually resulting in invasion and
metastasis1,2. However, not all alterations are involved in this process,
but only a relatively small subset of them, known as drivers,whilemost
mutations are neutral, called passengers3,4.

Building on the ever-increasing availability of omics data col-
lected at various resolutions from NGS experiments on cancer
patients, and on the continuous advances in cancer data science and
machine learning, we are now empowered to explore the existence
of cancer (sub)type-specific evolutionary signatures associated with
different disease outcomes. These signatures represent the
“favored trajectories” of driver alterations acquisition during cancer
evolution that are repeatedly detected in patients with similar
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prognosis and can be exploited to stratify (unseen) patients
accordingly.

The study of evolutionary signatures may allow us to delve into
whether recurring genomic evolution patterns observed in cancer
patients are consistently associated with improved or worsened
prognoses. The primary goal of this approach is to improve predictive
accuracy by extending the analysis beyond individual genetic altera-
tions and by investigating the presence of these evolutionary trends.
Through a comprehensive analysis of the broader spectrum of geno-
mic alterations and their interactions, we can attain a more compre-
hensive understanding of cancer evolution and its influence on
prognosis. This methodology strives to enhance predictive models by
encompassing the intricate dynamics and interplay among genetic
alterations, thus surpassing the limitations of considering individual
genetic modifications.

In this work, we define the notion of cancer (sub)type-specific
single nucleotide variants (SNV) evolutionary signatures associated to
clusters of patients exhibiting statistically significant differences in
prognosis. The concept of SNV evolutionary signatures is com-
plementary to that of single base substitutions (SBS) mutational sig-
natures, which were first introduced by Stratton and colleagues5. SBS
mutational signatures aim to distinguish between the various

mutagenicmechanisms responsible for all the alterations that occur in
cancer genomes, including both driver and passenger mutations. In
contrast, the SNV evolutionary signatures introduced in this work
identify conserved patterns of functionally advantageous alterations
(i.e., driver mutations) that emerge from the complex interplay of
multi-scale processes underlying cancer development and evolution.
These signatures describe evolutionary steps that are shared among
patients with similar prognosis. Here, we present a framework called
ASCETIC (Agony-baSed Cancer EvoluTion InferenCe), that can process
data from both bulk and single-cell sequencing experiments. Our
method enables us to first reconstruct statistically robust models of
tumor evolution for individual patients (Fig. 1). We then combine these
individual models into a unique cancer-specific model of repeated
evolution, inwhichwe identify the significant evolutionary patterns, or
evolutionary signatures, that are associated to outcome, by exploiting
prognostic data via regularized Cox regression (Fig. 2). Moreover, our
approach allows us to naturally combine genomic data from various
resolutions and technologies, including bulk and single/multiple
biopsies and single-cell sequencing experiments. We employ the
ASCETIC framework to analyze SNV from several cancer datasets,
including (1) single-cell sequencing data obtained through the Tapestri
Platform from 146 patients with distinct myeloid malignancies and an
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Fig. 1 | ASCETIC pre-processing phase. ASCETIC can efficiently process data at
various resolutions, including the classical bulk NGS samples (a) providing a single
biopsy per patient, multi-region sequencing data (b), as well as single-cell sequen-
cing data (c). The framework includes an initial variant calling step, which can be
performed adopting best practices for the considered sequencing technology.
After this step, a set of mutational profiles are generated, comprising one sample
per patient in the case of classical bulk NGS data, or multiple samples in the case of
multiregion or single-cell data. From these inputs, ASCETIC first generates a set of
temporal models of the evolution of each patient considered individually. For

classical bulk NGS data, this is performed from cancer cell fractions, in order to
obtain a partially ordered set (poset) for the set of driver mutations observed in
each patient. For multi-region and single-cell data, ASCETIC exploits phylogenetic
approaches tailored to analyze cancer data6,65,66,71,72 in order to generate a muta-
tional tree per patient. In this work, we used REVOLVER6 for multi-region data and
∞SCITE66 for single-cell data, although any preferred state-of-the-art algorithms can
be used. The generated mutational profiles and evolutionary models are given as
inputs for ASCETIC next steps.
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Fig. 2 | ASCETIC decomposes the inference problem into three main tasks. a
First, it combines all the evolutionary models obtained during the pre-processing
phase in order to build an agony-derived ranking8 of the considered alterations,
which implies a (partial) temporal ordering among these drives during cancer
evolution.bThen, it adopts a likelihood-based approach groundedon the theory of
probabilistic causation9 for model selection in order to display themost significant
relationships among driver mutations into a Bayesian Network depicting repeated
evolutionary trajectories. c Finally, ASCETIC considers all the inferred evolutionary
steps and exploits them to perform patients’ stratification. This is done by

considering survival data and selecting the most relevant features from the
ASCETIC model of repeated evolution to stratify the samples into different risk
groups or clusters. Survival analysis of the different risk groups is then performed
via the Kaplan–Meier estimate. ASCETIC yields two main outputs: (1) a model that
captures the consistent evolutionary trajectories observed across diverse patients
throughout tumor evolution, and (2) a set of genomic features referred to as
evolutionary signatures, which demonstrate significant associations with clinical
outcomes. ASCETIC outputs inferred risk levels for each selected evolutionary step
and display their relative prevalence within the cluster.
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external dataset providing bulk whole exome sequencing data from
366 acutemyeloid leukemia patients, (2)multi-region sequencing data
from 100 early-stage lung cancer patients from the TRACERx project,
(3) whole exome/genome sequencing data from over 10,000 Pan-
Cancer Atlas samples, and (4) target bulk sequencing data from more
than 25,000 MSK-MET metastatic patients (both datasets encom-
passing various cancer types). Furthermore, we conducted multiple
validations of the evolutionary signatures extracted by ASCETIC using
diverse and previously unseen datasets. These validations were
essential to assess the robustness and generalizability of the identified
evolutionary patterns. By evaluating the performance of ASCETIC on
independent datasets, we ensured that the extracted evolutionary
signatures consistently held predictive power across various cancer
cohorts.Wedemonstrate the reliability and applicability of ASCETICas
a tool for uncovering consistent evolutionary patterns in cancer.
Despite not being conclusive, thisworkpaves theway for thedefinition
of a curated catalogueof evolutionary signatures, along the lines of the
widely used COSMIC Mutational Signatures database (https://cancer.
sanger.ac.uk/signatures/).

Results
ASCETIC (Agony-baSed Cancer EvoluTion InferenCe)
The ASCETIC framework is based on the observation that, in most
cases, the accumulation of passenger mutations during cancer pro-
gression follows random dynamics. However, a small set of mutations
in driver genes are responsible for driving tumor evolution, and for
these alterations, drift-driven evolution and selective pressures may
lead to a consistent ordering across multiple patients6.

Such ordering of driver mutations during cancer evolution may
not be unique and can be confounded by heterogeneous cancer sub-
types within a tumor dataset7. Therefore, ASCETIC decomposes the
inference problem into three main tasks. First, it leverages the evolu-
tionary models obtained during the pre-processing phase (Fig. 1) to
build an agony-derived ranking8 of the considered driver alterations,
which portrays a partial temporal ordering among them (Fig. 2a).
Second, our framework adopts a likelihood-based approach grounded
in probabilistic causation theory9 to perform model selection,
returning a unique Bayesian Network that recapitulates the repeated
evolutionary trajectories for that cancer (sub)type, i.e., the favored
orderings among driver mutations (Fig. 2b). Third, ASCETIC uses the
mutation co-occurrence patterns identified by such trajectories as
features of a regularized Cox regression on survival data. This step
allows one to cluster samples into different risk groups, whose sig-
nificance is finally tested via standard Kaplan–Meier estimate. Overall,
this model-informed feature selection allows ASCETIC to identify
mutation (co-)occurrence patterns — the evolutionary sig-
natures — exhibiting prognostic significance for any given cancer
(sub)type.

ASCETICproduces two primary outputs: (1) amodel that captures
the recurring evolutionary trajectories observed across different
patients during tumor evolution, and (2) a collection of genomic fea-
tures (i.e., sets of single and co-occurring mutations) known as evolu-
tionary signatures, which exhibits significant associations with clinical
outcomes. ASCETIC provides the inferred risk levels for each selected
evolutionary step and displays their relative prevalence within the
cluster (Fig. 2c). Furthermore, ASCETIC also provides an estimate of
uncertainty in the identified evolutionary steps through cross-valida-
tion, which enables us to pinpoint the most confident repeated tra-
jectories among genes.

Performance assessment via simulations. The ASCETIC computa-
tionalworkflowcomprises twoprimary steps. In thefirst step, ASCETIC
performs the inference of a cancer evolution model, unveiling recur-
ring evolutionary trajectories consistently observed across patients.
The second step involves associating these inferred trajectories with

survival data, enabling the prediction of evolutionary steps that hold
potential clinical significance. Referred to as evolutionary signatures,
these signatures can be leveraged to stratify patients. Notably, ASCE-
TIC’s second step,which sets it apart fromcompeting algorithms in the
inference of cancer evolution models, represents a unique feature of
the framework. Consequently, our simulations primarily focused on
evaluating the performance of ASCETIC’s first step in comparison to
competing methods. To evaluate the performance of ASCETIC against
competing methods, we conducted extensive tests on synthetic
datasets, using two different noise models to generate the data. The
first model mimicked samples obtained from NGS sequencing data,
comprising a single biopsy per tumor, while the second model used
single-cell or bulk sequencing NGS data to provide multiple samples
for the same tumor (see Methods). We generated 8500 synthetic
cancer evolution models (i.e., topologies) for a total of 26,500 differ-
ent configurations and compared the performance of ASCETIC with
that of the CAPRI algorithm10 and the standardmaximum likelihood fit
approach for structure learning, in terms of accuracy, precision, recall
(sensitivity), and specificity (see Methods and Supplementary Materi-
als for details). Supplementary Fig. 2 shows the results comparing the
accuracy of the differentmethods for a set of representative scenarios.
Full results of the simulations are provided in the Supplementary
Materials (see Supplementary Figs. 3–15).

Our results demonstrate that ASCETIC consistently outperforms
the competing methods in all settings, presenting a very stable per-
formance. Furthermore, these results underscore the substantial
superiority of ASCETIC’s expressivity compared toCAPRI.While CAPRI
and other existing methods for analyzing repeated cancer evolution
models are limited to inferring only conjunctive relations among
genomic events10, ASCETIC surpasses this constraint by providing
partial orderings among genes and accommodating any type of tem-
poral relation. This fundamental characteristic is evident in the notable
decline in performance observed in the comparative methods relative
to ASCETIC in the more general scenarios, where general temporal
patters are simulated. This represents a crucial feature of our
approach, empowering ASCETIC to deliver general, precise, and reli-
able models of cancer evolution.

Performance assessment on cancer data. We evaluated ASCETIC’s
performance on bulk cancer datasets of gliomas from three distinct
studies: GLASS (222 patients11), MSK (924 patients12), and TCGA (1,122
patients13). Each patient’s dataset included a single biopsy and copy
number information. Gliomas can be categorized into three distinct
molecular subtypes, which have been well-characterized in terms of
gene mutations and copy-number alterations14. The first subtype is
named G-CIMP (Glioma CpG island methylator phenotype), char-
acterized by mutations in genes such as IDH1/2, TP53, and ATRX. The
second subtype is named IDH mutant-codel, characterized by muta-
tions in genes such as IDH1/2, CIC, and FUBP1, along with a chromo-
somal codeletion of 1p/19q. Finally, the third subtype is named IDH1/2
wild-type, characterized bymutations in genes such asTP53, EGFR, and
PTEN and various copy number alterations, but no alterations in IDH1/2
genes. G-CIMP and IDH1/2 mutant-codel subtypes are commonly
observed in lower-grade gliomas and are associated with a favorable
prognosis. On the other hand, IDH1/2 wild-type subtypes are more
common in glioblastomas and are associated with poor outcome.
Based on this known ground truth, our objective was to evaluate the
performance and reproducibility of ASCETIC by executing the entire
framework independently on these three datasets. Notably, ASCETIC
produced very consistent results (refer to Supplementary Figs. 89–98)
and successfully identified three SNV evolutionary signatures along
with their associated subtypes. These identified subtypes closely
resembled the known subtypes of gliomas, exhibiting characteristic
features and prognostic outcomes that matched the expected
patterns.
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To further assess the stability of ASCETIC’s stratification feature,
we performed a quantitative evaluation by independently repeating
the framework on the GLASS dataset 1000 times. Specifically, we
focusedon the three clustersobtained from this dataset andgenerated
synthetic data accordingly. Survival data was randomly sampled from
the three GLASS subtypes, and molecular features were associated
with them using empirically calculated cluster-specific distributions.
Next, we applied ASCETIC to these 1000 simulated datasets, asso-
ciating molecular and evolutionary features to prognosis, and mea-
sured the stability of the results by computing theAdjustedRand Index
(ARI) compared to the original inference. ASCETIC demonstrated a
consistently good ARI, averaging above 0.75 (see Supplemen-
tary Fig. 92).

Myeloid malignancies
To validate ASCETIC on experimental data,we applied it to a single-cell
dataset obtained with the Tapestri Sequencing Platform for a set of
myeloid disorders15. The dataset comprises single-cell mutational
profiling of 146 samples from 123 distinct patients, including acute
myeloid leukemia (AML) along with other myeloid malignancies such
as clonal hematopoiesis andmyeloproliferative neoplasms (MPN) (see
Methods). Full results of the application of ASCETIC to these data are
provided as Supplementary Data 1. In Supplementary Material Sec-
tion 5 (top panel), we report and further discuss the inferred relations
with a cross-validation score higher than 0.50.

Our analysis highlights that ASCETIC consistently identifies
alterations in CALR, JAK2, and IDH1/2 genes as early events in tumor
history, while NRAS represents an acquired secondary event, towards
which evolutionary trajectories appear to converge during the pro-
gression of the disease. These observations are consistent with pub-
lished data and support the utility of ASCETIC in predicting
evolutionary steps in myeloid malignancies16,17. The co-occurrence of
CALR and ASXL1 mutations has been reported to be enriched in
patients affected by essential thrombocythemia (ET). In particular, it
has been shown that an additional ASXL1 mutation in CALR-mutated
patients worsen the CALR phenotype18,19.

Furthermore, ASCETIC identifies a frequent NPM1-to-FLT3 evolu-
tion with high cross validation score (Supplementary Material Sec-
tion 5, top panel). This is also in line with clinical observations in AML,
where the presence of mutated NPM1 in the absence of a FLT3 muta-
tion identifies a subset of AML with favorable prognosis, while the
subsequent acquisition of a FLT3 mutation confers an intermediate
risk20. ASCETIC also correctly positions DNMT3A as a parent mutation
with very high confidence21,22. Finally, single-cell analysis of myeloid
malignancies performed by Miles and colleagues15 revealed the co-
occurrence of IDH1/2 and TET2 mutations, which had never been
reported before in myeloid neoplasms, as the two mutations were
previously described to be mutually exclusive23. ASCETIC not only
detects their co-occurrence but also orders their accumulation over
time, suggesting that IDH1/2 variants are acquired before TET2
mutations.

These results demonstrate that ASCETIC can reliably predict
mutational trajectories from single-cell data and build models of dis-
ease evolution for myeloid malignancies.

Acute myeloid leukemia (Fig. 3) — 4 SNV evolutionary signatures.
Unfortunately, survival data were not available for the single-cell
dataset by Miles and colleagues15. However, ASCETIC can integrate
sequencing experiments at varying resolutions. Therefore, to
demonstrate the versatility of ASCETIC and validate its findings, we
utilized the evolutionary model of myeloid disease obtained from
single-cell data to stratify an external dataset comprising 366 tumor
samples collected from patients affected by AML24. The evolutionary
model was obtained by applying ASCETIC to the single-cell dataset of
myeloid malignancies described above15. Samples were stratified into

different risk groups by selecting the alterations associated with the
minimum cross-validation error. Stratification was performed by
ASCETIC and then survival analysis comparing the different groups
was carried out via standard Kaplan–Meier estimates (see Methods).
This analysis resulted in the extraction of four SNV evolutionary sig-
natures identifying four clusters that exhibit significantly different
survival rates (p < 0.001).

As shown in Fig. 3, the three most prevalent evolutionary routes
characterizing AML SNV Evolutionary Signature (AML SNV Evo Sig) #1
involve alterations in IDH1/2, RAD21, DNMT3A and KIT genes as early
evolutionary steps, with later acquisition of TET2 alterations (Fig. 3 and
Supplementary Fig. 16). Overall, this signature cumulates several steps
with favorable clinical projection. Indeed, cluster 1, associated to AML
SNV EvoSig#1, shows the best overall survival (OS). In this cluster, evo-
lution from IDH1/2 toTET2 appears to be relevant for survival, conferring
a lower risk of progression, possibly defining a subgroupof patientswith
hypermethylated phenotype. When TET2-mutated AML patients where
partitioned into TET2 vs IDH1/2-to-TET2 subgroups, the latter had a sig-
nificantly better survival, corroborating our findings (Fig. 3 and Supple-
mentaryData 2). The prognostic significance ofRAD21mutations in AML
is controversial as some studies described them as independent factors
for a longer OS, while others found no differences in survival25. Accord-
ing to ASCETIC, mutated RAD21 is associated with better outcome,
shedding new light on the prognostic value of RAD21mutations in AML.

AML SNV EvoSig #2 is also characterized by mutations of IDH1/2
genes, which are then followed by alterations in DNMT3A, rather than
TET2, thus defining a groupof patientswith intermediate risk. A fraction
of these patients further acquires NRAS mutations. These results sug-
gest that alternative evolution routes (DNMT3A vs TET2) from a com-
mon first hit (IDH1/2)may changeAMLprognosis. AML SNVEvoSig #3 is
defined by a clear trajectory involving evolution fromNPM1 to FLT3 and
is associated with poor outcome. This is a well-documented risk factor
in AML, as the presence of mutations in FLT3 is often associated with
reduced OS, particularly in NPM1-mutated patients, and improves risk
stratification in patients without cytogenetic abnormalities26. Remark-
ably, both AML SNV EvoSig #1 and AML SNV EvoSig #3 exhibit muta-
tions in the NPM1 gene, which displays a significant association with
clinical outcomes. However, in AML SNV EvoSig #3, additional muta-
tions in the FLT3 gene are observed, and they are notably correlated
with survival. ASCETIC’s inference reveals that the evolutionary step
from NPM1 to FLT3 is also linked to a (poor) prognosis. These two
signatures, represent recurring cancer evolutions that share common
elements, but follow distinct progressions. In addition, several patients
carrying mutations of the STAG2 cohesin are found in cluster 3, con-
firming previous findings by Papaemmanuil and colleagues, who iden-
tified a chromatin/spliceosome group, including STAG2 variants, with
overall poor prognosis27. Finally, evolutionary trajectories involving
alterations in TP53 define SNV EvoSig #4, and patients belonging to
cluster 4 show the shortest median OS (< 10 months). As a matter of
fact, according to the latest International Consensus Classification of
myeloid neoplasms, TP53-mutated AML should be considered as an
independent entity associated with a lower likelihood of response to
conventional chemotherapy and poor outcome and should be included
in the adverse prognostic risk category28. In addition, ASCETIC dis-
covers that evolutionary routes involving PHF6 (11% vs 1%; odds-ratio
(OR) = 16.2; χ-squared p <0.001) and U2AF1 (23% vs 0%; OR=61.3; χ-
squared p <0.001) are also common in cluster 3 and are significantly
enriched with respect to the other two clusters. Mutations occurring in
PHF6 have been described in AML and showed anunclear association to
disease progression29, while U2AF1 alterations have been correlated
with poor prognosis in AML30, thus corroborating our findings.

Stratification based solely on mutations. To demonstrate the sig-
nificance of ASCETIC results, we conducted an analysis based solely on
somatic mutations. When ignoring evolutionary arcs, some
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information was lost. Supplementary Figs. 17–18 provide examples of
the reduced resolution, such as failing to distinguish high-risk NPM1-
to-FLT3 patients from low-risk FLT3 wild-type patients. In addition,
mutation analysis without evolution fails to split NRAS mutated
patients into intermediate and poor outcome groups, as it lacks
information on the parent event occurring before the acquisition of
NRAS mutations.

Collectively, these analyses conclusively demonstrate that ASCE-
TIC effectively identifies subgroups of AML patients with distinct sur-
vival outcomes, surpassing the capabilities of conventional mutation-
based patient clusteringmethods. Notably, while ASCETIC can capture
straightforward associations to prognosis as detected by single-gene
mutation analyses, it goes beyond that by detecting additional prog-
nostic associations based on evolutionary patterns.

Validation of ASCETIC’s evolutionary model on unseen data. We
validated ASCETIC’s evolutionary steps on acute myeloid leukemia
samples using unseen single-cell data from 123 AML patients31. We
evaluated the mutational trees reported in the original work byMorita
and colleagues31 for each evolutionary step inferred by ASCETIC,
checking if they were consistent with the model by ASCETIC or if they
presented discrepancies. We report this analysis in Supplementary
Material Section 6. We examined the 17 evolutionary steps inferred by
ASCETIC and provided the following information: (1) the number of
phylogenies/patients in which the same evolutionary step was
observed, (2) the number of phylogenies/patients in which an evolu-
tionary step inconsistent with ASCETIC’s inference was observed, and
(3) the number of phylogenies/patients in which no supporting evi-
dence for the evolutionary step was identified. Notably, most of the

Fig. 3 | ASCETIC analysis of acute myeloid leukemia samples24 (123 patients). We show the 4 extracted SNV evolutionary signatures (a), the evolutionary model of
repeated evolution inferred by the framework (b) and the Kaplan–Meier analysis (log-rank p-value) of the associated evolutionary signatures (c, d).
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evolutionary steps (15 out of 17) returned by ASCETIC were highly
consistent with the mutational trees. Therefore, our results provide
strong and direct validation of ASCETIC’s model of acute myeloid
leukemia evolution.

Validation of ASCETIC’s AML SNV evolutionary signatures on
unseen data. We validated ASCETIC’s AML SNV evolutionary sig-
natures on Pan-Cancer Atlas32 unseen data. Specifically, the Pan-Cancer
Atlas AML dataset comprises data from 200 patients, predominantly
collected at the time of diagnosis. Despite ASCETIC’s model being
constructed based on advanced cancers, the results demonstrated
remarkable consistency, with ASCETIC successfully identifying three
out of four subtypes in the validation dataset (Supplementary
Figs. 99–100). Furthermore, our results demonstrate that these sig-
natures can effectively stratify patients into groups with significantly
different prognoses (p < 0.0001). Specifically, we have identified a
group of patients carrying NPM1 and FLT3 mutations (44 patients),
which exhibit a poor prognosis (< 25% survival rate at 24 months), and
a cluster of patients with TP53 mutations (13 patients), who have the
lowest survival, as observed in the original dataset (all patients died
within 18 months).

Finally, we highlight ASCETIC’s model-informed feature selection
capabilities. Applying LASSO Cox regression with many predictors
(e.g., testing all genes co-occurrence) has known pitfalls such over-
regularization, unstable variable selection, and high computational
load. Collinear predictors can lead to the loss of valuable information,
and irrelevant ones add noise33,34. Our approach mitigates these
limitations.

Non-small cell lung cancer
Lung cancer is a leading cause of cancer-related deaths worldwide and
encompasses a diverse group of pathologies that are classified into
two main categories based on morphology, immunohistochemistry,
and molecular features: small cell and non-small cell lung cancer
(NSCLC)35. Despite significant progress in lung cancer treatments, the
5-year overall survival (OS) rate remains very low (15%).

Early-stage NSCLC (Fig. 4) — 3 SNV evolutionary signatures. We
analyzed the data from the TRACERx research project36 comprising
multi-region sequencing samples for a total of 302 biopsies from 100
early-stage NSCLC patients, and a total of 65,421 somatic substitutions
(see Methods). Full results of ASCETIC applied to these data are pro-
vided as Supplementary Data 3. We report in Supplementary Material
Section 5 (bottom panel) and further discuss here the inferred rela-
tions with a cross validation score higher than 0.50.

Several mutations that have been classified as cancer drivers in
NSCLC were identified by ASCETIC as early alterations (see Supple-
mentaryMaterial Section 5, bottom panel) involved in the evolution of
this cancer type: among them TP53, KRAS, KEAP1, CDKN2A, PIK3CA,
ATM, EGFR, BRAF, KMT2D, EP300, and FBXWZ37. On the other hand,
ARID1B, EP300, NFE2L2, and PTPRC mutations emerge as nodes of
convergence for different evolutionary routes. ASCETIC confirmed the
mutual exclusivity of some driver mutations, such as EGFR and KRAS38

or TP53 and KEAP139, clarified the timing relation between genomics
alterations that are involved in lung carcinogenesis and allowed us to
discover new late-occurringmutations that may have a relevant role in
NSCLC progression.

Survival data associatedwith this cohort allowed the stratification
of patients and identification of SNV evolutionary signatures (Fig. 4),
although the observed evolution is rather limited in the early-stage
setting. We found that early acquisition of MGA, FGFR1, and ATM
mutations confer favorable prognosis, while alterations ofWT1 and cell
cycle regulators (CCND1 and CDKN2A) yield a signature of negative
prognosis. Interestingly, an evolution from CDKN2A to CYLD depicts a
particularly unfavorable outcome compared to patients lacking

mutation of CYLD (Fig. 4, Supplementary Data 2). The CYLD tumor
suppressor gene encodes for a deubiquitinating enzyme involved in
cylindromatosis syndrome, characterized by multiple skin benign
tumors. Somatic CYLD mutations have been found in several cancer
types40.

Metastatic lung adenocarcinoma (Fig. 5) — 3 SNV evolutionary
signatures. Since localized NSCLC data provided limited evolutionary
information, we also analyzed advanced NSCLC data using ASCETIC.
Specifically, we exploited the MSK-MET dataset41, which includes both
genomic and clinical information on metastatic NSCLC. Our analysis
first focused on lung adenocarcinoma (LUAD), which traditionally has
been classified based on morphology into various subtypes, including
in situ, minimally invasive, invasive non-mucinous, invasive mucinous,
colloid, fetal, and enteric-type adenocarcinoma35. From a genetic
perspective, frequent driver mutations in LUAD include EGFR, KRAS,
HER2, BRAF, and PIK3CA. Analyzing a dataset of 1176 LUAD patients
from MSK-MET using our algorithm, we identified three subtypes
based on three distinct SNV evolutionary signatures.

All three groups are characterized by KRAS/TP53 progression. The
reported frequencyofKRAS/TP53 co-mutation ranges from31% to46%42.
Inour analysis,weobserved that this feature is broadly conservedacross
different clusters, but it is not significantly associated with the outcome
of a particular subtype. In contrast, the convergence of different routes
onto RBM10 mutations seems to provide better survival to patients
showing LUAD SNV EvoSig #1, while the late acquisition of mutations in
SMARCA4markedly increases risk for patients of cluster 3. Interestingly,
clonal RBM10 loss of function has been associated with shorter survival
in early-stage lung cancer patients43, while in our analysis subsequent
evolution towards RBM10 mutations predicts favorable prognosis in
metastatic samples, indicating that the timing of mutation acquisition
during tumor history is relevant. cluster 3 is also characterized by high
prevalence of early KEAP1 mutations (Supplementary Fig. 20), which
anticipate in general a dismal outcome unless followed by RBM10
mutations. Of note, the direction of tumor progression from an initial
KRAS mutation appears to dictate subsequent prognosis: median OS is
12 months vs not reached in KRAS to SMARCA4 and KRAS to EPHA3
groups, respectively (Fig. 5). Interestingly, SMARCA4 alterations have
been associated with shorter OS in patients with metastatic NSCLC44.

Additional internal subgrouping of patients according to specific
trajectories revealed interesting survival differences, e.g., in patients
with KRASmutations that acquire or not EPHA3 variants, patients with
EGFR or KEAP1 alterations evolving or not to mutant RBM10, and
patients with EGFR only or EGFR-to-NF1/PIK3CA genesmutations (Fig. 5
and Supplementary Data 2). Finally, cluster 2 shows an intermediate
survival and an associated LUAD SNV EvoSig #2 with no specific evo-
lutionary pattern other than the common KRAS/TP53 co-mutation.
Likely, patients in this group carry additional genetic events that we
did not consider in our analysis, such as copy number variations.

Validation of ASCETIC’s LUAD SNV evolutionary signatures on
unseen data. We validated ASCETIC’s LUAD SNV evolutionary sig-
natures on Pan-Cancer Atlas32 unseen data. The LUAD dataset within
the Pan-Cancer Atlas consists of information gathered from 566
patients, primarily at the time of their diagnosis. Also in this case,
ASCETIC’s model was developed specifically for metastatic lung ade-
nocarcinomas. Nevertheless, the findings showed impressive uni-
formity, as ASCETIC accurately detected all three subtypes of LUAD in
the validation dataset (Supplementary Figs. 101–102).

We further validated the prognostic potential of the discovered
clusters. ASCETIC identified three evolutionary signatures of lung
adenocarcinoma. These signatures successfully stratified the patients
in the validation cohort into three distinct groups (48, 200, and 10
patients, respectively), exhibiting significant differences in survival
(p < 0.0001). The observed clusters consistently demonstrated similar
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behaviors in the validation datasets, with patients of clusters 1 and
2 showing a survival rate at 32 months of 75% and 50%, respectively, in
both testing and validation cohorts, while patients carrying evolu-
tionary trajectories toward SMARCA4 (cluster 3) exhibit the worst
survival outcomes with a 35% survival rate at 32 months.

Validation on external data of the three LUAD subtypes. We vali-
dated the existence of 3 subtypes discovered by ASCETIC for lung
adenocarcinoma on unseen bulk data for more than 400 patients
from three different datasets45–47. To this end, we built a classifier by
standard random forest (mean of squared residuals 0.021; explained
variance 90.53) to predict the subtype classification obtained
by ASCETIC on LUAD samples and used such classifier to perform
predictions for the patients in the validation dataset. We report
oncoprint and survival analysis performed on the LUAD dataset
(Supplementary Figs. 21–22), whose subtypes show very consistent

mutational profiles and significant differences in OS (p = 0.0054) as
predicted by ASCETIC.

Metastatic lung squamous cell carcinoma (Fig. 6) — 3 SNV evolu-
tionary signatures. Squamous cell carcinoma (LSCC) represents
approximately 30% of all NSCLC cases. Standard treatment is still
based on chemotherapy doublets. Traditionally, four histologic sub-
types are identified: clear cell, small cell, papillary, and basaloid, the
latter being an aggressive form with shortest survival. Attempts to
molecularly define this cancer led to the identification of FGFR1, PI3K,
TP53, andDDR2 genes as possible therapeutic targets, but this has not
been translated into effective treatments thus far. More recently, four
LSCC subgroups (primitive, classical, secretory, and basal) were
identified by gene expression data across different datasets, with
the primitive type showing significantly worse survival48,49. Several
other studies clustered patients by gene expression/methylation,

Fig. 4 | ASCETICanalysis of early-stagenon-small cell lung cancer samples from
the TRACERx research project36 (100 patients). We show the 3 extracted SNV
evolutionary signatures (a), the evolutionary model of repeated evolution inferred

by the framework (b) and the Kaplan–Meier analysis (log-rank p-value) of the
associated the evolutionary signatures (c, d).

Article https://doi.org/10.1038/s41467-023-41670-3

Nature Communications |         (2023) 14:5982 8



while no such classification has been attempted by mutation over-
representation or phylogenies.

We analyzed mutational data of 202 metastatic LSCCs from the
MSK-MET dataset: the three SNV evolutionary signatures identified by
ASCETIC classified patients into three risk groups with significantly

different survival, based on the relative frequency and ordering of
somatic alterations. Overall, the most prevalent alterations involved
genes such as TP53, CDKN2A, KEAP1, and KMT2D. These genes were
among the 10 significantly mutated genes previously identified by the
TCGA data analysis49.

Fig. 5 | ASCETIC analysis of lung adenocarcinoma metastatic samples from
MSKMET41 (1176 patients).We show the 3 extracted SNV evolutionary signatures
(a), the evolutionary model of repeated evolution inferred by the framework (b)

and the Kaplan–Meier analysis (log-rank p-value) of the associated the evolutionary
signatures (c–f).
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The best outcome was associated to LSCC SNV EvoSig #1 invol-
vingmutations in FAT1 and TP53with convergent evolution toward the
ZFHX3 (Zinc finger homeobox 3, also known as ATBF1) gene. ZFHX3
mutations are highly over-represented in cluster 1 compared to clus-
ters 2 and 3 (72% vs 2%; OR = 73.1; χ-squared p <0.0001; Supplemen-
tary Fig. 23) and invariably occur as a later event. Stratification of
patients according to the acquisition of ZFHX3mutations after TP53 or
FAT1 versus all other TP53- or FAT1-mutated cases showed a marked
difference in OS. ZFHX3 is a putative tumor suppressor gene and has

been frequently found mutated in solid cancers50. Recent work iden-
tified ZFHX3 mutations as an independent prognostic biomarker of
longer OS in NSCLC patients treated with immune checkpoint
inhibitors51,52, possibly explained by higher mutational burden and
increased tumor immunogenicity52. In contrast, LSCC SNV EvoSig #3 is
associated with the worst outcome and is characterized by a CDKN2A,
PTEN and NFE2L2 progression, while evolution from CDKN2A to TP53
describes LSCC SNV EvoSig #2, and is linked to amoderate risk. Within
cluster 3, PTEN mutated patients showed a strikingly short OS when

Fig. 6 | ASCETIC analysis of lung squamous cell carcinoma metastatic samples
from MSK-MET41 (264 patients). We show the 3 extracted SNV evolutionary sig-
natures (a), the evolutionary model of repeated evolution inferred by the

framework (b) and the Kaplan–Meier analysis (log-rank p-value) of the associated
the evolutionary signatures (c–f).
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progressing to NFE2L2 (see Fig. 6 and Supplementary Data 2, median
OS 3 vs 18 months in PTEN-to-NFE2L2 vs PTEN cases, respectively;
p <0.0001).

Validation of ASCETIC’s LSCC SNV evolutionary signatures on
unseen data. We validated ASCETIC’s LSCC SNV evolutionary sig-
natures on Pan-Cancer Atlas32 unseen data. The LSCC dataset within the
Pan-Cancer Atlas includes information obtained from 487 patients,
primarily gathered during the diagnosis stage. Although ASCETIC’s
model being specifically developed for metastatic lung squamous cell
carcinomas, the outcomes exhibited remarkable consistency. ASCETIC
effectively identified all three subtypes of LSCC in the validation data-
set, showcasing its good performance (Supplementary Figs. 103–104).
We conducted additional validation to assess the prognostic potential
of the identified clusters. ASCETIC detected three distinct evolutionary
signatures in lung squamous cell carcinoma. These signatures effec-
tively categorized thepatients in the validation cohort into threegroups
(47, 62, and 126 patients, respectively), revealing notable variations in
survival rates (p =0.009). The observed clusters consistently displayed
analogous behaviors in the validation datasets. In particular, the
patients carrying co-occurrent mutations in TP53 and ZFHX3 genes
showed the best prognosis, with a survival rate after 1 year above 80%.

Large-scale sequencing and survival data analysis
We applied ASCETIC to the Pan-Cancer Atlas32 and the MSK-MET41

datasets, considering a total of more than 35,000 samples across most
cancer types (see Methods). All the evolutionary models returned by
ASCETICon thesedatasets are provided as SupplementaryData 4 and 5.

After performing the ASCETIC framework on these data, we
assessed the presence of significant differences in prognosis corre-
lated to the evolutionmodels returned by our framework. To this end,
we selected for each cancer type the set of alterations associated with
the minimum cross-validation error and stratified the patients into
different risk groups. We then performed survival analysis of the dif-
ferent risk groups via standard Kaplan–Meier estimate (see Methods).
We uncovered different SNV evolutionary signatures from a total of 25
cancer (sub)types showing significant differences in OS.

Furthermore, a comprehensive pan-cancer analysis was con-
ducted by aggregating the results obtained from the inferences per-
formed in the individual subtype. This approach yielded insights into
the recurrent evolutionary trajectories observed across different can-
cer types. By combining the results, we gained a deeper understanding
of the shared patterns and trends of evolution at the pan-cancer level.
These results are reported in Supplementary Data 6.

We discuss in detail the results for 2 selected cancer types, leaving
the remaining analyses as Supplementary Materials (see Supplemen-
tary Figs. 26–88).

Prostate cancer (Fig. 7) — 3 SNV evolutionary signatures. Prostate
cancer (PCa) is the second most common tumor in men worldwide.
Metastatic PCa samples (n = 280) were clustered by ASCETIC in three
SNV EvoSig subgroups (Fig. 7). While all three carry TP53 mutations,
typical of advanced PCa53, subsequent alterations in KMT2C, AR, or
CTNNB1 appear to confer significantly poor outcome, while evolution
toGRIN2Agrants amore favorable of disease. Of note,KMT2C-mutated
PCa patients have been previously shown to have a reduced disease-
free survival54. Furthermore, TP53, AR, and KMT2C were the top three
differentially altered genes in a cohort of 150 castration resistant PCa
cases compared to primary tumors55. Similarly, cell-free DNA sequen-
cing revealed activating CTNNB1mutations in patients with castration-
resistant disease at progression56. Thus, ASCETIC recapitulated all
most unfavorable events of PCa evolution in SNV EvoSig #3. In con-
trast, cluster 1, displaying the longestOS, shows a collection of low-risk
evolutionary arcs, including an interesting KMT2D, ZFHX3, and MED12
progression. Thus, late acquisition of ZFHX3 mutations is associated

with better prognosis in at least two different cancers, i.e., NSCLC and
PCa. Interestingly, PCa-specific MED12 mutations were shown to
reduce the assembly of the Mediator complex, an important regulator
of PCa progression to castration resistance57. In a recent analysis,
mutations of KMT2D and MED12 were found over-represented in the
group of patients with good prognosis58. Lastly, an intermediate sur-
vival is associated with SNV EvoSig #2, which partially overlaps with
SNV EvoSig #1, but without further evolution to low-risk variants like
GRIN2A (Fig. 7, Supplementary Data 2).

Validation of ASCETIC’s PCa SNV evolutionary signatures on
unseen data. We validated ASCETIC’s PCa SNV evolutionary signatures
on two external datasets, the first obtained from the Pan-Cancer Atlas32

and the second fromtheSU2Cstudy59. ThePan-CancerAtlas PCadataset
provides data from494primary patients. ASCETIC’smodel, constructed
on metastatic prostate cancer, was still capable of successfully identi-
fying twooutof three PAc subtypes (156 and 58patients, respectively) in
this first validation dataset (Supplementary Figs. 105–106). We further
conductedanadditional validationusing thedataset fromSU2C59,which
encompasses data from 444 cases of advanced prostate cancers. In this
second validation, ASCETIC successfully identified and retrieved all the
three subtypes (6, 48, and 6 patients, respectively) inferred on theMSK-
MET cohort (Supplementary Figs. 107–108).

In both validation datasets, ASCETIC successfully established a
correlation between the identified evolutionary signatures and sig-
nificant differences in survival (p = 0.022 in the first validation dataset
and p =0.00026 in the second). These discovered signatures con-
sistently exhibited an association with prognosis across both valida-
tion datasets as well as the training dataset.

Endometrial cancer copy number low subtype (Fig. 8) — 4 SNV
evolutionary signatures. Endometrial cancer (EC) is the fourth most
common malignancy among women. It is commonly classified in two
histo-pathological groups with different prognosis60. EC patients (with
low copy number variation) were sorted by ASCETIC into 4 subgroups
based on SNV evolutionary signatures (Fig. 8). All clusters share an
evolutionary step through ARID1A. ARID1A is a tumor suppressor gene
in EC: its loss was reported to have a role in EC initiation and
progression61. However, ARID1A mutations do not seem to be asso-
ciated with differential survival in EC patients in the considered copy
number low subtype, according to our analysis. Similarly, alteration of
CHD4 gene is found in all clusters and thus, it is not prognostic.
However, subsequent evolution from CHD4 to PIK3CA mutations
confers better prognosis to clusters 1 and 2. Mutations of CHD4 and
PI3KCA have been described to drive progression from hyperplasia to
EC but have not yet been associated to prognosis62. In addition, clus-
ters 1 and 2 (showing similar signatures and survival) share common
early lesions in other genes such as ARHGAP35, MED12, BCOR, and
SOX17. Cluster 3 is associated to SNV EvoSig #3, characterized by early
mutations of FGFR2with secondarymutations inARID5B. Interestingly,
FGFR2 activating mutations have been previously associated with
shorter disease-free survival in stage I/II endometrioid EC patients63.
Finally, cluster 4 shows the worst OS; it is associated to endometrial
SNV EvoSig #4, defined by high prevalence of secondary alterations in
CTCF gene, in a typical PIK3CA-to-CTCF evolution. In line with our
analysis, CTCF mutations have been associated with EC relapse,
metastasis, and poor survival64. To further cross validate this finding,
we observed that patients with a PIK3CA-to-CTCF evolution have sig-
nificantly shorter OS compared to all other PIK3CA-mutated patients
who did not acquire CTCF mutations (Figs. 7 and 8).

Discussion
The accumulation of alterations in certain driver mutations can follow
repeated routes in different cancer patients. Therefore, detecting such
trajectories couldbe crucial for implementing appropriate therapeutic
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responses. In fact, being able to stratify cancer patients based on their
molecular evolution could enable the prediction of the future steps of
the disease progression, potentially allowing the implementation
of optimal and personalized treatments that anticipate the next stages
of the cancer’s evolution.

The ASCETIC framework enables the extraction of temporal rela-
tionships among driver alterations that show consistent accumulation
dynamics across multiple patients during tumor progression. The
method leverages model selection combined with an extended version
of Suppes’ probabilistic approach to causality and can process hetero-
geneous genomics datasets in an unsupervised manner. This approach
allowed us to discover the existence of cancer (sub)type-specific single
nucleotide variants (SNV) evolutionary signatures associated to different
diseases outcomes. These signatures represent the “favored trajec-
tories” of acquiring driver alterations during cancer evolution that can
be used to stratify patients and characterize molecular evolution
dynamics leading to potentially different prognostic responses.

Notably, the concept of SNV evolutionary signatures complements
that of single base substitution (SBS) mutational signatures. While SBS
mutational signaturesmodel themechanisticmutational processes that
cause alterations in any cancer genome, SNV evolutionary signatures
reveal conservedpatternsof acquiring functionally advantageous single
nucleotide variants that emerge during cancer development.

It is important to note that ASCETIC does not rely on pre-
annotated driver mutations as input data. Instead, ASCETIC operates
on the premise that the accumulation of passenger mutations during
cancer progression may occur randomly among different patients.
However, a small subset of driver mutations, responsible for driving
tumor evolution, may exhibit consistent ordering across multiple
patients. Therefore, ASCETIC identifies these small sets of genes that
consistently appear in a specific order, which can be considered as
driver mutations. By definition, the repeated evolutions inferred by
ASCETIC involve these drivermutations, shedding light on their crucial
role in cancer development and progression.

Fig. 7 | ASCETIC analysis of prostate cancer samples from MSK-MET41 (280
patients). We show the 3 extracted SNV evolutionary signatures (a), the evolu-
tionary model of repeated evolution inferred by the framework (b) and the

Kaplan–Meier analysis (log-rank p-value) of the associated the evolutionary sig-
natures (c, d).
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The ASCETIC framework has been intentionally designed with
modularity in mind. This unique characteristic allows for the integra-
tion of various cutting-edge phylogenetic tools to infer mutational
trees, which serve as input to ASCETIC. Moreover, our method incor-
porates a bootstrap and resampling scheme, enhancing the statistical
robustnessof thefindings.While all computationalmethods for cancer
data analysis can be influenced by sampling bias or issues related to
noise and resolution, our tool employs advanced statistical approa-
ches to address these challenges. Furthermore, ASCETIC provides a
cross-validation score for each generated evolutionary trajectory. This
feature ensures a comprehensive evaluation of its reliability and offers
a direct estimation of the uncertainty associated with the results.

We demonstrated the effectiveness of our method by analyzing
cancer sequencing data at various resolutions, including single-cell data,
multi-region data, and large-scale NGS sequencing datasets encom-
passing most cancer types. These analyses revealed associations that
were correlatedwith significant differences in prognosis, demonstrating
the translational implications of our approach. Furthermore, they
demonstrated the versatility of our framework, which can effectively
handle experimental data generated by different NGS technologies.

We finally note that, in principle, ASCETIC might accommodate
any generic omic events (e.g., copy number alterations or chromatin
modifications such as epigenetic changes), as long as they are heritable

during cancer evolution. This capability could enable us to move
beyond a genomic-centered characterization of cancer evolution.
Furthermore, ASCETIC has the capability to consider not only survival
data but also distinct phenotypic and biological features as potential
targets for association through regularized regression. By incorpor-
ating these additional factors, ASCETIC has the potential to offer fur-
ther insights into the mechanisms associated with the evolutionary
steps. Exploring these possibilities is an area of future research that
remains to be investigated.

Methods
Data model
We consider two inputs for our inference task, namely a cross-sectional
dataset D and a temporal graph GP. The cross-sectional dataset D
comprises n somatic alterations V = {1,…,n} form distinct patients and
is represented as an m × n binary data matrix where the rows are the
patients and the columns are the somatic alterations modeled as
Bernoulli random variables. For each alteration we report 1 if it is
observed in each patient and0otherwise. Furthermore, we assume the
n alterations to have been selected as possible candidate drivers, e.g.,
as previously discussed7, and, thus, n≪m.

We then augment our inputs with an estimation of temporal
orderings among the selected alterations as the ones that might be

Fig. 8 | ASCETIC analysis of endometrial cancer samples from Pan-Cancer
Atlas32 copy number low subtype (147 patients). We show the 4 extracted SNV
evolutionary signatures (a), the evolutionary model of repeated evolution inferred

by the framework (b) and the Kaplan–Meier analysis (log-rank p-value) of the
associated the evolutionary signatures (panels c–d).
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obtained by building mutational tree models from single-cell or mul-
tiple biopsies data (see Supplementary Materials for details). As such,
for each sampleϕwehave aDirectedAcyclicGraph (DAG)Gϕ = (Vϕ,Aϕ),
where the nodes of the graph Vϕ ⊆ V are the genomic alterations
observed in the patient ϕ-th and the directed arcs Aϕ denotes a tem-
poral order indicating that the parent node likely occurred earlier and
the child node later during the evolution of the tumor as intended, e.g.,
by a mutational tree.

If we consider ϕ = 1,…,m samples, we can extend this repre-
sentation in order to consider the evolution across multiple patients.
To do so, we define GP = (V,A) as the union graph of all the Gϕ, that is
the graph containing all the alterations V connected by the arcs pre-
sent in at least one of the Gϕ, i.e., A=

Sn
ϕ= 1Aϕ. In addition, this graph is

augmented with a dummy node R (i.e., Root) connected toward all the
alterations, which represents the wild type genotype. We notice that
this construction of GP may lead to graphs containing cycles. Such
property implies that these graphs do not directly describe one unique
temporal ordering among events. We refer to the Supplementary
Materials for a discussion on how to build such inputs from the cur-
rently available genomics data.

Estimating the time order among driver alterations
As mentioned, the temporal graph GP may contain cycles, indicating
inconsistencies in the temporal orderings inferred for eachpatient, i.e.,
it does not define a global time ordering between all events. This may
be due to multiple reasons, such as real irregularities in the progres-
sions (e.g., a gene is observed as an earlymutation in one patient, but it
is also observed late in another one) arising among the different
patients or noisy observations which led to incorrect inference of the
timeorderings. Regardless of the reasons, cycles are expected tooccur
in practice, while analyzing the kind of data we have at hand, hence
there is the need for a measure to quantify such irregularities and for
an algorithm to estimate a set of time orderings which are most sup-
ported by the data (i.e., minimizing the observed inconsistencies)
across multiple patients.

To this end, we consider a measure of hierarchy within a directed
graph defined as follow. Given a directed graph G = (V,A) and a ranking
metric (e.g., in our case the time ordering of accumulation of driver
alterations during tumor evolution), any arc from nodes that are
“higher” in the hierarchy (e.g., alterations that occur in later stages of
the tumor) to nodes that are “lower” in the hierarchy (e.g., alterations
that occur at the initiation of the tumor) are not expected and they are
said to be causing “agony”8.

Although the number of possible rankings of a directed graph is
exponential, Tatti and colleagues8 provide a polynomial-time algo-
rithm forfinding a good ranking atminimumagonywith respect to the
union graph given as input.We here adopt this approach to compute a
preferential ranking r(.), i.e., a set of time orderings well supported by
our observations GP. Furthermore, by removing any arc inconsistent
with such a ranking, we can learn from the data a set of temporal
ordering that are best supported among each patient and provide an
ordering among the considered driver mutations.

Modeling selective advantage in tumor evolution
We model selective relations by enforcing a set of probabilistic con-
straints in our model derived by the theory of probabilistic causality7.
The resulting network, named Suppes-Bayes Causal Network (SBCN)10,
biologically resembles the notion of accumulation of somatic altera-
tions during cancer progression.

Specifically, in its original formulation, two probabilistic condi-
tions are enforced in a SBCN, namely Temporal Priority (TP) and
Probability Raising (PR). TP refers to the presence in the data of a
temporal pattern. Let us consider a pair of event u and v (e.g., any pair
of genetic alterations) and let us assume that we have a relation of
selective advantage between them where u precedes and selects for v.

In this case, TP implies the presence in the data of observations where
uoftenoccurs before v, yetwithpossible irregularitieswhere this is not
the case. This notion can be naturally re-framed in terms of the exis-
tence of a temporal hierarchy among the two events as described
before. Therefore, we can consistently evaluate when the TP condition
is verified for any event toward its candidate successor gene by com-
puting a ranking r(.) as defined above and then verifying if r(u) < r(v).

The PR condition subsumes instead the presence of a statistically
significant pattern of occurrence between pair of observables. In par-
ticular, this adds a further meaning to the ranking between pair of
events defined above: u is a validpredecessorof v if it occurs before and
if a significant pattern is observed between the two events with the
earlier occurrence of u raising the expectation of subsequently
observing v aswell. This condition has been proved to be equivalent to
the presence of positive correlation between the events but can be
efficiently verified only if we assume the presence of only conjunctive
predecessors of common later events10.

To overcome this hurdle, we here extend probabilistic causation
in order to directly exploit the temporal information provided in the
temporal graph GP. To do so, instead of estimating the conditions on
thewhole dataset for any pair of event u and v, we limit our analysis to
consider only the subset of the data where both u and v are observed
together. This leads us to the formulationof an extendedversionof the
theory of probabilistic causality where we can verify the PR condition
as:

Pðu,vjtu < tvÞ> Pðu,vjtu ≥ tvÞ ð1Þ

This is equivalent to:

Pðtu < tvju,vÞ>Pðu,�vÞ ð2Þ

This intuitively aims to understand whether, when u and v both
happened, u consistently occurred before. We refer to the Supple-
mentary Materials for the mathematical proof.

As extensively discussed in the Supplementary Materials, this
formulation allows us to define an efficient algorithm framework
(ASCETIC) to perform the inference of SBCNs. The algorithm first
creates a partially ordered set (poset) among the n genomic altera-
tions. This poset accounts for TP being computed by a ranking at
minimum agony derived from the temporal graph GP. Furthermore, it
also accounts for PR as defined above. It considers each pair of event u
and v and estimates both P(tu < tv | u,v) and P(u,�v) from D and GP. Once
the poset is created, the final model can be estimated by maximum
likelihood. This step aims at reducing the presence of false positives,
yet possibly leading to some false negative.

Tests on simulated data
We extensively assessed the performance of our method on simulated
data with different configurations, with particular focus of comparing
the evolutionary models output of ASCETIC with the ones inferred by
competing methods. We considered input data for multiple patients
coming both from NGS sequencing of a single biopsy per tumor and
single-cell sequencing orbulk sequencingNGSdata providingmultiple
samples for the same tumor.

For the first scenario, we randomly generated 100 weakly con-
nected directed acyclic graphs of density 0.4 and 10 nodes (Bernoulli
variables with value 0 or 1). We generated samples from the dis-
tribution induced by such DAGs constraining for a cumulative
model10,65. We repeated these experiments for the case of networks of
conjunctive AND parent sets, disjunctiveOR parent sets and exclusive
disjunctive XOR parent sets. Furthermore, we considered datasets of
sample size 50, 100, and 200 patients and we added noise to the data
including randomentries at different probabilities tomodel any error
in the generation of the data. We considered noise of levels 0%, 5%,
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10%, 15%, and 20%. This led us to a total of 4500 randomly generated
cross-sectional datasets.

For each dataset, we then simulated cancer cell fractions (CCF).
To do so, we randomly generated a total order consistent with the
generative structure for each (possibly noisy) sample. This total
order may represent a set of time observations such as follow-ups
through time of patients. For each node in the ordering, we gener-
ated a random value within (0,1) with higher values representing
cancer cell fractions of early mutated genes and lower values repre-
senting late mutations. We then added noise to the simulated CCF by
sampling fromaGaussian distributionwithmeanbeing the simulated
CCF and variance of 0.00, 0.01, 0.05, 0.10, and 0.20. With this, we
obtained 22,500 configurations for the NGS sequencing of a single
biopsy data type.

We also considered a simple model of single-cell sequencing and
bulk sequencing NGS data providing multiple samples for the same
tumor. In this case, we simulated the progression for an individual
patient as a tree with different generative models to generate single-
cell or bulk sequencing data65. Also in this case we repeated the
experiments for 100 independent runs and for each of them we gen-
erated a progression model as a composition of 3 individual-level
progressions with independent or overlapping events. In the first case,
our random structures consisted of 3 trees of 5 genes each (structures
of 15 nodes) without any overlap among the genes (i.e., a gene in tree 1
is not present in neither tree 2 nor 3). In the second case, we still
generated 3 trees of 5 genes each but this time we randomly over-
lapped 5 of the genes, leading to topologies of 10 nodes. In the case of
bulk sequencing, we generated 10 biopsies for either 10 or 20 patients
(i.e., cross-sectional datasets of 100 or 200 entries) and adopted noise
levels of 0%, 1%, 5%, 10%, and 20%. In the case of single-cell sequencing,
we generated 25 cells for either 5 or 10 patients (i.e., cross-sectional
datasets of 125 or 250 entries). In this case, as previously done65, we
usedunbalancednoise levels for falsepositive and false negative (allele
dropout) errors respectively of 0%, 1%, 2%, 3% and 4%, and 0%, 10%,
20%, 30%, and 40%. This led to a total of 4000 randomly generated
cross-sectional datasets. In this case we did not generate CCFs, but we
inferred the evolutionary model from the simulated data of each
patient with the variant of Edmonds’ algorithm proposed in the TRaIT
framework65.

We evaluated the results for each configuration comparing
ASCETIC, the CAPRI algorithm10 and the standardmaximum likelihood
fit approach for structure learning in terms of true positives (TP), true
negatives (TN), false positives (FP) and false negatives (FN) with
respect to the generative ground truth model. Specifically, we defined
TP the arcs both in the generative model and in the inferred ones.
Similarly, TNwere the arcsmissing in both themodels. FP and FNwere
respectively the arcs inferred by the algorithms but not in the gen-
erative model and the arcs not inferred which were in the generative
model. Given these measures, we assessed the results in terms of
accuracy ( TP +TN

TP +TN + FP + FN), precision (
TP

TP + FP), recall (or sensitivity) (
TP

TP + FN)
and specificity ( TN

TN + FP).

Processing single-cell sequencing data
Weconsidered single-cell data generatedwith the Tapestri Sequencing
Platform for a set of myeloid malignancies15. The dataset provides
single-cell mutational profiles of 146 samples from 123 distinct
patients. Following the analysis provided in the original paper15, as a
quality filter, we considered only samples with at least 100 single cells
and 2 mutations. We built D for all the samples by reporting 1 if a
certain mutation was observed in at least one cell for each patient. GP

was instead obtained by running ∞SCITE66 on the single-cell data
independently for each sample with the following parameters for
MCMC execution and noise estimation: -r 10 -l 1000000 -fd 0.01 -ad
0.10 -cc 0.001 -s -p 10000 -e 0.2.

Processing multi-region sequencing data
We considered the data from the TRACERx research project36 com-
prising multi-region sequencing data for a total of 302 biopsies from
100 distinct patients affected by lung cancer and a total of
65421 somatic substitutions.Webuilt D for all the samples by reporting
1 if a certainmutationwas observed in at least one of themulti-regional
samples for the patient. GP was instead obtained directly from the
models inferred by the REVOLVER method6. We selected for the
ASCETIC analysis genes occurring in at least 3 samples and samples
with at least 2 variants.

Processing single biopsy NGS sequencing data
We considered the data from the Pan-Cancer Atlas32 and the MSK-
MET41 studies for a total of more than 35,000 distinct patients across
most cancer types. Specifically, we selected for the analysis all the
patients where both somatic mutations and copy number alterations
data were available and cancer types with at least 50 samples. We then
considered for each cancer type the top mutated genes from a list of
known cancer-related genes67–69 thatwere observed at least in 1%of the
samples, for a maximum of 15 candidate driver mutations per cancer
type (our input matrix D). GP was estimated considering cancer cell
fractions CCFs data computed from read counts adjusted for copy
number data. Specifically, to derive CCFs we utilized variant allele
frequencies data obtained from coverage information. These fre-
quencies were normalized with an estimate of the number of copies in
the patients’ genomes based on copy number data, relative to the
expected normal ploidy. The copy number data utilized for the ana-
lysis were obtained from Affymetrix SNP6 for the Pan-Cancer Atlas
studies and from targeted sequencing via MK-IMPACT for the MSK-
MET dataset. We report more details in the Supplementary Materials.

ASCETIC parameters for the analyses of real data
In order to improve the performance and the stability of ASCETIC on
real data, we adopted a re-sampling procedure for a robust estimation
of the r(i) rankings. For the analysis of multi-region sequencing data,
weperformed 100bootstrap iterationswherewe sampledour inputsD
and GP and estimated rankings among genes each time; we then used
for the subsequent steps of ASCETIC, themean (rounded to integer) of
these 100 rankings. For the analysis of single biopsy NGS sequencing
data, we adopted a similar idea, but this time, we performed re-
sampling for a robust estimation of cancer cell fractions by sampling
from a beta distribution given the read counts for each sample; also in
this case, we iterated this procedure 100 times and we used the mean
(rounded to integer) of the 100 rankings as input to ASCETIC. The
likelihood fit step of ASCETIC was performed with the hill climbing
algorithm with 100 restarts using AIC as a model selection criterion.
We finally performed cross-validation to estimate the confidence of
each temporal relation returned by our method. This was done using
an 80 − 20 split and 100 repetitions of the ASCETIC pipeline.

Survival analysis
To assess significant differences in prognosis implied by the evolution
models returned by ASCETIC, we implemented a combined regular-
ized Cox regression andKaplan–Meier survival analysis70. In particular,
we considered all the parental relations between driver mutations
inferred by ASCETIC as input covariates for this analysis.

For each tumor, we selected the set of alterations associated with
the minimum cross-validation error and stratified the patients into
different risk groups. The survival curves of the different risk groups
were finally assessed via standard Kaplan–Meier analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
All cancer data used in this study are publicly available from the rela-
tive original publication or from the cBioPortal repository (https://
www.cbioportal.org/). In particular, the Acute Myeloid Leukemia
dataset from ref. 24 canbedownloaded at https://www.cbioportal.org/
study/summary?id=aml OHSU 2018. Moreover, the Pan-Cancer Atlas
datasets and the MSK-MET datasets can be downloaded from the
cBioPortal repository at https://www.cbioportal.org/datasets. The list
of the Pan-Cancer Atlas datasets is the following:

AcuteMyeloidLeukemia (AML). Adrenocortical Carcinoma (ACC).
Bladder Urothelial Carcinoma (BLCA). Brain Lower Grade Glioma
(LGG). Breast Invasive Carcinoma (BRCA). Cervical Squamous Cell
Carcinoma (CESC). Cholangiocarcinoma (CHOL). Colorectal Adeno-
carcinoma (COADREAD). Diffuse Large B-Cell Lymphoma (DLBC).
Esophageal Adenocarcinoma (ESCA). GlioblastomaMultiforme (GBM).
Head and Neck Squamous Cell Carcinoma (HNSC). Kidney Chromo-
phobe (KICH). Kidney Renal ClearCell Carcinoma (KIRC). Kidney Renal
Papillary Cell Carcinoma (KIRP). Liver Hepatocellular Carcinoma
(LIHC). Lung Adenocarcinoma (LUAD). Lung Squamous Cell Carci-
noma (LUSC). Mesothelioma (MESO). Ovarian Serous Cystadeno-
carcinoma (OV). Pancreatic Adenocarcinoma (PAAD).
Pheochromocytoma and Paraganglioma (PCPG). Prostate Adeno-
carcinoma (PRAD). Sarcoma (SARC). Skin Cutaneous Melanoma
(SKCM). Stomach Adenocarcinoma (STAD). Testicular Germ Cell
Tumors (TGCT). Thymoma (THYM). Thyroid Carcinoma (THCA).
Uterine Carcinosarcoma (UCS). Uterine Corpus Endometrial Carci-
noma (UCEC). Uveal Melanoma (UVM).

The MSK-MET dataset can be downloaded at MSK-MET. The
remaining data are available within the Article, Supplementary Infor-
mation or Source Data file. Source data are provided with this paper.

Code availability
ASCETIC is available as an R package on GitHub (https://github.com/
danro9685/ASCETIC).
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