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Abstract

In the statistical and actuarial literature, Lp-quantiles, p ∈ [1,+∞), represent an important class
of risk measures defined through an asymmetric p-power loss function that generalize the classical
(L1-)quantiles. By exploiting inter-order relations between partial moments, we show that for a
Student’s t distribution with ν ∈ [1,+∞) degrees of freedom the Lν−j-quantile and the Lj+1-quantile
always coincide for any j ∈ [0, ν − 1]. For instance, for a Student’s t distribution with 4 degrees of
freedom, the L4-quantile and L1-quantile are equal and the same holds for the L3-quantile and L2-
quantile; for this distribution, closed form expressions for the Lp-quantile, p = 1, 2, 3, 4 are provided.
Explicit formulas for the central moments are also established. The usefulness of exact formulas is
illustrated on real-world financial data.
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1 Introduction

Literature on financial risk management and actuarial science is always in need for new techniques to
evaluate and quantify downside risk. For a long time the Value-at-Risk (VaR), that is the quantile of the
loss distribution, has been the benchmark measure for financial risk calculation. Its lack of subadditivity
and blindness to the tail beyond the quantile, brought out the class of coherent risk measures, of which
the Expected Shortfall, is the most well-known representative, see Artzner et al. (1999) and Acerbi
and Tasche (2002). In the recent Fundamental Review of the Trading Book, the Basel Committee on
Banking Supervision recommended the use of ES in place of VaR for the calculation of market risk in
the Basel III acords (see BCBS, 2019), and a similar move is considered by the European Commission
for the insurance regulatory framework Solvency II/III. The debate between academics and practitioners
has then moved to the risk measures statistical properties, which are important when ES and VaR are
implemented in practice, see for instance, Emmer et al. (2015) and Embrechts et al. (2014). Concepts
such as robustness to small perturbations of the loss distribution (Cont et al., 2010), backtestability and
elicitability emerged (Gneiting, 2011; Nolde and Ziegel, 2017). A risk measure that is elicitable is defined
as the minimizer of an expected loss function that can be used to evaluate and compare the accuracy
of risk measure estimates. Due to its tail sensitivity and lack of elicitability, ES has been classified as
less robust and more difficult to backtest than its rival VaR. In this framework, expectiles attracted
attention as the only example of coherent elicitable risk measure, see for instance Delbaen et al. (2016).
Expectiles are defined as the unique minimizer of an expected asymmetric square function. They can be
interpreted as the amount of money that, added to the financial position keeps the ratio between gains
and losses below a fixed threshold. Their link with the Omega Ratio has been observed in Abdous and
Rémillard (1995) and Bellini and Di Bernardino (2017), that also studied their applicability for financial
purposes. Each one of these risk measures, VaR, ES and expectiles have advantages and weaknesses that
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must be carefully weighted depending on the context of application. It is also important to investigate
the impact that different risk measures have on the regulation, i.e. which one is more/less conservative
than the others. In this direction, an important branch of literature focused on the PELVE (Probability
Equivalent Level of VaR and ES), that is a distributional index that provides the equivalence of VaR and
ES for different distributions, see Li and Wang (2023); Fiori and Rosazza Gianin (2023) extended this
index to different risk measures. For expectiles, Koenker (1992, 1993) established that the Student’s t
distribution with 2 degrees of freedom is the only one for which quantiles and expectiles are equivalent for
any level τ ∈ (0, 1). Zou (2014) extended this result characterizing distributions for which the expectile
at level ω(τ) corresponds the τ quantile, for suitable functions ω(·), while Jones (1994) obtained that an
expectile can be defined as the quantile of another distribution.

For p = 1 and p = 2 respectively, quantiles and expectiles can be embedded in the class of Lp-
quantiles, defined as the minimizer of an asymmetric p-power loss function, p ∈ [1,+∞). The level
τ ∈ (0, 1) of the (Lp-)quantile represents the level of asymmetry in the loss function. This class of risk
measures was introduced by Chen (1996) and investigated in terms of risk measures in Bellini et al.
(2014). Recently, there has been a growing interest in Lp-quantiles for quantitative risk assessment as
one of the main applications; see, e.g., Daouia et al. (2019); Gardes et al. (2020); Usseglio-Carleve (2018).
In particular, Daouia et al. (2019) showed that Lp-quantiles steer an advantageous middle course between
ordinary quantiles and expectiles, which allows to cover a large class of heavy-tailed distributions trading
robustness to the influence of potential outliers for estimation efficiency by varying the order p within
the range p ∈ (1, 2). Secondly, Lp-quantiles are more informative than quantiles for p > 1 since they rely
on higher order partial moments, taking into account the whole tail information about the underlying
distribution. This is a major advantage over the latter which use only the information on whether an
observation is below or above the predictor. Arab et al. (2022) compared Lp-quantiles of different order
p and established their link with the Omega ratio of order p.

Here we focus on the special role that the Student’s t distribution plays for the class of Lp-quantiles. We
extend the results in Koenker (1993) and Bernardi et al. (2017) showing that for a Student’s t distribution
with ν ∈ [1,+∞) the Lν−j-quantile and the Lj+1-quantile are equivalent for any level τ ∈ (0, 1), and
j ∈ [0, ν − 1]. This result shows the special symmetry of the Student’s t distribution that balances the
right tail with the left one and contradicts the general feeling that Lp-quantiles are closer to the centre
of the distribution when p increases. As a side result, we also obtain central, upper and lower partial
moments of the Student’s t of order j in terms of the central, upper and lower partial moment of order
ν−j−1. Finally, we obtain a closed form for the Lp-quantile for p = 1, 2, 3, 4 of a Student’s t distribution
with 4 degrees of freedom. This represents one of the few cases where an analytical solution is available
and complements the result in Shaw (2005) where closed form solution for the quantile of a Student’s t are
provided for ν = 1, 2, 4. We note, however, that our solution for the quantile is in a polynomial form and
do not require the evaluation of trigonometric functions. Recently, Daouia et al. (2023) provided closed
form expressions for the L2-quantile (expectiles) of the Student’s t distribution with ν = 4, 6 (among
other special cases).

The paper is organized as follows: Section 2 introduces Lp-quantiles and their main properties. Section
3 presents our results on the partial moments of the Student’s t and the equality of Lp-quantiles. Closed
form solutions for the Lp-quantiles of the Student’s t distribution with 4 degrees of freedom are provided
in Section 4. Finally, the last section illustrates the usefulness of the derived exact formulas to Microsoft
stock logarithmic returns.

2 On the Lp-quantiles

The Lp-quantiles represent an important class of statistical functionals. They arise as a generalization
of quantiles and expectiles and were introduced by Chen (1996) for the testing of symmetry in non-
parametric regression. They are also embedded in the class of M -quantiles defined by Breckling and
Chambers (1988). Consider a convex asymmetric power loss function ℓp,τ : R → R+, ℓp,τ (x) := τ(x+)

p +
(1− τ)(x−)

p, where τ ∈ (0, 1), p ∈ [1,+∞) and x+ = max(x, 0), x− = max(−x, 0) represent respectively
the positive and negative part of x ∈ R. The Lp-quantile of a random variable Y at level τ , denoted
ρp,τ (Y ), is defined as:

ρp,τ (Y ) := arg min
m∈R

E[ℓp,τ (Y −m)] = arg min
m∈R

E[τ((Y −m)+)
p + (1− τ)((Y −m)−)

p], (1)
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provided the expectation exists. Lp-quantiles can also be defined as the solution of the following first
order condition:

τE
[
((Y −m)+)

p−1
]
= (1− τ)E

[
((Y −m)−)

p−1
]
, τ ∈ (0, 1). (2)

The solution is always unique for p > 1. For p = 1, ρ1,τ (Y ) corresponds to the quantile at level τ of Y
and (1) has a unique solution only if the distribution of Y is strictly increasing in a neighborhood of τ .
When p = 2, ρ2,τ (Y ) corresponds to the τ level expectile introduced by Newey and Powell (1987). The
main advantage of using (2) is that it is well defined for random variables with (p− 1)th finite moments,
while (1) requires also the pth moment to be finite.

When τ = 1
2 , the Lp-quantile is the minimizer of the Lp-distance, indeed

ρp, 12 (Y ) = arg min
m∈R

E[
1

2
((Y −m)+)

p + (1− 1

2
)((Y −m)−)

p]

= arg min
m∈R

E[| (Y −m)p |]
1
p .

(3)

From (3), it is easy to see that quantiles and expectiles with τ = 1
2 correspond respectively to the median

and the mean of Y . Lp-quantiles naturally belong to the class of elicitable statistical functionals, i.e.
functionals that can be written as minimizers of a suitable expected loss function, see Gneiting (2011). In
terms of risk measures, Lp-quantiles were investigated by Bellini et al. (2014) in the context of generalized
quantiles. The following proposition summarizes the main properties of Lp-quantiles and is taken from
Proposition 1 in Chen (1996) and Proposition 5 in Bellini et al. (2014):

Proposition 2.1. For any X,Y , with (p− 1)th finite moment, p ≥ 1 and τ ∈ (0, 1):

1. ρp,τ is translation invariant, i.e. ρp,τ (X + c) = ρp,τ (X) + c for any c ∈ R;

2. ρp,τ is monotone, i.e. for any X ≤ Y P-a.s., then ρp,τ (X) ≤ ρp,τ (Y );

3. ρp,τ is positive homogeneous, i.e. ρp,τ (λX) = λρp,τ (X), for any λ ≥ 0;

4. ρp,τ is convex if and only if p = 2, i.e. ρ2,τ (λX + (1 − λ)Y ) ≤ λρ2,τ (X) + (1 − λ)ρ2,τ (Y ) for any
λ ∈ [0, 1];

5. If the distribution of the random variable X is symmetric about its mean m, then ρp, 12 (X) = m and

ρp,τ (X) + ρp,1−τ (X) = 2m;

6. ρp,τ is law-invariant, i.e. if X
d
= Y , then ρp,τ (X) = ρp,τ (Y ).

In particular, properties 1.−4. show that the expectiles are the only example of coherent risk measure
in the class of Lp-quantiles. In terms of interpretability, if we consider the random variable Y as a
financial loss, then ρp,τ (Y ) represents the minimum amount of capital such that:

ρp,τ (Y ) : = inf
{
m ∈ R : τE

[
((Y −m)+)

p−1
]
− (1− τ)E

[
((Y −m)−)

p−1
]
≤ 0

}
= inf

m ∈ R :
E
[
((Y −m)+)

p−1
]

E
[
((Y −m)−)

p−1
] ≤ 1− τ

τ

 . (4)

Equation (4), establishes the link between Lp-quantiles and Omega ratio of order p ≥ 1 defined as:

Ωp(x) =
E
[
((Y − x)+)

p−1
]

E
[
((Y − x)−)

p−1
] , x ∈ R. (5)

Therefore Lp-quantiles, provides the minimum amount of capital that keeps the p Omega ratio, under a
given threshold; for p = 2 we retrieve the usual Omega ratio used as risk-return performance measure in
portfolio management. Omega ratios of order higher than 2, studied, among others, in Bi et al. (2019);
Lu et al. (2022) and Arab et al. (2022), could be employed for investment decision making when investors
care not only about the mean and variance but also higher moments (Bi et al. 2019). In particular, for
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p = 3, the L3-quantile at level τ ensures that the ratio between the semi-variances of returns above and
below the target x is no greater than 1−τ

τ .
One of the first questions concerning expectiles, and Lp-quantiles in general, is whether they are

more or less conservative than quantiles. Arab et al. (2022) provided conditions to compare Lp-quantiles
of different degrees and showed that, under some conditions, Lp-quantiles become less dispersed as the
degree p increases. However, their results do not apply to the Student’s t distribution and to heavy-
tailed models in general. Bellini and Di Bernardino (2017) showed that, for distributions with Paretian
tail and tail index α < 2 (finite mean, infinite variance) the expectiles are more conservative than the
corresponding quantiles, vice versa for tail index α > 2. The Student’s t distribution seems to play a
key role in this framework, indeed already Koenker (1993) showed that the only distribution for which
quantiles and expectiles coincides is a Student’s t distribution with 2 degrees of freedom. The goal of
the next section is to explore the behavior of Lp-quantiles for the Student’s t distribution. It is worth
noting that, differently from VaR and ES, the expectiles and Lp-quantiles must generally be calculated
numerically, notable exceptions are the uniform distribution and the Student’s t with 2 degrees of freedom.
In Section 4 we provide explicit solutions for the Student’s t distribution with 4 degrees of freedom that
has been widely adopted in non-life insurance and financial mathematics.

3 Equivalence of Lp-quantiles for the Student’s t distribution

In this section, we present our main contribution on the evaluation of Lp-quantiles for the Student’s t
distribution. Specifically, we show that for a random variable Y having a Student’s t distribution with
ν ∈ [1,+∞) degrees of freedom the Lν−j-quantile and the Lj+1-quantile coincide for any level τ ∈ (0, 1),
and j ∈ [0, ν − 1].

For j = 1 and ν = 2, this result was proved by Koenker (1993) and then extended to the case j = 1
and ν ∈ N by Bernardi et al. (2017). We expand their results considering real valued degrees of freedom
ν ∈ [1,+∞) and j ∈ [0, ν − 1].

As a first step, we present innovative results for the partial and complete moments of the Student’s
t distribution that we obtained as side contributions. The density function of a Student’s t distribution
with ν ∈ R+ degrees of freedom is given by:

fY (y) = Kν

(
1 +

y2

ν

)− ν+1
2

, y ∈ R,

where Kν =
Γ( ν+1

2 )
√
νπΓ( ν

2 )
. The behavior of the distribution is characterized by the parameter ν. In particular,

for ν = 1 and ν → +∞, we retrieve the well known Cauchy distribution and the standard Normal
distribution, respectively. The raw moments are well defined for any order j ∈ [0, ν−1] with the property
that moments of odd order all vanish because fY is symmetric around zero.
In Figure 1 we show the behavior of the quantiles for a Student’s t distribution with different degrees of
freedom ν = 1, 2, 3, 4, 6, 30,+∞ (yellow, light green, dark green, blue, purple, violet, red) with respect to
τ ∈ (0, 1) (left) and to τ ∈ [0.9, 1) (right). The plots show that as ν increases towards infinity the image
distribution becomes less fat-tailed reducing to the quantile function of the Normal density for ν → +∞,
and the behavior is monotonically increasing in ν with a symmetry point for τ = 1

2 . With a focus on
the right tail (right plot), the quantiles are much higher for Student’s t distributions with low degrees of
freedom than for the Normal distribution and their difference decreases in ν.

Theorem 3.1. Let Y be a random variable with Student’s t distribution with ν ∈ [1,+∞) degrees of
freedom. For j ∈ [0, ν − 1] and m ∈ R, the following equations hold:

E[((Y −m)+)
j ] = (m2 + ν)

2j−ν+1
2 E[((Y −m)+)

ν−1−j ]

and
E[((Y −m)−)

j ] = (m2 + ν)
2j−ν+1

2 E[((Y −m)−)
ν−1−j ]. (6)

Proof. Starting from the definition of upper partial moment of order j we apply a change of variable
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Figure 1: Quantiles of the Student’s t distribution with ν = 1, 2, 3, 4, 6, 30,+∞ (yellow, light green, dark
green, blue, purple, violet, red) degrees of freedom with respect to τ ∈ (0, 1) (left) and τ ∈ [0.9, 1) (right).

x = m+ ν+m2

y−m :

E[((Y −m)+)
j ] =

∫ ∞

m

(y −m)jKν

(
1 +

y2

ν

)− ν+1
2

dy

= Kν

∫ ∞

m

(ν +m2)j+1

(x−m)j+2

(
ν +m2

ν
+

(ν +m2)2

ν(x−m)2
+

2m(ν +m2)

ν(x−m)

)− ν+1
2

dx

= Kν

∫ ∞

m

(ν +m2)
−ν+2j+1

2

(x−m)j+2

(
1

ν
+

ν +m2

ν(x−m)2
+

2m

ν(x−m)

)− ν+1
2

dx

= Kν

∫ ∞

m

(ν +m2)
−ν+2j+1

2
(x−m)ν−j−1(

(x−m)2

ν + ν+m2

ν + 2m(x−m)
ν

)− ν+1
2

dx

= (ν +m2)
−ν+2j+1

2

∫ ∞

m

(x−m)ν−j−1(
1 + x2

ν

)− ν+1
2

Kνdx

= (ν +m2)
−ν+2j+1

2 E[((Y −m)+)
ν−j−1].

A similar argument provides the result for the lower partial moment.

The following corollary, shows the above formula in case ν and j are non-negative integers.

Corollary 3.2. Let Y be a random variable with Student’s t distribution with ν degrees of freedom. For
ν ∈ N, j ∈ {0, 1, . . . , ν − 1} and m ∈ R, the following equation for the central moments about the point
m holds:

E[(Y −m)j ] =


(m2 + ν)

2j−ν+1
2 E[(Y −m)ν−j−1] for ν odd,

(m2 + ν)
2j−ν+1

2 E[|Y −m|ν−j−1] for ν, j even,

(m2 + ν)
2j−ν+1

2

[
E[((Y −m)+)

ν−j−1]− E[((Y −m)−)
ν−j−1]

]
for ν even, j odd.

Proof. We first note that

E[(Y −m)j ] = E[[(Y −m)+ − (Y −m)−]
j ] = E[((Y −m)+)

j ] + (−1)jE[((Y −m)−)
j ]

= (ν +m2)
−ν+2j+1

2 [E[((Y −m)+)
ν−j−1] + (−1)jE[((Y −m)−)

ν−j−1]]
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If ν is odd (−1)ν−j−1 = (−1)j , from which follows

E[((Y −m)+)
ν−j−1] + (−1)jE[((Y −m)+)

ν−j−1] = E[((Y −m))ν−j−1].

Vice versa, for ν even (−1)ν−j−1 = −(−1)j , which provides

E[(Y −m)j ] = (ν +m2)
−ν+2j+1

2

[
E[((Y −m)+)

ν−j−1]− (−1)ν−j−1E[((Y −m)−)
ν−j−1]

]
=

{
(m2 + ν)

2j−ν+1
2 E[|Y −m|ν−j−1] for ν, j even,

(m2 + ν)
2j−ν+1

2

[
E[((Y −m)+)

ν−j−1]− E[((Y −m)−)
ν−j−1]

]
for ν even, j odd.

Remark 3.3. Corollary 3.2 also establishes an expression for the raw moments of Y . Indeed, for m = 0,
we have that

E[Y j ] =

{
ν

2j−ν+1
2 E[Y ν−j−1] if ν is odd and j even,

ν
2j−ν+1

2 E[|Y |ν−j−1] if ν is even and j is even

and 0 otherwise.

The next result provides our main contribution on the equivalence between the Lp-quantiles for the
Student’s t distribution.

Theorem 3.4. Let Y be a Student’s t random variable with ν ∈ [1,+∞) degrees of freedom. For
j ∈ [0, ν − 1] the following equation holds:

ρν−j,τ (Y ) = ρj+1,τ (Y ) for any τ ∈ (0, 1).

Proof. For ν = 1 there is nothing to prove. For ν > 1 and any τ ∈ (0, 1), the first order condition (2)
says that m = ρν−j,τ (Y ) is the unique solution to

τE
[
((Y −m)+)

ν−j−1
]
= (1− τ)E

[
((Y −m)−)

ν−j−1
]

which, thanks to Theorem 3.1 reduces to

τE
[
((Y −m)+)

j
]
= (1− τ)E

[
((Y −m)−)

j
]
.

Last equation is satisfied if and only if m = ρj+1,τ (Y ), from which we obtain the desired result.

From Theorem 3.4 follows an important property of the Lp-quantiles of a Student’s t distribution.
Specifically, the Lν−j-quantile not only minimizes the expected asymmetric power loss function of order
ν − j but it also minimizes the one of order j + 1 for j ∈ [0, ν − 1] and for any τ ∈ (0, 1). For degrees
of freedom ν ∈ N, the (L1-)quantile and Lν-quantile coincide, the L2-quantile (expectile) tallies with the
Lν−1-quantile, and so forth for every pair of Lj+1- and Lν−j-quantiles.

The next corollary extends Theorem 3.4 to any affine transformation of the Student’s t distribution.

Corollary 3.5. Let X be any affine transformation of a random variable Y with Student’s t distribution

with ν ∈ [1,+∞) degrees of freedom, that is X
d
= a + bY, a ∈ R, b > 0. For j ∈ [0, ν − 1], ρν−j,τ (X) =

ρj+1,τ (X) for any τ ∈ (0, 1).

Proof. From Properties 1., 3. and 6. in Proposition 2.1, ρν−j,τ (X) = ρν−j,τ (a + bY ) = a + bρν−j,τ (Y )
for any a ∈ R, b > 0, τ ∈ (0, 1) and j ∈ [0, ν − 1] and the result follows immediately.

Theorem 3.4 and Corollary 3.5 extend the work of Koenker (1992) who originally showed that the class
of distributions for which the L2-quantiles and L1-quantiles coincide, corresponds to a rescaled Student’s
t distribution with 2 degrees of freedom. Moreover, in the special case j = 1, the equality in Theorem
3.4 reduces to the expression derived in Bernardi et al. (2017), which shows that the Lν-quantile and
the quantile coincide for any level τ ∈ (0, 1) and degrees of freedom ν ∈ N. Our result implies that for
ν → +∞, Lν-quantiles have the same tail behavior as those of the Normal distribution quantile, as shown
in Figure 1.

We conclude this section with the following corollary which shows that Omega ratios of order p for
the Student’s t distribution enjoy the same equivalence property of Lp-quantiles.
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Corollary 3.6. Let Y be a Student’s t random variable with ν ∈ [1,+∞) degrees of freedom. For
j ∈ [0, ν − 1] the following equation holds:

Ων−j(x) = Ωj+1(x) for any x ∈ R.

From Corollary 3.6 it is easy to see that, for a Student’s t distribution with ν ∈ N degrees of freedom,
the standard Omega ratio Ω2 always coincides with the Omega ratio of order ν−1, Ων−1. Moreover, this
means that all Omega ratios of arbitrarily high order can be obtained readily from those of lower order.

4 Closed form Lp-quantiles for a Student’s t distribution with
ν = 4 degrees of freedom

In this section we use Theorem 3.4 to obtain a closed form expression of the Lp-quantile of a Student’s t
distribution with ν = 4 degrees of freedom for p = 1, 2, 3, 4. The relevance of this result is two-fold. On
one side, in the current literature Lp-quantiles can be expressed in closed form only for very few basic
distributions, such as the uniform distribution and the Student’s t with 2 degrees of freedom. Shaw (2005)
also provides an expression for the quantile of the Student’s t with 4 degrees of freedom, that clearly
coincides with ours, but in a more involved form that requires the computation of trigonometric functions.
On the other side, the Student’s t distribution with 4 degrees of freedom is particularly interesting in
real-world applications for the analysis of financial and non-life insurance loss claims data ; see also
Section 5.

We first establish the analytic solution of the quantile and L4-quantile of the distribution, that thanks
to Theorem 3.4 we know coincide. Specifically, the first order condition in (2) for the L4-quantile can be
rewritten as

τE
[
(Y −m)

3
]
= (1− 2τ)E

[
((Y −m)−)

3
]
, τ ∈ (0, 1) (7)

where we used E
[
(Y −m)

3
]
= E

[
((Y −m)+)

3
]
− E

[
((Y −m)−)

3
]
. By developing the left-hand side

and applying (6) to the right-hand side of (7), one has:

τ
(
E[Y 3]− 3mE[Y 2] + 3m3E[Y ]−m3

)
= (1− 2τ)(m2 + 4)

3
2E

[
((Y −m)−)

0
]
, τ ∈ (0, 1).

Given that E[Y ] = E[Y 3] = 0,E[Y 2] = ν
ν−2 = 2, and E

[
((Y −m)−)

0
]
= F (m), the first order condition

is
τ
(
−6m−m3

)
= (1− 2τ)(m2 + 4)

3
2F (m), τ ∈ (0, 1);

From Theorem 3.4, the unique solution to this equation is m = ρ4,τ (Y ) = ρ1,τ (Y ), so that F (m) =
F (ρ1,τ (Y )) = τ , which gives:

m
(
6 +m2

)
(m2 + 4)−

3
2 = 2τ − 1, τ ∈ (0, 1). (8)

Eq. (8) has two real solutions for τ ∈ (0, 1). These are:

m1 = −

√
− 1

Hτ
+

Hτ

τ(τ − 1)
− 4

and

m2 =

√
− 1

Hτ
+

Hτ

τ(τ − 1)
− 4,

where Hτ = 3

√
−2τ2(τ2 − 2τ + 1) + τ

√
τ(4τ5 − 16τ4 + 25τ3 − 19τ2 + 7τ − 1).

Since we are looking for solutions that minimize the definition of Lp-quantiles, we have that ρ4,τ (Y ) =
ρ1,τ (Y ) = m1 for τ ≤ 1

2 and ρ4,τ (Y ) = ρ1,τ (Y ) = m2 for τ > 1
2 .

The first order condition in (2) for the L2-quantile can be rewritten as

τE [(Y −m)] = (1− 2τ)E [((Y −m)−)] , τ ∈ (0, 1),
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from which one gets:

E [((Y −m)−)] =
τm

2τ − 1
, τ ∈ (0, 1). (9)

The first order condition in (2) for the L3-quantile can be rewritten as

τE
[
(Y −m)

2
]
= E

[
((Y −m)−)

2
]
, τ ∈ (0, 1). (10)

By developing the left-hand side and applying Eq. (6) to the right-hand side of Equation (10), one has:

2τ + τm2 = (m2 + 4)
1
2E [(Y −m)−] , τ ∈ (0, 1). (11)

Since the unique solution to (9) and (11) is m = ρ2,τ (Y ) = ρ3,τ (Y ), we obtain:

2 +m2 = (m2 + 4)
1
2

m

2τ − 1
, τ ∈ (0, 1). (12)

Eq. (12) has the following two real solutions for τ ∈ (0, 1):

m1 = −

√
−2−

√
−(τ − 1)τ

τ2 − τ

and

m2 = +

√
−2−

√
−(τ − 1)τ

τ2 − τ
.

Since we are looking for solutions that minimize the definition of Lp-quantiles, we have that: the mini-
mum of (12) is given by m1 for τ ≤ 1

2 and by m2 for τ > 1
2 .

From a graphical perspective, Figure 2 illustrates the behavior of the Lp-quantile of a Student’s t
distribution with ν = 3 (left) and ν = 4 (right) degrees of freedom for p = 1, . . . , ν with respect to
τ ∈ (0, 1). It is worth noticing that the Lp-quantiles are monotonically increasing, with a symmetry point
for τ = 1

2 due to the symmetry of the Student’s t centered around zero. Moreover, by looking at the plot
on the left, it is possible to see that ρ1,τ (green) coincides with ρ3,τ (red) for all τ ∈ (0, 1). Similarly,
in the right-hand picture we have that ρ1,τ (green) is equal to ρ4,τ (pink) and ρ2,τ (blue) coincides with
ρ3,τ (red) for all τ ∈ (0, 1).

5 Application to Microsoft stock logarithmic returns

In this section we use the results reported in Section 4 for analyzing real-world financial data. Specifically,
we use the weekly logarithmic returns for Microsoft (MSFT) stock collected from Yahoo Finance over
the period January 1, 1995 through December 31, 2022, which corresponds to 1460 returns. Without
loss of generality, before carrying out the analysis returns were centered so to have zero mean. Figure
4 reports the logarithmic returns (left) and the histogram of the data with the density of the Student’s
t distribution under the estimated degrees of freedom rounded to the nearest integer ν̂ = ⌈3.93⌉ = 4
(right). Using formulas derived in Section 4 we calculated the Lp-quantiles of a Student’s t distribution
with 4 degrees of freedom for p = 1, 2, 3, 4 as a function of τ ∈ (0, 1). We also estimated the empirical
Lp-quantiles for the same values of p by minimizing the asymmetric p-power loss function in (1). In
Figure 4 (left) we plotted the curves of Lp-quantiles of the Student’s t distribution (solid lines: p = 1, 4
(deep violet), p = 2, 3 (light blue)) against τ ∈ (0, 1) and superimpose the empirical ones (dashed lines:
p = 1 (pink), p = 2 (orange), p = 3 (red), p = 4 (black)).
As it can be observed, given the equivalence result in Theorem 3.4, we can only see two solid lines because
the L3-quantile and L4-quantile coincide with the L2-quantile and L1-quantile, respectively. It is also
worth noting that the Lp-quantiles lines of the Student’s t distribution and their empirical counterparts
are overlapped with each other, especially for p ≤ 2. When p = 3 and p = 4, the curves are slightly far
apart which could be due to the presence of outliers in the tails of the distribution of returns.
We conclude the analysis reporting the Omega ratios of order p = 1, 2, 3, 4 for the MSFT returns. That
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Figure 2: Lp-quantiles for p = 1, . . . , ν of a Student’s t distribution with ν = 3 (left) and ν = 4 (right)
degrees of freedom with respect to τ ∈ (0, 1). In both plots, the bi-colored dashed lines indicate that the
Lν−j-quantile coincides with the Lj+1-quantile for j ∈ [0, ν − 1] and for all τ ∈ (0, 1).

Figure 3: Logarithmic returns (left) and histogram (right) of the MSFT stock.
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Figure 4: Lp-quantiles of a Student’s t distribution with 4 degrees of freedom (solid lines: p = 1, 4 (deep
violet), p = 2, 3 (light blue)) with superimposed the empirical ones (dashed lines: p = 1 (pink), p = 2
(orange), p = 3 (red), p = 4 (black)) as a function of τ ∈ (0, 1) (left) and p Omega ratios against the
threshold (right) of the MSFT logarithmic returns.

is, we computed the Ωp’s using (5) from the fitted Student’s t distribution with 4 degrees of freedom,
meanwhile the empirical ones are calculated as the ratio of the two empirical partial moments of order
p− 1. The right-hand plot of Figure 4 illustrates the obtained p Omega ratios over an equispaced grid of
thresholds from the 0.01-th percentile to the 0.99-th percentile of the MSFT logarithmic returns. Two
comments are in order here. First, the standard Ω2 is identical to Ω3, which follows from Corollary 3.6.
Second, consistently with the plot on the left, the p Omega ratio curves have significant overlap for p ≤ 2,
while they are somewhat separated when p > 3.
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