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Abstract

A process model discovered from an event log of a multi-agent system often does

not fully cover certain viewpoints of its architecture. We consider those concerned

with the structure of a model explicitly reflecting agent behavior and interactions.

The direct discovery from an event log of a multi-agent system may result in an

unclear model structure and over-generalizations of agent behavior. We suggest

applying a compositional approach that yields architecture-aware process models

of multi-agent systems. An event log of a multi-agent system is filtered by the

behavior of individual agents. Then, a multi-agent systemmodel is a composition

of agent models discovered from filtered logs. We use an intermediate model,

called an interface pattern, specifying agent interactions and representing the

architecture of a multi-agent system. We design a collection of specific interface

patterns modeling typical agent interactions. An interface pattern provides an

abstract specification of interactions and has a part corresponding to the behavior

of each agent. We use structural transformations based on morphisms to map

agent models discovered from filtered logs on the respective parts in an interface

pattern. If such a mapping exists, we guarantee that a composition of agent

models preserves their soundness. We conduct a series of experiments to evaluate

the compositional approach. Experimental results confirm the improvement in

the structure of process models discovered using the compositional approach

compared to those discovered directly from event logs.

Keywords: Multi-agent systems ·Event Logs ·Process discovery ·Petri nets ·Composition ·

Morphsims · Transformations · Interface patterns
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Sommario

Il modello di un processo sintetizzato da un event log di un sistema multi-agente

spesso non corrisponde completamente ad alcuni aspetti della sua architettura.

Consideriamo gli aspetti riguardanti la struttura di un modello che riflettono es-

plicitamente il comportamento e le interazioni degli agenti. La sintesi diretta da

un event log di un sistema multi-agente può portare ad una struttura del modello

poco chiara e a generalizzazioni eccessive del comportamento dell’agente. Pro-

poniamo l’applicazione di un approccio composizionale, che produca modelli di

processi di sistemi multi-agente architecture-aware. Un event log di un sistema

multi-agente include i comportamenti dei singoli agenti. Il modello di un sistema

multi-agente si può quindi vedere come composizione dei modelli dei singoli

agenti sintetizzati dai log filtrati. Usiamo un modello intermedio, chiamato inter-

face pattern, che specifica le interazioni degli agenti e rappresenta l’architettura di

un sistema multi-agente. Progettiamo una serie di interface patterns per modellare

le interazioni tipiche degli agenti. Un interface pattern fornisce una specifica as-

tratta delle interazioni e ha una parte corrispondente al comportamento di ciascun

agente. Usiamo trasformazioni strutturali basate su morfismi per mappare i mod-

elli degli agenti scoperti dai log filtrati sulle rispettive parti in un interface pattern.

Se tale mappatura esiste, garantiamo che la composizione di modelli di agenti

ne preserva la correttezza. Conduciamo una serie di esperimenti per valutare

l’approccio composizionale. I risultati sperimentali confermano il miglioramento

della struttura dei modelli dei processi sintetizzati con l’approccio composizionale

rispetto a quelli sintetizzati direttamente dagli event logs.
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Introduction

M

odern information systems produce significant amounts of event data,

including, for example, transaction logs, message logs, and records

of user activity. These data are commonly referred to as event logs.

They consist of ordered sequences (traces) of records on events that occurred.

Event logs are used in process mining to discover models of real processes [1]. The

expected behavior of processes is usually specified manually at the early stages of

the information system life cycle. Discovering the real behavior of processes from

event logs is an essential task since manually created process models do not reflect

amendments introduced during the operation of an information system.

Awide range of algorithms supports the automated discovery of process mod-

els from event logs [2]. Process models can be represented in different notations.

Process mining extensively uses various classes of Petri nets, heuristic nets, causal

nets, and Business Process Models and Notation (BPMN). This dissertation fo-

cuses on modeling the control-flow of processes. We abstract from data used in the

process execution. We choose Petri nets [3] — a formalism widely used to model

process behavior. Petri nets are also the basis for other processmodeling notations,

e. g., specific classes of BPMNmodels can be transformed to Petri nets [4].

Four conformance checkingdimensions, namely fitness, precision, generalization,

and simplicity, determine the quality of process discovery algorithms [5]. These

dimensions are usually estimated in the interval [0, 1]. Fitness shows the extent

to which a discovered process model can execute traces recorded in an event log.

Amodel is said to perfectly fit an event log if it can execute all traces in an event log.

13



14 INTRODUCTION

Precision evaluates the ratio between the behavior allowed by a discovered process

model and not recorded in an event log. A process model with perfect precision

can only execute traces from an initial event log. Perfect precision limits the use of

a discovered processmodel since an event log represents just a finite “snapshot” of

all possible process executions. A process model should generalize the behavior

recorded in an event log, e. g., trace fragments that correspond to cycles should

be identified. Generalization is dual to precision. The fourth dimension, simplicity,

captures the structural complexity of a discovered process model, e. g., whether

there are redundant nodes.

A record in an event log typically contains the name of an action and several

additional attributes specifying the resources required for executing this action.

For instance, in the event log with two short traces shown in Table 1, the “Agent”

attribute designates who has executed an action: John, Pete, or Nick. The “Times-

tamp” attribute helps to order activities in a trace.

Table 1: Event log of a multi-agent system

Timestamp Action Agent

Trace 1
30-12-2020:14.45 register request Pete

05-01-2021:09.34 check ticket John

07-01-2021:12.12 examine causally Pete

09-01-2021:10.15 decide John, Pete

12-01-2021:13.25 pay compensation Nick

Trace 2
30-12-2020:16.45 register request Pete

04-01-2021:10.12 examine thoroughly Pete

06-01-2021:09.34 check ticket John

09-01-2021:09.19 decide John, Pete

10-01-2021:12.26 reject request Nick

John, Pete, andNick execute actions independently, e. g., Pete registers a request,

John checks a ticket, or together, e. g., John and Pete decide whether to pay the

©R.A. Nesterov, 2022
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compensation. We say that an event log, where records contain information on

agents, registers the behavior of a multi-agent system.

Event logs produced bymulti-agent information systems require the additional

analysis of agent behavior and interactions. Otherwise, adiscoveredprocessmodel

will not fully cover certain viewpoints of its architecture. The following motivating

example briefly demonstrates this problem. A process model discovered from an

event log of a multi-agent system may have the relatively high precision, but its

unclear structure does not reflect agent behavior and interactions.

Consider the Petri net shown in Fig. 1. Its structure is self-explanatory, i. e.,

there are two independent agents communicating via four distinguished nodes.

Two places, a and b, are used as asynchronous channels to exchange messages.

Firstly, Agent 1 sends a message to channel a, and Agent 2 receives it. Secondly,

Agent 2 sends a response back to Agent 1 via channel b. Two transitions marked

with s correspond to two actions executed simultaneously by Agents 1 and 2.

Agent 1 Agent 2

Figure 1: Multi-agent system with two interacting agents

Discovering Process Models for Multi-Agent Systems from Event Logs



16 INTRODUCTION

Simulating the behavior of the Petri net from Fig. 1, we generate an event log

L of a multi-agent system with two interacting agents. Applying, for example,

Inductive miner [6] to L, we discover the Petri net shown in Fig. 2. The Inductive

miner allows us to guarantee the perfect fitness of a discovered model, i. e., this

Petri net can execute every trace in the generated event log L.

Figure 2: Petri net discovered directly from the event

log of the multi-agent system from Fig. 1

In addition, this Petri net demonstrates the high precision evaluation (0.73461).

However, the structure of this model is not clear. The Inductive miner has inserted

many additional “silent” transitions (black boxes in Fig. 2), which connect blocks

of different actions executed independently or together byAgent 1 and 2. The Petri

net shown in Fig. 2 does not correctly represent key viewpoints of the architecture

of a multi-agent system with two agents exchanging messages.

©R.A. Nesterov, 2022



17

The direct discovery of a process model from an event log of a multi-agent

system can also over-generalize individual agent behavior. For example, in the

Petri net shown in Fig. 1, transition q
7
can fire only after transition q

4
, whereas in

the Petri net shown in Fig. 2, transition q
7
can fire after transitions q

3
, q

4
, or q

5
.

The concurrent execution of interacting agents leads to a wide variety of possible

traces recorded in an event log. However, a discovered process model should not

introduce inappropriate generalizations of individual agent behavior.

The main aim of this dissertation is, given an event log of a multi-agent sys-

tem, to develop an approach to discovering an architecture-aware Petri net, whose

structure clearly reflects the architecture of amulti-agent system. In other words, a

discovered model should explicitly show agent behavior and interactions, similar

to the Petri net shown in Fig. 1, which is discussed above.

Different classes of Petri nets can be used tomodel the behavior of amulti-agent

system. We will use generalized workflow (GWF) nets that are equipped with initial

and final states. They differ from classical workflow nets [7] in allowing initial

and final states to be sets of places rather than singletons. For instance, the Petri

net shown in Fig. 1 is a GWF-net with three initial and two final places, while the

behavior of Agent 2 is a classical workflow net.

This work focuses not only on the structural features of discovered GWF-

nets but also on their behavioral properties. Soundness [8] is the fundamental

correctness property of process behavior. Soundness is also referred to as proper

termination. A sound process can reach its final state from all intermediate states.

The final state of a sound process cannot be contained in any other reachable state.

Apart from that, a sound process has no dead actions, which cannot be executed.

Thus, the purpose of this work is defined more precisely as follows. Given an

event log of a multi-agent system and a specification of agent interactions, the task

is to discover a sound and an architecture-awareGWF-net, such that there are subnets

corresponding to agent behavior as well as distinguished nodes corresponding to

agent interactions.

Discovering Process Models for Multi-Agent Systems from Event Logs



18 INTRODUCTION

A specification of agent interactions is called an interface. It represents the

key interaction-oriented viewpoints of the architecture of a multi-agent system.

We suppose that an interface is provided by experts in advance, e. g., system

architects may construct candidate interfaces. The adequacy of these candidates

can be determined by checking their conformance to an event log. The discovery

of an interface model directly from an event log of a multi-agent system is out of

the scope of this dissertation.

Therefore the discovery of process models from event logs of multi-agent sys-

tems is based on the following assumptions:

1. All records in an event log have the corresponding “Agent” attribute.

2. There is a distinguished set of actions through which agents communicate

via message exchange and synchronizations. For instance, in the event log

shown in Table 1, the “decide” action is executed by John and Pete together.

We propose a compositional approach that allows us to discover sound and

architecture-aware process models of multi-agent systems. Even a simple compo-

sition of sound process models might not be sound, e. g., it can have a deadlock.

That is why we do not consider arbitrary interfaces. The main idea of our solu-

tion is to choose specific interface patterns, which preserve agent soundness, and to

formulate the conditions for a correct application of these patterns. Similar service

interaction patterns are used in Business Process Management (BPM) for a correct

organization of communication in large-scale information systems [9]. Service

interaction patterns represent typical communication scenarios. We use them to

design our collection of interface patterns. An interface pattern is a GWF-net that:

• provides a highly abstract view of agent interactions without exposing the

internal agent behavior;

• has a part representing the behavior of each agent.

©R.A. Nesterov, 2022
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The central hypothesis of our study is that using the compositional approach

improves the quality of discovered process models in comparison with the quality

of process models discovered directly from event logs of multi-agent systems.

Figure 3 shows the three main steps of the compositional approach to discov-

ering process models from event logs of multi-agent systems. These steps are

discussed below in detail.

Event log

Sub-log 1 Sub-log 2 Sub-log k...

FILTRATION

GWF-net 1 GWF-net 2 GWF-net k...

DISCOVERY

...Interface pattern

GWF-net 2GWF-net 1 ... GWF-net k

System model

Figure 3: Compositional process discovery

FILTRATION. An event log of a multi-agent system is filtered by actions

executed by different agents. Correspondingly, we construct a set of sub-logs.

For instance, filtering the records in the event log given in Table 1 by the “Pete”

value of the “Agent” attribute, we obtain the sub-log presented in Table 2.

DISCOVERY. We discover agent GWF-nets from corresponding sub-logs con-

structed at the filtration step. At this step, the existing process discovery algo-

rithms can be used. Discovered GWF-nets should be sound. The Inductive miner,

mentioned above, discovers sound models.

Discovering Process Models for Multi-Agent Systems from Event Logs
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COMPOSITION. If there exists a mapping of an agent GWF-net to the corre-

sponding part in an interface pattern (dashed arcs in Fig. 3), then we can replace

this abstract part with the agent GWF-net. As a result, we obtain a sound process

model of a multi-agent system, provided that we manage to find a mapping for

every agent GWF-net. The structure of a resulting model reflects that of an in-

terface pattern, which is represented in Fig. 3 by the overlap between GWF-net 1

and GWF-net 2 matching with the overlap between the corresponding parts in an

interface pattern.

Table 2: Pete’s sub-log of the event log from Table 1

Timestamp Action Agent

Trace 1
30-12-2020:14.45 register request Pete

07-01-2021:12.12 examine causally Pete

09-01-2021:10.15 decide Pete

Trace 2
30-12-2020:16.45 register request Pete

04-01-2021:10.12 examine thoroughly Pete

09-01-2021:09.19 decide Pete

According to the main scheme of the compositional approach, we develop a

compositional process discovery algorithm and prove its correctness.

The scientific novelty of the compositional approach to discovering processmod-

els from event logs of multi-agent systems lies in identifying the behavior of in-

dividual agents and in using interface patterns that help achieve the architecture-

aware structure of discovered models. The following three aspects determine the

correctnes of the compositional process discovery algorithm:

1. Formal backgrounds of an event log filtration and a GWF-net composition.

2. A technique tomap agent GWF-nets discovered from filtered sub-logs on the

corresponding parts in an interface pattern.
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3. A collection of interface patterns describing soundness-preserving interac-

tions among agents in a multi-agent system.

This dissertation discusses these correctness aspects step by step.

Main contributions of the dissertation

1. An algorithm for discovering architecture-aware and sound GWF-nets from

event logs of multi-agent systems. The correctness of the algorithm is deter-

mined by the preservation of perfect fitness and soundness of agent GWF-

nets discovered from sub-logs.

2. Definition and semantical properties of an asynchronous-synchronous (AS)

composition of GWF-nets used formodelingmulti-agent systems, individual

agent behavior, and interface patterns.

3. Structural and behavioral properties of transformations based onmorphisms

(structural abstraction/refinement relations between models) used to map

agent GWF-nets on the corresponding subnets in an interface pattern.

4. A collection of sound interface patterns modeling typical agent interactions.

5. Experimental evaluation of the compositional process discovery algorithm

regarding central hypothesis of the research. Experimental results confirm

the improvement in the quality of process models of multi-agent systems

discovered by the compositional approach compared to the quality of process

models discovered directly from event logs.

Presentation of contributions

The key results of this thesis were presented and discussed at the following

international conferences and workshops:

1. Spring/Summer Young Researchers’ Colloquium on Software Engineering

(SYRCoSE-2021, May 2021, Moscow, Russia). Talk: Generation of Petri Nets

Using Structural Property-Preserving Transformations
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2. International Workshop on Petri Nets and Software Engineering

(PNSE-2020, June 2020, online). Talk: Property-Preserving Transformations of

Elementary Net Systems Based on Morphisms

3. Modeling and Analysis of Complex Systems and Processes

(MACSPro-2019, March 2019, Wien, Austria). Talk: Asynchronous Interaction

Patterns for Mining Multi-Agent System Models from Event Logs

4. Spring/Summer Young Researchers’ Colloquium on Software Engineering

(SYRCoSE 2018, May 2018, Velikiy Novgorod, Russia). Talk: Simulating

Behavior of Multi-Agent Systems with Acyclic Interactions of Agents

5. International Workshop "Algorithms & Theories for the Analysis of Event

Data" (ATAED 2018, June 2018, Bratislava, Slovakia). Talk: Compositional

Discovery of Workflow Nets from Event Logs Using Morphisms

The intermediate results of the thesis were regularly discussed at the scientific

seminar hosted by the Laboratory of Process-Aware Information Systems (PAIS Lab) of

the Faculty of Computer Science, HSE University.
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Outline

Themain part of the dissertation is organized as follows. The first two chapters

consider the first correctness aspect of the compositional process discovery. Chap-

ter 1 collects definitions of the basic notions: event logs, generalized workflow

nets, and morphisms. In Chapter 2, we define a composition of synchronously

and asynchronously interacting GWF-nets and study the main properties of this

composition used to model interface patterns and multi-agent systems. Chapter 3

describes the second correctness aspect of the compositional process discovery —

an approach for a step-wise construction of mappings between agent GWF-nets

discovered from filtered logs and corresponding parts in interface patterns. Chap-

ter 4 presents the formalization of the compositional process discovery algorithm,

and a collection of typical interface patterns that forms the third correctness as-

pect of the compositional process discovery. Also, Chapter 4 provides a formal

justification of the correctness of the developed algorithm. Chapter 5 presents the

results of the experimental evaluation conducted to compare the quality of pro-

cess models discovered by the compositional process discovery approach with the

quality of models discovered using the standard direct process discovery. Related

research is discussed separately in closing sections of Chapters 2, 3, and 4.
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Chapter 1

Preliminaries

T

his chapter discusses the first correctness aspect of the compositional pro-

cess discovery algorithm— theoretical backgrounds of event log filtration

and generalized workflow nets. Firstly, we define functions, multisets,

and sequences over sets. Secondly, we formalize event logs of multi-agent sys-

tems and log projections that contain the behavior of individual agents. Thirdly, a

class of generalized workflow nets, we aim to discover from event logs of multi-agent

systems, is defined. Finally, relevant notions from category theory are recalled.

1.1 Background

Let A and B be two sets. A function f from A to B is denoted by f : A → B where

A is the domain of f, and B is the range of f. A function f can also be called a map

(mapping). The domain of f is denoted by dom(f). The range of f is denoted by

rng(f). A restriction of a function f to a subset A ′ ⊆ A is denoted by f|A ′ : A
′ → B.

A partial function from A to B is a function from A ′ to B where A ′ ⊆ A. A partial

function is denoted by g : A9 B. When g is not defined for an element a ∈ A, we

write g(a) =⊥. A function f : A→ B is called:

• injective (injection) iff ∀a
1
,a

2
∈ A : a

1
6= a

2
⇒ f(a

1
) 6= f(a

2
).
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26 CHAPTER 1. PRELIMINARIES

• surjective (surjection) iff ∀b ∈ B∃a ∈ A : f(a) = b.

• bĳective (bĳection) iff f is injective and surjective;

• the identity mapping iff ∀a ∈ A : f(a) = a.

Amultiset is a generalization of a set that allows for multiple copies of the same

element. Let N be the set of non-negative integers, and S be a set. A function

m : S→ N defines a multisetm over S. We write s ∈ m iffm(s) > 0. The set of all

multisets over S is denoted byB(S). The standard set operations are also extended

to multisets as follows. Letm
1
,m

2
∈ B(S). Then:

1. m
1
⊆ m

2
iffm

1
(s) 6 m

2
(s) for all elements in S;

2. m ′ = m
1
∪m

2
iffm ′(s) = m

1
(s) +m

2
(s) for all elements in S;

3. m ′′ = m
1
\m

2
iffm ′′(s) = max(m

1
(s) −m

2
(s), 0) for all elements in S.

Let A+
denote the set of all finite non-empty sequences over A, and A∗ =

A+ ∪ {ε}, where ε is the empty sequence. Then, given w ∈ A∗ and B ⊆ A, w|B is

the projection ofw on B, i. e.,w|B is the sub-sequence ofw obtained after removing

elements not belonging to B. Suppose A = {a
1
,a

2
,a

3
}, B = {a

2
,a

3
} ⊆ A, and

w = 〈a
3
a
1
a
2
a
1
a
3
a
2
a
1
〉 ∈ A∗. Then w|B = 〈a

3
a
2
a
3
a
2
〉.

1.2 Event Logs and Log Projections

An event log contains records of the observable behavior of an information system.

Ordered sequences of records are called traces. A trace might occur several times

in an event log. Thus, an event log is a multiset of traces.

Definition 1: Event log

Let Λ denote the set of all actions. A trace is a finite non-empty sequence

σ over Λ, i. e., σ ∈ Λ+
. An event log L over Λ is a multiset over Λ+

, i. e.,

L ∈ B(Λ+).
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Given an event log L over Λ and a subset Λ ′ ⊆ Λ of action, we can project L

on Λ ′ by projecting every trace in L on Λ ′. A log projection should contain only

non-empty trace projections. In addition, we should take into account the fact that

the projections of different traces in Lmay coincide.

Definition 2: Log projection

Let L ∈ B(Λ+) be an event log and Λ ′ ⊆ Λ. The projection of L on Λ ′ is an

event log, denoted by LΛ ′ ∈ B((Λ ′)+), which contain non-empty projections

of traces in L on Λ ′, where:

1. ∀σ ∈ L : σ|Λ ′ ∈ LΛ ′ iff σ|Λ ′ 6= ε.

2. ∀σ ∈ L : σ|Λ ′ = σ ′ ∈ LΛ ′ : LΛ ′ =
∑
L(σ).

According to the second requirement of Definition 2, we need to sum the

frequencies of traces having identical projections.

Actions in an event log of a multi-agent system are assigned agents executing

them. Then Λ can be decomposed into k (possibly intersecting) subsets, i. e.,

Λ = Λ
1
∪ Λ

2
∪ ... ∪ Λk where k is the number of agents in a multi-agent system.

Moreover, a distinguished subset In ⊆ Λ of actions is used for agent interactions.

In is also called a set of interacting actions.

The discovery of an individual agent model from an event log of a multi-agent

system L involves projecting the traces in L on the corresponding subset of actions

Λi, i. e., constructing LΛi for i = 1, 2, ..., k. Log projections are also called sub-logs.

1.3 Generalized Workflow (GWF) Nets

Workflow (WF) nets [7] are basic models used in process discovery. A WF-net is

a Petri net with the distinguished initial and final place. The execution of a trace

in an event log corresponds to the execution of a WF-net from its initial to its final

place. For a more convenient representation of multi-agent systems, we generalize
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WF-nets allowing sets of initial and final places rather than singletons. Here, we

define generalized workflow nets and their behavior.

Definition 3: The structure of a net

A net is a triple N = (P, T , F) where P and T are two disjoint sets of places

and transitions, and F ⊆ (P × T) ∪ (T × P) is the flow relation. For every node

x ∈ P ∪ T :

1.
•x = {y ∈ P ∪ T | (y, x) ∈ F} is the preset of x.

2. x• = {y ∈ P ∪ T | (x,y) ∈ F} is the postset of x.

3.
•x• = •x ∪ x• is the neighborhood of x.

Graphically, places of a net are shown by circles, transitions — by boxes, and

the flow relation — by arcs.

A net is P-simple if ∀p
1
,p

2
∈ P : •p

1
= •p

2
and p

1

• = p
2

•
implies p

1
= p

2
.

We consider nets without self-loops, i. e., ∀x ∈ P ∪ T : •x ∩ x• = ∅, and isolated

transitions, i. e., ∀t ∈ T : |•t| > 1 and |t•| > 1.

The •-notation for presets and postsets, introduced in Definition 3, is also

extended to sets of nodes. Let N = (P, T , F) be a net, and Y ⊆ P ∪ T . Then

•Y =
⋃
y∈Y

•y, Y• =
⋃
y∈Y y

•
, and

•Y• = •Y ∪ Y•. A subnet of N generated by Y

is denoted by N(Y) = (P ∩ Y, T ∩ Y, F ∩ (Y × Y)). The set
©N(Y) = {y ∈ Y |∃z ∈

(P ∪ T) \ Y : (z,y) ∈ F or •y = ∅} is the input border, and the set N(Y)© = {y ∈
Y |∃z ∈ (P ∪ T) \ Y : (y, z) ∈ F or y• = ∅} is the output border of N(Y).

A marking (state) m in a net N = (P, T , F) is a multiset over P, i. e., m : P → N.
A marking m is safe if ∀p ∈ P : m(p) 6 1. A safe marking is a subset of places. A

markingm of place p is depicted by placingm(p) black dots (tokens) inside p.

Definition 4: Net system

A net system is a quadruple N = (P, T , F,m
0
) where (P, T , F) is a net, and

m
0
: P → N is the initialmarking.
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The behavior of a net system is defined by the transition firing rule. A marking

m in a net N = (P, T , F) enables transition t ∈ T , denotedm[t〉, if •t ⊆ m. Enabled

transitions may fire. Firing t atm evolves N to a new markingm ′ = (m \ •t) ∪ t•,
denoted briefly bym[t〉m ′.

A sequence w ∈ T∗ is a firing sequence in a net system N = (P, T , F,m
0
) if

w = 〈t
1
t
2
...tn〉 andm0

[t
1
〉m

1
[t

2
〉...mn−1

[tn〉mn. Then we writem
0
[w〉mn. The set

of all firing sequences in N is denoted by FS(N).

A marking m in N = (P, T , F,m
0
) is reachable if ∃w ∈ FS(N) : m

0
[w〉m. Every

marking can be reached from itself by firing the empty sequence, i. e.,m[ε〉m. The

set of all markings reachable from m is denoted by [m〉. N is safe if all reachable

markings in N are safe.

A state machine is a connected net (P, T , F) where ∀t ∈ T : |•t| = |t•| = 1. A

subnet ofN = (P, T , F,m
0
) generated by Y ⊆ P and

•Y• –N(Y ∪ •Y•) – is a sequential
component ofN if it is a state machine and has a single token in the initial marking.

N is covered by sequential components if every place in N belongs to at least one

sequential component. ThenN is also called state machine decomposable (SMD). For

instance, an EN system shown in Fig. 4 has two sequential components generated

byC
1
= {p

1
,p

3
,p

4
,p

7
} and •C

1

•
aswell as byC

2
= {p

2
,p

5
,p

6
,p

7
} and •C

2

•
. Different

sequential components in an SMD-EN system can share both places and transi-

tions. When they share a transition, it is natural to say that sequential components

synchronize.

State machine decomposability is a basic feature “bridging” structural and be-

havioral properties of net systems, also considered in [10] to be the important

feature of workflow nets. It is easy to see that SMD net systems are safe since

their initial markings are safe as well [11]. We further work with SMD net sys-

tems, unless otherwise stated explicitly. Thus, we omit the term “SMD” in their

specifications.

A deadlock in a net systemN = (P, T , F,m
0
) can be interpreted as a poor synchro-

nization of its sequential components. Since reachable markings in net systems
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covered by sequential components are contact-free, we can consider only those

deadlocks caused by the absence of tokens in some input places of transitions. For

instance, Fig. 4 shows two deadlocks {p
3
,p

6
} and {p

4
,p

5
} that are reachable in the

same SMD-EN system from the initial marking {p
1
,p

2
}. These deadlocks result

from the independent resolution of the local conflicts between t
1
and t

2
as well as

t
3
and t

4
by two sequential components: the left generated by C

1
= {p

1
,p

3
,p

4
,p

7
}

and
•C

1

•
and the right generated by C

2
= {p

2
,p

5
,p

6
,p

7
} and •C

2

•
. In addition, if

these local conflicts are resolved differently, s. t. transition t
5
(t

6
) is enabled, then

it is possible to reach the other deadlock {p
7
} that can be interpreted as the proper

final state of the net system from Fig. 4 since p
7

• = ∅.

Figure 4: Two deadlocks after the poor synchronization of sequential

components

Firing sequences represent the sequential behavior of a net system, while its

concurrent semantics is captured by the unfolding [12].

Let N = (P, T , F) be a net, and F∗ be the reflexive transitive closure of F. Then

for every pair of nodes x,y ∈ P ∪ T :

1. x and y are causally dependent, denoted x 6 y, if (x,y) ∈ F∗.

2. x and y are in conflict, denoted x#y, if ∃tx, ty ∈ T : tx 6= ty, •tx ∩ •ty = ∅ and

tx 6 x, ty 6 y.
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Definition 5: Occurrence net

A net O = (B,E, F) is an occurrence net if:

1. ∀b ∈ B : |•b| 6 1.

2. F∗ is a partial order.

3. ∀x ∈ B ∪ E : {y ∈ B ∪ E |y < x} is finite.

4. ∀x,y ∈ B ∪ E : x#y⇒ x 6= y.

By Definition 5, an occurrence net O is acyclic. LetMin(O) be the set of nodes

in O minimal with respect to F∗, i. e., the nodes with the empty preset. Since we

consider nets without isolated transitions,Min(O) ⊆ B.
Definition 6: Branching process

LetN = (P, T , F,m
0
) be a net system, O = (B,E, F) be an occurrence net, and

π : B ∪ E→ P ∪ T be a map. A couple (O,π) is a branching process of N if:

1. π(B) ⊆ P and π(E) ⊆ T .

2. π|Min(O) is a bĳection betweenMin(O) andm
0
.

3. ∀t ∈ T : π|•t is a bĳection between
•t and •π(t).

Similarly, for t• and π(t)•.

4. ∀t
1
, t

2
∈ T : if

•t
1
= •t

2
and π(t

1
) = π(t

2
), then t

1
= t

2
.

The unfolding of a net systemN, denotedU(N), is themaximal branching process

of N, such that any other branching process is isomorphic to a subnet of U(N),

where the map π is restricted to the nodes of this subnet. The map associated with

the unfolding is denoted by u and called folding.

If a net system contains cycles, its unfolding will be infinite. Figure 5a shows

the net system modeling the simple producer-consumer system with the buffer of

size 1. The beginning of the unfolding of this net system is provided in Fig. 5b

where we also show nodes to which the folding function u maps the nodes in

Discovering Process Models for Multi-Agent Systems from Event Logs



32 CHAPTER 1. PRELIMINARIES

the unfolding. To overcome the problem of infinite unfoldings, finite complete

prefixes were introduced in [13]. In our work, unfoldings will be constructed for

acyclic nets. Thus, we do not discuss the formalization of finite prefixes.

Producer Consumer
Buffer

(a)

... ...

...

(b)

Figure 5: The unfolding of a net system

In a GWF-net, additional restrictions are imposed on the initial marking as well

as the final marking is distinguished.

Definition 7: Generalized workflow (GWF) net

A generalized workflow net is a net system N = (P, T , F,m
0
) equipped with

the final markingmf ⊆ P where:

1.
•m

0
= ∅.

2. mf
• = ∅.

3. ∀x ∈ P ∪ T ∃s ∈ m
0
∃f ∈ mf : (s, x), (x, f) ∈ F∗.

According to the third requirement in Definition 7, every node in a GWF-net

lies on a path from a place in the initial marking to a place in the final marking.
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Soundness is the main correctness property of the process behavior represented

by a GWF-net. Different kinds of soundness have been studied in [8]. Here, we

use the classical soundness connected with the reachability of the final marking.

Definition 8: Sound GWF-net

A GWF-net N = (P, T , F,m
0
,mf) is sound if and only if:

1. ∀m ∈ [m
0
〉 : mf ∈ [m〉.

2. ∀m ∈ [m
0
〉 : mf ⊆ m⇒ mf = m.

3. ∀t ∈ T ∃m ∈ [m
0
〉 : m[t〉.

In other words, soundness is directly related to the proper termination of a

corresponding process. Every execution in a properly terminating process must

finish in its final state, such that this final state is not contained in any other

reachable states. Also, there must not be non-executable (dead) actions.

(a) sound

(b) unsound

Figure 6: Generalized workflow net: two examples

Figure 6 shows twoGWF-nets. The first GWF-net shown in Fig. 6a is covered by

two sequential components: the one generated by C
1
= {p

1
,p

2
,p

4
,p

5
,p

7
} and •C

1

•
,
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and the other generated by C
2
= {p

1
,p

3
,p

6
,p

8
} and •C

2

•
. This GWF-net is sound

according to the requirements imposed by Definition 8. The second GWF-net

shown in Fig. 6b is also covered by two sequential components: the one generated

by C
1
= {p

1
,p

3
,p

4
,p

6
,p

7
} and •C

1

•
, and the other generated by C

2
= {p

2
,p

5
,p

7
}

and
•C

2

•
. This GWF-net is not sound, since the deadlock {p

5
,p

6
} is reachable from

its initial marking {p
1
,p

2
}. Thus, its final marking {p

6
,p

7
} is not reachable from all

reachable markings, which is the first requirement imposed by Definition 8.

1.4 Categories and Morphisms

Processmodels of interactingagentsdiscovered fromfilteredevent logs aremapped

on the specific parts in an interface pattern by defining morphisms towards the

interface pattern. A morphism is a primary tool from category theory that studies

abstract mathematical objects and relations between these objects. The general

definitions of a category, morphisms, based on [14], are given below.

Definition 9: Category, morphisms, properties

A category C includes a collection of objects and a collection of morphisms

also called arrows. Objects in C are denoted with capital letters

A,B,C, ...,A
1
,B

1
,C

1
, ...

and morphisms are denoted with lower-case Latin or Greek letters

a,b, c, ...,α,β, ...

The following is satisfied:

1. Every morphism has the domain and range among objects in C. A

morphism gwith the domain A and the range C is denoted g : A→ B.
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2. For every object C ∈ C, there is a distinguished identity morphism

idC : C→ C.

3. For every pair of morphisms f : A→ B and g : B→ C, s.t. the range of

f coincides with the domain of g, the composition of f and g is defined

as follows: g ◦ f : A→ C.

4. (identity law) If f : A→ B, then idB ◦ f : f and f ◦ idA : f.

5. (associativity law) If f : A→ B, g : B→ C, andh : C→ D, thenh◦(g◦f) =
(h ◦ g) ◦ f : A→ D.

A convenient tool for the visual representation of morphisms is commutative

diagramswheremorphisms are shownwith arrows. For instance, the associativity

property can be illustrated with the help of the diagram provided in Fig. 7.

Figure 7: Commutative diagram for the associativity property

1.5 Conclusions of Chapter 1

The first correctness aspect of the compositional approach to discovering process

models from event logs of multi-agent systems covers the key theoretical back-

grounds.
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In this chapter, we collected the basic definitions concerning Petri net theory,

introduced generalized workflow nets and recalled the definition of a category,

which represents the notion of morphisms in general. Generalized workflow nets

are used to model the behavior of individual agents, multi-agent systems, and in-

terface patterns. Generalized workflow nets are convenient for the representation

of multi-agent systems, since their initial and final states are allowed to be the sets

of places rather than singletons.

In the next chapter, alongwith defining and studying the semantical properties

of a composition of synchronously and asynchronously interacting GWF-nets, we

also use certain kinds of morphisms to achieve the preservation of component

soundness in this composition.
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Chapter 2

Soundness-Preserving Composition

I

n this chapter, we continue discussing the first correctness aspect of the com-

positional process discovery algorithm. In this light, we define a composition

of interacting GWF-nets used to model an interface pattern and the behavior

of a multi-agent system. Firstly, we introduce transition labels and a corresponding

Asynchronous-Synchronous (AS) composition that merges synchronous transitions

and adds channels between asynchronously interacting transitions in GWF-nets.

Secondly, we present a solution to the problem of preserving the soundness of

GWF-nets in the AS-composition with the help of an abstraction/refinement relation

based on morphisms.

2.1 Labeled GWF-Nets: Asynchronous and
Synchronous Interactions

An event log L overΛ = Λ
1
∪Λ

2
∪ ...∪Λk ∪ In, defined in Section 1.2, registers the

observable behavior of amulti-agent systemwith k agents. The observable behavior

of a GWF-net is derived via transition labels. Here, we define labeled GWF (LGWF)

nets equipped with a total labeling function h : T → Λ ∪ {τ}, where τ is the special

label of the invisible action. Invisible actions are not recorded in event logs.
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Aset In⊆Λ contains actions agents interact through. We consider two standard

types of interactions among agents in a multi-agent system, namely asynchronous

and synchronous interactions. The behavior of agents is represented via GWF-nets.

Belowwe discuss how the corresponding labels of interacting actions are assigned

by h to the transitions in a GWF-net.

When GWF-nets interact asynchronously, they exchange messages using chan-

nels. GWF-nets can send (receive) messages to (from) channels. Let C = {c
1
, c

2
, ..., ck}

denote the set of all asynchronous channels. Structurally, channels are represented

by places. The set Θ⊆ In of sending/receiving actions implemented with chan-

nels is defined as Θ = {c!, c? | c ∈ C} where “c!” indicates sending a message to a

channel c, and “c?” indicates receiving a message from a channel c. Thus, some

transitions in a GWF-net are labeled by asynchronous actions from Θ.

A function ch : Θ → C maps a sending/receiving action to a corresponding

channel, i. e., ch(c!) = ch(c?) = c. This function is naturally extended to a set of

asynchronous actions. If X ⊆ Θ, then ch(X) =
⋃
θ∈X ch(θ).

A GWF-net may also have transitions with complement asynchronous labels —

“c!” is complement to “c?” and vice versa. Complement labels are denoted using

“overlines”, i.e., c! = c? and c? = c!. Then we also require that there exists a place

labeled by “c” connecting all transitions labeled by “c!” to all transitions labeled

by “c?”. Labeled places are necessary to establish the logical dependence between

transition with complement labels, i. e., receiving from a channel s should be done

only after a message is sent to this channel. However, there can also be other

unlabeled places connecting transitions with complement labels.

Synchronous interactions among GWF-nets result in merging transitions cor-

responding to simultaneous activities. This is formally represented by equal tran-

sition labels. By S = {s
1
, s

2
, ..., sk} ⊆ In we denote the set of synchronous actions.

Similar to the asynchronous interaction, some transitions in a GWF-net are labeled

by synchronous actions from S.

Thus, a set of interacting actions is defined as In = Θ ∪ S where Θ ∩ S = ∅.
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Transitions that are not labeled by interacting actions are called local since they are

not involved in the interaction. Local transitions represent the internal behavior of

an agent (a multi-agent system).

We formalize the aspects of the asynchronous and synchronous interaction

among GWF-nets discussed above in the following Definition 10, where a GWF-

net is equipped with two labeling functions. Figure 8 shows the labeled GWF-net,

where labeled places are distinguished by the smaller size. By convention, labels

are put either inside or near nodes.

Definition 10: Labeled GWF-net

A labeled GWF-net N = (P, T , F,m
0
,mf,h,k) is a GWF-net (P, T , F,m

0
,mf)

together with a transition labeling function h and a place labeling function

k where:

1. h : T → Λ ∪ {τ} is a total function.

2. k : P 9 C is partial injective function, s. t.:

(a) ∀t
1
, t

2
∈ T : if h(t

1
) = c! and h(t

2
) = c?, then

∃p ∈ P : k(p) = c and (t
1
,p), (p, t

2
) ∈ F;

(b) ∀p ∈ P : if k(p) = c, then (
•p 6= ∅ where ∀t ∈ •p : h(t) = c!) and

(p• 6= ∅where ∀t ∈ p• : h(t) = c?).

By Definition 10, it is easy to see that there is the unique place labeled by “c”

connecting only nonempty sets of transitionswith complement labels “c!” and “c?”

in an LGWF-net, since function k is injective. This place is also called a channel.

Other unlabeled places can also connect complement transitions. For example, in

Fig. 8, there is the unique place labeled by “h” with the single incoming arc from

transition “h!” and the single outgoing arc to transition “h?”. However, there is

no place labeled by “f” in this LGWF-net since there are no sending transitions

labeled by “f!”. Two transitions “c!” and “c?” are connected by place c as well as

by the unlabeled place with the inverted arc direction (from “c?” to “c!”).
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Figure 8: Labeled generalized workflow net

For every firing sequence w ∈ FS(N) in an LGWF-net N, we define a labeled

execution h(w) corresponding to the observable behavior of an LGWF-net.

Definition 11: Execution of LGWF-net

Let N = (P, T , F,m
0
,mf,h,k) be an LGWF-net, and tw ∈ FS(N). The corre-

sponding execution h(tw) is defined by the two cases:

1. If h(t) 6= τ, then h(tw) = h(t)h(w).

2. If h(t) = τ, then h(tw) = h(w).

We also observe that the number of transitions with the “c!” label is not less

than the number of transitions with the “c?” label in every execution of an LGWF-

net, for any place labeled by c ∈ C. In other words, the number of times one can

receive a message from a channel cannot be greater than the number of times a

message has been sent to this channel. This follows from the fact that transition c?

can fire only after transition c! if the latter is present in an LGWF-net. There will

be the unique labeled place c that is an input place to transition c? and an output

place to transition c!.

Let N− = (P, T , F,m
0
,mf) denote the underlying GWF-net obtained from an
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LGWF-net N = (P, T , F,m
0
,mf,h,k) by removing labels from transitions and

places. An LGWF-net N is sound if the underlying GWF-net N−
is sound.

2.2 AS-Composition of LGWF-nets

Here, an asynchronous-synchronous (AS) composition of LGWF-nets is defined. This

operation captures synchronous and asynchronous interactions among agents in

a multi-agent system according to labels assigned by a labeling function h to

transitions in interacting LGWF-nets.

The AS-composition is defined for structurally disjoint LGWF-nets. Intuitively,

when composing LGWF-nets, one needs to (1) add and connect channels (labeled

places) between transitions with complement asynchronous labels; (2) merge tran-

sitions with equal synchronous labels.

The formalization of the AS-composition is given in the following Definition

12 for the basic case of composing two LGWF-nets. It is easy to see that both

channel addition and transition synchronization do not lead to the violation of

the structural requirements imposed by Definition 7. Thus, in the definition, we

explicitly construct an LGWF-net by the AS-composition.

Definition 12: AS-composition of LGWF-nets

LetNi = (Pi, Ti, Fi,m
i
0
,mif,hi,ki) be an LGWF-net for i = 1, 2, s.t. (P

1
∪ T

1
)∩

(P
2
∪ T

2
) = ∅. Let Pui = Pi \ dom(ki) and Tai = {ti ∈ Ti |hi(ti) /∈ S} for

i = 1, 2. The AS-composition ofN
1
andN

2
, denotedN

1
~N

2
, is an LGWF-net

(P, T , F,m
0
,mf,h,k) where:

1. P = Pu
1
∪ Pu

2
∪ Pc where |Pc| = |C|,

C = {c ∈ C |∃t, t ′ ∈ Ta
1
∪Ta

2
: h(t),h(t ′) ∈ Θ, ch(h(t)) = c,h(t) = h(t ′)}.

2. m
0
= m1

0
∪m2

0
andmf = m

1

f ∪m2

f.

3. T = Ta
1
∪ Ta

2
∪ Tsync where

Tsync = {(t
1
, t

2
) | t

1
∈ T

1
, t

2
∈ T

2
,h

1
(t

1
),h

2
(t

2
) ∈ S,h

1
(t

1
) = h

2
(t

2
)}.
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4. F is defined by the following cases:

(a) ∀p ∈ Pui ,∀t ∈ Tai for i = 1, 2 :

• (p, t) ∈ F⇔ (p, t) ∈ Fi and
• (t,p) ∈ F⇔ (t,p) ∈ Fi.

(b) ∀p ∈ Pu
1
,∀t = (t

1
, t

2
) ∈ Tsync :

• (p, t) ∈ F⇔ (p, t
1
) ∈ F

1
and

• (t,p) ∈ F⇔ (t
1
,p) ∈ F

1
.

(c) ∀p ∈ Pu
2
,∀t = (t

1
, t

2
) ∈ Tsync :

• (p, t) ∈ F⇔ (p, t
2
) ∈ F

2
and

• (t,p) ∈ F⇔ (t
2
,p) ∈ F

2
.

(d) ∀p ∈ Pc,∀t ∈ Tai for i = 1, 2 :

• (k(p) = c)∧ (hi(t) = c!)⇒ (t,p) ∈ F and
• (k(p) = c)∧ (hi(t) = c?)⇒ (p, t) ∈ F.

5. h : T → Λ ∪ {τ}where:

• ∀t = (t
1
, t

2
) ∈ Tsync : h(t) = h1

(t
1
) = h

2
(t

2
) and

• ∀t ∈ Tai : h(t) = hi(t) for i = 1, 2.

6. k : P 9 C, s. t. k|Pc is a bĳection and ∀p /∈ Pc : k(p) =⊥.

Figure 9b shows the example of composing twoLGWF-netsN
1
andN

2
provided

in Fig. 9a. Firstly, they exchange messages via channels x and y. Secondly, they

synchronize when transitions b and f fire, given by the synchronization label s.

As a result, we introduce two labeled places x, y and connect them according to

the asynchronous labels of transition pairs c,g and d,h. In addition, we merge

transitionsb and f obtaining a single transition (b, f) in theAS-compositionN
1
~N

2

shown in Fig. 9b.
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(a) LGWF-nets (b) N
1
~N2

Figure 9: AS-composition of two LGWF-nets

AS-composition of LGWF-nets enjoys several important properties. Firstly, the

AS-composition is commutative and associative (see Proposition 1). The proof of

theseproperties is basedonadirect constructionof the sets of places and transitions

according to Definition 12, as the flow relation and the labeling functions are fully

characterized by the sets of places and transitions. There is an isomorphism, rather

than the equality, since Tsync (see Definition 12.3) is the set of ordered transition

pairs. Thus, the AS-composition can be generalized to the case of composingmore

than two LGWF-nets.

Proposition 1: AS-composition is commutative and associative

Let N
1
,N

2
,N

3
be three LGWF-nets. Then:

1. N
1
~N

2
is isomorphic to N

2
~N

1
.

2. (N
1
~N

2
)~N

3
is isomorphic to N

1
~(N

2
~N

3
).

Secondly, a reachablemarking in theAS-composition of LGWF-nets can be “de-

composed” into three sub-markings: reachable markings of components together

with a marking of labeled places (channels).
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Proposition 2: Reachable marking characterization in AS-composition

Let Ni = (Pi, Ti, Fi,m
i
0
,mif,hi,ki) be an LGWF-net for i = 1, 2, and N

1
~

N
2
= (P, T , F,m

0
,mf,h,k) be the AS-composition of N

1
and N

2
. Then ∀m ∈

[m
0
〉 : m = (m

1
\dom(k

1
))∪(m

2
\dom(k

2
))∪mcwherem

1
∈ [m1

0
〉,m

2
∈ [m2

0
〉,

andmc ⊆ dom(k).

The proof of Proposition 2 is based on projecting a firing sequencew ∈ FS(N
1
~

N
2
) on the transitions in N

1
and N

2
to obtain the corresponding firing sequences

w
1
= w|T

1
∈ FS(N

1
) and w

2
= w|T2 ∈ FS(N2

) leading to the reachable markings of

components, namelym
1
∈ [m1

0
〉, s. t. m1

0
[w

1
〉m

1
, andm

2
∈ [m2

0
〉, s. t. m2

0
[w

2
〉m

2
.

The AS-compositionN
1
~N

2
provided in Fig. 10 shows that, in the general case,

not every firing sequence of N
1
or N

2
can be found as the projection of a firing

sequence in the AS-composition. Here N
2
in isolation has the firing sequence

w = 〈b
1
b
3
b
4
b
3
b
4
b
3
b
4
b
2
〉, while the AS-composition N

1
~N

2
only allows firing

the cycle b
3
–b

4
twice. Indeed, introduction of asynchronous channels, which

are labeled places, in N
1
~N

2
restricts the transition firings possible in the agent

LGWF-nets N
1
and N

2
.

AS-composition of LGWF-nets may not preserve the soundness of components

and their state machine decomposability. For instance, ifN
1
andN

2
are two sound

LGWF-nets, their compositionN
1
~N

2
might not be sound. Consider the example

shown in Fig. 11 whereN
1
~N

2
is a result of composing sound LGWF-nets. N

1
~N

2

can reach a deadlock {f
1
, s

2
}, different from the expected final marking {f

1
, f

2
} (by

Definition 12), if N
1
does not send a message to channel d. Thus, N

1
~N

2
looses

soundness. N
1
~N

2
is also no longer covered by sequential components.

The problem of preserving behavioral properties of LGWF-nets in their AS-

composition is discussed in the following two sections. Instead of considering

the AS-composition of LGWF-nets directly, we analyze an underlying interface

pattern. An interface pattern is an LGWF-net that models how agents interact (via

asynchronous channels and synchronous actions) at the highly abstract level. The
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local behavior of agents is almost not represented in an interface pattern.

Figure 10: AS-composition N
1
~N

2
restricts the behavior of N

1
and N

2

Component and interface LGWF-nets are related via morphisms — structural

property-preserving relations on net systems — discussed in Section 2.3. Then, in

Section 2.4, thesemorphisms are applied to achieve the preservation of component

soundness by the AS-composition.

2.3 Abstraction and Refinement in GWF-nets

This section describes a technique supporting abstraction of subnets and refine-

ment of places in net systems based onα-morphisms. We discuss key properties of
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Figure 11: AS-composition may not preserve component properties

α-morphisms relevant to GWF-nets. These properties are further used to address

the problem of preserving the soundness of LGWF-nets by their AS-composition.

2.3.1 Place Refinement, Subnet Abstraction, and α-Morphisms

The class of α-morphisms was introduced in [15] to support abstraction and re-

finement in net systems covered by sequential components. Generalizedworkflow

nets correspond to this class of net systems as well. We consider the definition

of α-morphisms on safe net systems and, in the following subsection, discuss the

properties of α-morphisms related to GWF-nets.

The example of this morphism is shown in Fig. 12 whereN
2
is called an abstract

net system andN
1
is called a refinement ofN

2
. Refinement of places is depicted by

shaded subnets, i. e., subnet N
1
(ϕ−1(p

2
)) in N

1
refines place p

2
in N

2
. Refinement

of transitions is explicitly given by their names, i. e., two transitions f
1
and f

2
refine

the same transition f in N
2
. In other words, refinement of places in an abstract

net system may lead to splitting its transitions. After recalling the definition of

α-morphisms, we also discuss the general intuition behind them.
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Definition 13: Relation between two net systems via α-morphism [15]

Let Ni = (Pi, Ti, Fi,m
i
0
) be an SMD net system, and Xi = Pi ∪ Ti for i = 1, 2,

s. t. X
1
∩ X

2
= ∅. An α-morphism from N

1
to N

2
is a total surjective map

ϕ : X
1
→ X

2
, also denoted ϕ : N

1
→ N

2
, where:

1. ϕ(P
1
) = P

2
.

2. ϕ(m1

0
) = m2

0
.

3. ∀t
1
∈ T

1
: if ϕ(t

1
) ∈ T

2
, then ϕ(•t

1
) = •ϕ(t

1
) and ϕ(t

1

•) = ϕ(t
1
)•.

4. ∀t
1
∈ T

1
: if ϕ(t

1
) ∈ P

2
, then ϕ(•t

1

•) = {ϕ(t
1
)}.

5. ∀p
2
∈ P

2
:

(a) N
1
(ϕ−1(p

2
)) is an acyclic net or ϕ−1(p

2
) ⊆ P

1
.

(b) ∀p
1
∈ ©N

1
(ϕ−1(p

2
)) : ϕ(•p

1
) ⊆ •p

2
and if

•p
2
6= ∅, then

•p
1
6= ∅.

(c) ∀p
1
∈ N

1
(ϕ−1(p

2
))© : ϕ(p

1

•) = p
2

•
.

(d) ∀p
1
∈ P

1
∩ϕ−1(p

2
) : p

1
/∈ ©N

1
(ϕ−1(p

2
))⇒ ϕ(•p

1
) = p

2
and

p /∈ N
1
(ϕ−1(p

2
))© ⇒ ϕ(p

1

•) = p
2
.

(e) ∀p
1
∈ P

1
∩ ϕ−1(p

2
) : there is a sequential component N ′ =

(P ′, T ′, F ′) of N
1
, s.t. p

1
∈ P ′, ϕ−1(•p

2

•) ⊆ T ′.

By definition, α-morphisms allow us to refine places in N
2
by replacing them

with acyclic subnets in N
1
. If a transition in N

1
is mapped to a transition in N

2
,

then the neighborhoods of these transitions should correspond (Definition 13.3).

If a transition in N
1
is mapped to a place in N

2
, then the neighborhood of this

transition should be mapped to the same place (Definition 13.4).

The fundamental motivation behind α-morphisms is the possibility to ensure

that the behavioral properties of an abstract net system also hold in its refinement.

Therefore, every place in the output border of a subnet should have the same

choices as a corresponding place in an abstract net system (Definition 13.5c). Places

in the input border of a subnet do not need this constraint (Definition 13.5b). Places
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in the input border of a subnet cannot be concurrently marked since there are no

concurrent transitions in the neighborhood of a subnet (Definition 13.5e). Also, by

Definition 13.5d, the neighborhoods of places internal to a subnet are mapped to

the same place in an abstract net system as this subnet.

Figure 12: The α-morphism ϕ : N
1
→ N

2

To sum up, the requirements imposed by Definition 13.5a–5e ensure the main

intuition behind α-morphisms. If a subnet in N
1
refines a place in N

2
, then this

subnet should behave “in the same way” as the abstract place. More precisely, let

N
1
(ϕ−1(p

2
)) be a subnet inN

1
refining a place p

2
inN

2
(underϕ : N

1
→ N

2
). Then

the following holds:

1. No tokens are left in N
1
(ϕ−1(p

2
)) after firing transition in (N

1
(ϕ−1(p

2
))©)

•
.

2. Transitions
•(©N

1
(ϕ−1(p

2
))) are disabled if there is a token in N

1
(ϕ−1(p

2
)).
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2.3.2 Properties Preserved and Reflected by α-Morphisms

Here, we discuss properties preserved and reflected by α-morphisms (see Fig. 13).

Several properties were studied in [15]. Wewill refer to some of them and examine

other properties of α-morphisms important for GWF-nets.

refined
system 

absatrct
system 

preservation

reflection

Figure 13: Preservation and reflection of properties under α-morphisms

Proposition 3: Structure of GWF-nets is preserved by α-morphisms

Let Ni = (Pi, Ti, Fi,m
i
0
) be an SMD net system, and Xi = Pi ∪ Ti for i = 1, 2,

such that there is an α-morphism ϕ : N
1
→ N

2
. If N

1
is a GWF-net, then N

2

is a GWF-net.

Proof. We show that N
2
satisfies the three structural conditions of GWF-nets im-

posed by Definition 7.

By Definition 13.2, ϕ(m1

0
) = m2

0
. Suppose ∃p

2
∈ m2

0
: •p

2
6= ∅. By Definition

13.5b, ∀p
1
∈ ©N

1
(ϕ−1(p

2
)) : if

•p
2
6= ∅, then

•p
1
6= ∅. Take p

1
∈ m1

0
, such

that ϕ(p
1
) = p

2
. Since p

1
∈ ©N

1
(ϕ−1(p

2
)), then •p

1
6= ∅. By Definition 7.1,

∀p ∈ m1

0
: •p = ∅. Then,

•p
2
= ∅ and ∀p ∈ m2

0
: •p = ∅.

By Definition 7.2, m1

f ⊆ P1, such that (m1

f)
•
= ∅. Denote ϕ(m1

f) by m
2

f ⊆ P2.
Suppose ∃p

2
∈ m2

f : p2
• 6= ∅. Take p

1
∈ m1

f, such that ϕ(p
1
) = p

2
. By Definition

13.5c, ∀p
1
∈ N

1
(ϕ−1(p

2
))© : ϕ(p

1

•) = p
2

•
. Since p

1
∈ N

1
(ϕ−1(p

2
))©, p

1

• 6= ∅. But

by Definition 7.2, p
1
∈ m1

f and p1
• = ∅. Then, p

2

• = ∅ and ∀p ∈ m2

f : p
• = ∅.

Suppose ∃x
2
∈ X

2
, such that ∀p ∈ m2

0
: (p, x

2
) /∈ F∗

2
. Since an α-morphism is a

surjective map, ϕ−1(x
2
) 6= ∅. Thus, ϕ−1(x

2
) = {x1

1
, . . . , xk

1
} ⊆ X

1
, where k > 1. If
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x
2
∈ T

2
, then ϕ−1(x

2
) ⊆ T

1
, and we take x

1
∈ ϕ−1(x

2
). If x

2
∈ P

2
, then we take

x
1
∈ ©N

1
(ϕ−1(x

2
)). By Definition 7.3, ∃s ∈ m1

0
: (s, x

1
) ∈ F∗

1
. Then, ϕ(•x

1
) ∈ •x

2
or

ϕ(•x
1
) = x

2
. We follow backward the whole path from s to x

1
in N

1
mapping it

on N
2
with ϕ. Thus, we obtain that ∃x ′ ∈ X

2
: (x ′, x

2
) ∈ F∗

2
and ϕ(s) = x ′, where

x ′ ∈ m2

0
.

Suppose ∃x
2
∈ X

2
, such that ∀p ∈ m2

f : (x2,p) /∈ F∗2 . Since an α-morphism is a

surjective map, ϕ−1(x
2
) 6= ∅. Thus, ϕ−1(x

2
) = {x1

1
, . . . , xk

1
} ⊆ X

1
, where k > 1. If

x
2
∈ T

2
, then ϕ−1(x

2
) ⊆ T

1
, and we take x

1
∈ ϕ−1(x

2
). If x

2
∈ P

2
, then we take

x
1
∈ N

1
(ϕ−1(x

2
))©. By Definition 7.3, ∃f ∈ m1

f : (x1, f) ∈ F∗1 . Then, ϕ(x
1

•) ∈ x
2

•

or ϕ(x
1

•) = x
2
. We follow the whole path forward from x

1
to f in N

1
mapping it

on N
2
with ϕ. Thus, we obtain that ∃x ′ ∈ X

2
: (x

2
, x ′) ∈ F∗

2
and ϕ(f) = x ′, where

x ′ ∈ m2

f.

It also follows from Proposition 3 that ϕ(m1

f) = m2

f, i. e., the final markings

of GWF-nets are preserved by α-morphisms. In the general case, the converse of

Proposition 3 is not true. Indeed, as shown in Fig. 14a, α-morphisms may not

reflect the initial markings of GWF-nets properly— the inverse image of the initial

marking in N
2
is not the initial marking in N

1
.

(a) (b)

Figure 14: Two α-morphisms with the common range

A refinement N
1
is called well marked under ϕ : N

1
→ N

2
if every place in the

input border of a subnet in N
1
refining a marked place in N

2
is marked as well.
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Consider again the α-morphism shown in Fig. 14a, the token in the shaded subnet

should be placed into p to make N
1
well marked under ϕ.

Proposition 4: Structure of GWF-nets can be reflected by α-morphisms

Let Ni = (Pi, Ti, Fi,m
i
0
) be an SMD net system, and Xi = Pi ∪ Ti for i = 1, 2,

such that there is an α-morphism ϕ : N
1
→ N

2
. IfN

2
is a GWF-net andN

1
is

well marked under ϕ, then N
1
is a GWF-net.

Proof. We show that N
1
satisfies the three structural conditions of GWF-nets im-

posed by Definition 7.

By Definition 7.1, ∀s
2
∈ m2

0
: •s

2
= ∅. Since N

1
is well-marked w.r.t. ϕ,

m1

0
= {©N

1
(ϕ−1(s

2
)) | s

2
∈ m2

0
}. Take s

2
∈ m2

0
and the corresponding subnet

N
1
(ϕ−1(s

2
)). Suppose ∃p ∈ ©N

1
(ϕ−1(s

2
)), such that

•p 6= ∅. Then ϕ(p) = s
2
and,

by Definition 13.5b, ϕ(•p) ⊆ •s
2
= ∅ contradicting the total surjectivity of ϕ.

By Definition 7.2, ∀f
2
∈ m2

f : f2
• = ∅. Take f

2
∈ m2

f and the corresponding

subnet N
1
(ϕ−1(f

2
)). Also take p ∈ N

1
(ϕ−1(f

2
))©. Then ϕ(p) = f

2
. By Defini-

tion 13.5c, ϕ(p•) = f
2

• = ∅ contradicting the total surjectivity of ϕ. Thus, we

obtain the final marking of N
1
, i.e.,m1

f = {N
1
(ϕ−1(f

2
))© | f

2
∈ m2

f} and (m1

f)
•
= ∅.

Suppose ∃x
1
∈ X

1
, such that ∀s

1
∈ m1

0
: (s

1
, x

1
) /∈ F∗

1
. If (x

1
, x

1
) /∈ F∗

1
, we follow

the path from x
1
to the first node x ′

1
∈ X

1
inN

1
backward, such that

•x ′
1
= ∅. Since

∀t
1
∈ T

1
: |•t

1
| > 1, x ′

1
∈ P

1
. If x ′

1
/∈ m1

0
, then N

1
is not well-marked w.r.t. ϕ. If

(x
1
, x

1
) ∈ F∗

1
, then, by Definition 13.5a, there is a corresponding image cycle in N

2
.

Take x
2
∈ X

2
, such that ϕ(x

1
) = x

2
. By Definition 7.3, ∃s

2
∈ m2

0
: (s

2
, x

2
) ∈ F∗

2
. Take

x ′
2
∈ X

2
belonging to this cycle, where at least one node in

•x ′
2
is not in the cycle.

By surjectivity of ϕ, ∃x ′
1
∈ X

1
: ϕ(x ′

1
) = x ′

2
belonging to the cycle (x

1
, x

1
) ∈ F∗

1
. If

x ′
2
∈ T

2
, then ϕ−1(x ′

2
) ⊆ T

1
. By Definition 13.3, the neighborhood of transitions is

preserved byϕ. Then, ∀t
1
∈ ϕ−1(x ′

2
) : ϕ(•t

1
) = •x ′

2
, i.e., there is a place in

•ϕ−1(x ′
2
)

which does not belong to the cycle (x
1
, x

1
) ∈ F∗

1
. If x ′

2
∈ P

2
, then take

©N
1
(ϕ−1(x ′

2
)).

At least one place in
©N

1
(ϕ−1(x ′

2
)) has an input transition which does not belong

to the cycle (x
1
, x

1
) ∈ F∗

1
, since there is a node in

•x ′
2
which is not in the image
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cycle inN
2
. We have shown that ∃x ∈ •x ′

1
, such that x does not belong to the cycle

(x
1
, x

1
) ∈ F∗

1
. Thus, either there is a path from x̃ to x with

•x̃ = ∅, or there is

another cycle (x̃, x̃) ∈ F∗
1
.

Applying a similar reasoning, we prove that ∀x
1
∈ X

1
∃f

1
∈ m1

f : (x1, f1) ∈ F∗1 .
The only difference is that we follow paths forward.

InProposition3and4,wehaveproven twostructural properties ofα-morphisms

relevant for GWF-nets. We next study the preservation and reflection of behav-

ioral properties, i. e., whether reachable markings are preserved and reflected by

α-morphisms.

Proposition 5: Reachable markings are preserved by α-morphisms [15]

LetNi = (Pi, Ti, Fi,m
i
0
)be anSMDnet system, andXi = Pi∪Ti for i = 1, 2, s. t.

there is an α-morphism ϕ : N
1
→ N

2
. Letm

1
∈ [m1

0
〉. Then ϕ(m

1
) ∈ [m2

0
〉. If

m
1
[t〉m ′

1
, where t ∈ T

1
, then:

1. ϕ(t) ∈ T
2
⇒ ϕ(m

1
)[ϕ(t)〉ϕ(m ′

1
).

2. ϕ(t) ∈ P
2
⇒ ϕ(m

1
) = ϕ(m ′

1
).

In fact, Proposition 5 provides the stronger property, s. t. transition firings are

also preserved. In the general case, α-morphisms do not reflect both reachable

markings and transition firings. More precisely, given m
2
∈ [m2

0
〉 and m

2
[t

2
〉 for

a transition t
2
∈ T

2
, it is not possible to say that for all t ∈ ϕ−1(t

2
) there exists

m
1
= ϕ−1(m

2
) ∈ [m1

0
〉, such thatm

1
[t

1
〉.

Note that reflection of reachable markings is an essential property since we

seek to infer the behavioral properties of a refinement from those valid for its

abstraction. It is required to check additional local constraints based on unfoldings

to achieve the reflection of reachable markings. This technique introduced in [15]

is briefly described below.

Let N
1
and N

2
be two Petri nets related via the α-morphism ϕ : N

1
→ N

2
.
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Recall that N
1
is called a refinement, and N

2
is called an abstraction of N

1
. For

every place p
2
inN

2
refined by a subnet inN

1
, we construct a local net, denoted by

S
2
(p

2
), by taking the neighborhood transitions ofp

2
with artificial input and output

places if necessary. The same is done for the refined system N
1
. We construct the

corresponding local net, denoted by S
1
(p

2
), by taking the subnet in N

1
refining p

2

viaϕ, i. e.,N
1
(ϕ−1(p

2
)) and the transitionsϕ−1(•p

2
)∪ϕ−1(p

2

•)with artificial input

and output places if necessary. We then have two local nets S
1
(p

2
) and S

2
(p

2
).

Since there is the α-morphism ϕ : N
1
→ N

2
, there is also the α-morphism

ϕS : S
1
(p

2
) → S

2
(p

2
) corresponding to the restriction of ϕ to the places and tran-

sitions in S
1
(p

2
). Recall that the unfolding of a Petri net N, denoted by U(N), is

the maximal branching process of N, such that any other branching process is

isomorphic to a subnet in U(N). The nodes in U(N) are mapped to the nodes in

N via the folding function u. In Lemma 1, taking the unfolding of S
1
(p

2
), we prove

that the associated folding function u composed with the α-morphisms ϕS is also

the α-morphism under the soundness of N
1
. Note that since S

1
(p

2
) is acyclic (by

Definition 13.5a), its unfolding is finite. This helps us to assure that the “final”

marking in a subnet in N
1
, refining place p

2
in the abstract model N

2
, enables

exactly the inverse image of transitions in p
2

•
. After proving Lemma 1, we also

discuss a specific example of checking these local conditions.

Lemma 1: Soundness is sufficient for local unfolding conditions

Let Ni = (Pi, Ti, Fi, m
i
0
) be an SMD net system, and Xi = Pi ∪ Ti for i =

1, 2, such that there is an α-morphism ϕ : N
1
→ N

2
. Let U(S

1
(p

2
)) be the

unfolding of S
1
(p

2
) with the folding function u, and ϕS be an α-morphism

from S
1
(p

2
) to S

2
(p

2
), where p

2
∈ P

2
. LetN

1
be a sound GWF-net. Then, the

map from U(S
1
(p

2
)) to S

2
(p

2
) obtained as ϕS ◦ u is an α-morphism.

Proof. Since N
1
is a GWF-net, S

1
(p

2
) is also a GWF-net. By Lemma 1 in [15],

when a transition in ϕ−1(p
2

•) fires, it empties the subnet N
1
(ϕ−1(p

2
)). Then

S
1
(p

2
) is sound, and, by Definition 8.3, each transition in S

1
(p

2
) will occur at least
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once. Thus, the folding u is a surjective function from U(S
1
(p

2
)) to S

1
(p

2
) and the

composition ϕS ◦ u is the α-morphism from U(S
1
(p

2
)) to S

2
(p

2
).

Figure 15 shows a negative example of checking these local unfolding condi-

tions when N
1
is not sound. It is based on the α-morphism shown in Fig. 14b. In

this case, local nets coincides with the original N
1
and N

2
. When we unfold N

1
,

there are no occurrences of transitions y
1
and y

2
. Thus, the composition of the

corresponding folding function and the α-morphism ϕ ◦ u is not an α-morphism.

The final marking of the output border in the subnet N
1
(ϕ−1(p

2
)), refining p

2
in

N
2
, enables transitions x

1
and x

2
only, whereas, inN

2
, transition y is also enabled.

Therefore, transitions in the inverse image of y inN
2
cannot be enabled by the final

markings of the output border in the subnet N
1
(ϕ−1(p

2
)).

Figure 15: A negative example of checking local unfolding conditions

One should check this unfolding condition for all properly refined places in

an abstract model. A properly refined place is a place in an abstract net that is

refined by a subnet rather than by a set of places. Taking the above discussion into

account, we obtain that α-morphisms reflect reachable markings and transition

firings under the soundness of the refinement N
1
.
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Proposition 6: Soundness is sufficient for reachable marking reflection

Let Ni = (Pi, Ti, Fi, m
i
0
) be an SMD net system, and Xi = Pi ∪ Ti for i =

1, 2, such that there is an α-morphism ϕ : N
1
→ N

2
. Let N

1
be a sound

GWF-net. Then ∀m
2
∈ [m2

0
〉 ∃m

1
∈ [m1

0
〉 : ϕ(m

1
) = m

2
. If m

2
[t

2
〉, then

∀t ∈ ϕ−1(t
2
) ∃m

1
= ϕ−1(m

2
) ∈ [m2

0
〉 : m

1
[t

1
〉.

Proof of Proposition 6 is based on applying Lemma 1 for all properly re-

fined places in N
1
. In the following theorem, we express the key property of

α-morphisms concerning the behavioral correctness of GWF-nets.

Theorem 1: Soundness is preserved by α-morphisms

Let Ni = (Pi, Ti, Fi,m
i
0
) be an SMD net system, and Xi = Pi ∪ Ti for i = 1, 2,

such that there is an α-morphism ϕ : N
1
→ N

2
. If N

1
is a sound GWF-net,

then N
2
is a sound GWF-net.

Proof. We show thatN
2
satisfies the three behavioral conditions of a sound GWF-

net imposed by Definition 8.

By Definition 8.1, for allm
1
∈ [m1

0
〉 : m1

f ∈ [m
1
〉. Then, ∃w ∈ FS(N

1
) : m

1
[w〉m1

f,

i. e.,w = t
1
t
2
. . . tn andm1

[t
1
〉m1

1
. . .mn−1

1
[tn〉m1

f. Using Proposition 5, it is possible

to simulate w in N
2
. By Proposition 3, ϕ(m1

f) = m2

f. Suppose ∃m2
∈ [m2

0
〉 : m2

f /∈
[m

2
〉. By Proposition 6, ∃m ′

1
∈ [m1

0
〉 : ϕ−1(m

2
) = m ′

1
. By Definition 8.1, m1

f ∈
[m ′

1
〉. Thus, ∃w ′ ∈ FS(N

1
) : m ′

1
[w ′〉m1

f. Using Proposition 5, it is again possible to

simulate w ′ in N
2
. Then,m2

f ∈ [m
2
〉.

Suppose ∃m ′
2
∈ [m2

0
〉 : m ′

2
⊇ m2

f. Then m
′
2
= m2

f ∪ P ′2, where P ′
2
∩m2

f = ∅. By

Proposition 6, take m
1
∈ [m1

0
〉, s.t. ϕ−1(m

1
) = m ′

2
and m1

f * m
1
. By Definition

8.1, m1

f ∈ [m
1
〉 and ∃w ∈ FS(N

1
) : m

1
[w〉m1

f. Using Proposition 5, it is possible to

simulate w in N
2
. By Proposition 3, ϕ(m1

f) = m2

f. The only way to completely

empty places in P ′
2
is to consume at least one token fromm2

f. Then, ∃f2 ∈ m2

f : f2
• 6=

∅ contradicting Definition 7.2.
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By Definition 8.3, ∀t
1
∈ T

1
∃m

1
∈ [m1

0
〉 : m

1
[t

1
〉. By surjectivity of ϕ, ∀t

2
∈

T
2
∃t

1
∈ T

1
: ϕ(t

1
) = t

2
. By Proposition 5, m

1
[t

1
〉m ′

1
⇒ ϕ(m

1
)[ϕ(t

1
)〉ϕ(m ′

1
). Then,

∀t
2
∈ T

2
∃m

2
∈ [m2

0
〉 : m

2
[t

2
〉.

The converse of Theorem 1 is not true in general. Consider again the example

shown in Fig. 14b, whereN
2
is sound andN

1
is not sound since transitions y

1
and

y
2
cannot fire. Thus, α-morphisms do not reflect soundness following from the

fact that reachable markings are also not reflected in the general case.

The soundness reflection is an important property of α-morphisms we aim to

achieve. In the following section, with the help of α-morphisms, we show when

AS-composition preserves the soundness of LGWF-nets. An interface pattern is

the AS-composition of abstract LGWF-nets. This composition also represents key

interaction-oriented viewpoints of the architecture of a multi-agent system. We

develop a techniquewhen the soundness of an interface pattern implies soundness

of the AS-composition of refined LGWF-nets. In other words, the corresponding

α-morphism from the AS-composition of refined LGWF-nets towards an interface

pattern reflects its soundness.

2.4 AS-Composition Can Preserve Soundness

The AS-composition of LGWF-nets preserves component soundness through the

use of an intermediate interface pattern. This model provides minimal details on

the local behavior of communicating agents, focusing on their synchronous and

asynchronous interactions. An interface pattern is the AS-composition of corre-

sponding abstract LGWF-nets. Abstraction is implemented using α-morphisms,

discussed in the previous section. We need to adjust α-morphisms to LGWF-

nets. We aim to deduce the soundness of a refined system model by verifying the

soundness of an underlying interface pattern.

Given two LGWF-nets N
1
and N

2
, an α-morphism ϕ : N

1
→ N

2
should addi-

tionally respect place and transition labeling, i.e., if a transition inN
1
ismapped to a
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transitionN
2
, then their labels are the same. Specifically, a transition inN

1
labeled

with an interacting action from In can only be mapped to a transition in N
2
with

the same label. The similar requirement should hold for labeled places. This fact

implies that only local transitions in N
1
(including invisible ones) can be mapped

to a place in N
2
. We formalize these restrictions in the following definition.

Definition 14: Restriction of α-morphisms to LGWF-nets

LetNi = (Pi, Ti, Fi,m
i
0
,mif,hi,ki) be an LGWF-net, Xi = Pi∪Ti with i = 1, 2.

An α̂-morphism from N
1
to N

2
is a total surjective map ϕ : X

1
→ X

2
, also

denoted ϕ : N
1
→ N

2
, s. t.:

1’. ϕ(P
1
) = P

2
where ∀p

1
∈ P

1
: k

2
(ϕ(p

1
)) = k

1
(p

1
).

2. ϕ(m1

0
) = m2

0
.

2’. ϕ(m1

f) = m
2

f.

3. ∀t
1
∈ T

1
: if ϕ(t

1
) ∈ T

2
, then ϕ(•t

1
) = •ϕ(t

1
) and ϕ(t

1

•) = ϕ(t
1
)•.

3’. ∀t
1
∈ T

1
: if ϕ(t

1
) ∈ T

2
, then h

2
(ϕ(t

1
)) = h

1
(t

1
).

3”. ∀t
1
∈ T

1
: if h

1
(t

1
) ∈ In, then

(a) ϕ(t
1
) ∈ T

2
and

(b) h
2
(ϕ(t

1
)) = h

1
(t

1
).

4. ∀t
1
∈ T

1
: if ϕ(t

1
) ∈ P

2
, then ϕ(•t

1

•) = {ϕ(t
1
)}.

5. ∀p
2
∈ P

2
:

(a) N
1
(ϕ−1(p

2
)) is an acyclic net or ϕ−1(p

2
) ⊆ P

1
.

(b) ∀p
1
∈ ©N

1
(ϕ−1(p

2
)) : ϕ(•p

1
) ⊆ •p

2
, and if

•p
2
6= ∅, then

•p
1
6= ∅.

(c) ∀p
1
∈ N

1
(ϕ−1(p

2
))© : ϕ(p

1

•) = p
2

•
.

(d) ∀p
1
∈ P

1
∩ϕ−1(p

2
) : p

1
/∈ ©N

1
(ϕ−1(p

2
))⇒ ϕ(•p

1
) = p

2
and

p /∈ N
1
(ϕ−1(p

2
))© ⇒ ϕ(p

1

•) = p
2
.
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(e) ∀p
1
∈ P

1
∩ ϕ−1(p

2
) : there is a sequential component N ′ =

(P ′, T ′, F ′) of N
1
, s. t. p

1
∈ P ′, ϕ−1(•p

2

•) ⊆ T ′.

Thus, an α̂-morphism is an α-morphism (see Definition 13) that also satisfies

conditions 1’, 2’, 3’, and 3” of Definition 14. When two LGWF-nets are related

by an α̂-morphism, their underlying GWF-nets are related by an α-morphism.

That is why α̂-morphisms inherit the properties of α-morphisms (Proposition 3–6

and Theorem 1), which we will use to prove the soundness preservation in the

AS-composition of LGWF-nets.

Moreover, it also follows from Definition 14 that labeled places in LGWF-nets

are both preserved and reflected by α̂-morphisms. In other words, the image of a

labeled place inN
1
is a labeled place inN

2
as well asl the inverse image of a labeled

place in N
2
is a labeled place in N

1
. Thus, there is a bĳection between the sets of

labeled places in two LGWF-nets related by an α̂-morphism.

We next discuss our approach to ensuring that the AS-composition of sound

LGWF-nets yields a sound LGWF-net as well.

Given two sound LGWF-nets R
1
and R

2
, we aim to be sure that R

1
~R

2
is sound.

It is possible to compose R
1
and R

2
using Definition 12, but their composition may

not be sound, as shown in the previous section (see Fig. 11). A technique described

below is applied to get the soundness of R
1
~R

2
by construction.

We start with abstracting R
1
and R

2
regarding labeled transitions. Thus, we

obtain twoabstract LGWF-netsN
1
andN

2
, s.t. there is an α̂-morphismϕi : Ri → Ni

with i = 1, 2. According to Theorem 1, N
1
and N

2
are sound. These abstract

models N
1
and N

2
are then composed by adding the same channels as R

1
and R

2

and by synchronizing transitions with the same synchronous labels as R
1
and R

2
.

Correspondingly, N
1
~N

2
is an interface pattern the interacting components R

1

and R
2
agree to follow. Then we verify soundness and structural properties of the

interface pattern N
1
~N

2
.

Given the sound interface pattern N
1
~N

2
and two α̂-morphisms ϕi : Ri → Ni
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with i = 1, 2, we construct two new LGWF-nets R
1
~N

2
and N

1
~R

2
represent-

ing different intermediate refined models of the same multi-agent system. In an

intermediate refinement, the behavior of one agent is fully specified, while the

behavior of the other agent is given only at the highly abstract level. It is easy to

verify that these intermediate refinements of the interface patternN
1
~N

2
preserve

α̂-morphisms, i. e., there is also an α̂-morphism from R
1
~N

2
to N

1
~N

2
as well as

from N
1
~R

2
to N

1
~N

2
. For instance, an α̂-morphism from R

1
~N

2
to N

1
~N

2
is

constructed from the original α̂-morphism ϕ
1
: R

1
→ N

1
together with an identity

mapping of asynchronously labeled transitions in N
2
and a corresponding map-

ping of synchronized transitions that can also be refined in R
1
. Symmetrically, it is

possible to show the construction of an α̂-morphism from N
1
~R

2
to N

1
~N

2
.

In Proposition 7, we additionally claim that an α̂-morphism from an intermedi-

ate refinedmodelR
1
~N

2
to an interface patternN

1
~N

2
reflects connections among

asynchronously labeled transitions with channels (labeled places). This reflection

follows from the fact that labeled places are both preserved and reflected by α̂-

morphisms. We will use this property further in the proof of the main theorem on

the soundness preservation in the AS-composition of LGWF-nets.

Proposition 7: Refinement of interface patterns preserves α-morphisms

Let R
1
,N

1
,N

2
be three LGWF-nets, s.t. there is an α̂-morphismϕ

1
: R

1
→ N

1
.

Let N
1
~N

2
= (P, T , F,m

0
,mf,h,k) and R1

~N
2
= (P ′, T ′, F ′, m ′

0
,m ′f,h

′
,k ′).

Then there is an α̂-morphism ϕ ′
1
: (R

1
~N

2
) → (N

1
~N

2
), s. t. ∀p ∈ dom(k)

and ∀t ∈ T :

1. If (p, t) ∈ F, then {ϕ−1(p)}×ϕ−1(t) ⊆ F ′;

2. If (t,p) ∈ F, then ϕ−1(t)× {ϕ−1(p)} ⊆ F ′.

Let the AS-composition N
1
~N

2
shown in Fig. 9b be an interface pattern. We

refine it with two LGWF-nets R
1
and R

2
representing agent behavior and obtain

two intermediate refinements shown in Fig. 16. The corresponding α̂-morphisms
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are indicated by the shaded subnets. The α-morphism between the underlying

GWF-nets R−
2
and N−

2
is provided in Fig. 12, where N

1
corresponds to R−

2
, and N

2

corresponds to N−
2
.

Theorem 2 expresses the main result on the soundness preservation in the AS-

composition of LGWF-nets. We prove that an α̂-morphism from an intermediate

refinement R
1
~N

2
(symmetrically, from N

1
~R

2
) towards an interface pattern

N
1
~N

2
reflects its soundness. Thus, a multi-agent system model is sound if the

interface pattern between agents is sound as well. In proving this fact, we use

the properties of α-morphisms discussed in Section and the characterization of

reachable markings in the AS-composition (see Proposition 2) together with the

reflection property stated in Proposition 7.

(a) AS-composition R
1
~N2 (b) AS-composition N

1
~ R2

Figure 16: Two intermediate refinements of N
1
~N

2
shown in Fig. 9b

Theorem 2: Intermediate refinement preserves soundness

Let R
1
,N

1
,N

2
be sound LGWF-nets, s. t. there is an α̂-morphism ϕ

1
: R

1
→

N
1
. If N

1
~N

2
is sound, then R

1
~N

2
is sound.
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Proof. By Proposition 7, there is an α̂-morphism ϕ ′
1
: (R

1
~N

2
)→ (N

1
~N

2
).

We first fix a notation used in the proof. Let Ni = (Pi, Ti, Fi,m
i
0
,mif,hi, `i,ki)

with i = 1, 2, and R
1
= (P

1
, T

1
, F

1
,m1

0
,m1

f,h1
, `

1
,k

1
). Also, letN

1
~N

2
= (P, T , F,m

0
,

mf,h, `,k), and R1
~N

2
= (P ′, T ′, F ′,m ′

0
,m ′f,h

′
, ` ′,k ′).

We show that R
1
~N

2
satisfies the three behavioral conditions of a sound LGWF-

net imposed by Definition 8.

Take m ′ ∈ [m ′
0
〉. By Proposition 2 for R

1
~ N

2
, m ′ = (m

1
\ dom(k

1
)) ∪ (m

2
\

dom(k
2
))∪mc, wherem

1
∈ [m1

0
〉,m

2
∈ [m2

0
〉 andmc ∈ dom(k ′). By Proposition 5

forϕ ′
1
,ϕ ′

1
(m ′) = m ∈ [m

0
〉. ByProposition2 forN

1
~N

2
,m = (m

1
\dom(k

1
))∪(m

2
\

dom(k
2
)) ∪mc, wherem

2
\ dom(k

2
),mc are the same as inm ′, andm

1
= ϕ

1
(m

1
)

(by Proposition 5 for ϕ
1
). Since N

1
~N

2
is sound, ∃w ∈ FS(N

1
~N

2
) : m[w〉mf. By

Definition 12, recall that T = Ta
1
∪Ta

2
∪Tsync inN1

~N
2
, where Tsync = {(t

1
, t

2
) | t

1
∈

dom(`
1
), t

2
∈ dom(`

2
), and `

1
(t

1
) = `

2
(t

2
)} and Tai = Ti \ dom(`i) with i = 1, 2.

Using interleaving semantics for Petri nets, we can write w = w1

2
v, such that v = ε

or v = t1
1
w1

sw
2

2
t2
1
. . . , where wi

2
∈ (Ta

2
)∗, ti

1
∈ Ta

1
and wis ∈ T∗sync with i > 1. Firstly,

each sub-sequencewi
2
can be obviously simulated on the LGWF-netN

2
in R

1
~N

2
,

sinceϕ ′
1
reflects connectionswith labeled places (by Proposition 7). Secondly, since

R
1
is sound, ϕ

1
reflects reachable markings and transitions firings (by Proposition

6). Thus, there is a reachable marking mi
1
in R

1
, belonging to ϕ−1

1
(mi

1
) for some

mi
1
∈ [m1

0
〉 in N

1
. If mi

1
[ti

1
〉 in N

1
, then mi

1
enables all transitions in ϕ−1

1
(ti

1
) in R

1

as well. Moreover, these transitions are also enabled in R
1
~N

2
, since ϕ ′

1
reflects

connections to labeled places (by Proposition 7). Finally, since N
1
~N

2
is sound,

∃m ∈ [m
0
〉 : m[(t

1
, t

2
)〉 for all (t

1
, t

2
) in wis. By Proposition 2,m = m

1
∪m

2
, where

m
1
∈ [m1

0
〉 andm

2
∈ [m2

0
〉 (heremc = ∅, since transitions in Tsync are not connected

with labeled places). Moreover,m
1
[t

1
〉 andm

2
[t

2
〉. By Proposition 6 forϕ

1
, there is

a reachable markingm ′
1
in R

1
, such thatm ′

1
= ϕ−1

1
(m

1
) and ∀t

1
∈ ϕ−1

1
(t

1
) : m ′

1
[t

1
〉.

Correspondingly, a reachable marking m ′
1
∪m

2
in R

1
~N

2
enables synchronized

transitions (t
1
, t

2
) for all t

1
∈ ϕ−1

1
(t

1
).

Hence, we reflect the complete firing sequence w ∈ FS(N
1
~N

2
) on R

1
~ N

2
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reaching its final markingm ′f.

Suppose by contradiction ∃m ′ ∈ [m ′
0
〉 : m ′ ⊇ m ′f and m

′ 6= m ′f. By Defini-

tion 12.2, m ′f = m1

f ∪ m2

f. Thus, m ′ = m1

f ∪ m2

f ∪ m3
. By Proposition 5 for

ϕ ′
1
, we have that ϕ ′

1
(m ′) ∈ [m

0
〉. Then, ϕ ′

1
(m ′) = ϕ ′

1
(m1

f) ∪ ϕ ′1(m2

f) ∪ ϕ ′1(m3
) =

ϕ
1
(m1

f) ∪m2

f ∪m3
= m1

f ∪m2

f ∪m3
= mf ∪m3

. This reachable markingmf ∪m3

strictly covers the final markingmf in N1
~N

2
contradicting its soundness.

We show that ∀t ′ ∈ T ′ ∃m ′ ∈ [m ′
0
〉 : m ′[t ′〉. By Proposition 2, m ′ = (m

1
\

dom(k
1
))∪ (m

2
\dom(k

2
))∪mc, wherem

1
∈ [m1

0
〉,m

2
∈ [m2

0
〉 andmc ∈ dom(k ′).

By Definition 12.3, ∀t ′ ∈ T ′ : t ′ ∈ Ta
1
or t ′ ∈ Ta

2
or t ′ ∈ Tsync. If t ′ ∈ Ta

2
, then

∃m ∈ [m
0
〉 : m[t ′〉, since N

1
~N

2
is sound. By Proposition 7, (m

2
\ dom(k

2
)) ∪mc

in R
1
~N

2
also enables t ′. If t ′ ∈ Ta

1
, then there are two cases. If ϕ ′

1
(t ′) ∈ P, then

t ′ is not connected to labeled places. Since R
1
sound,m

1
enables t ′. If ϕ ′

1
(t ′) ∈ T ,

then take t ∈ T , such that ϕ ′
1
(t ′) = t (by the surjectivity of ϕ ′

1
). Since N

1
~N

2
is

sound, ∃m ∈ [m
0
〉 : m[t〉. By Proposition 6 and 7, the reachable markingm

1
∪mc

in R
1
~N

2
(being the inverse image ofm underϕ ′

1
) enables t ′. As for the case when

t ′ ∈ Tsync, we have already considered it above when proving reachability of the

final marking in R
1
~N

2
.

Having two α̂-morphisms from the intermediate refinements R
1
~N

2
andN

1
~R

2

to the same interfaceN
1
~N

2
, we can composeR

1
~N

2
andN

1
~R

2
using the operation

defined in [15]. It is required to (a) substitute subnets in R
1
~N

2
and N

1
~R

2
for

the corresponding places in N
1
~N

2
; (b) replace transitions in N

1
~N

2
with their

inverse images merging those with identical images. As a result, we obtainN and

two α̂-morphisms from N to R
1
~N

2
and N

1
~R

2
, such that the diagram shown

in Fig. 17b commutes, i. e., ϕ ′
1
◦ ϕ ′′

1
= ϕ ′

2
◦ ϕ ′′

2
, where ϕ ′

1
: (R

1
~N

2
) → (N

1
~N

2
),

ϕ ′
2
: (N

1
~R

2
)→ (N

1
~N

2
), ϕ ′′

1
: N→ (R

1
~N

2
), and ϕ ′′

2
: N→ (N

1
~R

2
).

Another way is to construct intermediate refinements again by refining N
2

in R
1
~N

2
(N

1
in N

1
~R

2
). We obtain R

1
~ R

2
, isomorphic to the previously

constructed compositionNup to renaming of synchronized transitions. According

to Proposition 7, there are two α̂-morphisms from R
1
~ R

2
to R

1
~N

2
as well as to
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N
1
~ R

2
. According to Theorem 2, since R

1
~N

2
(N

1
~ R

2
) is sound, R

1
~R

2
is also

sound. Therefore, we have also shown that it is possible to simultaneously refine

N
1
andN

2
in a sound interface with sound LGWF-nets R

1
and R

2
(see Corollary 1).

In Fig. 17a, we show the result of composing, by means of α̂-morphisms, in-

termediate refined models R
1
~ N

2
and N

1
~ R

2
constructed in Fig. 16. This AS-

composition corresponds to the direct AS-composition of R
1
and R

2
as well.

Corollary 1: AS-composition can preserve soundness of components

Let Ri,Ni be sound LGWF-nets, s. t. there is an α̂-morphism ϕi : Ri → Ni

for i = 1, 2. If N
1
~N

2
is sound, then R

1
~R

2
is sound.

(a) composition N isomorphic to R
1
~ R2

N1 ⊛N2

R1 ⊛N2 N1 ⊛R2

N

ϕ′
1 ϕ′

2

ϕ′′
2ϕ′′

1

(b) diagram

Figure 17: AS-composition of R
1
~N

2
and N

1
~ R

2
(Fig. 16) based on

α̂-morphisms

Discovering Process Models for Multi-Agent Systems from Event Logs



64 CHAPTER 2. SOUNDNESS-PRESERVING COMPOSITION

2.5 Related Works: Net System Composition

Petri net compositionwas extensively studied in the literature. Researchers consid-

ered various aspects, including architectural concepts of compositional modeling

and semantical issues relating to the compositional analysis of Petri net behav-

ior. The ubiquity of service-oriented and multi-agent architectures of information

retains the relevance of further research on these aspects of Petri net composition.

General frameworks for Petri net composition were discussed in, among the

others, [3,16–18]. The recentworks [19–21] byW.Reisig are devoted to a systematic

study of compositional modeling principles applicable to various formalisms and

notations, including (Colored) Petri nets, BPMN (Business Process Modeling and

Notation) process models, and UML (Unified Modeling Language) diagrams. He

addressed architectural problems behind the composition of Petri net components

with double-sided interfaces in the context of algebraic properties paying special

attention to the associativity.

Several works studied whether a composition of open Petri nets preserves se-

mantical properties of components. P. Baldan et al. [22] introduced a class of

open Petri nets and analyzed the categorical framework behind open Petri net

composition constructed via place and transition fusion. K. van Hee et al. [23, 24]

considered a soundness-preserving refinement of places in open WF-nets with

sound (composition of) WF-nets.

A class of superposed automata nets (SA-nets) was introduced by F.De Cindo

et al. in [25]. SA-nets were among the first formalisms to model systems with

synchronously communicating sequential components via transition fusion.

S.Haddad et al. [26] defined the semantics of input/output (I/O) Petri nets

and their composition constructed through the insertion of asynchronous chan-

nels. The authors studied channel properties related to message consumption

and interaction termination. It was shown that these properties are decidable and

preserved by an asynchronous composition of I/O-Petri nets.

Y. Soussi and G.Memmi [27, 28] considered the problem of liveness preserva-

©R.A. Nesterov, 2022



2.5. RELATED WORKS: NET SYSTEM COMPOSITION 65

tion in a composition of Petri nets through an intermediate model of communica-

tion medium. Their approach is based on global and rigid structural constraints.

C. Stahl and K.Wolf [29] applied operating guidelines for the compositional veri-

fication of deadlock-freeness in the composition of open Petri nets. Their work also

considered a problem to decide if one can replace a component in a composition

preserving its semantical properties. The method proposed by C. Stahl and K.

Wolf considered only two parts of the soundness property, namely boundedness

and deadlock-freeness. Compositional analysis of the third component — the

absence of livelocks — was not addressed.

Inheritance of behavioral properties of Petri nets is also achieved with the help

of morphisms — structural property-preserving graph mappings. The compo-

sition of Petri nets via morphisms was a subject of many works, including, for

example, [30–37]. We note that morphisms provide a natural and rigid framework

to explore properties of Petri net composition.

In our study, the soundness preservation in the AS-composition of LGWF-nets

is achieved with the help of a restriction of α-morphisms, originally defined by

L. Bernardinello et al. in [15]. They allow us to abstract subnets and refine places in

Petri nets. In addition, α-morphisms preserve and reflect reachable markings and

induce the bisimulation between related models. We extended the applicability of

α-morphisms by considering asynchronous interactions among agents in a multi-

agent system.

Several works have discussed architectural and semantical aspects of composi-

tional approaches to workflow net modeling. J. Siegeris and A.Zimmermann [38]

considered several specific patterns of WF-net interactions preserving the relaxed

version of component soundness admitting executions that may not terminate in a

final state. The work [39] by I. Lomazova and I. Romanov addressed the problem

of preserving service correctness in the context of resources produced and con-

sumed by interacting services. The earlier work [40] by I. Lomazova also proposed

an approach to soundness-preserving re-engineering of hierarchicalWF-nets with
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the two-level structure.

Y. Cardinale et al., in the survey [41], discussed a variety of approaches to

the compositional modeling of web services. The authors stressed that there is

a lack of service execution techniques based on different classes of Petri nets. In

particular, V. Pancratius and W. Stucky [42] considered a composition of WF-nets

representing web service behavior with the help of a family of adapted relational

algebra operations.

The main difference in our work is that the AS-composition of labeled GWF-

nets leaves asynchronous channels and synchronous transitions open for other

components to connect. Apart from that, refinement of LGWF-nets is defined

at the level of a complete net rather than specific places and transitions. Refine-

ment preserves the soundness of LGWF-net components and an interface, which

describes interactions at the abstract level.

2.6 Conclusions of Chapter 2

This chapter studied a semantically correct composition of interacting workflow

nets. Wedevelopedanapproach tomodeling their synchronous andasynchronous

interactions using two kinds of transition labels. We defined an asynchronous-

synchronous composition that may not preserve the soundness of interacting com-

ponents. To overcome this problem, we use an interface model describing how

components interact. The interface represents an abstract view of a complete

multi-agent system. There is a subnet in the interface representing the behavior

of an agent. The correspondence between an interface and agent models is deter-

mined using α-morphisms. Structural and behavioral properties of the abstrac-

tion/refinement relation based on α-morphisms helped us to prove that refining

subnets in the interface with sound models preserves the interface soundness.

We identify two main advantages of the proposed AS-composition. Firstly, the

problem of constructing a correct composition of workflow nets is resolved at the
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abstract level. Refinement of places in the interface pattern requires checking struc-

tural and only local behavioral constraints. Soundmodels of interface patterns can

be reused for different component refinements. Secondly, AS-composition leaves

asynchronous channels and synchronous transitions open for others to interact.

The main limitation of the AS-composition lies in defining α-morphisms from

componentmodels towards the interface pattern. The following chapter is devoted

to overcoming this difficulty.
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Chapter 3

Transformations of LGWF-Nets

T

he preservation of soundness in the AS-composition of labeled GWF-nets

(see Theorem 2) is based on defining α̂-morphisms from agent nets to-

wards the corresponding parts in an interface pattern. The direct ap-

plication of Definition 14 is rather difficult due to the complex global structural

constraints imposed on related LGWF-nets. In this chapter, we define structural

LGWF-net transformations, which induce an α̂-morphism between an initial and

transformed LGWF-net. A collection of local transformations, which change only

the specific subnets in LGWF-nets, is proposed. Structural transformations are

the heart of the second correctness aspect of the compositional process discovery

algorithm. In addition, we study the key properties of these transformations.

3.1 Step-Wise Definition of Morphisms

Let ϕ : N
1
→ N

2
be an α̂-morphism. The main idea of the step-wise definition is

to apply a sequence of local transformations to construct N
1
(N

2
) from N

2
(N

1
),

as shown in Fig. 18. Transformations are called local, since they affect only

some subnet, while the rest of the model remains unchanged. In other words,

transformations are applied to an abstraction (refinement) in order to construct

68
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its refinement (abstraction). The application of a transformation implies checking

only local structural constraints imposed on the specific subnet.

abstraction

refinement

Figure 18: Step-wise definition of morphisms: sequence of transformations

Given an LGWF-net N, one can construct several possible abstractions of N

(by Definition 14) depending on the desired detail level. Using transformations

helps to reduce this ambiguity. On the one hand, transformations should preserve

interacting transitions, since an abstraction of an LGWF-net is supposed to be

mapped on the interface pattern. On the other hand, transformations should

minimize the number of local transitions in an LGWF-net corresponding to the

internal behavior of an agent (a multi-agent system).

However, refinement transformations should only respect interacting transi-

tions. They do not require constraints onminimizing a number of local transitions.

Firstly, while developing transformations of LGWF-nets, we will take into ac-

count the requirements imposed by the definition of α̂-morphisms. Secondly,

transformations should also respect the structural requirements of LGWF-nets

(Definition 7 and Definition 10), i. e., a transformed model should not fall outside

the class of LGWF-nets. Thus, the situation when a local transition cannot be

reduced is possible since this reduction may violate the structural requirements.
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Wenext define themain components of a transformation rule and discusswhen

a transformation rule can be applied to a given LGWF-net.

For what follows, let N = (P, T , F,m
0
,mf,h,k) be an LGWF-net, where h : T →

Λ ∪ {τ} is a total transition labeling function, and k : P 9 C is a partial injective

place labeling function, which assigns labels to places connecting transitions with

complement asynchronous labels.

We define transformation rules, which induce α̂-morphisms. A transformation

rule is a tuple ρ = (L, cL, R, cR), where:

1. L is the left part of a rule that is a subnet in an LGWF-net to be transformed.

2. cL – flow relation and labeling constraints imposed on L.

3. R is the right part of a rule that is a subnet replacing L in an LGWF-net.

4. cR – flow relation, marking, labeling constraints imposed on R.

L and cL define the applicability constraints of a transformation rule, whereas R

and cR define the transformation itself. We do not give the complete formalization

of cL and cR since the specific constraints of applicability and transformation

are discussed in the rule definitions. These constraints are required to define

an α̂-morphism between an initial and transformed LGWF-net. An α̂-morphism

induced by a transformation rule ρ is denoted ϕρ.

Then a transformation rule ρ = (L, cL, R, cR) is applicable to an LGWF-net N if

there exists a subnet in N isomorphic to L with respect to structural and labeling

constraints cL.

Let ρ = (L, cL, R, cR) be a transformation rule applicable to N. Let N(XL) be

the subnet of N, generated by XL ⊆ P ∪ T , s. t. it is isomorphic to L. Then we

equivalently say that ρ is applicable to the subnet N(XL) in N. The application of

ρ to N includes the following steps, as shown in Fig. 19:

1. Remove the subnet N(XL) from N.
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2. Add the subnet corresponding to the right part R of ρ toN connecting it with

the nodes in the neighborhood
•XL
•
of the removed subnet.

3. Make necessary changes, i.e., relabel transitions and add tokens to places, in

the inserted subnet according to cR.

The result of applying ρ to a subnetN(XL) inN is a new LGWF-net denoted by

ρ(N,XL) = (P ′, T ′, F ′, m ′
0
,m ′f,h

′
,k ′). We use the “functional” notation ρ(N,XL),

explicitly specifying the subnet affected inN to avoid the ambiguity when a trans-

formation rule can be applied to several subnets in an LGWF-net. For brevity,

we also write N
ρ→ N ′ if N ′ = ρ(N,XL), and the specification of the transformed

subnet is not important or clear from the context.

            
transform

Figure 19: Transformation rule

In the following two sections, abstraction and refinement rules are discussed.

Given an α̂-morphismϕ : N
1
→ N

2
, abstraction rules are used to constructN

2
from

N
1
, while refinement rules are used to constructN

1
fromN

2
. The specifications of

a specific abstraction and refinement rule correspond to the key components of a

transformation rule discussed above.
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3.2 Abstraction Rules

Here, we propose a set of five simple abstraction rules. They are used to abstract

LGWF-nets, s. t. there is an α̂-morphism from an initial LGWF-net N towards the

result of applying a sequence of abstraction rules to N. We show that abstraction

rules induce α̂-morphisms and preserve not only reachable markings, but also

deadlocks in LGWF-nets. This is a somewhat stronger property in comparison

with the reachable marking preservation stated in Proposition 5.

In the following, let N = (P, T , F,m
0
,mf,h,k) be an LGWF-net, and N ′ =

ρ(N,XL) = (P ′, T ′, F ′,m ′
0
,m ′f,h

′
,k ′) be the result of applying ρ to N.

Rule A1: Place simplification

• applicability constraints: two unlabeled places p
1
,p

2
∈ P in N, i. e., p

1
,p

2
/∈

dom(k), with the same neighborhood (
•p

1
= •p

2
and p

1

• = p
2

•
), as shown

in Fig. 20a.

• transformation: fusion of p
1
and p

2
into a single unlabeled place p

12
that

preserves the neighborhood of p
1
and p

2
, i. e.,

•p
12
= •p

1
= •p

2
, p

12

• = p
1

• =

p
2

•
. Also, p

12
/∈ dom(k ′) and p

12
∈ m ′

0
⇔ (p

1
∈ m

0
and p

2
∈ m

0
).

• α̂-morphism ϕA1
: N → N ′, where N ′ = ρA1

(N, {p
1
,p

2
}), maps places p

1
and

p
2
in N to place p

12
in N ′. For the rest of nodes in N, ϕA1

is the identity

mapping between N and N ′.

Place simplification is among the most basic Petri net transformations. Places

that can be simplified (fused) do not restrict the behavior of a Petri net. It was

discussed earlier, for instance, in [43] (cf. “fusion of parallel places”) and in [44]

(cf. “simplification of redundant places”).

Rule A2: Transition simplification

• applicability constraints: two transitions t
1
, t

2
∈ T in N with the same label

(h(t
1
) = h(t

2
)) and neighborhood (

•t
1
= •t

2
and t

1

• = t
2

•
).
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• transformation: fusion of t
1
and t

2
into a single transition t

12
that preserves

both the labels and the neighborhoodof t
1
and t

2
, i. e.,h ′(t

12
) = h(t

1
) = h(t

2
),

•t
12
= •t

1
= •t

2
, and t

12

• = t
1

• = t
2

•
.

• α̂-morphism ϕA2
: N → N ′, where N ′ = ρA2

(N, {t
1
, t

2
}), maps transitions t

1

and t
2
in N to transition t

12
in N ′. For the rest of nodes in N, ϕA2

is the

identity mapping between N and N ′.

(a) abstraction rule A1 (b) abstraction rule A2

Figure 20: Place and transition simplification

Figure 20b shows the left and right parts of the abstraction rule ρA2
. Two

transitions t
1
and t

2
can be fused only if they have the same label, as required by

Definition 14. In this case, the result of their fusion, transition t
12
, should inherit

the labels of t
1
and t

2
.

Transition simplification (without labeling constraints) is one of the basic Petri

net transformations as well. It was considered, for instance, in [43] (cf. “fusion of

parallel transitions”).

Rule A3: Local transition elimination

• applicability constraints: a local transition t ∈ T in N, s. t. h(t) /∈ n and:

1.
•t = {p

1
} and t• = {p

2
}.

2. p
1

• = •p
2
= {t}.

3.
•p

1
6= ∅ or p

2

• 6= ∅.
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4.
•p

1
∩ p

2

• = ∅.

• transformation: fusion of t, p
1
and p

2
into a single place p

12
where

•p
12
= •p

1
,

p
12

• = p
2

•
, and p

12
∈ m ′

0
⇔ (p

1
∈ m

0
or p

2
∈ m

0
).

• α̂-morphism ϕA3
: N → N ′, where N ′ = ρA3

(N, {p
1
, t,p

2
}), maps t, p

1
, and p

2

inN to place p
12
inN ′. For the rest of nodes inN,ϕA3

is the identitymapping

between N and N ′.

Figure 21 shows the left and right parts of the ruleρA3
aswell as the construction

of the α̂-morphism ϕA3
. The applicability constraints of ρA3

are aimed to avoid

generating isolated places and self-loops in ρA3
(N, {p

1
, t,p

2
}), which otherwisewill

contradict the structural requirements of LGWF-nets.

A similar transition transformation “pre-fusion” was discussed in [44], where

it has been expressed as the fusion of two transitions connected by a place.

Figure 21: Abstraction rule A3: Local transition elimination

Abstraction rules ρA1
, ρA2

and ρA3
can be generalized: to sets of places and

transitions (ρA1
and ρA2

, respectively) or to a “chain” of unlabeled transitions

(ρA3
). The example of these generalizations for rules ρA1

and ρA2
is shown in

Fig. 22. However, we propose applying a simple abstraction rule multiple times

in a row rather than complicating their applicability constraints and left parts,

respectively.
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Figure 22: Generalizing abstraction rules ρA1
and ρA3

Rule A4: Postset-empty place simplification

• applicability constraints: two places p
1
and p

2
in N, s. t. p

1

• = p
2

• = ∅ and:

1.
•p

1
∩ •p

2
= ∅.

2. ∀C ⊆P : ifN(C∪ •C•) is a sequential component, then p
1
∈ C⇔ p

2
∈ C.

• transformation: fusion of p
1
and p

2
into a single place p

12
, s. t.

•p
12
= •p

1
∪•p

2
,

p
12

• = p
1

• = p
2

•
andm ′f = (mf \ {p1,p2}) ∪ p12, as shown in Fig. 23.

• α-morphism ϕA4
: N→ N ′, where N ′ = ρA4

(N, {p
1
,p

2
}), maps p

1
and p

2
in N

to the same place p
12

in N ′. For the rest of nodes in N, ϕA4
is the identity

mapping between N and N ′.

Places with the empty postset (in the final marking of N) can be fused only if

there is no sequential component that distinguishes p
1
and p

2
. This requirement

helps us to preserve statemachine decomposability inN ′. Thereforewe also satisfy

the requirement 5e of Definition 14.
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Figure 23: Abstraction rule A4: Postset-empty place simplification

Rule A5: Preset-disjoint transition simplification

In this abstraction rule ρA5
, we fuse two transitions that have the same postset

and disjoint presets, as opposed to abstraction rule ρA2
. The applicability con-

straints of this rule do not allow us to lose deadlocks present in an initial LGWF-

net by transforming it. The problem of losing deadlocks is the consequence of

the fact that α-morphisms do not reflect reachable markings without additional

restrictions, as discussed in Section 2.3. In the setting of our study, this means

that an inverse image of a reachable marking that enables transitions in an abstract

model may be a deadlock in an initial model, as shown in Fig. 24.

Figure 24: Deadlocks are not preserved by α̂-morphisms

Let us illustrate the problem of losing deadlocks by the following example

based on the net system previously shown in Fig. 4. Recall that this net system

has two deadlocks {p
3
,p

6
} and {p

4
,p

5
} reachable from the initial marking {p

1
,p

2
}.

These deadlocks are caused by the fact that conflicts are resolved independently
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by two sequential components. Suppose that the two transitions t
5
and t

6
have

the same label “c!”. Then, using Definition 14, it is possible to fuse p
3
with p

4
, p

5

with p
6
and t

5
with t

6
correspondingly (see Fig. 24 where the place and transition

fusion is indicated by the indices, and the α̂-morphism ϕ is shown via dotted

arrows). The image t
56

of t
5
and t

6
has two places in its preset, and there exists

reachable marking {p
34
,p

56
} enabling t

56
. However, there exists an inverse image

of the marking {p
34
,p

56
}, e. g., the deadlock {p

3
,p

6
} that does not enable the inverse

image of t
56
. Correspondingly, the abstraction of a net system with a deadlock

may become deadlock-free.

Thus, it is necessary to impose the additional constraints on places in the

presets of two transitions to be fused so that if there is a deadlock containing

places in the presets of these transitions, then it should not be possible to fuse

them. Preset-disjoint transition simplification is defined as follows:

• applicability constraints: two transitions t
1
and t

2
in N with the same label

h(t
1
) = h(t

2
), s. t.:

1.
•t

1
∩ •t

2
= ∅ and |•t

1
| = |•t

2
|.

2. t
1

• = t
2

•
.

3. ∀a ∈ •t
1
∀b ∈ •t

2
∃C ⊆ P : a,b ∈ C and N(C ∪ •C•) is a sequential

component.

• transformation: fusion of t
1
and t

2
into a single transition t

12
with h ′(t

12
) =

h(t
1
) = h(t

2
), t

12

• = t
1

• = t
2

•
, and

•t
12

= {(a,b) |a ∈ •t
1
,b ∈ •t

2
,g(a) = b},

where g : •t
1
→ •t

2
is a bĳection. The input transitions of

•t
1
and

•t
2
are

preserved, i. e., ∀(a,b) ∈ •t
12
: •(a,b) = •a∪ •b. As for the initial markingm ′

0

in ρA5
(N, {t

1
, t

2
}), we have ∀(a,b) ∈ •t

12
: (a,b)∈m ′

0
⇔(a∈m

0
or b ∈ m

0
).

• α-morphism ϕA5
: N → N ′, where N ′ = ρA5

(N, {t
1
, t

2
}), maps transitions t

1

and t
2
to the transition t

12
in N ′ as well as every pair of places a ∈ •t

1
and

b ∈ •t
2
, where g(a) = b, is mapped to the place (a,b) ∈ •t

12
. For other nodes

in N, ϕA5
is the identity mapping.
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Fogure 25 provides the left and right parts of the abstraction rule ρ
A5

where

the pairwise fusion of places is shown only for places a
1
and b

1
with g(a

1
) = b

1

that are fused into the place f
1
= (a

1
,b

1
). For other pairs of places, this fusion is

performed similarly. The bĳection g : •t
1
→ •t

2
is an integral part of ρA5

, which

makes the preset-disjoint transition simplification unambiguous.

Figure 25: Abstraction rule A5: Preset-disjoint transition simplification

The third applicability constraint of ρA5
makes sure that every place in

•t
1
is in

conflict with every place in
•t

2
. Then it is easy to check that if there is a reachable

marking in N with a token in
•t

1
, then there cannot be a token in

•t
2
at the same

time. The application of this rule involves pairwise place fusion in
•t

1
and

•t
2
.

According to the requirement on sequential components, we define a bĳection

g : •t
1
→ •t

2
and fuse places in

•t
1
and

•t
2
corresponding by g.

Let us consider two more detailed examples of applying the abstraction rule

ρA5
. There are two LGWF-nets N

1
and N

2
shown in Fig. 26. Transitions t

1
and

t
2
in N

1
as well as transitions e

1
and e

2
in N

2
are candidates to be fused since

they have the same label c!, share the same postset, whereas their presets are

disjoint. We have to check whether places in the presets of these transitions are

connected by sequential components. The results of this verification for N
1
and

N
2
are given in Table 3, where we provide only sets of places corresponding to

sequential components.

In N
1
, there is no sequential component containing places p

1
and p

4
. Indeed,

there is the deadlock {p
1
,p

6
,p

4
} containing places both from

•t
1
and

•t
2
. Thus,

transitions t
1
and t

2
in N

1
cannot be fused without losing this deadlock.
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Figure 26: Two LGWF-nets to check the applicability constraints of ρA5

In N
2
, we have found four sequential components for all pairs of places from

•e
1
and

•e
2
. Thus, we can fuse these transition according to the abstraction rule

ρA5
. There can be two possible transformations depending on the choice of places

to be fused, i. e., either s
1
is fused with s

4
(see Fig. 27a) or s

1
is fused with s

3
(see

Fig. 27b). It is enough to choose a single pair of places to be fused, and the other

pair of places is determined in the only possible way.

Table 3: Verification of sequential components in N
1
and N

2
from Fig. 26

Sequential components in N
1

Sequential components in N
2

p
1
and p

3
{p

8
,p

5
,p

3
,p

1
,p

10
} s

1
and s

3
{r

1
, s

5
, s

1
, s

3
, f}

p
1
and p

4
NO s

1
and s

4
{r

2
, s

6
, s

10
, s

1
, s

4
, s

13
}

p
2
and p

3
{p

8
,p

6
,p

2
,p

3
,p

10
} s

2
and s

3
{s

8
, s

2
, s

3
, f}

p
2
and p

4
{p

9
,p

7
,p

2
,p

4
,p

10
} s

2
and s

4
{s

9
, s

7
, s

2
, s

2
, f}
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(a) s
1
is merged with s

4
(b) s

1
is merged with s3

Figure 27: Two results of applying the rule ρA5
to N

2
from Fig. 26

3.3 Properties of Abstraction Rules

Here, we discuss the main properties of the simple abstraction rules. We denote

the set of abstraction rules by AR = {ρA1
, ..., ρA5

}.

By construction, applying an abstraction rule induces an α-morphism from the

initial LGWF-net towards the transformed one.

Proposition 8: Abstraction rules induce α̂-morphisms

Let ρ ∈ AR, s. t. ρ is applicable to a subnet N(XL) in N. Then there is an

α̂-morphism ϕρ : N→ ρ(N,XL).

Corollary 2: Sequences of abstraction rules induce α̂-morphisms

Let ρ
1
, ρ

2
∈ AR, s.t. ρ

2
is applicable to a subnet in ρ

1
(N,XL) generated by X ′L.

Then there is an α-morphism ϕρ2 ◦ϕρ1 : N→ ρ
2
(ρ

1
(N,XL),X

′
L).

Thus, it is possible to redefine the notion of abstraction without referring to the

definition of α̂-morphisms.
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Definition 15: Abstraction of LGWF-net

LetN
1
andN

2
be two LGWF-nets. N

1
is an abstraction ofN

2
if there exists a

sequence of abstraction rules π = 〈ρ
1
ρ
2
...ρn〉 ∈ AR∗, which leads from N

2
to

N
1
, i.e., N

2

ρ
1→ N ′

2

ρ2→ ...

ρn→ N
1

The important property is whether the order of applying abstraction rules

matters when at least two abstraction rules are applicable to the same LGWF-net.

In this case, we distinguish whether these abstraction rules coincide or differ.

Proposition 9: When the order of abstraction rules does not matter

Let ρ
1
, ρ

2
∈ AR, s.t. ρ

1
is applicable to a subnet N(X1

L) in N, ρ
2
is applicable

to a subnet N(X2

L) in N and X1

L 6= X2

L. Then:

1. If ρ
1
= ρ

2
, then the effect of applying ρ

2
to ρ

1
(N,X1

L) is isomorphic to

the effect of applying ρ
1
to ρ

2
(N,X2

L).

2. If ρ
1
6= ρ

2
and X1

L ∩X2

L = ∅, then ρ
2
(ρ

1
(N,X1

L),X
2

L) = ρ1(ρ2(N,X2

L),X
1

L).

The second part of Proposition 9 is easy to verify, i. e., the order of applying

abstraction rules transforming disjoint subnets is immaterial. However, the first

part of this Proposition requires an additional clarification, when ρ
1
= ρ

2
= ρA5

.

The result of applying the other abstraction rules fully depends on the subnets

corresponding to their left parts, which are fixed in Proposition 9.

As discussed above, the bĳection g between the input places of two transitions

is the integral part of ρA5
. Then we require that for the repeated application of

ρA5
, one fixes the bĳections at the time of checking the applicability constraints.

The following example (see Fig. 28) shows a case when ρA5
can be applied twice

and explains how to define the correct bĳections between input places.

Suppose an LGWF-net N has a subnet shown in Fig. 28a, which satisfies the

applicability constraints of ρA5
since transitions t

1
, t

2
and t

3
have the same label.

We need to define two bĳections between the input places of any two pairs of
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transitions, and the bĳection for the third pair of transitions will be obtained

transitively. For instance, let g
1
: •t

1
→ •t

2
and g

2
: •t

1
→ •t

3
, s. t. g

1
(a

1
) = b

1
,

g
1
(a

2
) = b

2
, g

2
(a

1
) = c

2
, and g

2
(a

2
) = c

1
. These correspondences between the

input places are also shown by dotted lines in Fig. 28a. Then the third bĳection

g
3
: •t

2
→ •t

3
is defined as follows: g

3
(b

2
) = c

1
and g

3
(b

1
) = c

2
. Arbitrary

definition of the third bĳection might break transitivity and, thus, disable the

repeated application of the abstraction rule ρA5
. In other words, the number of

required bĳections corresponds to the number of times ρA5
will be applied to N.

(a) subnet

(b) (c)

Figure 28: Repeated application of the abstraction rule ρA5

We next demonstrate that the order of fusing transitions is not important

since the results are isomorphic. Suppose that, firstly, transitions t
1
and t

2

are to be fused. Then they are transformed into a single transition t
12
, s. t.

•t
12

= {(a
1
,b

1
), (a

2
,b

2
)} according to g

1
. The fusion of t

12
with t

3
will yield a

transition t
123

with
•t

123
= {(a

1
,b

1
, c

2
), (a

2
,b

2
, c

1
)}, as shown in Fig. 28b. Changing

the order of the consecutive fusions, we may, for example, obtain a transition t
231

with
•t

231
= {(b

2
, c

1
,a

2
), (b

1
, c

2
, a

1
)} (see Fig. 28c), which is isomorphic to the

earlier constructed result.

The unambiguity of the repeated application of ρA5
requires that the bĳections

between the input places of transition pairs are defined for an initial LGWF-net.

According to the structural requirements of abstraction rules AR, we also con-

clude that if there is a deadlock in an initial LGWF-net, then the image of this
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deadlock is also a deadlock in a transformed LGWF-net (see Proposition 10). In

proving this statement, we rely on the fact that α-morphisms preserve reachable

markings and transition firings (see Proposition 5), i. e., an image of a reachable

marking in a refined LGWF-net is also a reachable marking which, moreover,

enables any image of enabled transitions in a refined model.

Proposition 10: Abstraction rules preserve deadlocks

LetN = (P, T , F,m
0
,mf,h,k be an LGWF-net. Let ρ ∈ AR, s. t. ρ is applicable

to a subnet N(XL) in N. Letm ∈ [m
0
〉 be a deadlock in N. Then ϕρ(m) is a

deadlock in ρ(N,XL).

Proof. Let N ′ = ρ(N,XL). If m
• = ∅, then, by Definition 14, ϕρ(m)• = ∅. Thus,

ϕρ(m) is a deadlock in N ′. If ∃t ∈ T : •t ∩ m 6= ∅, then the proof is done by

contradiction. Suppose thatϕρ(m) is not a deadlock. Then either
•ϕρ(t) = ϕρ(m),

i.e., a transition t and •t• is mapped to the same place, or
•ϕρ(t) ⊆ ϕρ(m), i.e., a

marking ϕρ(m) enables ϕρ(t) in N
′
. A transition t cannot be mapped to a place

by ϕρ since |•t| > 1, because there are places in
•t, s.t. •t ∩m 6= ∅ and there is at

least one place p ∈ •t, s.t. p /∈ m. If a marking ϕρ(m) enables ϕρ(t) in N
′
, then t

is fused with another transition t ′ by ρ, s.t. •t ′∩m 6= ∅. This fusion is not allowed

by the abstraction rule ρA5
, then there is a contradiction.

We next consider an example of abstracting an LGWF-net using the sequence

above described abstraction rules. Consider the behavior of Agent 1 in the LGWF-

net shown earlier in Fig. 1. Figure 26 shows its abstraction, LGWF-net A
1
, which

is obtained by applying a sequence consisting of 13 abstraction rules (through 6

steps). According to Proposition 9, the application of abstraction rules transform-

ing disjoint subnets is shown as a single step. The corresponding α̂-morphism

from the initial LGWF-net towards A
1
is a composition of all intermediate α̂-

morphisms induced by concrete abstraction rules. A similar construction can be

also done for the behavior of Agent 2 from Fig. 1.
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Figure 29: Abstracting the behavior of Agent 1 from Fig. 1

Note also that LGWF-net A
1
, shown in Fig. 29 cannot be abstracted further

using abstraction rules A1–A5, since it has only three interacting transitions a!, b?,

and s. The characterization of irreducible models is subject for the future research

on abstraction transformations.

3.4 Refinement Rules

In this section, we define four simple refinement rules. They are used to construct

a refinement of a given LGWF-net. Three of four proposed refinement rules are

the exact inverse of the abstraction rules presented in Section 3.2. Refinement

rules also induce α̂-morphisms. The main difference here is that the direction

of α̂-morphisms is opposite to the direction of transformations, i.e., from the

transformed LGWF-net towards an initial one.

In the following, let N = (P, T , F,m
0
,mf,h,k) be an LGWF-net. Recall also
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that the effect of applying a transformation rule ρ to N is denoted by ρ(N,XL) =

(P ′, T ′, F ′,m ′
0
,m ′f,h

′
,k ′), where XL ⊆ P ∪ T and N(XL) is a subnet in N, which is

transformed by ρ.

Rule R1: Place duplication

• applicability constraints: an unlabeled place p in N, i. e., p /∈ dom(k).

• transformation: split p into two unlabeled places p
1
and p

2
where

•p
1
= •p

2
=

•p, p
1

• = p
2

• = p•, (p
1
∈ m ′

0
and p

2
∈ m ′

0
)⇔ p ∈ m

0
, and p

1
,p

2
/∈ dom(k ′),

as shown in Fig. 30a.

• α-morphism ϕR1 : N
′ → N, where N ′ = ρR1(N, {p}), maps places p

1
and p

2
in

N ′ to place p in N. For the rest of nodes in N ′, ϕR1 is the identity mapping

between N ′ and N.

(a) refinement rule R1 (b) refinement rule R2

Figure 30: Place and transition duplication

R2: Transition duplication

• applicability constraints: a transition t in N.

• transformation: split t into two transitions t
1
and t

2
where

•t
1
= •t

2
= •t,

t
1

• = t
2

• = t• and h ′(t
1
) = h ′(t

2
) = h(t).

• α-morphism ϕR2 : N
′ → N, where N ′ = ρR2(N, {t}), maps transitions t

1
and

t
2
in N ′ to transition t in N. For the rest of nodes in N ′, ϕR2 is the identity

mapping between N ′ and N.
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Figure 30b shows the left and right parts of the abstraction rule ρR2. Duplicated

transitions t
1
and t

2
in ρR2(N, {t}) preserve the label of t.

Rule R3: Local transition introduction

• applicability constraints: an unlabeled place p in N, i. e., p /∈ dom(k).

• transformation: replacement of pwith a local transition t, i. e., h ′(t) /∈ In, and
two places p

1
, p

2
(see Fig. 31) where:

1.
•t = {p

1
} and t• = {p

2
}.

2. p
1

• = •p
2
= {t}.

3.
•p

1
= •p and p

2

• = p•.

4. p ∈ m
0
⇔ (p

1
∈ m ′

0
and p

2
/∈ m ′

0
).

• α-morphism ϕR3 : N
′ → N, where N ′ = ρ

3
(N, {p}), maps t, p

1
and p

2
in N ′ to

place p inN. For the rest of nodes inN ′,ϕR3 is the identitymapping between

N ′ and N.

Figure 31: Refinement rule R3: local transition introduction

Refinement rule ρR1 (ρR2) can be generalized to the case when a place (a transi-

tion) in the initial EN system is split into a set of places (transitions). Refinement

rule ρR3 can be generalized to the case when a places in the in initial EN system

is replaced with a “chain” of local transitions. These extensions are similar to the
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possible generalizations of abstraction rules ρA1
, ρA2

and ρA3
discussed above, as

shown in Fig. 22.

Rule R4: Place split

• applicability constraints: an unlabeled place p in N, i. e., p /∈ dom(k) with

|•p| > 1.

• transformation: split p into two unlabeled places p
1
and p

2
(see Fig. 32):

1.
•p

1
6= ∅ and

•p
2
6= ∅.

2.
•p

1
⊂ •p and

•p
2
⊂ •p.

3.
•p

1
∩ •p

2
= ∅ and

•p
1
∪ •p

2
= •p.

4. |p
1

•| = |p
2

•| = |p•|, and there is a bĳection fi : pi
• → p• with i = 1, 2, s.t.

for all t ′ ∈ pi•, h ′(t ′) = h(fi(t ′)).

5. (pi
•)• = (p•)• with i = 1, 2.

6.
•(pi

•) \ {pi} =
•(p•) \ {p}with i = 1, 2.

7. if p ∈ m
0
, then p

1
∈ m ′

0
⇔ p

2
/∈ m ′

0
.

• α-morphism ϕR4 : N
′ → N, where N ′ = ρR4(N, {p}), maps places p

1
and p

2

in N ′ to place p in N and maps each transition t ′ ∈ pi• in N ′ to a transition

t ∈ p• in N if fi(t
′) = t with i = 1, 2. For the rest of nodes in N ′, ϕR4 is the

identity mapping between N ′ and N.

While splitting a place p in N, its neighborhood is also split between p
1
and

p
2
in ρR4(N, {p}). According to constraints 1, 2 and 3, the preset of p is divided

into two disjoint, proper and non-empty subsets. According to constraint 4, the

postsets of p
1
and p

2
are exactly two copies of the postset of p, s.t. the labels of

corresponding transitions are preserved. Moreover, by constraints 5 and 6, the

input and output places in p
1

•
and p

2

•
are the same as the input and output places

of p•. These requirements on splitting the neighborhood of p in N are based on

the requirements 5b and 5c of Definition 14.
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Figure 32: Refinement rule R4: place split

Figure 32 provides the left and right parts of the refinement rule ρR4, where

the corresponding α̂-morphism maps p
1
and p

2
in the transformed LGWF-net N ′

to a place p in the initial LGWF-net N. The map from the postsets of p
1
and p

2
to

the postset of p is shown only for two pairs of transitions: c
1
is mapped to b

1
since

f
1
(c

1
) = b

1
; d

1
is also mapped to b

1
since f

2
(d

1
) = b

1
, where the bĳections f

1
and

f
2
are defined according to constraint 4 of this refinement rule.

3.5 Properties of Refinement Rules

Here, we discuss the main properties of the proposed refinement rules. Let RR =

{ρR1, . . . , ρR4} be the set of refinement rules

By construction, the application of a refinement rule induces an α̂-morphism

from a transformed LGWF-net to an initial LGWF-net. This also follows from the

fact that rules ρR1, ρR2 and ρR3 are inverse to the abstraction rules ρA1
, ρA2

and ρA3
,

respectively.

Proposition 11: Refinement rules induce α̂-morphisms

Let ρ ∈ RR, s. t. ρ is applicable to a subnet N(XL) in N. Then there is an

α-morphism ϕρ : ρ(N,XL)→ N.
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Corollary 3: Sequences of refinement rules induce α̂-morphisms

Let ρ
1
, ρ

2
∈RR, s. t. ρ

2
is applicable to a subnet in ρ

1
(N,XL) generated by X ′L.

Then there is an α-morphism ϕρ2 ◦ϕρ1 : ρ2(ρ1(N,XL),X
′
L)→ N.

Thus, similarly to Definition 15, we can redefine the notion of refinement using

only refinement transformations.

Definition 16: Refinement of LGWF-net

Let N
1
and N

2
be two LGWF-nets. N

1
is a refinement of N

2
iff there exists a

sequence of refinement transformations π = 〈ρ
1
ρ
2
...ρk〉 ∈ RR∗, which leads

from N
2
to N

1
, i. e., N

2

ρ
1→ N ′

2

ρ2→ ...

ρn→ N
1
.

Similar to the abstraction rules, we also observe that application of the refine-

ment rules does not introduce “new” deadlocks to transformed models, i. e., an

inverse image of a deadlock in a refined LGWF-net is also a deadlock already

present in an initial LGWF-net.

Proposition 12: Refinement rules reflect deadlocks

LetN = (P, T , F,m
0
,mf,h,k) be anLGWF-net. Let ρ ∈ RR, s. t. ρ is applicable

to a subnetN(XL) in LGWF-netN. Letm ′ ∈ [m ′
0
〉 be a deadlock in ρ(N,XL).

Then ϕρ(m
′) is a deadlock in N.

Proof. The proof follows from two facts. Firstly, as discussed in Chapter 1, a

deadlock m in a net system covered by sequential components N = (P, T , F,m
0
)

is such a reachable marking, where for any transition t ∈ T , s.t. •t ∩ m 6= ∅,

there is at least one place p ∈ •t, s.t. p /∈ m. Secondly, the application of the

refinement rules, which result in splitting places (thus, generating new inverse

images (in N ′) of reachable markings in an initial net system N), fully preserves

their neighborhoods.

The immediate corollary of Proposition 12 is that a refinement of a sound
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LGWF-net, obtained via a sequence of transformations, is sound as well.

Corollary 4: Refinement rules preserve soundness

Let N
1
and N

2
be two LGWF-nets, s. t. N

2
is sound. Let N

1
be a refinement

of N
2
. Then N

1
is a sound LGWF-net.

Therefore an α̂-morphism ϕ : N
1
→ N

2
, where N

1
is a refinement of N

2
in the

sense of Definition 16, reflects the soundness of N
2
.

We next discuss an example symmetrical to the one considered above in Fig.

29. We demonstrate that the behavior of Agent 1 in the LGWF-net shown in Fig. 1

is a refinement ofA
1
obtained in Fig. 29. The sequence of refinement rules leading

from A
1
to the LGWF-net corresponding to the behavior of Agent 1 is provided

in Fig. 33, where transformations affecting disjoint subnets are also shown via a

single step. The total sequence includes 13 refinement rules (through 6 steps).

Figure 33: The behavior of Agent 1 shown in Fig. 1 is a refinement of A
1
obtained

in Fig. 29
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3.6 Related Works: Petri Net Transformations

The construction of the reachability graph of a Petri net faces the well-known

state-explosion problem when the number of reachable states grows exponentially

compared to the size of a Petri net. That is why various structural techniques were

developed in Petri net theory. Their main advantage is the possibility to verify

behavioral properties of Petri nets without computing their reachable markings.

Structural Petri net transformations that preserve classical properties of Petri

nets, including boundedness, liveness, covering by place invariantsmake the verifica-

tion of concurrent systems easier. Petri net transformations were first introduced

in several works [43–47] where the authors defined different families of local re-

duction and extension rules.

T. Murata [43] discussed a collection of simple reduction/refinement transfor-

mations. They preserve liveness, safeness and boundedness of Petri nets. Reduc-

tion rules can be used to transform a large system into a smaller one to facilitate the

behavioral analysis. Refinement rules are used to synthesize a refinedmodel from

an abstract net in a hierarchical manner. We also showed that some abstract trans-

formations, defined in Section 3.2, correspond to the reduction rules from [43],

namely place/transition simplification and local transition elimination.

G. Berthelot and G. Roucairol [45] encoded Petri nets via special grammatical

representations with production rules corresponding to transition firings. Cor-

responding Petri net transformations are based on transforming a set of produc-

tion rules. The important property of these transformations, proven in [45], is

the Church-Rosser property, i. e., the reduction process is finite and the order of

applying reduction transformations is immaterial. As for the our collection of ab-

straction transformations A1–A5, inducing α̂-morphisms between LGWF-nets, we

proved that the order of applying transformations is irrelevant under the correct

choice of the bĳection between places in the rule A5 (see Proposition 9).

Petri net transformations, defined in the earlier work [44] by G. Berthelot,

include, apart from the variations of place and transition fusions, those introducing
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an additional subnet into an original Petri net. A thorough analysis of the property

preservation under these transformation was conducted. This paper also studied

the important question on the completeness of a transformation system. In other

words, the question is whether it is possible to generate all Petri nets from a give

one demonstrating the same behavioral properties. This problem was studied

from a different point of view: it has been shown that every Petri net in a certain

class can be transformed into another Petri net, which is further irreducible.

A step-wise approach to the abstraction and refinement of Petri nets was dis-

cussed by R. Valette in [47] and by T. Murata and I. Suzuki in [46]. The authors

have considered the substitution of a place (a transition) with a subnet that has two

unique input and output transitions. Correspondingly, an input transition should

not have input places, while an output transition should not have output places.

In addition a subnet replacing a node in a Petri net can also be awell-formed block,

which is a live Petri net. Apart from studying the conservation of standard Petri

net properties like liveness, boundedness, and safeness, the authors studied the

decidability issues connected with these properties.

Free choice Petri nets [48] are also widely adopted to model the behavior of

concurrent systems for their structural constraints on conflicts used to express

many behavioral properties through structural ones [49]. Intuitively, a conflict in

a free choice Petri net is not influenced by the previous transition firings. The

work [50] by J. Esparza andM. Silva given a complete set of reduction and synthesis

transformations supporting top-downmodelingof concurrent systems. It is shown

that they allow to construct every live and bounded free choice Petri net. By

analogy, within the framework of bipolar synchronization schemes [51], studied

byH. Genrich P. Thiagarajan, expressible via free choice nets, the authors have also

defined reduction and synthesis transformations that yield only correctly behaving

synchronization schemes.

Another series of works, including the one by J. Padberg and M. Urbášek [34],

and the one by H. Ehrig at al. [52], is devoted to the application of graph trans-
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formations in the categorical setting using the double-pushout graph rewriting

approach, illustrated by the commutative diagram shown in Fig. 34. These trans-

formations are applied to model and analyze the behavior of re-configurable sys-

tems, where different parts of systems can be dynamically replaced and modified.

Graph rewriting rules include the left part L and the right part R sharing some

nodes in K. Then L (embedded in N
1
) is replaced with R (embedded in N

2
after

transformation). Common nodes of N
1
and N

2
are in C.

Figure 34: Double-pushout graph rewriting

Place [53] and,more generally, resource (sub-marking) [54] bisimulations, stud-

ied by P. Schnoebelen and N. Sidorova and by I. Lomazova, respectively, are other

powerful tools that can be used for the reduction of Petri net graphs preserving

their observable behavior. These techniques are based on reducing places and

resources in Petri nets provided that they exhibit bisimilar behavior. One resource

can be replaced by another one if, for instance, it is not accessible in the system.

Figure 35, taken from [54], shows the example of reducing a Petri netwithweighted

arcs based on bisimilar resources. Places p
4
and p

1
can be reduced since they are

equivalent to the empty resource not producing any behavior. Place p
5
is reduced,

as two tokens in p
5
are equivalent to a single token in p

2
in terms of the behavior.

Morphisms on Petri nets, discussed in Section 2.5 as well, provide a natu-

ral framework for the formalization of structural property-preserving relations.

Among the others, in [55], the authors have discussed general classes of mor-

phisms on labeled Petri nets inducing various kinds of bisimulations. The class of

α-morphisms [15], used in the thesis to formalize mappings of agent behavior on

interface patterns, also induces bisimulation between related Petri nets.
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Figure 35: Reduction of a Petri net based on equivalent resources

3.7 Conclusions of Chapter 3

Wedeveloped a collection of abstraction/refinement transformations that facilitate

the step-wise definition of α̂-morphisms—a restriction ofα-morphisms to LGWF-

nets, s. t. deadlocks are preserved. Based on the related research discussed above,

there are several open questions to be considered in the future:

1. Research on more liberal ways of introducing (for refinement) and detecting

(for abstraction) concurrency in nets, as discussed in the following example.

2. Research on the completeness of the abstraction/refinement transformation

with respect to property preservation.

3. Characterization of irreducible nets, which cannot be abstracted further.

Consider an α̂-morphismϕ : N
1
→ N

2
shown in Fig. 36 where transitions t

3
, t

4

and t
5
inN

1
are local. N

2
cannot be obtained formN

1
(and vice versa) by applying

the proposed abstraction/refinement rules. For instance, to apply the rule ρA5
, the

place p
2
has to be duplicated (the rule ρR1). However, even in this case, after fusing

transitions t
1
and t

2
we will not be able to do pairwise simplification of transitions

t
3
, t

4
and t

5
since they do not have coincident presets and postsets.

This example demonstrates the need for other ways of introducing and de-

tecting concurrency in LGWF-nets apart from the straightforward duplication of
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places. One of the possible directions here is to define more general transforma-

tions based on implicit places, which do not restrict the behavior of a net system.

Figure 36: An α̂-morphism that cannot be obtained by transformations
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Chapter 4

Compositional Process Discovery

T

his chapter presents the main algorithm of the compositional discovery

designed to synthesize architecture-aware and sound labeled generalized

workflow nets from event logs of multi-agent systems. The correctness of

this algorithm is formally demonstrated from two perspectives:

1. A process model of a multi-agent system discovered by this algorithm can

execute all traces (perfectly fits) an event log.

2. A process model of a multi-agent system discovered by this algorithm is a

sound LGWF-net.

Wealsodiscuss the third correctness aspect of the compositional processdiscov-

ery algorithm— a collection of interface patterns modeling typical asynchronous

and synchronous interactions among agents.

4.1 The Main Algorithm

The compositional processdiscovery algorithm(seeAlgorithm1) reflects themains

steps of the general scheme of the approach, presented earlier in Fig. 3.
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1. Discover(LΛi) corresponds to the application of the process discovery al-

gorithm to agent sub-logs. It is important to obtain sound LGWF-nets at

this step. For instance, the Inductive miner [6] guarantees the soundness of

discovered models.

2. isRefinement(Ri,Ai) checks if the agent LGWF-net, Ri, is a proper refinement

of the corresponding part, Ai, in the interface pattern (by Definition 16,

respectively).

3. Replace(S,Ai,Ri) substitutes the corresponding part, Ai, in the interface

pattern with the agent LGWF-net, Ri, discovered from LΛi .

Algorithm 1: Compositional discovery

Input: L— an event log over Λ = Λ
1
∪ ... ∪Λk ∪ In,

IP = A
1
~A

2
~ ...~Ak – an interface pattern

Output: S— a multi-agent system LGWF-net

S← IP

foreach Λi ⊆ Λ do
Ri ← Discover(LΛi)

end
R← {R

1
,R

2
, ...,Rk};

foreach Ri ∈ R do
if isRefinement(Ri,Ai) then

Replace(S,Ai,Ri)

end
end

If all agent LGWF-nets, discovered from sub-logs, are proper refinements of

the corresponding parts in the interface pattern IP, we will obtain a complete

multi-agent system model Swhere every Ai is successfully replaced with Ri.

However, it is also possible that only some LGWF-nets, discovered from sub-

logs, are proper refinements of an interface pattern. For instance, given IP =

A
1
~A

2
, we may obtain that R

1
is not a refinement ofA

1
, while R

2
is a refinement of
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A
2
. Then a pattern will only be partially refined, and a system model S = A

1
~R

2

will be an approximation of the model sought for. In addition, if none of the GWF-

nets, discovered from sub-logs, are proper refinements of the interface pattern,

then this algorithm will not change an interface pattern. In these cases, we may

recommend to modify IP or to develop a new interface pattern.

The correctness of Algorithm 1 is justified by the fact that a multi-agent system

LGWF-net S is sound and perfectly fits an event log L, provided that all agent

LGWF-nets can bemapped on an interface pattern. Further, we present a collection

of interface patterns, which preserve the soundness of agent LGWF-nets Ri, ad

formalize and prove the correctness properties of Algorithm 1.

4.2 Interface Patterns

Proper specification of interfaces plays a significant role in establishing the correct-

ness of the compositional process discovery. As mentioned in Introduction and

in Section 2, it is easy to arrange agent interactions that will result in deadlocks.

Consider, for example, the AS-composition N
1
~N

2
shown in Fig. 37. Two agent

LGWF-nets N
1
and N

2
are sound in isolation. However, their AS-composition is

no longer sound sinceN
2
may decide not to receive a message from channel c. As

a result, N
1
will not be able to synchronize further with N

2
.

Figure 37: Arbitrary interfaces can result in deadlocks
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That iswhywedonot consider arbitrary interfaces in the compositional process

discovery. We design specific interface patterns—ready-to-use interfacemodels de-

scribing typical and basic ways of agent interactions. Moreover, interface patterns

preserve the soundness of agent LGWF-nets discovered from filtered sub-logs.

Firstly, we consider the classification and informal (textual) representation of

patterns. Secondly, interfacepatterns are specified formally, via theAS-composition

of LGWF-nets.

4.2.1 Classification

Patterns have been traditionally used in software engineering, e. g., software design

patterns [56]. W. van der Aalst et al. [57] first introduced workflow patterns in

Business Process Management to consolidate recurrent scenarios in the control-

flowof business processes. Later, A. Barros et al. [9] generalizedworkflowpatterns

to model typical service interactions in large-scale information systems. We take

their classification of patterns and recall it below.

Firstly, interface patterns are distinguishedby the number of interactingparties:

• bilateral patterns specifying interactions between two agents;

• multilateral patterns specifying interactions among three or more agents.

Also, interface patterns are classified according to the way agents interact:

• single transmission patterns;

• multiple transmission patterns.

The number of transmissions corresponds to the number of times interacting

agents can exchange messages. Multiple transmission patterns imply repeated

message exchange that should have a possibility to be terminated to preserve the

soundness of agent behavior.

Within the compositional process discovery, an interfacepattern should include

three main parts indicated by the scheme shown in Fig. 38. They are:
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1. The number of interacting agents.

2. How agents exchange messages via channels.

3. How and when agents execute synchronous actions.

Asynchronous 
channels

      

Sy
n

ch
ro

n
o

u
s 

ac
ti

o
n

s

Agent 1 Agent 2
se

n
d

re
ce

iv
e

Figure 38: Components of an interface pattern

Following this scheme will allow us to effortlessly translate the informal de-

scription of an interface pattern into a composition of LGWF-nets.

While describing interface patterns, we also follow the general principles in the

component-based design of information systems [58]:

1. An interface should provide enough information to establish correct com-

munication among agents.

2. An interface should not expose the internal behavior of agents not required

for their communications.

4.2.2 Informal representation

Wedesign a set of interface patterns describing asynchronous andmixed asynchro-

nous-synchronous interactions among agents, such that the soundness of their

behavior is preserved. Using specific synchronous patterns in isolation is not of
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great value in modeling systems with complex agent interactions. That is why we

will further consider different combinations of asynchronous message exchange

and synchronizations.

Table 4 and Table 5 give an informal representation of twelve interface patterns

we use to represent the interaction-oriented architecture viewpoints of a multi-

agent system in the compositional process discovery. A pattern contains dummy

agent names and crucial aspects of agent interactions, according to the scheme

from Fig. 38. We use the short identifiers to refer to these interface patterns further

throughout the text.

Table 4: Description of asynchronous interface patterns

Pattern ID Description

Send

(Receive)

IP-1 An agent X sends (receives) a message to (from) an agent Y.

Concurrent Send

(Receive)

IP-2 An agentX concurrently sends (receives) severalmessages (>1)

to (from) an agent Y.

Alternative Send

(Receive)

IP-3 An agent X sends (receives) exactly one out of two (or more)

alternative message sets to (from) an agent Y.

Exchange IP-4 An agent X sends a message to an agent Y. Subsequently, Y

sends a response to X.

Concurrent

Exchange

IP-5 An agent X concurrently sends several messages (>1) to an

agent Y. Then Y sends a response to each message received

from X.

Alternative

Exchange

IP-6 An agent X sends exactly one out of two (or more) alternative

message sets to an agent Y. Subsequently, Y sends a corre-

sponding response to a message received from X.

Multiple

Exchange

IP-7 An iterative implementation of IP-4, such that the message

exchange continues till an Agent X does not need responses

from an Agent Y.

Racing incoming

messages

IP-8 An agent X receives one among a set of messages incoming

from two or more other agents.

Table 4 considers interface patterns developed using service interaction pat-
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terns presented in [9]. Single transmission patterns, IP-1, IP-2, and IP-3, describe

rather primitive agent interactions since a sending agent is not supposed to receive

an acknowledgment from the other agent. Various ways of asynchronousmessage

exchange are given in patterns IP-4, IP-5, and IP-6. Interface pattern IP-7 describes

multiple transmission interactionswhen one agent can decide to stop the exchange

by sending a corresponding message to the other agent.

Multilateral interactions among three or more agents are described in IP-8.

According to the specification of this pattern, one of the agents expects to receive

one of several messages incoming from the other agents. Sending agents should

be properly notified whether their messages are received.

Table 5 describes mixed interface patterns. They combine asynchronous and

synchronous agent interactions. Patterns IP-9 and IP-10 extend pattern IP-4 such

that agents synchronize either before or after messages are exchanged. Pattern

IP-11 extends pattern IP-5 such that agents synchronize and exchange messages

concurrently. Pattern IP-12 allows agents to either execute a synchronous activity

or exchange messages. This corresponds to an extension of pattern IP-6.

Table 5: Description of mixed interface patterns

Pattern ID Description

Sync Before

Exchange

IP-9 Before exchanging messages, agents X and Y execute a syn-

chronous action.

Sync After

Exchange

IP-10 Agents X and Y execute a synchronous action after they ex-

change messages.

Sync And

Exchange

IP-11 Concurrently with message exchange, agents X and Y execute

a synchronous action.

Sync Or

Exchange

IP-12 Agents X and Y either execute a synchronous action or ex-

change messages but not both.

In the following section, we translate these informal descriptions of interface

patterns into the AS-composition labeled GWF-nets.
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4.2.3 Formal specification

Figure 39 and 40 provide eight LGWF-nets constructed according to the informal

description of eight asynchronous interface patterns. Figure 41 provides four

LGWF-nets constructed according to the description of four interface patterns,

combining both asynchronous and synchronous interactions. We discuss some

important features of these models in more detail below.

Every interface pattern is a composition of LGWF-nets representing abstrac-

tions of agent behavior. For example, in the LGWF-net of pattern IP-1 shown in

Fig. 39a, abstract representations of agent behavior, A
1
and A

2
, contain a single

labeled transition used to send/receive a message. However, abstractions of agent

LGWF-nets can also contain transitions not labeled by interacting actions. They are

required tomodel the specific control-flows of agents. For instance, the LGWF-nets

of patterns IP-2, IP-5, IP-8, and IP-11 (see Fig. 39b, Fig. 39e, Fig. 40, and Fig. 41c

correspondingly) contain transitions used to model the splits and joins of parallel

branches in agent behavior.

In the LGWF-nets of single transmission interface patterns, IP-1, IP-2, and IP-3,

channels are added only “in a single direction” to send/receivemessages. Accord-

ing to the specification of these patterns, acknowledgments are not expected.

The remainder of bilateral asynchronous interface patterns contains different

message exchange variations involving one channel to send a message and the

other channel to send an acknowledgment. For example, in the LGWF-net of

pattern IP-5 shown in Fig. 39e, there are two concurrent message exchanges

between A
1
and A

2
. A

1
sends a message to A

2
via channel a, and A

2
sends an

acknowledgment to A
1
via channel c. Channels b and d are used similarly.

Consider the LGWF-net of the multilateral pattern IP-8 with three agents, A
1
,

A
2
, and A

3
, as shown in Fig. 40. It has the most sophisticated structure among all

asynchronous interface patterns. However, it has a clear interpretation. According

to the specification of pattern IP-8 from Table 4, A
2
expects to receive one of two

messages incoming from A
1
and A

3
through channels a and b correspondingly.
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(a) IP-1 (b) IP-2 (c) IP-3

(d) IP-4 (e) IP-5

v v

(f) IP-6

(g) IP-7

Figure 39: Bilateral asynchronous interface patterns: LGWF-nets
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Depending onwhichmessage is received (the one sent byA
1
or byA

3
),A

2
executes

the following actions:

1. It notifies A
1
(A

2
) by sending an acknowledgment through channel ackA

(ackB) that the corresponding message is received;

2. It notifies the agent whose message is not received by sending a message to

channel aR or channel bR.

Amessage left in channel a (b) is removed by the sending agentA
1
(A

3
) to preserve

the soundness of agents.

Figure 40: Multilateral asynchronous interface pattern IP-8

In addition, a bold subnet in Fig. 40 corresponds to one of several sequential

components covering theGWF-net of pattern IP-8. A similar analysis on sequential

components can be done for all LGWF-nets provided in Fig. 39 and Fig. 41.

As discussed earlier, we extend asynchronous interface patterns by introducing

synchronizations into the structure of correspondingGWF-nets. In the LGWF-nets

of patterns IP-9 and IP-10 shown in Fig. 41a and Fig. 41b, synchronous action s

is added before and after the message exchange via channels a and b to extend

pattern IP-4. Also, in the LGWF-nets of patterns IP-11 and IP-12 shown in Fig. 41c

and Fig. 41d, synchronous action s replaces one of two branches of the message

exchange, initially present in asynchronous interface patterns IP-5 and IP-6.
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It is also important to note that pair-wise fusion of transitions can lead to

redundant places that cannot be distinguished by their neighborhoods. Redundant

places are identified in LGWF-nets of patterns IP-9, IP-10, and IP-11. They are

highlighted by dashed circles: place p
1
in Fig. 41a, place p

2
in Fig. 41b and

place p
3
in Fig. 41c. These places can be safely removed to make a corresponding

LGWF-net P-simple.

(a) IP-9 (b) IP-10 (c) IP-11

v v

(d) IP-12

Figure 41: Mixed asynchronous-synchronous interface patterns: LGWF-nets

The interface patterns discussed in this section describe interactions among

agents in a multi-agent system such that the soundness of agent behavior is not

violated. Therefore, Proposition 13 holds.
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Proposition 13: InterfacepatternLGWF-nets preserve soundness of agents

Interface pattern LGWF-nets IP-1, IP-2, ..., IP-12 are sound.

The proof of Proposition 13 is the straightforward verification of the require-

ments imposed by Definition 8. Note that the collection of interface patterns pre-

sented above is incomplete. One may further extend it, provided that an extended

version of Proposition 13 holds for the new patterns as well.

4.3 The First Correctness Theorem

Here, we show that GWF-nets discovered using Algorithm 1 can replay all traces

in these event logs. In other words, a GWF-net discovered from an event log L of

a multi-agent system by Algorithm 1 perfectly fits L.

For what follows, L denotes an event log of a multi-agent system over Λ =

Λ
1
∪ Λ

2
∪ ... ∪ Λk ∪ In. We need to formalize a “perfectly fits” relation between a

GWF-net and an event log.

Definition 17: Perfectly fits

Let N = (P, T , F,m
0
,mf,h,k) be an LGWF-net. N perfectly fits event log L if

and only if ∀σ ∈ L∃w ∈ FS(N) : σ = h(w).

Then we prove that an LGWF-net, discovered from an event log L of a multi-

agent system using Algorithm 1, inherits the perfect fitness of an interface pattern

and agent LGWF-nets, discovered from agent sub-logs LΛi with i = 1, 2, ..., k.

Theorem 3: Perfect fitness preservation

Let IP = A
1
~A

2
~ ...~Ak be an interface pattern with a transition labeling

function hIP : TIP → In ∪ {τ}. Let Ri be a refinement of Ai with a transition

labeling function hi : Ti → Λi ∪ {τ} for all i = 1, 2, ..., k. Let L ∈ B(Λ) be an

event log. If IP perfectly fits LIn and Ri perfectly fits LΛi for all i = 1, 2, ..., k,
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then S = R
1
~ R

2
~ ...~ Rk with a transition labeling function h : T → Λ∪ {τ}

perfectly fits L.

Proof. The proof is done by contradiction. Assume S does not perfectly fit L. Then

∃σ ∈ L, s.t. @w ∈ FS(S) : h(w) = σ. Since IP perfectly fits LIn, ∃wIP ∈ FS(IP) :
hIP(wIP) = σ|In, because LIn is a log projection of L on In ⊆ Λ. Since Ri perfectly
fits LΛi , ∃wi ∈ FS(Ri) = hi(wi) = σ|Λi , because LΛi is a log projection of L on

Λi ⊆ Λ for all i = 1, 2, ..., k. It is evident that both wIP and wi (for all i = 1, 2, ..., k)

are projections of a firing sequencew ′ ∈ FS(S) on transitions labeled by In andΛi,

respectively. Since Λ = Λ
1
∪ ... ∪ Λk ∪ In and taking the above into account, we

have that h(w ′) = σ. It contradicts the assumption that @w ∈ FS(S) : h(w) = σ.

Hence LGWF-net S perfectly fits L.

An immediate corollary of Theorem 3 gives the first correctness characteristic

of Algorithm 1 as follows.

Corollary 5: The first correctness property of Algorithm 1

LGWF-net S discovered from the event log L of a multi-agent system using

Algorithm 1 perfectly fits L.

4.4 The Second Correctness Theorem

Using the formal framework behind the AS-composition of LGWF-nets, we prove

that LGWF-nets of multi-agent systems discovered by Algorithm 1 are sound.

By Theorem2, the soundness of an LGWF-net compositionN
1
~N

2
is preserved

when one of the two LGWF-nets N
1
(N

2
) is replaced by its sound refinement R

1

(R
2
). R

1
and R

2
are obtained by applying a sequence of refinement rules toN

1
and

N
2
, respectively.

©R.A. Nesterov, 2022



4.4. THE SECOND CORRECTNESS THEOREM 109

Recall that, by Corollary 4, a refinement of a sound GWF-net, constructed by

applying refinement rules (see Definition 16), is also a sound GWF-net. Then we

prove that an LGWF-net S discovered from an event log L of a multi-agent system

using Algorithm 1 preserves the soundness of an interface pattern and of agent

LGWF-nets discovered from log projections.

Theorem 4: Soundness preservation

Let IP = A
1
~A

2
~ ...~Ak be an interface pattern, s. t. Ai is a sound LGWF-

net with i = 1, 2, ..., k. Let Ri be a refinement of Ai with i = 1, 2, ..., k. If IP is

sound, then S = R
1
~ R

2
~ ...~ Rk is also sound.

Proof. By Definition 16, since Ri is a refinement of Ai, there is a subsequent appli-

cation of transformations ρ
1
, ρ

2
, ..., ρn leading from Ai to Ri, i.e., Ai

ρ
1−→ ...

ρn−→ Ri,

s.t. Ri is sound (by Corollary 4). Then there is an α-morphism ϕi : Ri → Ai.

AS-composition of LGWF-nets is also an LGWF-net. Let IP ′ = A
1
~ ... ~ Ak−1

,

then IP = IP ′ ~Ak. By Theorem 2, since IP is sound and there is an α-morphism

ϕk : Rk → Ak, IP
′ ~ Rk is also sound. AS-composition of LGWF-nets is commuta-

tive. Let IP ′′ = A
1
~ ...~Ak−2

~Rk. Then IP ′~Rk = IP ′′~Ak−1
. Since IP ′′~Ak−1

is

sound and there is an α-morphism ϕk−1
: Rk−1

→ Ak−1
, IP ′′ ~ Rk−1

is also sound.

Applying this consecutive construction further, we will arrive to the conclusion

that S = R
1
~ R

2
~ ...~ Rk is sound.

Alternatively, it is possible to note that Theorem 4 is a generalization of Corol-

lary 1 An immediate corollary of Theorem 4 provides the second correctness

characteristic of Algorithm 1 as follows.

Corollary 6: The second correctness property of Algorithm 1

LGWF-net S discovered from the event log L of a multi-agent system using

Algorithm 1 is sound.
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4.5 Related Works: Process Discovery

As mentioned in the Introduction, there are many algorithms for the automated

discovery of process models from event logs. Among the most widespread ones

are the following: Inductive miner [6], Fuzzyminer [59], Heuristic miner [60], ILP-

based (integer linear programming) miner [61], Region Theory-based miner [62],

and Genetic miner [63]. A.Augusto et al. [2] conducted a comprehensive and

systematic review of these and other process discovery algorithms. The existing

process discovery algorithms can tackle different problems connected with the

representation of event data in logs. They include noise, e. g., the wrong ordering

of logged actions, duplicate or missed actions, and incompleteness, i. e., an event log

represents only a finite fragment of all possible execution sequences.

In general, the synthesis of Petri nets from low-level behavioral representations,

e.g., transition systems, is a well-known problem that is to decide whether a given

transition system is isomorphic to the reachability graph of some Petri net and then

to construct this net [64]. Region theory [65] is the main formal tool used to solve

the Petri net synthesis problem. It undoubtedly found use in process discovery

when an event log is represented by a finite transition system.

Conformance checking [5] is an essential part of process mining along with pro-

cess discovery. It is aimed to assess the quality of process models discovered from

event logs since different algorithms yield different process models, and they are

to be compared. The fourmain quality dimensions in process discovery are fitness,

precision, generalization, and simplicity. J. Buĳs et al. [66] discussed the role of

these dimensions. The review [2] also indicated the lack of universal measures

of the fitness and precision applicable to a wide range of process discovery algo-

rithms. W. van der Aalst [67] discussed the same question from a slightly different

perspective, focusing on the urgent need for the consistent requirements of qual-

ity measures since there is a significant increase in the use of process discovery

algorithms in commercial software tools.

The problem of discovering structured process models from event logs is not
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entirely new. Researchers studied this problem in several contexts. In general,

there exists the continuum of process models: from Spaghetti (poorly structured

models) to Lasagna (models with a clear structure). Subtle differences between

well-structured, structured, and semi-structured process models are hard to for-

malize [1]. For example, process models discovered by the Inductive miner are

called well-structured since they are recursively constructed from building blocks.

They correspond to the basic constructs such as sequential, parallel, alternative,

and cyclic executions.

Researchers offer different techniques to improve the structure of discovered

models, e.g., in [68], and to produce already well-structured process models [69–

71]. Compositional approaches to improving the structure of discovered process

models were proposed as well. A.Kalenkova et al. [72] showed how to discover a

readablemodel from an event log by decomposing the extracted transition system.

A.Kalenkova and I. Lomazova [73] studied an advanced technique to deal with

cancellations—“exceptional” behaviors— in theprocess execution and toproduce

clear and structured process models. In addition, W. van der Aalst et al. [74]

proposed an approach for the compositional process discovery based on localizing

events using region theory to improve the overall quality of discovered process

models. Amethod for compositionalmodeling and discovery of structured object-

centric Petri nets was proposed by W. van der Aalst and A. Berti in [75], where

they used special transition fusions. M. Stierle et al. [76] discussed some design

principles of discovering comprehensible models from event logs. They defined

metrics estimating the extent to which a discovered model meets these principles.

In our study, the clear architecture-aware structure of multi-agent system models

results from the independent discovery of process models for interacting agents

from log projections.

Within the compositional approach to discovering process models of multi-

agent systems, we assume that experts provide specifications of agent interactions

in advance. Identifying an interface model from a raw event log of a multi-agent
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system is another task that is out of the scope of this paper. We designed a

collection of specific interface patterns using typical service interaction patterns

studied byA. Barros et al. in [9]. Theyprovide generic solutions to the specification

of complex component interactions in large-scale systems. G.Decker et al. [77] and

D.Campagna et al. [78] discussed the practical application of interaction patterns

to construct corresponding BPMN process models. The correctness of interface

patterns was also studied by G.Decker et al. in [79] and by W. van der Aalst et

al. in [80]. They formalized patterns using process algebras and open Petri nets —

a class of Petri nets with distinguished input and output places. The authors used

operating guidelines to construct services correctly interacting with the given one.

In our case, an interface pattern comprises highly abstract representations of all

interacting agents. Moreover, since interface patterns are known to be correct, they

can be reused for all properly constructed refinements, representing the concrete

behavior of agents.

4.6 Conclusions of Chapter 4

In this chapter, we described the main algorithm for the compositional discovery

of architecture-aware and sound process models from event logs of multi-agent

systems. The structure of an architecture-aware model is self-explanatory, i. e., it

explicitly shows the behavior of individual agents and their interactions. Firstly,

we filter event logs by actions belonging to each agent and obtain a set of sub-

logs. Secondly, agent models are discovered from these sub-logs with the help

of an existing process discovery algorithm. Finally, we check whether there is a

mapping of agent models to the corresponding parts in an interface.

Arbitrary interfaces are not considered since it is easy to arrange agent interac-

tions leading to a deadlock. We designed a collection of specific interface patterns

describing typical agent interactions. The set of presented interface patterns is

based on service interaction patterns studied earlier. It can also be extended with
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new models of agent interactions, provided that each new pattern is sound. If a

map from agent models towards the corresponding parts in an interface pattern

exists, thenwe can replace this part in a patternwith a discovered agentmodel. As

a result, we obtain an architecture-awaremodel of a multi-agent system if all agent

models are successfully mapped on an interface pattern. Otherwise, if only some

agent models can be mapped on an interface pattern, we construct an approxima-

tion of a multi-agent system model. In this case, an interface pattern needs to be

modified, such that all agent models can be mapped on it.

The correctness of the proposed algorithm for discovering processmodels from

event logs ofmulti-agent systems is formally demonstrated from two perspectives.

Firstly, a model of a multi-agent system inherits perfect fitness of an interface

pattern and of agent models discovered from filtered sub-logs. Secondly, a model

of a multi-agent system preserves soundness of an interface pattern and of agent

models discovered from filtered sub-logs. Proof of the algorithm correctness is

based on the theoretical backgrounds considered in Chapters 1–3 and on the

construction of interface patterns.

In the following chapter, we conduct the experimental evaluation of the com-

positional process discovery algorithm with respect to the main hypothesis of

our study whether the quality of process models discovered from event logs of

multi-agent system using Algorithm 1 is improved.
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Chapter 5

Experimental Evaluation

T

his chapter is devoted to the experimental evaluation of the compositional

process discovery algorithm. Using interface patterns and refinement

transformations, we generate a collection of artificial event logs of multi-

agent systems, which are then processed by the compositional process discovery

algorithm. According to the main hypothesis of the proposed compositional ap-

proach to process discovery, we compare the process models discovered via the

standard direct process discovery with those discovered via Algorithm 1. Then

the main outcomes from these comparisons are reported and analyzed.

5.1 Layout of Experiments

Experiments have been designed according to the general scheme of the compo-

sitional process discovery (see Fig. 3) with two more steps added: refinement and

simulation, as shown in Fig. 42. We have introduced an artificial source of event

logs, represented by a reference model NR.

Reference LGWF-nets are refinements of interface patterns. In the following

section, we present two algorithms used for the generation of reference models

using refinement rules (see Definition 16).
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Simulation of a reference model yields an event log of a multi-agent system.

This event log will correspond to the assumptions of the compositional process

discovery, i.e., (a) every action in a log is assigned an agent and (b) a set of

interacting actions is distinguished. An algorithm for simulating models of multi-

agent systems is presented in Section 5.3. It also supports simulation of separate

agent models with respect to a declarative specification of an interface.

Event log

Sub-log 1 Sub-log 2 Sub-log k...

FILTRATION

GWF-net 1 GWF-net 2 GWF-net k...

DISCOVERY

...Interface pattern

GWF-net 2GWF-net 1 ... GWF-net k

System model 

Reference
model 

SIMULATION

Interface
pattern 

REFINEMENT

Figure 42: Organization of experiments

This approach based on reference LGWF-nets conformswith a standardway of

evaluating process discovery algorithms with the help of so-called artificial event

logs, which are supposed to exhibit specific characteristics.

Thus, for every interface pattern IP = A
1
~ A

2
~ Ak described in Section 4.2,

the procedure specified further has been executed.
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Step 1. Construct a sound reference LGWF-netNR = N
1
~N

2
~ ...~Nk whereNi

is a refinement of Ai with i = 1, 2, ..., k.

Step 2. Simulate the behavior ofNR to obtain an event log L of amulti-agent system

with k interacting agents over Λ = Λ
1
∪Λ

2
∪Λk ∪ In.

Step 3. Discover a sound LGWF-net ND directly from L.

Step 4. Construct k agent log projections LΛ
1
, LΛ2

, ..., LΛk (by Definition 2).

Step 5. Discover k sound LGWF-netsN ′
1
,N ′

2
, ...,N ′k from agent log projections LΛ

1
,

LΛ2
, ..., LΛk , respectively.

Step 6. Verify whetherN ′i. discovered from LΛi , is a refinement of Ai in IP, where

i = 1, 2, ..., k. If so, replace Ai with N ′i and construct NC = N ′
1
~N ′

2
~ ...N ′k.

Step 7. Compare reference LGWF-net NR prepared at Step 1, directly discovered

LGWF-net ND obtained at Step 3, and compositionally discovered LGWF-net NC

obtained at Step 6.

Construction of reference LGWF-nets and refinement verification (Step 6) are

based on Definition 16. Note that if N ′i discovered from the corresponding agent

log projection is not a refinement ofAi in the interface pattern IP, then one should

consider how to modify the interface pattern preserving its soundness. Thus,

Proposition 13 can be extended with new patterns.

Step 3 and Step 5 are explicitly connected with the discovery of process models

from event logs. The main requirement, which is imposed on a process discovery

algorithm applied here, is that it should produce sound workflow nets. Among

the existing algorithms, Inductive miner, also mentioned earlier in the text, always

discovers sound process models.

The reference, directly and compositionally discovered LGWF-nets are com-

pared (Step 7) using standard and specifically developed quality dimensions that

are described in Section 5.4.

Finally, the experimental results and corresponding conclusions are presented

and discussed in Section 5.5.
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5.2 Generation of Reference LGWF-nets

In this section, we describe an approach to the generation of a reference LGWF-net

from an interface pattern. A reference LGWF-net is a refinement of an interface

pattern, i. e., a result of applying a sequence of refinement rules, described in Sec-

tion 3.4, to an interface pattern. We consider two ways of constructing a sequence

of transformations, fixed and randomized, that correspond to two algorithms for

generating a reference LGWF-net from an interface pattern. These algorithms are

described in detail here.

5.2.1 Fixed Generation

Within the fixedgeneration of referencemodels, there is a corresponding sequence,

π = 〈ρ
1
ρ
2
...ρn〉 ∈ RR∗, of refinement transformations known in advance to be

applied to an interface pattern. In other words, the fixed generation is a direct

implementation of Definition 16. Algorithm 2 represents this implementation.

Algorithm 2: Fixed generation

Input: LGWF-net N = (P, T , F,m
0
,mf,h,k)

Transformations RT = {ρ
1
, ρ

2
, ρ

3
, ρ

4
}

Sequence π = 〈ρ
1
, ρ

2
, ..., ρn〉 ∈ RT∗

Output: LGWF-net R = (P ′, T ′, F ′,m ′
0
,m ′f,h

′
,k ′) – a refinement of N

R← N

i← 1

foreach ρi ∈ π do
if ∃X ′L ∈ P ′ ∪ T ′ and ρi is applicable to subnet R(X ′L) in R then
R← ρi(R,X

′
L)

end
i← i+ 1

end

If a current rule ρi in π can be applied to some subnet generated by a subset

of nodes, then we will replace R with the corresponding result of applying ρ to R,
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which is initiallyN. If a current rule ρi inπ can be applied to different subnets, then

the choice is made non-deterministically. Otherwise, if a current rule ρi cannot be

applied to a subnet in R, we will skip it and pass on to checking the applicability

of the next transformation rule in a sequence π.

The correctness of the fixed generation algorithm is easily verified. Firstly,

this algorithm always terminates, since the sequence π is finite. Secondly, by

Corollary 4, an obtained refinementRpreserves the soundness of the initial labeled

GWF-net N.

Consider an example, shown in Fig. 43, of applying a sequence of refinement

transformations π = 〈ρR4ρR1ρR4ρR2ρR3〉 to the interface pattern IP-9 (see Fig. 41a).

The choice of subnets transformed by the refinement rules has been made non-

deterministically.

Figure 43: Fixed refinement of an interface pattern

Note that ρR4-elements in π was not applied since the applicability constraints

were not satisfied. Thus the actual sequence of refinement rules that was applied

to the LGWF-net of interface pattern IP-9 is reduced to 〈ρR1ρR2ρR3〉.
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5.2.2 Randomized Generation

Within the randomized generation of reference LGWF-nets (see Algorithm 3), a

sequence of refinement rules is not known in advance, as opposed to the fixed

generation. A specific sequence of refinement rules to be applied to an interface

pattern is built according to the parameters defined by a user.

The parameters of the randomized generation include:

1. The maximum size of a refinement — the number of places and transitions;

2. The maximum number of steps — the number of applied transformations;

3. The probability of choosing a specific refinement transformation — the value

in the interval [0, 1].

Probabilities are set for all refinement rules, s.t. the sum of all individual

probabilities is equal to 1. Below we describe how the specific refinement rule is

chosen at every step of Algorithm 3.

Firstly, we compute a set of refinement rulesApR that can be applied to a given

LGWF-net R (initially, N) according to the applicability constraints discussed in

Section 3.4 (function FindApplicable(R, RR). Secondly, we normalize the proba-

bilities of the applicable refinement rules in ApR and obtain the values of a new

prob ′ function. Afterwards, by generating a random number r, a specific refine-

ment transformation ρRi is chosen. Intuitively, the interval [0, 1] is divided into

|ApR| intervals, according to the cumulative normalized probabilities of applicable

refinement rules. Then we check the placement of r, i. e., which interval the value

of r belongs to.

The correctness of Algorithm 3 follows form the following: (a) the total number

of steps (the actual length of a sequence of refinement rules) is bounded the

maximum size of the obtained refinement and by the maximum number of steps

that can be done; (b) by Corollary 4, a constructed refinement R preserves the

soundness of the initial LGWF-net N.
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Algorithm 3: Randomized generation

Input: LGWF-net N = (P, T , F,m
0
,mh,h,k)

Transformations RR = {ρ
1
, ρ

2
, ρ

3
, ρ

4
}

Probabilities prob : RR→ [0, 1], s.t. ∀ρ ∈ RT :
∑
freq(ρ) = 1

Maximum mumber of nodesmaxSize

Maximum number of stepsmaxSteps

Output: LGWF-net R = (P ′, T ′, F ′,m ′
0
,m ′f,h

′
,k ′) – a refinement of N

R← N

totalSteps← 0

while |P ′ ∪ T ′| < maxSize OR totalSteps 6 maxSteps do
ApR← findApplicable(R,RR)

sumProb←
∑
∀ρ∈AT prob(ρ)

foreach ρ ∈ ApR do

prob ′(ρ) =
prob(ρ)

sumProb
end
order AT in the descending order of prob ′;

r← randomNumber(0, 1)

cumulProb← 0

i← 1

while cumulProb < r do
cumulProb← cumulProb+ prob ′(ρi)
i← i+ 1

end
R← ρi(R,X

′
L)

totalSteps← totalSteps+ 1

end

We have conducted an extended evaluation of the randomized generation al-

gorithm by configuring probabilities as follows:

1. Equal probabilities of choosing a specific refinement rule (ρRi = 0.25).

2. Four cases when the probability of choosing one rule (0.67) outweighs the

equal probabilities of the other refinement rules (0.11).

The results of the randomized refinement of interface patterns according to
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different configurations of probabilities are presented in Table 6. We show the

number of places and transitions in the reference model and in the constructed

refinements.

Table 6: Randomized refinement of interaction patterns

maxSize=300,maxSteps = 1000

Reference ρi = 0, 25 ρ
1
= 0, 67 ρ

2
= 0, 67 ρ

3
= 0, 67 ρ

4
= 0, 67

|P| |T | |P| |T | |P| |T | |P| |T | |P| |T | |P| |T |

IP-1 5 2 134 166 234 66 76 224 156 144 141 166

IP-2 12 6 147 153 216 84 66 256 155 145 146 154

IP-3 6 4 154 149 212 88 85 215 154 147 156 144

IP-4 8 4 132 168 217 83 71 229 152 148 144 156

IP-5 18 10 139 163 207 94 78 222 156 145 157 143

IP-6 12 8 107 193 218 83 72 232 158 142 158 143

IP-7 11 8 140 161 190 110 59 256 143 158 85 215

IP-8 24 16 142 158 208 92 81 219 150 151 144 156

IP-9 9 5 145 155 176 124 58 243 149 152 120 186

IP-10 9 5 143 157 205 95 69 231 146 154 163 137

IP-11 13 7 131 173 217 83 82 218 152 148 157 143

IP-12 10 7 143 158 209 92 79 221 147 153 154 161

As can be seen from these results, the number of places and transitions in the

obtained refinements is consistent with the probabilities of applying refinement

rules. When all refinement rules are equally probable, we don observe notable dif-

ferences in the number of places and transitions in the corresponding refinements.

However, when the place (transition) duplication has the highest probability, we

have that the number of places (transitions) significantly outweighs the number

of transitions (places) in the refinement. The predominance of local transition

introduction (ρR3) and place split (ρR4) does not lead to substantial differences in

the numbers of places and transitions. The application of ρR4 requires places with

two or more input transitions, which may not be present in the reference and in

intermediate refinements.
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5.2.3 Related Approaches

Here, we briefly consider and compare the other existing approaches to the gener-

ation of process models with the fixed and randomized generation of LGWF-nets.

Process Log Generator PLG2 [81], developed by A. Burattin, is a well-known

software used for the random generation of process models. It supports different

notations, including Petri nets and BPMN. PLG2 generates process models based

on randomly generated context-free grammars and parameters such as the max-

imum model size, the frequencies of standard behavioral patterns, and others.

Compared to our approach, PLG2 offers only the fully randomized model gener-

ation and guarantees the behavioral correctness of constructed models. However,

within our approach, a reference model may have, for instance, deadlocks that

will be preserved in its refinement.

The generation of BPMN process models was also considered by Z. Yan et al.

in [82]. The authors of this approach allow specifying the parameters such as

the size of models, the frequencies of behavioral patterns, the types of activities.

Similar to our approach, they also used a collection of initial BPMN models to

generate a set of synthetic models.

PTandLogGenerator [83], developed by T. Jouck and B. Depaire, is another tool

supporting the randomized generation of process models. It produces so-called

process trees, which specify relations among process activities, for example, se-

quential, alternative, or concurrent. Process trees can be converted to Petri nets.

The prime objective of PTandLogGenerator and the previously mentioned PLG2

is to simulate the behavior of randomly generated process models.

An approach to the generation of benchmarks, using random step-wise Petri net

refinements, was proposed by K. vanHee and Z. Liu in [84]. Within this approach,

the authors also defined a set of refinement transformations similar to those used

in our study. Based on the proposed transformations, different Petri net classes

were identified and studied. It was shown which transformations can be used to

generate all Petri nets representing a given class.
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5.3 Generation of Event Logs

Reference LGWF-nets constitute the source for the generation of artificial event

logs. The behavior of a reference model can be simulated in a standard way using

the firing rule of a net system. GENA [85] is a software tool, which supports the

generation of an event log by simulating a net system as well ass the assignment

of agents to transitions in a model.

In this section, we propose an alternative approach to the generation of event

logs by simulating the behavior of a multi-agent system with asynchronously in-

teracting agents. A multi-agent system model is represented via a set of k agent

LGWF-nets {N
1
,N

2
, ...,Nk}. The AS-composition of these nets is not constructed.

Asynchronous interactions between agent LGWF-nets are expressed using so-

called interface constraints. They allow us to specify not only the order of interact-

ing actions, but also between any other pair of observable actions. In other words,

the behavior of interacting agents has the imperative representation (LGWF-nets),

while constraints on their interaction — declarative representation (formulae). We

design a corresponding generation algorithm, which simulates the behavior of a

set of LGWF-nets with respect to interface constraints.

5.3.1 Interface Formulae

Here we consider multi-agent systems with asynchronously interacting agents.

Then a set of interacting actions is restricted to operations implemented with

asynchronous channels, i.e. sending or receiving a message.

A multi-agent system model consists of k disjoint LGWF-nets N
1
,N

2
, ...,Nk,

which represent the behavior of individual agents and the interface constraints I on

their asynchronous interactions.

We additionally make the following assumptions:

1. Transitions in agent LGWF-nets have individual labels, i. e., different agents

execute different (interacting) agents.
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2. Transitions involved into agent interactions does not belong to cycles in agent

LGWF-nets. Therefore, they can occur in every execution notmore than once.

Asynchronous interface patterns IP-1–IP-6 and IP-8 (see Fig. 39), describing

acyclic and asynchronous interactions among agents, meet these assumptions.

Interfaces are defined in terms of positive logical formulae over atomic con-

straints. Formal definitions are discussed further.

LetNi with i = 1, 2, ..., k be an LGWF-net, s. t. dom(hi) ∩ dom(hj) = ∅, where

j = 1, 2, ..., k and i 6= j. Two types of atomic constraints are defined, namely λ
1
C λ

2

and λ
1
C λ

2
, where λ

1
and λ

2
are labels of transitions in two different LGWF-nets,

i. e., λ
1
∈ dom(hi)⇔ λ

2
/∈ dom(hi).

It is easy to see that a set of k disjoint LGWF-nets is itself an LGWF-net where

nodes are the union of all nodes in these k nets. Let N = (P, T , F,m
0
,mf,h,k)

denote an LGWF-net obtained through the union of nodes of k disjoint agent

LGWF-nets, and w ∈ FS(N) be a firing sequence of N. The validity of these atomic

constraints for a given execution σ = h(w) of N is defined as follows:

1. σ |= λ
1
C λ

2
⇔ if λ

2
occurrs in σ, then λ

1
occurss before λ

2
in σ.

2. σ |= λ
1
Cσ

2
⇔ if λ

1
does not occur before λ

2
in σ.

When σ |= ψ, we say that ψ is valid for σ, and σ satisfies ψ.

The atomic constraint λ
1
C λ

2
implies that λ

2
should be always preceded by

λ
1
, e. g., a message can be only if it has already been sent (cf. the construction

of the AS-composition in Definition 12). Thus, λ
1
C λ

2
is valid for an execution

σ = σ
1
λ
1
σ
2
λ
2
σ
3
and is not valid for σ = σ

1
λ
2
σ
2
if σ

1
does not contain λ

1
.

The atomic constraint λ
1
C λ

2
implies that λ

2
cannot occur if λ

2
has happened

before, e. g., if a message has been already sent by e-mail, it should not be re-sent

via fax again. An execution σ = σ
1
λ
2
σ
2
satisfies λ

1
C λ

2
if σ

1
does not contain λ

1
,

while σ = σ
1
λ
1
σ
2
λ
2
σ
3
does not satisfy this constraint.

These two atomic constraints are not negation of one another. Both λ
1
C λ

2
and

λ
1
C λ

2
are valid for an execution of an LGWF-net that does not contain λ

2
.
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Thus, a language of interface constraints for a multi-agent system N is defined

by the following grammar rules:

Atom ::= λ
1
C λ

2
| λ

1
C λ

2
,

ψ ::= Atom |ψ
1
∨ψ

2
|ψ

1
∧ψ

2
,

where Atom is an atomic constraint, and ψ is a constraint formula.

The validity of a constraint formula ψ for an execution σ in N is defined in a

standard way:

σ |= ψ
1
∨ψ

2
⇔ σ |= ψ

1
or σ |= ψ

2
,

σ |= ψ
1
∧ψ

2
⇔ σ |= ψ

1
and σ |= ψ

2
.

Let L be an event log of a multi-agent system with asynchronously interacting

agents over Λ = Λ
1
∪ Λ

2
∪ ...Λk ∪ In, and ψ be an interface constraint formula.

Then ψ is valid for L iff ψ is valid for every trace in L.

Interface formulae can express different useful interaction constraints, e. g.,

formula ψ = ACB ∧ BCA describes a conflict between actions A and B, i.e., A

and B cannot occur together in the same execution.

Recall that a multi-agent system with asynchronously interacting agents con-

sists ofN—an LGWF-net obtained by uniting k disjoint agent LGWF-net, and I—

an interface constraint formula built according to the grammar described above.

We denote a multi-agent system by a pair S = (N, I). An execution of S corre-

sponds to an execution σ = h(w) of LGWF-net N, where w ∈ FS(N), s. t. σ |= I.

The following proposition is an immediate consequence of the above definitions.

Proposition 14: Execution of a system can be projected on agent behavior

Let S = (N, I) be a multi-agent system, and σ be an execution of S. Then, for

every agent LGWF-net Ni ∈ N, σ|
dom(hi) is an execution of Ni.

Consider the example of a simple multi-agent system with two agents shown
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in Fig. 44. Let I = (ACB)∧(BCA), whichmeans that B should be in conflict with

A. Consider an execution σ = x
1
By

2
x
3
of this system satisfying I. Projecting σ

on agent LGWF-nets gives executions x
1
x
3
and By

2
, which are the corresponding

executions of these agent nets.

Figure 44: A multi-agent system with two agents

Finally, we present constraint formulae (see Table 7), which correspond to the

asynchronous interface patterns IP-1, ..., IP-6, and IP-8, which describe acyclic

interactions between agents. Then these formulae can be used to generate event

logs by representing a refinement of an interface pattern via a set of agent LGWF-

nets where each of them is a refinement of the specific part in a pattern, rather

than their AS-composition.

5.3.2 Simulation Algorithm

Interface formulae presented in the previous section define declarative restriction

on the behavior of a multi-agent system. To simulate its behavior, we define the

operational semantics based on a special transition firing rule for selecting and

executing the step in the execution of a multi-agent system model. We call this

rule an interface-driven firing rule to distinguish it from the standard firing rule of

net systems. This extended rule should be consistent with the declarative interface

constraints on asynchronous interactions among agents.
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Table 7: Interface formulae for asynchronous interface patterns

Pattern Constraint formula

IP-1 a!C b!

IP-2 a!C a?∧ b!C b?

IP-3 a!C a?∨ b!C b?

IP-4 the same as for IP-2

IP-5 a!C a?∧ b!C b?∧ c!C c?∧ d!C d?

IP-6 (a!C a?∧ c!C c?)∨ (b!C b?∧ d!C d?)

IP-8

a!C a?∧ (ackA!C ackA?∨ bR!C bR?)∨
b!C b?∧ (ackB!C ackB?∨ aR!C aR?)

Interface-driven firing rule

Let S = (N, I) be a multi-agent system, where N = (P, T , F,m
0
,mf,h,k) is

an LGWF-net obtained as the union of k disjoint agent LGWF-nets, and I is an

interface formula.

Firstly, we convert I to a disjunctive normal form (DNF) using standard logical

laws. For example, the formula for the interface pattern IP-6 (see Table 7) is already

in DNF, while to transform the formula for IP-8, one need to expand the brackets.

Then, an interface I =
∨n
j=1
Cj, whereCj =

∧m
`=1
A`, andA` is an atomic constraint.

By abuse of notation, we denote by I also the set of its conjuncts, and by Cj – the

set of atomic constraints in a conjunct Cj.

Obviously, an execution σ satisfies I iff ∃Cj ∈ I : σ |= Cj, i. e. σ satisfies at least

one conjunct in I. So, to generate a model execution, we need to choose a conjunct

Cj and fire transitions in N only if these firings do not violate Cj.

Then we define TI ⊆ T to be the set of transitions in N involved in agent

interaction, i.e., t ∈ TI iff h(t) occurs in I. We call transitions in the set TI interface

transitions.

Independent transitions from T \ TI fire according to the standard firing rule
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for Petri nets. Firing interface transitions is restricted by the constraint formula I.

To check whether firing of a transition t violates Cj, we keep the current historical

execution, i.e., a sequence of already fired transitions. When a transition t ∈ TI
is enabled according to the standard firing rule at a current marking m, and an

atomic constraint λ C h(t) occurs in Cj, then t is defined to be enabled only if λ

occurs in the current run. Similarly, if λCh(t) occurs in Cj, then t is defined to be

enabled only if λ does not occur in the current execution.

Thus, the operational semantics of a multi-agent system model S = (N, I), where

N = (P, T , F,m
0
,mf,h,k) and I =

∨n
j=1
Cj is defined by the following procedure.

Step 1. Choose non-deterministically a conjunct C in I.

Step 2. Start with the initial marking m
0
and the empty sequence ε for a current

execution σ.

Step 3. For a current marking m and a current execution σ repeat while there are

enabled transitions in N:

1. Compute the set Tok of all transitions enabled at m, not violating atomic

constraints from C with respect to σ;

2. Choose non-deterministically a transition t from Tok;

3. Fire t by changing the current marking tom ′ = (m\ •t)∪ t•, and adding h(t)

to the execution σ.

The obtained execution σ corresponds to a trace in an event log L produced by

a multi-agent system S = (N, I). We next discuss an algorithm, which implements

the interface-driven firing rule.

To begin with, for each conjunct C occurring in I, we simulate the behavior of

S to check if it is possible to obtain an execution σ satisfying C. If we cannot obtain

such an execution by simulating S, this conjunct is excluded. As a result, we come

to a set of conjuncts I ′ ⊆ I which can actually be satisfied by executions of S or an

empty set if I cannot be satisfied by S. If I ′ = ∅, then the simulation is terminated

yielding the empty event log.
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That is why we can simulate the behavior of Swith respect to conjuncts occur-

ring only in I ′. Starting a new iteration of the simulation, we randomly choose a

conjunct from I ′ and fire transitions in N according to the interface-driven firing

rule.

Algorithm4 isused for generatinga single trace,which satisfies anon-deterministically

chosen conjunct C from I ′ according to the operational semantics of a multi-agent

system discussed above.

Algorithm 4: Single trace generation
Input: N = (P, T , F,m

0
,mf,h,k), I

′
, maxSteps

Output: σ, s.t. σ |= I ′

σ← ε,m← m
0
, i← 1

C← pickRandomConjunct(I ′)

while (i 6 maxSteps)∧ (m 6= mf) do
Tok ← findEnabledTransitions(N,m,C,σ)

if Tok 6= ∅ then
t← pickRandomTransition(Tok)

m← fireTransition(N,m, t)

if λ(t) 6= τ then
σ← σ+ h(t)
i← i+ 1

end
else
σ← ε

break
end

end

Algorithm 5 computes the set of enabled transitions, which do not violate con-

straints of C. Firstly, we find a set of transitions enabled at a reachable marking

m according to the standard firing rule. Secondly, if m enables interface transi-

tions, we check whether the current execution σ = h(w), s.t. m
0
[w〉m, satisfies

constraints of C using the interface-driven firing rule. An execution σ is a trace to

be recorded into an event log L of a multi-agent system S.
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Consider an example based on the multi-agent system shown earlier in Fig. 44.

Assume I = (AC B)∨ (y
1
C x

1
∧ x

2
Cy

1
). C = y

1
C x

1
∧ x

2
Cy

1
is chosen. We are

at the initial marking, so the execution is empty, i.e. σ = ε. Enabled transitions

are {A, x
1
,B,y

1
}. However, x

1
cannot fire, since it should wait until y

1
is executed.

Then, non-deterministically B fires. Subsequently, the run is σ = B, and the

enabled transitions are {A, x
1
,y

2
}, but x

1
still cannot fire. We can choose A to fire.

Then, the execution is σ = BA, and the enabled transitions are {x
2
,y

2
}, which are

not influenced by C. As a result, we can obtain a trace σ = BAy
2
x
2
satisfying

C, and the projections of σ on agent transitions, Ax
2
and By

2
, are corresponding

executions of agent LGWF-nets.

Algorithm 5: Function findEnabledTransitions

Input: N = (P, T , F,m
0
,mf,h,k),m ∈ [m

0
〉,C ∈ I ′,σ

Output: A set of transitions Tok enabled w.r.t to C

Tm ← stEnabledTransitions(N,m)

Tok ← Tm \ TI
foreach t ∈ Tm ∩ TI do

foreach A ∈ C do
if A = λC h(t) then

if σ = uλv then
Tok ← Tok ∪ t;

end
else if A = λCh(t) then

if σ 6= uλv then Tok ← Tok ∪ t;
end

end
end

5.3.3 Log Generation Examples

Algorithm 4 and Algorithm 5 have been developed as an extension to GENA [86],

which allows users to simulate the behavior of a multi-agent system according to

declarative constraints on agent interactions.
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Five use cases have been prepared to demonstrate the capacity of the interface-

driven simulation of multi-agent systems’ behavior. They are different from the

asynchronous interface patterns considered in Section 4.2. For every case, we

provide an abstract representation of agent behavior and a visual representation

of a generated event log filtered according to interacting actions, s.t. it is clear

whether the corresponding interface formula is satisfied.

Sequencing
Consider a system with three interacting agents (see Fig. 45). Each agent

always executes one action, which are not refined. We have simulated it with

respect to the interface I = A C B ∧ B C C. Intuitively, this interface may mean

each agents consecutively prepare a resource needed for the other agent.

(a) system
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Figure 45: Sequential interaction among three agents

As it can be seen, all 5000 traces in the generated event log satisfies I.

Conditional sequencing
As opposed to sequencing, conditional sequencing allows for several execution

options. In this case, a system consists of two agents, one of which has alternative
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branches (see Fig. 46). An interface formulae for the conditional sequencing is

defined as follows: I = AC C∨ CC B.
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Figure 46: Sequential interaction with options

As it can be seen from Fig. 46, 2735 of all 5000 traces in the generated event log

satisfies CC B, and the remaining 2265 traces satisfies AC C.

Alternative interaction
This case is the direct implementation of the interface pattern IP-3 (see Fig. 39c),

modeling the alternative message exchange. A system consists of two interacting

agents both having alternative branches (see Fig. 47). An interface formula for this

case is as follows: I = AC C∨ BCD.

It is easy to see that the generated event log visualized in Fig. 47 satisfies I.

2502 of all 5000 traces satisfy BCD, and the remaining 2498 traces satisfy AC C.
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Figure 47: Alternative interaction a.k.a. interface pattern IP-8 shown in Fig. 39c

Interactions using C-constraints
Assume a multi-agent system consists of two agents as in the previous case

(see Fig. 47). Consider the event log of this system generated according to the

interface formula I = ACC provided in Fig. 48. It is clear from the visualization

of the generated event log that C is never preceded by A. Negative C-constraints

allow for a more compact interface specification.
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Figure 48: Interactions via negative C-constraints: event log
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Complex interactions

In this final case, we consider mixed interactions among three different agents,

as shown in Fig. 49a. The event log, which has been generated according to the

interface formula I = (BCA)∧ (HC C)∧ (DC F∨ ECG), is represented in Fig.

49b and in Fig. 49c. The formula is given in a conjunctive normal form for brevity.

This event log has been filtered in two ways to verify the satisfaction of I.

(a) system

2,489 2,511

2,489 2,511

2,489 2,511

D
2,489

F
2,489

E
2,511

G
2,511

(b) actions D,E, F,G

3,607

982

948

1,012

3,577

2,148

1,930

3,070

3,040

1,960

H
5,000

C
5,000

B
5,000

A
5,000

(c) actions A,B,C,H

Figure 49: Complex interactions among three agents
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The visual representation confirms that the generated event log of amulti-agent

system with three agents fully satisfies the initial interface formula.

5.3.4 Related Approaches

Process discovery algorithms employ a variety of heuristics. That is why testing is

extensively used to evaluate their efficiency and validity. It is usually performed

using both real-life and artificially prepared event logs with appropriate charac-

teristics. The latter are prepared using event log generators.

Process Log Generator PLG2 [81] and PTandLogGenerator [83], discussed above

within the framework of reference model generation, are also used to record the

behavior of process models in event logs.

The main goal of the tools mentioned above is the randomized testing using

sets of models and event logs. However, in some cases there is a need to generate

event logs from specific processmodels that have been prepared on the basis of the

real data or expert knowledge. If this is the case, one can use the toolGENA [85]. It

aims at generating sets of event logs from a Petri net model. The approach allows

users to use preferences to influence a control-flow and to artificially introduce

a randomized noise into an event log. The improved version of GENA can gen-

erate event logs from BPMN 2.0 models [87]. Most basic BPMN constructs are

supported: tasks, gateways, messages, pools, lanes, data objects.

Colored Petri nets can also be used to generate event logs [88]. Authors have

developed the extension for CPN Tools that can generate randomized event logs

based on a given colored Petri net. The main drawback of this approach is that it

implies writing Standard ML scripts, which leads to possible problems during tool

adaptation for a specific task. Moreover, this approach and GENA do not support

multi-agent systems with independent asynchronous agents.

Declarative process models can also be used to generate event logs [89]. This

approach is based on construction of a finite automaton using a Declare process

model. The tool can generate a specified number of strings accepted by this
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automaton. Strings are generated using the automaton and its randomized ex-

ecution. Afterwards, each string is transformed into a log trace with necessary

attributes. This tool is useful, when the only information about the process is

the set of constraints. This approach is also not appropriate for the simulation of

a multi-agent system, because it does not support the imperative description of

individual agents.

Our interface-drive approach to the simulation of multi-agent systems com-

bines the imperative specification of agents via the union of disjoint LGWF-nets

and the declarative description of interface constraints. They can be used to specify

the order of executing both interacting and local transitions in agent LGWF-nets.

The key open questionwith the interface formulae, planned to be studied in the fu-

ture, is as follows. Interface constraints allows us to describe only a specific class of

asynchronous interactions, while the AS-composition of LGWF-nets does not have

these constraints. In this light, we plan to investigate the relationships between

the AS-composition and interface formulae, especially in the context of modeling

sound interface patterns. We will consider the interface constraints for specifying

synchronous and cyclic interactions among agents in a multi-agent system as well

as to study the way to express negative C-constraints via the AS-composition.

5.4 Conformance Checking

Directly and compositionally discovered LGWF-nets (obtained at Step 3 and Step

6 in the experiment plan discussed in Section 5.1, respectively) relate differently

to the initial event log, obtained after simulating the behavior of the reference

models. The general picture of relations between the traces in an event log L and

the executions of an LGWF-net N is given in Fig. 50.

The estimationof the correspondence between an event log andaprocessmodel

is the main problem in the field of conformance checking [5]. In addition, within the

conformance checking, the structural complexity of process models is evaluated
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as well. There are four main quality dimensions offered in conformance checking:

fitness, precision, generalization and simplicity [66], briefly discussed in Introduction

as well. They are aimed to build a holistic view on the quality of process models

discovered from event logs.

In our experiments, we estimate precision and simplicity of the reference, directly

and compositionally discoveredLGWF-netswith respect to the artificial event logs,

as specified by Step 7 in our experiment plan.

      

Unfitting 
traces

Unseen 
behavior

Figure 50: Relation between event log L and LGWF-net N

Fitness is a value in the interval [0, 1] that demonstrates how well a process

model can replay every trace from an event log. In the general case shown in

Fig. 50, a part of an event log (unfitting traces) may not be covered by the firing

sequences in a process model. The more the number of unfitting traces in L is, the

lower the fitness of a process model is. By Definition 17, a process model perfectly

fits an event log (fitness = 1) if it can execute all traces in this event log, i.e., there

are no unfitting traces.

Note that, by Corollary 5, GWF-nets obtained byAlgorithm 1 perfectly fit event

logs. Apart from that, existing process discovery algorithms allows configuring

the desired fitness level. It may be necessary to decrease the fitness, while work-

ing with noisy and real-life event logs, where there can be missing or duplicate

actions, the wrong ordering of actions etc. Artificial event logs do not have such

problems. Thus, we do not need to estimate the fitness of reference, directly and

compositionally discovered models.

Precision is a value in the interval [0, 1] that evaluates a ratio of the behavior
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allowed by a process model and not allowed by an event log (unseen behavior as

shown in Fig. 50). Perfectly precise models can only replay the traces present in an

event log. However, an event log represents only a finite fragment of all possible

process executions. That is why perfectly precisemodels are of very restrictive use.

A most wide-spread approach, used in our experiments as well, to the precision

estimation, is based on aligning the firing sequences of a process model with the

traces in an event log [90].

The (structural) complexity of a discovered process model is captured by the

simplicity dimension. We express the simplicity of a process model through:

1. the number of places, transitions and arcs;

2. the number of neighboring transitions between different agents.

Recall that the compositional process discovery aims to synthesize architecture-

aware process models, the structure of which indicates agent behavior and in-

teractions. Thus, we expect the simplicity to be the main distinguishing feature

of compositionally discovered LGWF-nets compared to those discovered directly

from event logs of multi-agent systems. Below, we explain the main idea behind

the notion of neighboring transitions.

Neighboring transitions

The notion of neighboring transitions is introduced as an attempt to estimate

the extent to which a structure of a discovered process model corresponds to the

architecture of a multi-agent system with respect to agent interactions. In other

words, an architecture-aware model of a multi-agent system explicitly indicates

the behavior of individual agents as well as the way they interact by exchanging

messages and executing synchronous activities. Precise definitions are discussed

below.

Let L ∈ B(Λ+) be an event log of a multi-agent system over Λ = Λ
1
∪ Λ

2
∪

... ∪ Λk. Let N = (P, T , F,m
0
,mf,h,k) be an LGWF-net, where h : T → Λ ∪ {τ} is a
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transition labeling function. According to h, we can also partition T into k subsets

corresponding to the behavior of different agents, i.e., T = T
1
∪ T

2
∪ ... ∪ Tk, where

transitions in Ti are labeled by actions from Λi with i = 1, 2, ..., k.

Then transitions ti ∈ Ti, tj ∈ Tj, where i 6= j and h(ti) 6= τ, h(tj) 6= τ, are called
neighboring if there exists a path in N connecting ti and tj, such that the other

transitions along this path are labeled by τ, i.e., silent. Formally:

• (ti, tj) ∈ F∗, where F∗ is the reflexive transitive closure of F and

• ∀t ∈ T \ {ti, tj} : if (ti, t) ∈ F∗ and (t, tj) ∈ F∗, then `(t) = τ.

NbT(N) denotes the set of all neighboring transition pairs in N, where sym-

metric pairs of neighboring transitions are counted as a single pair, i.e., (t
1
, t

2
) ∈

NbT(N) ⇔ (t
2
, t

1
) /∈ NbT(N). Intuitively, the bigger the |NbT(N)| is, the less

transparent and understandable the structure of N is with respect to agent inter-

actions, since there are a lot of causally dependent transitions corresponding to

the behavior of different agents. Further, we give an example of counting pairs of

neighboring transitions.

Consider two LGWF-net fragments presented in Fig. 51. The first fragment

(see Fig. 51a) is taken from the LGWF-net shown in Fig. 2. The second fragment

(see Fig. 51b) is taken from the LGWF-net shown in Fig. 1.

Recall that the LGWF-net shown in Fig. 2 has been discovered directly from an

event log generated by the LGWF-net shown in Fig. 1. Both LGWF-nets perfectly

fit this event log. However, as mentioned in Introduction, the direct discovery of

a multi-agent system model may lead to inappropriate generalizations of agent

behavior. For example, in the fragment shown in Fig. 51b, transition q
3
can fire

only after transition q
1
, while in the fragment shown in Fig. 51a, transition q

3
can

fire after one of two transitions q
1
or q

2
.

These LGWF-net fragments depict the behavior of a multi-agent system with

two agents. The behavior of Agent 1 is represented by transitions {t
1
, t

2
, t

3
, t

4
, t

5
}.

The behavior of Agent 2 is represented by transitions {q
1
,q

2
,q

3
, q

4
}. The first
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fragment, shown in Fig. 51a, has four pairs of neighboring transitions, i.e., {(q
1
, t

5
),

(q
2
, t

5
), (t

5
,q

3
), (t

5
,q

4
)}. However, in the second fragment, shown in Fig. 51b, there

are only two pairs of neighboring transitions, i.e., {(t
5
,q

3
), (t

5
,q

4
)}, corresponding

exactly to the transitions through which Agents 1 and 2 interact.

(a) |NbT(N)| = 4

(b) |NbT(N)| = 2

Figure 51: Neighboring transitions

Further computation of neighboring transition pairs in the LGWF-nets, pro-

vided in Fig. 1 and Fig. 2, will lead to the following observations:

1. In a GWF-net discovered by Algorithm 1, the number of neighboring transi-

tions directly corresponds to the interacting transitions.

2. In a GWF-net discovered directly from an event log of a multi-agent sys-

tem, there are far more pairs of neighboring transitions, since transitions
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corresponding to different agents are tightly connected.

5.5 Experimental Results

Table 8 presents the absolute values of the precision and simplicity of the reference,

directly and compositionally discoveredLGWF-nets ofmulti-agent systems, which

architecture is described by interface patterns IP-1, ..., IP-12. In this table, we

also provide the information on the artificial event logs, obtained by simulating

the behavior of the reference LGWF-nets, including the total number of events

together with the minimum, maximum, and average trace length in these event

logs. The longest traces are represented in the event log of pattern IP-5, since

there are parallel branches in the behavior of interacting agents. The most notable

difference between the minimum and maximum trace lengths is represented in

the event log of IP-7, since there are loops in the behavior of interacting agents.

For a better interpretation of the experimental results, Table 9 provides pair-

wise comparison between the precision and simplicity evaluations given in Table 8.

We have computed the percentage change in the characteristics of:

• directly discovered and reference LGWF-nets;

• compositionally discovered and reference LGWF-nets;

• compositionally and directly discovered LGWF-nets.

Based on these pair-wise comparison results, we report the main conclusions and

outcomes from the experiments on evaluating the compositional process discovery

approach below.

We start with the analysis of the simplicity comparisons given in Table 9.

An increase in the number of nodes in the directly and compositionally discov-

ered LGWF-nets, next to the reference LGWF-nets, is mainly caused by additional

τ-transitions. They connect the standard behavioral constructions such as the se-

quential, concurrent, or alternative control-flows of actions executed by different

Discovering Process Models for Multi-Agent Systems from Event Logs



142 CHAPTER 5. EXPERIMENTAL EVALUATION

agents. Conversely, the compositional process discovery shows an overall decrease

or a moderate increase in the number of nodes compared with the direct process

discovery since we separate the behavior of different agents. The separation of

agent behavior is also justified by the changes in the number of neighboring transi-

tions. Onemay observe amultiplicative increase in the number of the neighboring

transitions in the directly discovered LGWF-nets. The compositionally discovered

LGWF-nets have the same number of the neighboring transitions as the reference

LGWF-nets. These transitions correspond exactly to actions throughwhich agents

interact, while the rest of agent behavior is independent since it is not involved in

their interactions.

We next consider the precision comparisons also provided in Table 9.

Most directly discovered LGWF-nets improve the precision since they are far

more oriented to the corresponding event logs. The precision of the reference and

compositionally discovered LGWF-nets are lower next to the directly discovered

LGWF-nets since the separationof agent behavior leads to a corresponding increase

in the amount of unseen behavior, as shown in Fig. 50. This precision decrease

is a payment for making process models of multi-agent systems architecture-

aware. However, in the case of the interface patterns with complicated and mixed

agent interactions, namely IP-7, IP-9, ..., and IP-12, we observe a decrease or

a negligible increase in precision. The inappropriate generalizations of agent

behavior were the main reason for this precision decrease. In conclusion to the

precision comparative analysis, we also see that the compositionally discovered

GWF-nets preserve almost the same precision level next to the reference LGWF-

nets since changes in the corresponding values are less than 10%.

To sum up the discussion of the experimental results, we take a closer look

at the outcomes reported for patterns IP-2 and IP-7. Following the steps of our

experiment plan for these interface patterns, we encountered the following issues:

• interface pattern inconsistencies (IP-2);

• the most notable decrease in the precision (IP-7).
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We further discuss the reasons for these problems.

5.5.1 Pattern Inconsistencies: the Case of IP-2

The experiment with the asynchronous interface pattern IP-2 shown in Fig. 39b

led to the following problem. Agent LGWF-nets, N
1
and N

2
, discovered from log

projections, were not the proper refinements of A
1
and A

2
in IP-2, according to

the requirement of Definition 16. Thus, the corresponding isRefinement test in

Algorithm 1 was not passed.

Asmentioned in Section 5.1, in the detailed description of the experiment plan,

wewould try to reconfigure an interface pattern in this case. Then, we determined

that there exist two sequences of refinement transformations (see Section 3.4) that

lead from A ′
1
and A ′

2
shown in Fig. 52 to agent GWF-nets N

1
and N

2
.

a!

b!

a?

b?

A’1 

A’2 

Figure 52: Modifications of A
1
and A

2
in IP-2

Intuitively, it can be seen that the two pairs of concurrent actions, “a!”, “b!” and

“a?”, “b?”, were discovered as sequential actions respectively. The main reason
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for this is the lack of different process executions in an event log generated by the

reference LGWF-net.

Having consideredA ′
1
~A ′

2
as the new interface pattern and verified its sound-

ness (see Proposition 13), we actually experimented with the modified version of

the interface pattern IP-2.

5.5.2 Precision Drop: the Case of IP-7

The experiment with the multiple transmission interface pattern IP-7, shown in

Fig. 39g, also deserves to be highlighted. The directly discovered LGWF-net ex-

hibits a sharp decrease in its precision compared to the reference and composi-

tionally discovered LGWF-nets.

Figure 53 shows the LGWF-net discovered directly from an event log generated

by the reference LGWF-net of pattern IP-7. As seen from this LGWF-net, its

structure contains several joint blocks of actions executed by different agents.

The structure of this model does not cover the interaction-oriented architecture

viewpoints of a systemwith two interacting agents exchangingmessages until one

of them decides to stop the exchange.

Thus, the complicated nature of agent interactions can hardly be reconstructed

directly from an event log of a multi-agent system. The identification of agent

behavior and the interface pattern refinement check allows us to decompose this

problem and improve the quality of a multi-agent system model.

5.6 Technical Support of Experiments

According to the main plan discussed in Section 5.1, experiments on discovering

architecture-aware LGWF-nets from event logs of multi-agent system have been

conducted using a PC with the following characteristics:

1. CPU Intel Core i7 3,70GHz;
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2. 32 Gb RAM;

3. 64-bit OS Windows 10 Pro.

The generation and filtration of artificial event logs, discovery of agent LGWF-

nets, and the precision evaluation have been supported by the ProM software [91].

This is the plugin-extendable tool, where various process discovery algorithms

have been implemented.

Figure 53: Directly discovered LGWF-net: interface pattern IP-7
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The experimental data, including the artificial event logs, reference, directly,

and compositionally discovered GWF-nets, have been published in the open Zen-

odo repository [92].

5.7 Conclusions of Chapter 5

This chapter discussed the outcomes from the series of experiments conducted to

evaluate the compositional process discovery algorithm. We compared the quality

of the process models discovered directly from the artificial event logs of multi-

agent systemswith the quality of the processmodels discoveredusing the interface

patterns with respect to the central hypothesis of the compositional approach.

The experimental results confirm the overall improvement in the structure of

architecture-aware process models of multi-agent systems since agent behavior,

not involved in their interactions, is structurally separated.

However, the experimental results found that the agent interaction require-

ments imposed by interface patterns might not be fully satisfied by agent GWF-

nets discovered from filtered sub-logs. The main reason for this problem is the

incompleteness of event logs. They represent only a “finite snapshot” of all possi-

ble executions generated by concurrent interactions among agents in multi-agent

systems. To tackle the problem, one should either correspondingly adapt an in-

terface pattern verifying its soundness, as exemplified in Section 5.5.1, or process

event logs with a bigger number of different trace classes.

Another limitation is the manual selection of an interface pattern and the

manual construction of refinement transformation sequences using Definition 16.

Manual work can result in the wrong pattern choice and mistakes in checking

whether an agent GWF-net is a refinement of the respective subnet in an interface

pattern. We plan to overcome these issues by developing an algorithm for the

refinement check isRefinement (see Algorithm 1) and by extending the collection

of typical and sound interface patterns.
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Conclusions and Future Work

T

his dissertation proposed the algorithm for the compositional discovery of

process models from event logs of multi-agent systems. This algorihm

is based on composing process models representing the individual agent

behavior synthesized from a set of filtered sub-logs. The composition is regulated

by an interface pattern that describes agent interactions at the highly abstract level.

If all agent models can be mapped on the respective parts in the interface pattern,

we guarantee that:

1. The discovered process model of a multi-agent system perfectly fits an initial

event log (see Corollary 5).

2. The discovered processmodel of amulti-agent system inherits the soundness

of individual agents an of the interface pattern (see Corollary 6).

The correctness of the proposed algorithm for the compositional discovery of

process models from event logs of multi-agent systems is based on the following

three aspects:

1. Theoretical backgrounds of representing and filtering event logs and of the

asynchronous-synchronous composition of labeled generalized workflow

nets (LGWF-nets).

2. The technique, based on α-morphisms and structural transformations, for

mapping agentmodels on the corresponding subnets in the interface pattern.
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3. The collection of sound interface patterns that describe typical agent inter-

actions and preserve their soundness.

The proposed approach is applicable to multi-agent systems with components

that can be represented as business processes. The control-flow of these processes

can be formalized using generalized workflow nets, making the soundness prop-

erty relevant for the analysis. The main limitation of the compositional process

discovery is the manual selection of interface patterns according to information

provided by experts. This can result in the further adaptation and soundness

verification of modified interface patterns. However, the number of interacting

actions is usually significantly less than the number of local actions of agents.

As for future research, we plan to continue our work in several directions

that are also focused on overcoming the limitations. Firstly, the application of

α-morphisms and the corresponding structural transformations does not allow

refining acyclic interface patterns with cyclic behavior. We want to consider pos-

sible constraint relaxations, such that the overall correctness is preserved. Then

the applicability of interface patterns will be extended. Secondly, we plan to aug-

ment the presented collection of interface patterns with new interaction models,

especially considering the broadcast communication, and apply the compositional

approach to real-life examples of event logs. Finally, we also plan to work on an

approach to identifying interfaces from event logs of multi-agent systems.
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