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Abstract
We present an efficient method for the numerical approximation of a general class 
of two dimensional semilinear parabolic problems on polygonal meshes. The pro-
posed approach takes advantage of the properties of the serendipity version of the 
Virtual Element Method, which not only reduces the number of degrees of freedom 
compared to the original Virtual Element Method, but also allows for the introduc-
tion of an approximation of the nonlinear term that is computable from the degrees 
of freedom of the discrete solution with a low computational cost, thus significantly 
improving the efficiency of the method. An error analysis for the semi-discrete 
formulation is carried out, and an optimal estimate for the error in the L

2
-norm is 

obtained. The accuracy and efficiency of the proposed method when combined 
with a second order Strang operator splitting time discretization is illustrated in our 
numerical experiments, with approximations up to order 6.

Keywords  Serendipity Virtual Element Method · Interpolant operator · Operator 
splitting method · Semilinear parabolic equations

Mathematics Subject Classification  65M60 · 65M12 · 65M15

1  Introduction

In this work we present an interpolatory or quasi-interpolatory Serendipity Virtual 
Element Method (S-VEM) applied to semilinear parabolic equations on a space–time 
domain QT = � × (0, T) , where 𝛺 ⊂ ℝ

2 is a polygonal domain and T > 0
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 The nonlinear function f ∶ ℝ → ℝ is assumed to be globally Lipschitz continuous, 
i.e., there exists a constant Lf > 0 such that the following bound holds

The model (1.1a, 1.1b, 1.1c) is found in many important applications such as: bat-
tery modeling [33], crystals growth [23], population dynamics [29], and in many 
other models in chemistry [27, 34] and biology [25]. However, given the different 
nature of nonlinear terms, the task of finding exact solutions for such kind of prob-
lems becomes extremely demanding or even impossible. For that reason, there is a 
high interest in the development of efficient, accurate and robust numerical methods 
to approximate their solution. Since this work specifically concerns the advantages 
of the serendipity version of the Virtual Element Method applied to the problem 
(1.1a, 1.1b, 1.1c), an extensive list of numerical methods previously applied to this 
problem is out of our scope.

The Virtual Element Method (VEM) is a novel technique for the numerical 
approximation of PDEs, introduced by Beirão da Veiga et al. in [9] for an ellip-
tic problem, and can be seen as a sensible extension of the classical finite element 
method to meshes with almost general polygonal elements. Discrete VEM spaces 
contain non-polynomial functions; however, such functions are not needed to be 
expressly known, as the discrete operators are computed through projections onto 
the space of piecewise polynomials of a given degree, which are computable using 
only some suitably chosen degrees of freedom (DoFs). Besides the advantages that 
come from the versatility of polygonal meshes, such as the natural use of “non-
conforming” grids, more efficient and easier adaptivity and geometric approxima-
tion, robustness to mesh deformation, among others; the Virtual Element Method 
also allows for the imposition of conformity conditions on the global discrete spaces 
without struggling to explicitly compute their basis functions.

So far, the Virtual Element Method has been successfully applied to many impor-
tant physical applications. In particular, recent efforts have been devoted to show the 
accuracy and advantages of this method in the numerical approximation of the solu-
tion to nonlinear problems such as: the Cahn–Hilliard equation [8, 24], models in 
cardiology [7], nonlinear elasticity [18], the nonlinear Brinkman equation [22, 28], 
bulk-surface reaction–diffusion systems [21], pattern formation [19]; and semilinear 
elliptic [5, 14], hyperbolic [2] and parabolic [1] equations.

In this work we aim to extend the idea of Adak and Natarajan in [3] to high-
order approximations. In [3], the authors proposed a VEM discretization of the 
sine–Gordon equation with an interpolatory approximation of the nonlinear term, 
thus significantly reducing the computational cost of the method at each time 

(1.1a)
�u

�t
− �u + f (u) = 0, in QT ,

(1.1b)∇u ⋅ n = 0, on �� × (0, T],

(1.1c)[r]u(�, 0) = u0(�), in �.

(1.2)|f (x) − f (y)| ≤ Lf |x − y| ∀x, y ∈ ℝ.
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step. Nevertheless, the main limitation of the technique in [3] is that it is only 
valid for approximations with k = 1 , i.e., with the same order of convergence as 
polynomial approximations of degree k = 1 . This is due to the fact that for k ≥ 2 , 
the method requires some internal-moment DoFs, which unfortunately prevents a 
direct extension to high order approximations (see Remark 3.3 and Section 7 in 
[3] dedicated to discuss this limitation). Our idea to overcome this severe restric-
tion relies on the serendipity version of the VEM, introduced by Beirão da Veiga 
et al. in [11], and later discussed by Russo in [30]. The main motivation of the 
S-VEM is indeed to reduce the number of internal-moment DoFs. Moreover, 
under certain conditions on the mesh, it is possible to completely eliminate them. 
It is also worth mentioning that the Serendipity VEM on quadrilaterals does not 
suffer from distortion as it is common for the serendipity FEM, see [11].

The main novelty and features of the proposed scheme are summarized as 
follows: 

a)	 To the best of our knowledge, this is the first time to use the S-VEM as spatial 
discretization for semilinear parabolic problems; for which the enhanced VEM 
has been preferred.

b)	 An interpolant of the nonlinear term in the S-VEM space is introduced in the 
semi-discrete formulation. Under a certain condition on the degree of accuracy k 
that is associated with the geometric properties of the mesh, such interpolant is 
computed by simply evaluating the nonlinear term f (⋅) at the DoFs of the discrete 
solution. Thus, significantly reducing the computational cost of the method, as it 
completely avoids the use of numerical quadratures at each time step.

c)	 An optimal error estimate for the semi-discrete formulation in the L2-norm is 
proven in spite of the use of such interpolant to approximate the nonlinear term.

d)	 When the time variable is discretized by the symmetric Strang - operator split-
ting (SS-OS) time marching scheme, the nonlinear substeps can be decomposed 
as a set of completely independent one dimensional nonlinear problems, which 
renders the method naturally suitable for parallel implementations.

e)	 In those elements of the mesh (if any) where the condition on the degree k is not 
satisfied, the interpolant of the nonlinear term is not computable from the DoFs 
of the discrete solution. In that case, we use a quasi-interpolatory approximation 
of the nonlinear term that also belongs to the local VEM space but is comput-
able. Optimal error estimates and suitability for a parallel implementation are 
preserved.

The paper is structured as follows: in Sect. 2 we present the basic ideas and nec-
essary projections for the description of the proposed method in the case when 
no internal-moment DoFs are needed, that throughout the paper we will refer to 
as “the ideal case”. Optimal error estimates of order O(hk+1) in the L2-norm are 
proven for the S-VEM semi-discrete formulation in Sect.  3. In Sect.  4, an effi-
cient fully-discrete scheme, obtained by combining our interpolatory S-VEM dis-
cretization in space with a symmetric Strang - Operator Splitting time marching 
scheme is presented. The extension of the method to the general case when some 
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internal-moment DoFs are needed, as well as the most important differences in 
the error estimate and the fully-discrete scheme are discussed in Sect.  5. Some 
numerical experiments, validating the accuracy and efficiency of the proposed 
method are included in Sect. 6. We end this work with some concluding remarks 
in Sect. 7.

2 � Serendipity VEM discretization

Let Th be a polygonal partition of � and let h ∶= max
{
hE | E ∈ Th

}
 be the mesh 

size, where hE denotes the diameter of E. We first define, for each polygon E ∈ Th , 
the following enlarged local Virtual Element space [6]:

where ℙk(e) and ℙk(E) denote the spaces of polynomials of degree at most k ≥ 1 on 
e and E, respectively.

The DoFs uniquely identifying a function v ∈ Ṽk(E) are choosen as the following 
linear functionals 

i)	 The values of v at the vertices of E.
ii)	 The values of v at the (k − 1) internal Gauss-Lobatto nodes on each edge e of E.
iii)	 The internal-moments: 1|E| ∫E

vmE
�dx, � = 1,… , rk , where 

{
m�

}rk

�=1
 is a basis of 

ℙk(E) and rk ∶= dim(ℙk(E)).

The space Ṽk(E) requires many more internal DoFs than the original VEM space 
presented in [9], but it readily provides enough information to compute the L2-pro-
jection of any v ∈ Ṽk(E) onto ℙk(E) . In practice, a subspace of Ṽk(E) still containing 
all polynomials of degree at most k on E, is used as local VEM space. The basic idea 
to construct such subspace is to take the set of functions in Ṽk(E) sharing some inter-
nal-moment DoFs with their projection onto the space ℙk(E) ; which gives origin to 
the so called, enhanced [6] and serendipity [11] versions of the VEM.

We first focus on the ideal case, where the Serendipity VEM does not require any 
internal-moment DoFs. An integer number �E ≥ 3 is associated with each element 
E ∈ Th , where �E is defined as the number of distinct straight lines containing at 
least one edge of E. In particular, if E is an N-sided strictly convex polygon without 
split edges, then �E = N . In the ideal case, the degree of accuracy k satisfies the con-
dition: k < min

{
𝜂E | E ∈ Th

}
 ; which in the spirit of the Serendipity VEM, allows 

for the definition of a global discrete space whose associated DoFs are all node eval-
uations at the skeleton of the mesh, without requiring any internal-moment degree 
of freedom from the set iii).

The following projectors are needed to define the local S-VEM space and to pre-
sent our semi-discrete formulation:

•	 The Ritz–Galerkin projection �∇
k,E

∶ H1(E) → ℙk(E) defined as follows 

Ṽk(E) ∶=
{
v ∈ C

0
(
E
)
∶ v|e ∈ ℙk(e) ∀ edge e, �v ∈ ℙk(E)

}
,
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 Using the Green’s formula, the projection �∇
k,E
(⋅) is computable for any v ∈ Ṽk(E) 

using the degrees of freedom i), ii) and iii), see [9, Sect. 4.5].
•	 The standard L2-orthogonal projector �0

k,E
∶ L2(E) → ℙk(E) , defined by 

 which is directly computable from the set of DoFs iii).
•	 The “boundary” projector ��

k,E
∶ H1(E) → ℙk(E) such that 

 that is well-defined under the condition k < 𝜂E , and can be computed using only 
the boundary DoFs in sets i) and ii).

In the ideal case, the local S-VEM space VS
k
(E) ⊂ �Vk(E) is defined as

that only requires the boundary DoFs from sets i) and ii). Therefore, for an N-sided 
polygon E, dim

(
VS
k
(E)

)
= Nk . The global S-VEM space is consequently defined as

A representation of the DoFs for the local space of the original VEM in [9], for dif-
ferent N-sided polygons and the maximum degree k satisfying the aforementioned 
condition is presented in Fig.  1. We emphasize that, in all these cases, the local 
space VS

k
(E) does not require any of the internal-moment DoFs represented by red 

squares in the figure.

∫E

∇
(
𝜋∇
k,E
(v) − v

)
⋅ ∇pkdx = 0 ∀pk ∈ ℙk(E),

∮𝜕E

𝜋∇
k,E
(v)dS = ∮𝜕E

vdS, (k = 1), or ∫E

𝜋∇
k,E
(v)dx = ∫E

vdx, (k > 1).

∫E

(
�0
k,E
(v) − v

)
pkdx = 0 ∀pk ∈ ℙk(E),

(2.1)∮�E

(
��
k,E
(v) − v

)
pk dS = 0 ∀pk ∈ ℙk(E),

VS
k
(E) ∶=

{
v ∈ Ṽk(E) ∶ ∫E

(
v − ��

k,E
(v)

)
mE

�dx = 0, � = 1,… , rk

}
,

VS
k

(
Th

)
∶=

{
vh ∈ C

0
(
�
)
∶ vh|E ∈ VS

k
(E) ∀E ∈ Th

}
.

Fig. 1   Degrees of freedom for the original VEM space with degree k = 2 (triangles), k = 3 (quadrilat-
erals), and k = 4 (pentagons). Blue dots represent nodal evaluations, and red squares represent internal 
moments
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As mentioned before, any function v ∈ VS
k
(E) is uniquely determined by its 

boundary DoFs. Denoting by dS
k,E

= dim(VS
k
(E)) , and numbering the nodes asso-

ciated with the DoFs as �i , with i = 1,… , dS
k,E

 , we can define the linear functionals 
dofi ∶ VS

k
(E) → ℝ as

A natural basis arise, by taking the canonical basis functions 
{
�i

}dS
k,E

i=1
 satisfying

The following interpolatory representation is then obtained for each v ∈ VS
k
(E)

such representation allows us to define the interpolant operator 
I
k
h
∶ C

0
(
�
)
→ VS

k

(
Th

)
 whose restriction to each element E ∈ Th is defined as 

follows: for all g ∈ C
0
(
E
)
,

2.1 � Semi‑discrete formulation

The weak formulation of the model problem (1.1a, 1.1b, 1.1c) is: find 
u ∈ L2

(
0, T ,H1(�)

)
 with ut ∈ L2

(
0, T ,H−1(�)

)
 such that

where a(⋅; ⋅) ∶ H1(�) × H1(�) → ℝ and m(⋅; ⋅) ∶ L2(�) × L2(�) → ℝ are the bilin-
ear forms defined as

Analogously, our semi-discrete interpolatory S-VEM formulation seeks an approxi-
mation uh ∈ VS

k

(
Th

)
 such that for all test functions vh ∈ VS

k

(
Th

)
 it satisfies 

(2.2)dofi(v) ∶= v(�i) ∀v ∈ VS
k
(E).

dofi(�j) = �ij, i, j = 1,… , dS
k,E
.

(2.3)v(x) =

dS
k,E∑
i=1

dofi(v)�i(x) =

dS
k,E∑
i=1

v(�i)�i(x);

(2.4)I
k,E

h
g(x) ∶=

dS
k,E∑
i=1

dofi(g)�i(x) =

dS
k,E∑
i=1

g(�i)�i(x).

(2.5)m
(
�u

�t
; v
)
+ a(u; v) + m(f (u); v) = 0 ∀v ∈ H1(�),

a(u; v) ∶= ∫�

∇u ⋅ ∇vdx, m(u; v) ∶= ∫�

uvdx.

(2.6a)mh

(
�uh
�t

; vh

)
+ ah

(
uh; vh

)
+ mh

(
I
k
h
f (uh); vh

)
= 0,

(2.6b)u0
h
= I

k
h
u0,
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where the bilinear forms a
h
∶ V

S

k

(
T
h

)
× V

S

k

(
T
h

)
→ ℝ  and  m

h
∶ V

S

k

(
T
h

)
× V

S

k

(
T
h

)
→ ℝ 

are constructed as the sum of local contributions as

For each element E ∈ Th , the restrictions aE
h
(⋅; ⋅) and mE

h
(⋅; ⋅) are split into a consist-

ency and a stability parts by 

 where I denotes the identity operator and the stabilization terms sE
a
(⋅; ⋅) , sE

m
(⋅; ⋅) are 

symmetric bilinear forms scaling as aE(⋅; ⋅) and mE(⋅; ⋅) , respectively; more precisely, 
there exist mesh-independent positive constants �1, �2, �1, �2 such that

In fact, there are many possible choices for the stability terms; however, in our 
implementation we will limit ourselves to use a very simple stabilization proposed 
in [9], namely, the dofi-dofi. For a thorough study of different stability choices, see 
[12, 26]. By construction, both ah(⋅; ⋅) and mh(⋅; ⋅) satisfy the following two impor-
tant conditions:

–	 �-Polynomial consistency: For every element E ∈ Th we have 

–	 Stability: There exist mesh-independent positive constants �∗, �∗, �∗, �
∗ such 

that 

The last term in the semi-discrete variational formulation (2.6a) satisfies the fol-
lowing crucial identity

ah
(
uh; vh

)
=

∑
E∈Th

aE
h

(
uh; vh

)
, mh

(
uh; vh

)
=

∑
E∈Th

mE
h

(
uh; vh

)
.

(2.7a)
aE
h

(
uh; vh

)
∶= aE

(
�∇
k,E

(
uh
)
;�∇

k,E

(
vh
))

+ sE
a

((
I − �∇

k,E

)
uh;

(
I − �∇

k,E

)
vh

)
,

(2.7b)
mE

h

(
uh; vh

)
∶= mE

(
�0

k,E

(
uh
)
;�0

k,E

(
vh
))

+ sE
m

((
I − �0

k,E

)
uh;

(
I − �0

k,E

)
vh

)
,

�1a
E
(
vh; vh

) ≤ sE
a

(
vh; vh

) ≤ �2a
E
(
vh; vh

)
∀vh ∈ VS

k
(E) ∩ Ker

(
�∇
k

)
,

�1m
E
(
vh; vh

) ≤ sE
m

(
vh; vh

) ≤ �2m
E
(
vh; vh

)
∀vh ∈ VS

k
(E) ∩ Ker

(
�0

k

)
.

(2.8a)aE
h

(
vh; pk

)
= aE

(
vh; pk

)
∀vh ∈ VS

k
(E), ∀pk ∈ ℙk(E),

(2.8b)mE
h

(
vh; pk

)
= mE

(
vh; pk

)
∀vh ∈ VS

k
(E), ∀pk ∈ ℙk(E).

(2.9a)�∗a
E
(
vh; vh

) ≤ aE
h

(
vh; vh

) ≤ �∗aE
(
vh; vh

)
∀vh ∈ VS

k
(E),

(2.9b)�∗m
E
(
vh; vh

) ≤ mE
h

(
vh; vh

) ≤ �∗mE
(
vh; vh

)
∀vh ∈ VS

k
(E).
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which clearly shows that, in the ideal case, the computation of the nonlinear term 
requires only the matrix representation of the bilinear form mh(⋅; ⋅) and the evalua-
tion of f (⋅) at the DoFs of the discrete solution uh.

Remark 1  Applying stabilization in the last term of (2.6a) in the semi-discrete for-
mulation is not necessary to obtain optimal convergence, but it can be computation-
ally convenient, as shown in Sect. 4.

Remark 2  The initial condition approximation u0
h
= I

k
h
u0 in (2.6b) is suitable 

for imposing random initial data, which is commonly of interest in this kind of 
problems.

3 � Error analysis

This section is devoted to get an optimal error estimate in the L2-norm for the 
solution to the semi-discrete formulation (2.6a, 2.6b). The main ideas are taken 
from the error analysis carried out in [35] for the enhanced VEM applied to linear 
parabolic problems and its recent extensions to semilinear parabolic problems [1, 
4, 5]. Nonetheless, in Theorem 1 we address the following differences:

•	 The approximated solution is sought in the S-VEM space VS
k

(
Th

)
.

•	 The nonlinear term is approximated by its interpolant Ik
h
f (uh) ∈ VS

k

(
Th

)
 . The 

term mh

(
I
k
h
f (uh); vh

)
 in the semi-discrete formulation (2.6a) includes also a 

stabilization part, that was not present in the formulation in [3] for the sine-
Gordon equation. This choice is computationally convenient when using an 
operator splitting time marching scheme, while retaining the same optimal 
convergence.

•	 Pure homogeneous Neumann boundary conditions are considered.

In what follows we will make the following assumptions on the mesh:

(2.10)

mh

(
I
k
h
f (uh);�i

)
=

∑
E∈Th

mE
h

(
I
k,E

h
f (uh);�i

)

(2.3)
=

∑
E∈Th

dS
k,E∑
j=1

dofj

(
f
(
uh
))
mE

h

(
�j;�i

)

(2.4)
=

∑
E∈Th

dS
k,E∑
j=1

f
(
uh
(
�j
))
mE

h

(
�j;�i

)

(2.3)
=

∑
E∈Th

dS
k,E∑
j=1

f
(
dofj(uh)

)
mE

h

(
�j;�i

)
,
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Assumption 1  There exists a constant 𝜌 > 0 , such that every element E ∈ Th is star-
shaped with respect to a ball B ∶= B�hE

(z) centered at z ∈ E and with radius �hE , 
where hE ∶= diam (E) . In addition, every edge e of E satisfies |e| ≥ �hE.

The above assumption guarantees that the following condition holds: for each 
E ∈ Th , there exists a “virtual triangulation” T̃E of E such that T̃E is uniformly 
shape regular and quasi-uniform. The corresponding mesh size of the auxiliary tri-
angulation T̃E is proportional to hE and each edge of E is a side of a triangle in T̃E.

The elliptic projection operator Ph ∶ H1(�) → VS
k

(
Th

)
 , is defined for each func-

tion u ∈ H1(�) as the only element Ph(u) ∈ VS
k

(
Th

)
 satisfying

Since Ph(u) is the solution to the variational problem (3.1), by the coercivity and 
continuity of ah(⋅; ⋅) and the continuity of the linear functional a(u; ⋅) , the projection 
operator Ph is well-defined. Furthermore, we can prove the following estimate as in 
[35, Lemma 3.1].

Lemma 1  Let � be a convex domain, and u ∈ Hk+1(�) . Under Assumption 1, there 
exists a constant C𝛼 > 0 , depending on �∗ and �∗ in (2.9a) but independent of h such 
that

Using standard arguments as in [9] and the classical Dupont-Scott theory in [13], 
the following estimates for the interpolant Ik

h
(⋅) and the projection �0

k
(⋅) are obtained.

Lemma 2  Under Assumption 1, if u ∈ Hk+1(�) , there exists a positive constant CI , 
depending only on k and � , such that the interpolant Ik

h
u ∈ VS

k

(
Th

)
 satisfies

Lemma 3  Under Assumption 1, for each element E ∈ Th , if u ∈ Hk+1(E) , there exists 
a polynomial u� ∈ ℙk(E) , and a positive constant C� , depending only on k and � , 
such that

In Lemma 4, a norm equivalence for the S-VEM space is introduced in order to 
exploit the Lipschitz property of f (⋅) in the analysis.

Lemma 4  Under Assumption 1, there exist two positive constants c1 and c2 depend-
ing on the shape regularity and quasi-uniformity parameters of the auxiliary trian-
gulation T̃E of E such that

(3.1)

⎧
⎪⎨⎪⎩

ah
�
Ph(u); vh

�
= a

�
u; vh

�
∀vh ∈ VS

k

�
Th

�
,

∫�

Ph(u)dx = 0.

(3.2)‖‖Ph(u) − u‖‖L2(�)
≤ C�h

k+1|u|Hk+1(�).

(3.3)
‖‖‖u − I

k
h
u
‖‖‖L2(E) + hE

|||u − I
k
h
u
|||H1(E)

≤ CIh
k+1
E

|u|Hk+1(E) ∀E ∈ Th.

(3.4)‖‖u − u�
‖‖L2(E) + hE

||u − u�
||H1(E)

≤ C�h
k+1
E

|u|Hk+1(E).
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where � ∶ VS
k
(E) → ℝ

dS
k,E is defined by �(v) ∶=

(
dofiv

)dS
k,E

i=1
.

Lemma 4 is an extension of the classical results in [20] for finite element 
spaces and can be proven following the arguments used by Chen and Huang in 
[17, Thm. 4.5 and Corollary 4.6].

From the above Lemma we can derive the following important bound in our 
error analysis.

Lemma 5  The following bound holds for any u ∈ C
0
(
E
)
 and uh ∈ VS

k
(E)

where eu ∶= u − uh.

Proof  By Lemma 4, and the Lipschitz continuity of f (⋅) we have

To conclude the proof it suffices to use the triangle inequality in the last term. 	�  ◻

The following theorem provides the optimal error estimate for the semi-dis-
crete formulation (2.6a, 2.6b) under suitable regularity conditions for the exact 
solution. We will use C to denote a generic constant independent of the mesh size 
h and the arguments of the functions in the proof will be omitted unless they are 
necessary.

(3.5)c1hE‖�(v)‖l2 ≤ ‖v‖L2(E) ≤ c2hE‖�(v)‖l2 ,

(3.6)‖‖‖I
k
h
f (u) − I

k
h
f (uh)

‖‖‖L2(E) ≤
c2Lf

c1

(‖‖‖I
k
h
u − u

‖‖‖L2(E) +
‖‖eu‖‖L2(E)

)
,

���I
k
h
f (u) − I

k
h
f (uh)

���L2(E)
(3.5)≤ c2hE

����
�
I
k
h
f (u) − I

k
h
f (uh)

����l2
(2.2)
= c2hE

⎛⎜⎜⎝

dS
k,E�
i=1

��f (u(�i)) − f (uh(�i))
��2
⎞⎟⎟⎠

1

2

(1.2)≤ c2hELf

⎛⎜⎜⎝

dS
k,E�
i=1

��u(�i) − uh(�i)
��2
⎞⎟⎟⎠

1

2

(2.2)
= c2hELf

����
�
I
k
h
u − uh

����L2(E)
(3.5)≤ c2Lf

c1

���I
k
h
u − uh

���L2(E),
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Theorem 1  Under Assumption 1. Let � be a convex domain, and u and uh be the 
solutions to the variational problems (2.5) and (2.6a, 2.6b), respectively. For u and 
f(u) smooth enough, there exists a positive constant C independent of h, such that for 
all t ∈ (0, T] the following bound holds

Proof  We start decomposing eu ∶= u − uh as eu = �u − �h , where �u = u − Ph(u) and 
�h = uh − Ph(u) . From Lemma 1 and the identity u(⋅, t) = u(⋅, 0) + ∫ t

0
ut(⋅, �)d� we 

have the following bound for �u

Therefore, in order to get the desired estimate, it only remains to bound ‖‖�h(⋅, t)‖‖L2(�)
 . 

We now proceed similarly as in [1]. Since �h ∈ VS
k

(
Th

)
 , adding and subtracting 

appropriate terms in the semi-discrete formulation (2.6a), for any vh ∈ VS
k

(
Th

)
 we 

get

hence, we will look for local estimates of TE
1

 and TE
2

 on each element E ∈ Th.
By the k-polynomial consistency property (2.8b), we can decompose TE

1
 as

By the Cauchy-Schwarz inequality and Lemma 3, it is easy to see that

(3.7)

��uh(⋅, t) − u(⋅, t)��L2(�)
≤Chk+1

���u0��Hk+1(�)
+ ��ut��L1(0,t,Hk+1(�))

+ ��ut��L2(0,t,Hk+1(�)) + ‖u‖L2(0,t,Hk+1(�))

+ ‖f (u)‖L2(0,t,Hk+1(�))

�
.

(3.8)‖‖�u(⋅, t)‖‖L2(�)
≤ Chk+1

(||u0||Hk+1(�)
+ ||ut||L1(0,t,Hk+1(�))

)
.

(3.9)

mh

�
��h
�t
;vh

�
+ ah

�
�h;vh

�

= −mh

�
Ik
h
f (uh);vh

�
− mh

�
�

�t
Ph(u);vh

�
− ah

�
Ph(u);vh

�
(3.1)
= −mh

�
Ik
h
f (uh);vh

�
− mh

�
�

�t
Ph(u);vh

�
− a

�
u;vh

�
(2.5)
= m

�
f (u);vh

�
− mh

�
Ik
h
f (uh);vh

�
+ m

�
�u

�t
;vh

�
− mh

�
�

�t
Ph(u);vh

�

(2.7b)
=

∑
E∈Th

⎡⎢⎢⎢⎢⎢⎣

mE
�
f (u);vh

�
− mE

h

�
Ik
h
f (uh);vh

�
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

TE
1

+mE
�
�u

�t
;vh

�
− mE

h

�
�

�t
Ph(u);vh

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
TE
2

⎤⎥⎥⎥⎥⎥⎦

,

(3.10)
TE
1

(2.8b)
= mE

(
f (u) − �0

k
(f (u));vh

)
+ mE

(
�0
k
(f (u)) − �0

k

(
Ik
h
(f (u))

)
;vh

)
+mE

h

(
�0
k

(
Ik
h
f (u)

)
− Ik

h
f (uh);vh

)
= R1 + R2 + R3.
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On the other hand, by the stability of the L2-orthogonal projection �0
k
(⋅) and Lemma 

2 we have

To bound R3 , we first observe that by the triangle inequality, the stability of the L2
-orthogonal projection and Lemmas 2 and 3 we have

Lemma 5 and the bound (3.13), together with the triangle inequality and the conti-
nuity of mh(⋅; ⋅) provide the following estimate for R3:

In a similar way, decomposing

and applying similar steps as before, by the commutativity of �
�t
(⋅) and Ph(⋅) , we get 

the following bound for TE
2

Integrating from 0 to t at both sides of (3.9) and taking vh = �h ; since ah
(
�h; �h

) ≥ 0 , 
by the estimate (3.8) for �u , the bounds (3.11)–(3.15) and Young’s inequality, we get 
the following estimate

(3.11)|R1|
(3.4)≤ C�h

k+1|f (u)|Hk+1(E)
‖‖vh‖‖L2(E).

(3.12)|R2| ≤ ‖‖‖f (u) − I
k
h
f (u)

‖‖‖L2(E)
‖‖vh‖‖L2(E)

(3.3)≤ CIh
k+1|f (u)|Hk+1(E)

‖‖vh‖‖L2(E).

(3.13)

‖‖‖�
0
k

(
I
k
h
f (u)

)
− I

k
h
f (u)

‖‖‖L2(E) ≤
‖‖‖�

0
k

(
I
k
h
f (u)

)
− �0

k
(f (u))

‖‖‖L2(E)
+
‖‖‖�

0
k
(f (u)) − f (u)

‖‖‖L2(E)
+
‖‖‖f (u) − I

k
h
f (u)

‖‖‖L2(E)
≤ (

2CI + C�

)
hk+1|f (u)|Hk+1(E).

(3.14)

|R3|
(2.9b)≤ �∗

‖‖‖�
0

k

(
I
k
h
f (u)

)
− I

k
h
f (uh)

‖‖‖L2(E)
‖‖vh‖‖L2(E)

≤ �∗
(‖‖‖�

0

k

(
I
k
h
f (u)

)
− I

k
h
f (u)

‖‖‖L2(E) +
‖‖‖I

k
h
f (u) − I

k
h
f (uh)

‖‖‖L2(E)
)
‖‖vh‖‖L2(E)

(3.6)≤ C

(‖‖‖�
0

k

(
I
k
h
f (u)

)
− I

k
h
f (u)

‖‖‖L2(E) +
‖‖‖I

k
h
u − u

‖‖‖L2(E) +
‖‖eu‖‖L2(E)

)
‖‖vh‖‖L2(E)

(3.13)≤ C
(
hk+1|f (u)|Hk+1(E) + hk+1|u|Hk+1(E) +

‖‖eu‖‖L2(E)
)‖‖vh‖‖L2(E).

mE
(
ut; vh

)
− mE

h

(
Ph

(
ut
)
; vh

)

= mE
(
ut − �0

k

(
ut
)
; vh

)
− mE

h

(
Ph

(
ut
)
− �0

k

(
ut
)
; vh

)
,

(3.15)
|||T

E
2

||| ≤ Chk+1||ut||Hk+1(E)
.
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and by Grönwall’s lemma, since �h(⋅, 0) =
(
Ph

(
u0
)
− u0

)
+
(
u0 − I

k
h
u0

)
 , combined 

with the bound (3.8) for �u , and the estimates (3.2)–(3.3), we get the desired estimate 
(3.7) in our theorem. 	�  ◻

Remark 3  The term ‖‖‖�0
k

(
I
k
h
f (u)

)
− I

k
h
f (u)

‖‖‖L2(E) in (3.13) must be treated with care, 
since a direct application of the bound in Lemma 3 leads to the appearance of the 
undesired term |||I

k
h
f (u)

|||Hk+1(E)
 , that would become an issue in the error analysis, since 

the stability of the interpolation operator Ik
h
(⋅) on the seminorm |⋅|Hk+1(E) is not guar-

anteed. On the other hand, bound (3.13) is not necessary when the stability part of 
the last term of (2.6a) in the semi-discrete formulation is not considered.

4 � Fully‑discrete scheme

It is evident that the efficiency of any ODE solver applied to (2.6a, 2.6b) will be 
greatly benefited from the fast evaluation of the nonlinear term in our semi-discrete 
formulation. In this paper, we choose the second order symmetric Strang operator 
splitting (SS-OS) method [32] as time marching scheme to illustrate the advantages 
of the proposed technique.

Denoting by � and � the matrix representation of the bilinear forms mh(⋅; ⋅) and 
ah(⋅; ⋅) , respectively; by the identity (2.10), the semi-discrete formulation (2.6a, 
2.6b) can be written as a system of nonlinear differential equations as

where Uh is the vector of the representation coefficients of uh in the basis of VS
k

(
Th

)
 ; 

and the components of the vector f h(Uh) are given by 
(
f h
(
Uh

))
i
= dofi

(
f (uh)

)
.

���h(⋅, t)��2L2(Ω)
(2.9b)≤ �−1

∗
mh

�
�h(⋅, t);�h(⋅, t)

�
+ 2�−1

∗ �
t

0

ah
�
�h;�h

�
d�

≤ Cmh

�
�h(⋅, 0);�h(⋅, 0)

�
+ C �

t

0

��eu��L2(Ω)���h��L2(Ω)d�

+ Chk+1 �
t

0

�
�f (u)�Hk+1(Ω) + �u�Hk+1(Ω) +

��ut��Hk+1(Ω)

����h��L2(Ω)d�

≤ Cmh

�
�h(⋅, 0);�h(⋅, 0)

�
+ C �

t

0

����u��L2(Ω)���h��L2(Ω) + ���h��2L2(Ω)
�
d�

+ Chk+1 �
t

0

�
�f (u)�Hk+1(Ω) + �u�Hk+1(Ω) +

��ut��Hk+1(Ω)

����h��L2(Ω)d�
(3.8)≤ Cmh

�
�h(⋅, 0);�h(⋅, 0)

�
+ �

t

0

C���h(⋅, �)��2L2(Ω)d�

+ Chk+1
���u0��2Hk+1(Ω)

��ut��2L1(0,t,Hk+1(Ω)) +
��ut��2L2(0,t,Hk+1(Ω))

+ ‖u‖2
L2(0,t,Hk+1(Ω))

+ ‖f (u)‖2
L2(0,t,Hk+1(Ω))

�
,

(4.1)�
dUh

dt
+ �Uh +�f h

(
Uh

)
= �,
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In the ideal case, f h(Uh) is the vector obtained from a component-wise evaluation 
of the nonlinear function f (⋅) at the entries of Uh.

The SS-OS time marching scheme decomposes the system of differential equa-
tions (4.1) as a series of linear and nonlinear substeps, usually associated with diffu-
sion and reaction terms, of the form 

 where � = tn+1 − tn and Un
h
 is the vector approximation of uh(⋅, tn).

The efficiency of combining some discontinuous Galerkin methods with an inter-
polatory approximation of the nonlinear term as spatial discretization on classical 
meshes with the SS-OS time marching scheme was assessed by Castillo and Gómez 
in [15, 16].

A necessary condition to retain the second order accuracy of the full SS-OS step 
is that each substep in (4.2a, 4.2b) must be solved with a second order ODE solver 
itself. Although we are free to choose the solver for each step, implicit methods 
might be more appropriate. Conversely, if an explicit method were used, we would 
face a very restrictive CFL condition associated with the linear substeps, while 
for the nonlinear substeps the method might become unstable in the case of stiff 
nonlinearities.

From the discussion above we decide to apply the Crank-Nicolson method to 
each substep in (4.2a, 4.2b). For the DRD decomposition (4.2a) the resulting fully-
discrete method reads 

 The following remarks are in order:

–	 The linear substeps (4.3a) and (4.3c) only consist in solving two linear systems 
with the same matrix. For a fixed time step � such matrix is even the same at any 
time, which is advantageous since a preconditioner or a full Cholesky factoriza-
tion can be computed just once at the beginning of the simulation.

–	 The nonlinear substep requires the solution of the nonlinear system (4.3b), which 
is completely independent for each component of the vector U(2)

h
 , and as such, 

(4.2a)
DRD decomposition:

U
(1)

h
= D�∕2

(
Un

h

)
, U

(2)

h
= R�

(
U

(1)

h

)
, Un+1

h
= D�∕2

(
U

(2)

h

)
,

(4.2b)
RDR decomposition:

U
(1)

h
= R�∕2

(
Un

h

)
, U

(2)

h
= D�

(
U

(1)

h

)
, Un+1

h
= R�∕2

(
U

(2)

h

)
,

(4.3a)
(
� +

�

4
�

)
U

(1)

h
=
(
� −

�

4
�

)
Un

h
,

(4.3b)U
(2)

h
= U

(1)

h
−

�

2

(
f h

(
U

(1)

h

)
+ f h

(
U

(2)

h

))
,

(4.3c)
(
� +

�

4
�

)
Un+1

h
=
(
� −

�

4
�

)
U

(2)

h
.
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highly parallelizable. Note that we have cancelled matrix � at both sides of 
this equation. Such cancellation is only possible because stabilization was also 
applied to the nonlinear term in (2.6a); otherwise, a large coupled system of non-
linear equations would be obtained. If we apply the Newton’s method to (4.3b) 
each linear iteration s reads 

where � is the identity matrix, �s = U
(2,s)

h
− U

(1)

h
+

�

2

(
f h

(
U

(2,s)

h

)
+ f h

(
U

(1)

h

))
 and 

�f (Uh) is the diagonal matrix �f

(
Uh

)
= diag

(
f �
(
Uh

))
 . Since matrix (

� +
�

2
�f

(
U

(2,s)

h

))
 is also diagonal, the solution of (4.4a) reduces to a trivial 

entry-by-entry division.
We end this section with the following well-posedness result of the fully-discrete 
scheme.

Proposition 1  The fully-discrete schemes DRD and RDR are well-posed for any 
0 < 𝜏 < 2∕Lf .

Proof  Without loss of generality we will prove the well-posedness only for the 
DRD scheme.

Since matrix 
(
� +

�

4
�

)
 is symmetric and positive definite, the existence of the 

solution of each linear substep in (4.3a) and (4.3c) is guaranteed.
On the other hand, each independent one dimensional problem in the nonlinear 

substeps (4.3b) is equivalent to find a fixed point of the function g(x) = a −
�

2
f (x) 

for some constant a, which can be easily shown to be a contraction as long as 
0 < 𝜏 < 2∕Lf  ; therefore, under such condition, the existence of a unique solution to 
the nonlinear substeps is also guaranteed.

Existence and uniqueness of the full step in (4.3a, 4.3b, 4.3c) then proceed from 
those of each susbtep. 	�  ◻

5 � Extension to arbitrary k

We now present an extension of the interpolatory S-VEM to the general case, when 
some internal-moment DoFs are needed. The main drawback in such case is that for 
k ≥ �E , condition (2.1) is not enough to define a projection due to the existence of 
ℙk(E)-bubbles. Hence, some additional internal-moment DoFs and a computable pro-
jection operator are needed.

Since for non-convex polygons the choice of the additional DoFs is more 
involved, see [11, Sect. 3], we will focus on the case of convex polygons. For convex 

(4.4a)
(
� +

�

2
�f

(
U

(2,s)

h

))
�(s) = �s,

(4.4b)U
(2,s+1)

h
= U

(2,s)

h
− �(s),
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polygons, if the internal-moment DoFs up to order k − �E are added, the projection 
�S
k,E

∶ Ṽk(E) → ℙk(E) defined in [30] for each vh ∈ Ṽk(E) as

is well-defined and computable from the DoFs of vh by definition.
For any convex polygon E ∈ Th , if k ≥ �E , the local Serendipity VEM space is 

then defined as

and dS
k,E

= kNE + dim(ℙk−�E
(E)).

Unfortunately, the presence of these internal-moment DoFs prevents the direct 
extension of the variational formulation (2.6a, 2.6b) to the case when k does not 
satisfy the condition of the ideal case. This is due to the fact that the entries of the 
vector f h(Uh) in (4.1) corresponding to such DoFs consist of integrals of the form

that are not computable via the DoFs of uh . To overcome this problem, we replace 
the interpolant Ik

h
f (uh) in the semi-discrete variational formulation (2.6a, 2.6b) by 

a computable quasi-interpolatory approximation in the space VS
k

(
Th

)
 that will be 

denoted by f̃h(uh).
For clarity, we assume that the DoFs associated with VS

k
(E) are arranged so that 

the first (kNE) of them correspond to the boundary DoFs. Since every function in 
the space VS

k

(
Th

)
 is uniquely determined by its DoFs, we set the DoFs of the quasi-

interpolant f̃h(uh) on each element E ∈ Th as 

with �(i) ∶= i − kNE . Unlike the interpolant I
k
h
f (uh) , the new approximation 

f̃h(uh) ∈ VS
k
(E) is computable via the DoFs of uh as desired.

5.1 � Extension of the error estimate

Most steps in the proof of the error estimate in Theorem  1 are still valid for this 
extension of the method. The main difference lies on the decomposition of the left-
hand side of (3.10) after substituting Ik

h
f (uh) by f̃h(uh) , where an additional term 

(
�
(
�S
k,E

(
vh
))

,�
(
mE

�

))
l2

=
(
�
(
vh
)
,�

(
mE

�

))
l2
, � = 1,… , rk,

VS
k
(E) ∶=

{
v ∈ C

0
(
E
)
∶ �E

(
v − 𝜋S

k,E
(v)

)
mE

𝛼dx = 0, rk−𝜂E < 𝛼 ≤ rk

}
.

1

|E| ∫E

f (uh)m�dx, � = 1,… , rk−�E ,

(5.1a)
dofi

(
f̃h(uh)

)
∶= dofi

(
f (uh)

)
= f

(
uh
(
�i
))
, for i = 1,… , kNE,

dofi

(
f̃h(uh)

)
∶= dofi

(
f
(
�0
k,E

(
uh
)))

=
1

|E| ∫E

f
(
�0
k,E

(
uh
))

mE
�(i)dx,

(5.1b)for i = kNE + 1,… , dS
k,E
,
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R4 ∶= mE
h

(
I
k
h
f (uh) − f̃h(uh); vh

)
 arises. Such term can be bounded using the continu-

ity of the bilinear form mE
h
(⋅; ⋅) and the following Lemma.

Lemma 6  Let 
{
mE

�

}rk−�E
�=1

 be a basis of ℙk−�E
(E) that is uniformly bounded in the L∞-

norm as ‖‖mE
�
‖‖L∞(E)

≤ 1, � = 1,… , rk−�E . For any uh ∈ VS
k
(E) , the following bound 

holds

Proof  Using Lemma 4, the definition of f̃h(uh) , and the Cauchy-Schwarz inequality 
we have

The assertion follows by the triangle inequality and the stability of the �0
k
(⋅) projec-

tion. 	�  ◻

An example of a polynomial basis satisfying the uniformly boundedness condi-
tion in the statement of the previous lemma is the scaled monomial basis defined in 
[9].

5.2 � Implementation of the fully‑discrete scheme

The matrix representation of the semi-discrete variational formulation becomes

where f̃ h
(
Uh

)
 is the vector with entries given by 

(
f̃ h
(
Uh

))
i
∶= dofi

(
f̃h(uh)

)
 . Note 

that, as in the ideal case, the entries of f̃ h
(
Uh

)
 associated with the boundary DoFs 

can be computed evaluating f (⋅) at the corresponding entries of the vector Uh . As a 
result, the nonlinear substeps in the fully-discrete SS-OS scheme (4.3a, 4.3b, 4.3c) 
can be solved in a static condensation fashion in two consecutive steps: 

‖‖‖I
k
h
f (uh) − f̃h(uh)

‖‖‖L2(E) ≤
c2Lf rk−�E

c1

(
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1.	 We first solve the independent one dimensional nonlinear equations associated 
with the boundary DoFs as in (4.4a, 4.4b).

2.	 Using the computed values of the boundary DoFs, we solve a set of independent 
small nonlinear systems involving just the internal-moment DoFs on those ele-
ments E ∈ Th where the condition k < 𝜂E is not satisfied. More specifically, for 
each element E such that k ≥ �E , let Uh,E be the vector coefficient of the represen-
tation of uh|E . As the components of Uh,E associated with the boundary DoFs are 
already available from the previous step, it only remains to find the components 
associated with internal-moment DoFs that satisfy 

 We recall that by definition (5.1b), the evaluation of f̃ h
(
Uh,E

)
 requires the com-

putation of �0
k,E

(
uh
)
 which is a local projection, i.e., it is computable using only 

the components of U(2)

h,E
 . Therefore, it is clear that the system (5.2) is completely 

local and as such it can be solved separately for each element E ∈ Th such that 
k ≥ �E.

Evidently, the above procedure is still highly parallelizable.

Remark 4  The actual computation of �E for each E ∈ Th is an important and delicate 
issue in the implementation of the S-VEM. In practice, it is also necessary to be 
careful with small or almost aligned edges for stability reasons. We briefly recall 
the most used strategies in the S-VEM literature [10, 11]. The lazy choice consists 
in using always internal moments of degree up to k − 3 , as by definition �E ≥ 3 . A 
second strategy called the stingy choice consists in fixing a minimum angle 𝜃0 > 0 
and then, considering as “different” straight lines those associated with consecu-
tive edges whose internal angle is smaller than �0 . One last strategy, is the adaptive 
stingy choice, that in addition to the angle treshold �0 , also impose an edge ratio �0 
and neglects those edges e of E satisfying |e| < 𝜌0hE . Needlessly to say, a stingy or 
adaptive stingy choice would be more appropriate for the proposed method, as the 
additional cost of computing the “exact” value of �E is evidently negligible com-
pared to the cost of evaluating the nonlinear term on each time step using numerical 
quadratures.

6 � Numerical experiments

In this section we present some numerical experiments to show the accuracy and 
efficiency of the proposed scheme. An object oriented implementation in MATLAB 
was developed for high order approximations on general polygonal meshes. As time 
marching scheme we use the SS-OS method (4.2a, 4.2b) presented in Sect. 4. All 
the linear systems were solved with the preconditioned conjugate gradient (PCG) 
method. The incomplete Cholesky factorization with a drop tolerance of 10−5 was 
used as preconditioner. Linear and nonlinear systems were solved with a tolerance 
of 10−10 as stopping criteria; and numerical quadratures for each polygon were 
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obtained using the Vianello approach [31]. The sets of meshes used in all the experi-
ments are exemplified in Fig. 2. Note that, for these meshes, the values of �E can 
be known a-priori, as for strictly convex N-sided polygons �E = N and all the non-
convex polygons in Fig. 2a satisfy �E ≥ 8.

In order to illustrate the accuracy and efficiency of the proposed method, we will 
compare our results with those obtained for the enhanced VEM proposed in [1]. 
While the linear substeps of the SS-OS time marching scheme are similar for both 
versions, the nonlinear substeps for the method in [1] require to solve the following 
strongly coupled system of nonlinear equations

where Fh(⋅) is the nonlinear operator defined as

The nonlinear systems (6.1) will be solved using a semilinear iterative method, that 
avoids computing the Jacobian of the nonlinear term. Each linear iteration s consists 
in solving the following linear system

On the other hand, the reported execution times correspond to computations carried 
out on a DELL laptop with an Intel Core i7-8750h processor, 32Gb of RAM and 
Linux operating system.

6.1 � Accuracy test

As first experiment we numerically asses the accuracy of the proposed 
method. We consider a manufactured problem on QT = (0, 1)2 × (0, 1] with a 
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(a) (b) (c)

Fig. 2   Example of meshes used in the numerical experiments
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nonlinear term f (u) = 1∕(1 + u2) , adding a source term so the exact solution be 
u(x, y, t) = e−t cos(�x) cos(�y).

In Fig. 3 we present the errors in the L2-norm with respect to �0
k

(
uh
)
 at the final 

time T, i.e., at ΣT ∶= � × {T} , for each kind of mesh. In the same plot we have 
included the errors obtained by the enhanced VEM in [1] as reference; and no sig-
nificant difference in terms of accuracy is observed. Optimal rates of convergence 
of order O

(
hk+1

)
 are obtained as stated in Theorem 1. The time step was taken as 

� = O
(
h(k+1)∕2

)
 in order to equilibrate the errors in space and time.

To evaluate the temporal accuracy of the fully-discrete scheme, we use a sequence of 
time refinements with � = 1.25 × 10−1, 6.25 × 10−2, 3.125 × 10−2, 1.5625 × 10−2 ; 
and in order to let the time error dominate, computations were carried out for the 
finest voronoi mesh and k = 4 . The obtained rates of convergence for the DRD and 
the RDR splitting methods are shown in Fig.  4 and validate the second order in 
time O

(
�2
)
 accuracy of the SS-OS fully-discrete scheme. In this experiment, better 

(a) (b)

(c)

Fig. 3   Rates of convergence at T = 1 for the test problem 6.1 obtained for the proposed method (continu-
ous line) and the enhanced VEM in [1] (dashed line). The numbers in the yellow rectangles are the alge-
braic convergence rates in h and non-visible lines were overlapped
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accuracy is observed for the RDR splitting. Not shown here, similar results were 
obtained for the other meshes.

In Table  1, we compare the number of global degrees of freedom for the 
S-VEM and the enhanced VEM in [1], where naturally the reduction in the num-
ber of degrees of freedom depends on the mesh and a more noticeable reduction 
is obtained at increasing k. This is also illustrated in Fig. 5, where we compare 
the accuracy of both methods with respect to the number of DoFs.

(a) (b)

Fig. 4   Time accuracy of the proposed method at T = 1 for the test problem 6.1 of both versions of the 
fully-discrete scheme (4.2a, 4.2b)

Table 1   Comparison in terms of the number of degrees of freedom of the S-VEM and the enhanced 
VEM in [1] for the test problem 6.1 

The red star symbol  indicates that the extended version from Sect. 5 is needed
Bold is used to highlight the small number of DoFs for the S-VEM compared to the original VEM
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6.2 � Efficiency test

In this experiment we consider the following Allen-Cahn equation on Q
T
= (0, 1)2 × (0, 22.5] 

as in [1]: 

 where the nonlinear term f (u) = u3 − u only satisfies a local Lipschitz condition. 
In fact, the error estimate in Theorem 1 is still valid if f (⋅) is only locally Lipschitz 
continuous under the additional assumption of both the exact and the approximated 
solutions to be bounded.

In order to show the efficiency of the proposed method, we compare our results 
with those obtained for the interpolatory VEM in [3] and the enhanced VEM in [1]. 
In all these experiments, we consider the finest meshes of each kind, � = 5 × 10−3 as 
time step and the RDR splitting.

(6.2a)
�u

�t
− ��u + u3 − u = 0, in QT ,

(6.2b)∇u ⋅ n = 0, on �� × (0, T),

(6.2c)u(x, y, 0) = cos(2�x2) cos(2�y2), in �,

(a) (b)

(c)

Fig. 5   Rates of convergence at T = 1 for the test problem 6.1 obtained by the proposed method (continu-
ous line) and the enhanced VEM in [1] (dashed line) in terms of the number of DoFs
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In Table 2 we report the CPU execution times for the approximation of the Allen-
Cahn equation (6.2a, 6.2b, 6.2c) with � = 0.01 for the proposed method and the 
interpolatory VEM presented in [3]. We recall that the method in [3] is limited to 
k = 1 and does not include the stability part of the nonlinear term, so the nonlin-
ear systems in the SS-OS fully-discrete scheme (4.2a, 4.2b) remain coupled. We 
observe that the times in the linear substeps are approximately equal in both cases, 
which is expected as both methods have the same number of DoFs. However, for the 
nonlinear substeps our method performs about 20 to 70 times faster depending on 
the mesh; and a total boost of approximately 10 times is obtained in all the cases.

In a similar way, in Table 3 we compare the CPU execution times for the proposed 
method and the enhanced VEM in [1] with different degrees of approximation. 

Table 2   CPU execution times for the Allen-Cahn equation (6.2a, 6.2b, 6.2c) in the test problem 6.2 with 
� = 0.01 , for the proposed S-VEM and the interpolatory VEM in [3] with k = 1

Bold is used to highlight the ratios that indicate how faster the proposed method performs compared to 
other VEM discretizations

Linear substeps Nonlinear substeps Total

S-VEM VEM[3] Ratio S-VEM VEM [3] Ratio S-VEM VEM[3] Ratio

(sec) (sec) (sec) (sec) (sec) (sec)

Distorted squares mesh
2.8 2.6 0.9 1.6 39.7 24.8 4.4 42.3 9.6
Voronoi mesh
3.1 2.9 0.9 1.5 48.8 32.5 4.6 51.7 11.2
Non-convex mesh
6.6 6.6 1.0 2.3 163.5 71.1 8.9 107.1 12.0

Table 3   CPU execution times for the Allen-Cahn equation (6.2a, 6.2b, 6.2c) in the test problem 6.2 with 
� = 0.01 , for the proposed S-VEM and the enhanced VEM in [1] 

The red star symbol  indicates that the extended version from Sect. 5 is needed
Bold is used to highlight the ratios that indicate how faster the proposed method performs compared to 
other VEM discretizations
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Since the proposed method requires less DoFs, it performs faster for the linear sub-
steps. As for the nonlinear substeps, our method performs from 40 to 2500 times 
faster depending on the mesh and the degree of accuracy. A total boost of about 12 
to 110 times is obtained. For each mesh, we have indicated those degrees where 
some internal moment DoFs are needed; in such cases, the extended version from 
Sect. 5 was used and a significant improvement in the efficiency of the method is 
still observed. The substantial reduction obtained for the non-convex mesh is a con-
sequence of the high number of quadrature points required for the VEM in [1] to 
compute the nonlinear term on each time step.

In Fig.  6 we show the evolution of the approximated solution �0
k

(
uh
)
 for the 

Allen-Cahn equation with � = 0.01 , which is expected to converge to its stable 
state u = −1 . The plots portray the same behaviour observed in [1] for the enhanced 
VEM.

Fig. 6   Snapshots of the approximation �0

k

(
u
h

)
 for the Allen-Cahn equation (6.2a, 6.2b, 6.2c) with 

� = 0.01 , in the test problem 6.2
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7 � Conclusions

In this work, an interpolatory Serendipity Virtual Element method for semilinear 
parabolic problems on polygonal meshes is proposed. A significant reduction in the 
computational cost of the method is obtained by approximating the nonlinear term 
with an element in the S-VEM space. Optimal error estimates of order O

(
hk+1

)
 in 

the L2-norm are proven for the semi-discrete formulation.
To exploit the structure of the system of nonlinear differential equations arising 

from the semi-discrete formulation, we use a second order operator splitting time 
marching scheme, which decouples the linear and nonlinear terms. In the ideal case, 
with only boundary DoFs, the nonlinear substeps consist in solving a set of com-
pletely independent one dimensional nonlinear equations; while in the extension 
proposed to the case when some internal-moment DoFs are required, it is also nec-
essary to solve an additional set of independent small nonlinear systems on each ele-
ment of the mesh that does not satisfy the condition of the ideal case. Our numerical 
experiments validate the optimal convergence of the method and the improvement in 
efficiency respect to the enhanced VEM in [1].

The extension to three dimensional problems using the S-VEM spaces presented 
in [10]; as well as the analysis and a proper comparison of different time discretiza-
tions is an ongoing work.
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