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Abstract We investigate a class of network games with strategic complements and
congestion effects, by using the variational inequality approach. Our contribution
is twofold. We first express the boundary components of the Nash equilibrium by
means of the Katz-Bonacich centrality measure. Then, we propose a new ranking
of the network nodes based on the social welfare at equilibrium and compare this
solution-based ranking with some classical topological ranking methods.
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1 Introduction

The topic of Network Games is relatively recent and was formulated in a general
framework in the influential paper by Ballester et al. [1], where the authors proposed
to model the social and economic interactions among individuals with the help of
a graph where each individual (player) is identified with the node of a graph and
can interact only with his/her neighbors in the graph, while congestion effects are
due to all the players in the network. The solution concept considered is the Nash
equilibrium of the game and is related to the so called Katz-Bonacich centrality
measure, in the case of interior solution. Although the topic has grown at a high pace
in the last fifteen years (see, e.g., [4]), only recently some authors have proposed
to use the variational inequality approach to investigate this kind of games. In
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particular, in [9], the authors make an in-depth analysis of uniqueness and sensitivity
of equilibrium, with particular emphasis on its connection with the spectral properties
of the adjacency matrix of the graph, while in [8] a generalized Nash equilibrium
problem is proposed within the framework of variational inequalities.

In this note, we consider a game where the generic player is influenced by his/her
neighbors through a local strategic complement term and experiments a global con-
gestion effect. We first derive a new representation formula for the Nash equilibrium,
in the case where some of its components reach their upper bound, which makes
use of the Katz-Bonacich vector. Then, we focus on the problem of assessing the
importance of the players and propose a new centrality measure based on the social
welfare computed at the Nash equilibrium.

More specifically, the paper is structured as follows. In Section 2 we first in-
troduce the notation and the basic definitions, as well as the essential tools from
variational inequality theory needed for our investigation. We then introduce the
utility functions which describe a quadratic model with local complementarities and
global congestion. Moreover, we recall the classical Katz-Bonacich formula for the
interior solution case, where the strategy set of each player is R+. In Section 3, we
assume that the strategy sets are bounded also from above and derive a representa-
tion formula for the solution in the case where some of its components lie on the
boundary, which is based on the Katz-Bonacich centrality. In Section 4, we propose
to assess the importance of a player by measuring the variation of the social welfare
at equilibrium when the player is removed from the network. Moreover, we compare
the ranking thus obtained with that one obtained using some classical topological
measures in the literature. A small concluding section ends the paper.

2 Network games

2.1 Game Formulation and variational inequality approach

In Network Games players are represented by the nodes of a graph (𝑉, 𝐸), where𝑉 is
the sets of nodes and 𝐸 is the set of edges formed by pairs of nodes (𝑣, 𝑤). Here, we
only consider undirected simple graphs. Two nodes 𝑣 and 𝑤 are said to be adjacent
if they are connected by an edge, i.e., if (𝑣, 𝑤) is an edge. The information about
the adjacency of nodes can be stored in the adjacency matrix 𝐺 whose elements
𝑔𝑖 𝑗 are equal to 1 if (𝑣𝑖 , 𝑣 𝑗 ) is an edge, 0 otherwise. 𝐺 is thus a symmetric and
zero-diagonal matrix. Given a node 𝑣, the nodes connected to 𝑣 with an edge are
called the neighbors of 𝑣, and are grouped in the set 𝑁𝑣 (𝑔). The number of elements
of 𝑁𝑣 (𝑔) is the degree of 𝑣 and will be denote by 𝑑𝑒𝑔𝑣 (𝑔). A walk in the graph
𝑔 is a finite sequence of the form 𝑣𝑖0 , 𝑒 𝑗1 , 𝑣𝑖1 , 𝑒 𝑗2 , . . . , 𝑒 𝑗𝑘 , 𝑣 𝑗𝑘 , which consists of
alternating nodes and edges of the graph, such that 𝑣𝑖𝑡−1 and 𝑣𝑖𝑡 are end nodes of 𝑒 𝑗𝑡 .
The length of a walk is the number of its edges. Let us remark that it is allowed to
visit a node or go through an edge more than once. The indirect connections between
any two nodes in the graph are described by means of the powers of the adjacency
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matrix 𝐺. Indeed, it can be proved that the element 𝑔 [𝑘 ]
𝑖 𝑗

of 𝐺𝑘 gives the number
of walks of length 𝑘 between 𝑣𝑖 and 𝑣 𝑗 . We now define some common topological
measures used to assess the importance of a node 𝑖 in a network:

• degree centrality: 𝐷𝐶𝑖 = 𝑑𝑒𝑔𝑖;
• closeness centrality: 𝐶𝐶𝑖 =

1∑
𝑗≠𝑖

𝑑𝑖 𝑗
, where 𝑑𝑖 𝑗 is the shortest path length between

𝑖 and 𝑗 ;

• betweennes centrality: 𝐵𝐶𝑖 =
∑︁
𝑠,𝑡≠𝑖

𝑛𝑠𝑡 (𝑖)
𝑛𝑠𝑡

, where 𝑛𝑠𝑡 is the number of shortest

paths between 𝑠 and 𝑡 and 𝑛𝑠𝑡 (𝑖) is the number of such paths that pass through
node 𝑖.

In the sequel, the set of players will be denoted by {1, 2, . . . , 𝑛} instead of
{𝑣1, 𝑣2, . . . , 𝑣𝑛}. We denote with 𝐴𝑖 ⊂ R the action space of player 𝑖, while
𝐴 = 𝐴1 × · · · × 𝐴𝑛. For each 𝑎 = (𝑎1, . . . , 𝑎𝑛) , 𝑎−𝑖 = (𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖+1, . . . , 𝑎𝑛)
and the notation 𝑎 = (𝑎𝑖 , 𝑎−𝑖) will be used when we want to distinguish the action
of player 𝑖 from the action of all the other players. Each player 𝑖 is endowed with a
payoff function 𝑢𝑖 : 𝐴 → R that he/she wishes to maximize. The notation 𝑢𝑖 (𝑎, 𝐺)
is often utilized when one wants to emphasize that the utility of player 𝑖 also depends
on the actions taken by her/his neighbors in the graph.

The solution concept that we consider here is the Nash equilibrium of the game,
that is, we seek an element 𝑎∗ ∈ 𝐴 such that for each 𝑖 ∈ {1, . . . , 𝑛}:

𝑢𝑖 (𝑎∗𝑖 , 𝑎∗−𝑖) ≥ 𝑢𝑖 (𝑎𝑖 , 𝑎∗−𝑖), ∀ 𝑎𝑖 ∈ 𝐴𝑖 . (1)

According to how variations of the actions of player’s 𝑖 neighbors affect his/her
marginal utility, two classes of game can be defined. Specifically, the game has the
property of strategic complements if: 𝜕2𝑢𝑖

𝜕𝑎 𝑗𝜕𝑎𝑖
(𝑎) > 0, ∀(𝑖, 𝑗) : 𝑔𝑖 𝑗 = 1,∀ 𝑎 ∈ 𝐴,

while it has the property of strategic substitutes if: 𝜕2𝑢𝑖
𝜕𝑎 𝑗𝜕𝑎𝑖

(𝑎) < 0, ∀(𝑖, 𝑗) : 𝑔𝑖 𝑗 =
1,∀ 𝑎 ∈ 𝐴.

For the subsequent development it is important to recall that if the 𝑢𝑖 are continu-
ously differentiable functions on 𝐴, and 𝑢𝑖 (·, 𝑎−𝑖) are concave, the Nash equilibrium
problem is equivalent to the variational inequality 𝑉𝐼 (𝐹, 𝐴): find 𝑎∗ ∈ 𝐴 such that

𝐹 (𝑎∗)> (𝑎 − 𝑎∗) ≥ 0, ∀ 𝑎 ∈ 𝐴, (2)

where
[𝐹 (𝑎)]> := −

(
𝜕𝑢1
𝜕𝑎1

(𝑎), . . . , 𝜕𝑢𝑛
𝜕𝑎𝑛

(𝑎)
)

(3)

is also called the pseudo-gradient of the game. For an account of variational inequal-
ities the reader can refer to [6, 7]. We recall here some monotonicity properties.

Definition 1 𝑇 : R𝑛 → R𝑛 is said to be monotone on 𝐴 iff:

[𝑇 (𝑥) − 𝑇 (𝑦)]> (𝑥 − 𝑦) ≥ 0, ∀ 𝑥, 𝑦 ∈ 𝐴.



4 Mauro Passacantando and Fabio Raciti

If the equality holds only when 𝑥 = 𝑦, 𝑇 is said to be strictly monotone. 𝑇 is said to
be 𝛽-strongly monotone on 𝐴 iff there exists 𝛽 > 0 such that

[𝑇 (𝑥) − 𝑇 (𝑦)]> (𝑥 − 𝑦) ≥ 𝛽‖𝑥 − 𝑦‖2, ∀ 𝑥, 𝑦 ∈ 𝐴.

For linear operators onR𝑛 the two concepts of strict and strong monotonicity coincide
and are equivalent to the positive definiteness of the corresponding matrix.

Conditions that ensure the unique solvability of a variational inequality problem
are given by the following theorem (see, e.g. [7]).

Theorem 1 If 𝐾 ⊂ R𝑛 is compact and convex, and 𝑇 : R𝑛 → R𝑛 is continuous on
𝐾 , then the variational inequality problem 𝑉𝐼 (𝐹, 𝐾) admits at least one solution.
In the case that 𝐾 is unbounded, existence of a solution may be established if the
following coercivity condition holds, for 𝑥 ∈ 𝐾 and some 𝑥0 ∈ 𝐾:

lim
‖𝑥 ‖→+∞

[𝑇 (𝑥) − 𝑇 (𝑥0)]> (𝑥 − 𝑥0)
‖𝑥 − 𝑥0‖

= +∞.

Furthermore, if 𝑇 is strictly monotone on 𝐾 the solution is unique.

2.2 The linear-quadratic model with local complementarities and
global congestion

Let 𝐴𝑖 = R+ for any 𝑖 ∈ {1, . . . , 𝑛}, hence 𝐴 = R𝑛+. The payoff of player 𝑖 is given by:

𝑢𝑖 (𝑎, 𝐺) = 𝛼𝑎𝑖 −
1
2
𝑎2
𝑖 + 𝜙

𝑛∑︁
𝑗=1
𝑔𝑖 𝑗𝑎𝑖𝑎 𝑗 − 𝛾

𝑛∑︁
𝑗=1
𝑎𝑖𝑎 𝑗 , 𝛼, 𝜙, 𝛾 > 0. (4)

In this model 𝛼 and 𝜙 take on the same value for all players, which then only differ
according to their position in the network. The third term describes the interaction
between neighbors and since 𝜙 > 0 this interaction falls in the class of strategic
complements. On the other term, since 𝛾 > 0 the last term falls in the class of strategic
substitutes and models the overall congestion effects in the network. Thus, without
further hypotheses, this model does not belong to any of the above mentioned class.
The pseudo-gradient’s components of this game are easily computed as: 𝐹𝑖 (𝑎) =

(1 + 𝛾)𝑎𝑖 − 𝛼 − 𝜙∑𝑛
𝑗=1 𝑔𝑖 𝑗𝑎 𝑗 + 𝛾

∑𝑛
𝑗=1 𝑎 𝑗 , 𝑖 ∈ {1, . . . , 𝑛}, which can be written

in compact form as 𝐹 (𝑎) = [(1 + 𝛾)𝐼 − 𝜙𝐺 + 𝛾𝑈]𝑎 − 𝛼1, where 𝑈𝑖 𝑗 = 1 for any
𝑖, 𝑗 = 1, . . . , 𝑛 and 1 = (1, . . . , 1)> ∈ R𝑛. We will seek Nash equilibrium points by
solving the variational inequality:

𝐹 (𝑎∗)> (𝑎 − 𝑎∗) ≥ 0, ∀ 𝑎 ∈ R𝑛+ . (5)

Since the constraint set is unbounded, to ensure solvability we require that 𝐹 be
strongly monotone, which also guarantees the uniqueness of the solution. In the next
lemma we recall a well known result about matrices.
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Lemma 1 Let𝑇 be a symmetric matrix and 𝜌(𝑇) the spectral radius of𝑇 . If 𝜌(𝑇) < 1,
then the matrix 𝐼 − 𝑇 is positive definite and (𝐼 − 𝑇)−1 =

∑∞
𝑘=0 𝑇

𝑘 .

We now give an important definition for our analysis.

Definition 2 For any weight 𝑤 ∈ R𝑛+, and 𝜙 > 0 the weighted vector of Katz-
Bonacich [2] for the network 𝐺 is given by:

𝑏𝑤 (𝐺, 𝜙) = 𝑀 (𝐺, 𝜙) = (𝐼 − 𝜙𝐺)−1𝑤 =

∞∑︁
𝑝=0

𝜙𝑝𝐺 𝑝𝑤. (6)

In the case where 𝑤 = 1, the (non weighted) centrality measure of Katz-Bonacich
of node 𝑖 can be interpreted as the total number of walks in the graph, which start
at node 𝑖, exponentially damped by 𝜙. The connection between the Katz-Bonacich
vector and the Nash equilibrium is given in the following theorem.

Theorem 2 (see Theorem 1 in [1])
If 𝜙𝜌(𝐺) < 1 + 𝛾, then the unique Nash equilibrium of the game with utility

functions (4) and 𝐴 = R𝑛+ is interior and given by:

𝑎∗ =
𝛼

1 + 𝛾 + 𝛾
𝑛∑︁
𝑖=1

(
𝑏1

(
𝐺,

𝜙

1 + 𝛾

))
𝑖

𝑏1

(
𝐺,

𝜙

1 + 𝛾

)
. (7)

For the subsequent developments we also need to define the social welfare:

𝑊 (𝑎, 𝐺) =
𝑛∑︁
𝑖=1

𝑢𝑖 (𝑎, 𝐺). (8)

3 A Katz-Bonacich representation formula

We now assume that the strategies of each player have an upper bound and derive
a Katz-Bonacich type representation of the solution, in the case where exactly 𝑘

components take on their maximum value.

Theorem 3 Let 𝑢𝑖 be defined as in (4), 𝑎𝑖 ∈ [0, 𝐿𝑖] for any 𝑖 ∈ {1, . . . , 𝑛}, and
𝜙𝜌(𝐺) < 1 + 𝛾. Then there exists a unique Nash equilibrium 𝑎∗ of the game and
𝑎∗
𝑖
> 0 holds for any 𝑖 ∈ {1, . . . , 𝑛}. Moreover, assume that exactly 𝑘 components

of 𝑎∗ take on their maximum value: 𝑎∗
𝑖1

= 𝐿𝑖1 , . . . , 𝑎
∗
𝑖𝑘

= 𝐿𝑖𝑘 , and denote with
𝑎̃∗ = (𝑎̃∗

𝑖𝑘+1
, . . . , 𝑎̃∗

𝑖𝑛
) the subvector of the nonboundary components of 𝑎∗. We then

get:

𝑎̃∗ =

(
1

1 + 𝛾

)
𝑏w

(
𝐺1,

𝜙

1 + 𝛾

)
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−
(
𝛾

1 + 𝛾

) 𝑛∑
𝑚=𝑘+1

(
𝑏𝑤

(
𝐺1,

𝜙

1 + 𝛾

))
𝑖𝑚

1 + 𝛾 + 𝛾
𝑛∑

𝑚=𝑘+1

(
𝑏1𝑛−𝑘

(
𝐺1,

𝜙

1 + 𝛾

))
𝑖𝑚

𝑏1𝑛−𝑘

(
𝐺1,

𝜙

1 + 𝛾

)
, (9)

where 𝐺1, 𝐺2,𝑈1,𝑈2 are submatrices of 𝐺 and𝑈 defined as follows:

𝐺 =

©­­­­­­­­­«

𝑖1 ... 𝑖𝑘 𝑖𝑘+1 ... 𝑖𝑛

𝑖1

... ∗ ∗
𝑖𝑘

𝑖𝑘+1

... 𝐺2 𝐺1
𝑖𝑛

ª®®®®®®®®®¬
, 𝑈 =

©­­­­­­­­­«

𝑖1 ... 𝑖𝑘 𝑖𝑘+1 ... 𝑖𝑛

𝑖1

... ∗ ∗
𝑖𝑘

𝑖𝑘+1

... 𝑈2 𝑈1
𝑖𝑛

ª®®®®®®®®®¬
,

𝑤 = [𝛼1𝑛−𝑘 + (𝜙𝐺2 − 𝛾𝑈2) 𝐿]/(1 + 𝛾) and 𝐿 = (𝐿𝑖1 , . . . , 𝐿𝑖𝑘 )>.

Proof Let us notice that the matrix 𝛾𝑈 is positive semidefinite and (1 + 𝛾)𝐼 − 𝜙𝐺
is positive definite by Lemma 1, hence the map 𝐹 is strongly monotone on R𝑛 and
the game has a unique Nash equilibrium 𝑎∗, which solves the variational inequality

𝐹 (𝑎∗)> (𝑎 − 𝑎∗) ≥ 0, ∀ 𝑎 ∈ 𝐾, (10)

where 𝐾 = [0, 𝐿1] × . . . × [0, 𝐿𝑛]. Let us notice that 𝑎∗ ≠ 0, otherwise we have
0 ≤ −𝛼1>𝑎 holds for any 𝑎 ∈ 𝐾 , that is impossible. Define the set 𝑆 ⊆ {1, . . . , 𝑛}
such that 𝑎∗

𝑖
> 0, ∀𝑖 ∈ 𝑆, 𝑎∗

𝑖
= 0, ∀𝑖 ∉ 𝑆. We then get that 𝑎∗ solves the KKT system

associated with 𝑉𝐼 (𝐹;𝐾):

[(1 + 𝛾)𝐼 − 𝜙𝐺 + 𝛾𝑈]𝑎∗ − 𝛼1 − 𝜆 + 𝜇 = 0,
𝜆𝑖𝑎

∗
𝑖 = 0, 𝜆𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛,

𝜇∗𝑖 (𝑎∗𝑖 − 𝐿𝑖) = 0, 𝜇∗𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛,

which implies:

(1 + 𝛾)𝑎∗𝑖 − 𝜙
∑︁
𝑗∈𝑆

𝑔𝑖 𝑗𝑎
∗
𝑖 + 𝛾

∑︁
𝑗∈𝑆

𝑎∗𝑖 − 𝛼 + 𝜇𝑖 = 0, ∀ 𝑖 ∈ 𝑆, (11)

− 𝜙
∑︁
𝑗∈𝑆

𝑔𝑖 𝑗𝑎
∗
𝑖 − 𝛼 + 𝛾

∑︁
𝑗∈𝑆

𝑎∗𝑖 − 𝜆𝑖 = 0, ∀ 𝑖 ∉ 𝑆. (12)

We then get: ((1+𝛾)𝐼𝑆−𝜙𝐺𝑆)𝑎∗𝑆 = (𝛼−𝛾∑𝑛
𝑗=1 𝑎

∗
𝑗
)1𝑆−𝜇𝑆 , and because 𝜙𝜌(𝐺𝑆) ≤

𝜙𝜌(𝐺) < 1 + 𝛾, we also have ((1 + 𝛾)𝐼𝑆 − 𝜙𝐺𝑆)−1 ≥ 0, hence:

0 < 𝑎∗𝑆 =
©­«𝛼 − 𝛾

𝑛∑︁
𝑗=1
𝑎∗𝑗

ª®¬ ((1 + 𝛾)𝐼𝑆 − 𝜙𝐺𝑆)−11𝑆 − ((1 + 𝛾)𝐼𝑆 − 𝜙𝐺𝑆)−1𝜇𝑠
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≤ ©­«𝛼 − 𝛾
𝑛∑︁
𝑗=1
𝑎∗𝑗

ª®¬ ((1 + 𝛾)𝐼𝑆 − 𝜙𝐺𝑆)−11𝑆 ,

which implies 𝛼−𝛾∑𝑛
𝑗=1 𝑎

∗
𝑗
> 0. If there exists an index 𝑖 ∉ 𝑆, then from (12) we get

the contradiction: 0 < 𝛼 − 𝛾∑𝑛
𝑗=1 𝑎

∗
𝑗
= −𝜙∑

𝑗∈𝑆 𝑔𝑖 𝑗𝑎
∗
𝑖
− 𝜆𝑖 ≤ 0. Therefore, 𝑎∗

𝑖
> 0

holds for any 𝑖 ∈ {1, . . . , 𝑛}.
Let 𝐾̃ denote the face of 𝐾 obtained intersecting 𝐾 with the hyperplanes: 𝑎𝑖1 =

𝐿𝑖1 , . . . , 𝑎𝑖𝑘 = 𝐿𝑖𝑘 . Moreover, let 𝑎̃ = (𝑎𝑖𝑘+1 , . . . , 𝑎𝑖𝑛 ), 𝑎̃∗ = (𝑎̃∗
𝑖𝑘+1
, . . . , 𝑎̃∗

𝑖𝑛
) and

define 𝐹̃ : R𝑛−𝑘 → R𝑛−𝑘 such that 𝐹̃𝑖𝑙 (𝑎̃) is obtained by fixing 𝑎𝑖1 = 𝐿𝑖1 , . . . , 𝑎𝑖𝑘 =

𝐿𝑖𝑘 in 𝐹𝑖𝑙 (𝑎). We consider now the restriction of (10) to 𝐾̃ , which reads:

𝑛∑︁
𝑙=𝑘+1

𝐹̃𝑖𝑙 (𝑎̃∗) (𝑎̃𝑖𝑙 − 𝑎̃∗𝑖𝑙 ) ≥ 0, ∀ 𝑎̃ ∈ 𝐾̃ .

Since we are assuming that exactly 𝑘 components of the solution 𝑎∗ reach their upper
bounds, it follows that 𝑎̃∗ lies in the interior of 𝐾̃ , hence 𝐹̃ (𝑎̃∗) = 0, that is equivalent
to

(1 + 𝛾)𝑎∗𝑖𝑙 − 𝜙
𝑛∑︁

𝑚=𝑘+1
𝑔𝑖𝑙 𝑖𝑚𝑎

∗
𝑖𝑚

+ 𝛾
𝑛∑︁

𝑚=𝑘+1
𝑎∗𝑖𝑚 = 𝛼 + 𝜙

𝑘∑︁
𝑚=1

𝑔𝑖𝑙 𝑖𝑚𝐿𝑖𝑚 − 𝛾
𝑘∑︁

𝑚=1
𝐿𝑖𝑚 ,

for any 𝑙 = 𝑘 + 1, . . . , 𝑛, which yields [(1 + 𝛾)𝐼𝑛−𝑘 − 𝜙𝐺1 + 𝛾𝑈1]𝑎̃∗ = 𝛼1𝑛−𝑘 +
𝜙𝐺2𝐿 − 𝛾𝑈2 𝐿, which can be written as[

𝐼𝑛−𝑘 −
𝜙

1 + 𝛾𝐺1 +
𝛾

1 + 𝛾𝑈1

]
𝑎̃∗ =

1
1 + 𝛾 𝑤,

with 𝑤 = 𝛼1𝑛−𝑘 + (𝜙𝐺2 − 𝛾𝑈2)𝐿. To derive 𝑎̃∗ let us first notice that 𝑈1𝑎̃
∗ =(∑𝑛

𝑚=𝑘+1 𝑎̃
∗
𝑖𝑚

)
1𝑛−𝑘 and the matrix (𝐼𝑛−𝑘− 𝜙

1+𝛾𝐺1) is not singular because 𝜙

1+𝛾 𝜌(𝐺1) <
1, thus we get:

𝑎̃∗ =
1

1 + 𝛾

[
𝐼𝑛−𝑘 −

𝜙

1 + 𝛾𝐺1

]−1
𝑤 − 𝛾

1 + 𝛾

(
𝑛∑︁

𝑚=𝑘+1
𝑎̃∗𝑖𝑚

) [
𝐼𝑛−𝑘 −

𝜙

1 + 𝛾𝐺1

]−1
1𝑛−𝑘 ,

(13)
which, from the definition of the Katz-Bonachich vector (6), yields:

(1 + 𝛾) 𝑎̃∗ + 𝛾
(

𝑛∑︁
𝑚=𝑘+1

𝑎̃∗𝑖𝑚

)
𝑏1𝑛−𝑘

(
𝐺1,

𝜙

1 + 𝛾

)
= 𝑏𝑤

(
𝐺1,

𝜙

1 + 𝛾

)
, (14)

which can be exploited to derive
∑𝑛

𝑚=𝑘+1 𝑎̃
∗
𝑖𝑚

. Indeed, summing up on the components
of both the left and right handside of (14) we get:
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𝑛∑︁
𝑚=𝑘+1

𝑎̃∗𝑖𝑚 =

𝑛∑
𝑚=𝑘+1

(𝑏𝑤 (𝐺1,
𝜙

1+𝛾 ))𝑖𝑚

1 + 𝛾 + 𝛾
𝑛∑

𝑚=𝑘+1
(𝑏1𝑛−𝑘 (𝐺1,

𝜙

1+𝛾 ))𝑖𝑚
. (15)

Inserting (15) into (13), we finally obtain (9) and the proof is completed. �

4 A social welfare centrality measure

In this section we propose a new centrality measure of nodes (players) of a network
game based on the social welfare computed at the Nash equilibrium. Specifically, for
any node 𝑖 ∈ {1, . . . , 𝑛}, we measure the importance of 𝑖 as the percentage variation
of the social welfare computed at the Nash equilibrium after 𝑖 is removed from the
network, that is

𝑆𝑊𝐶 (𝑖) = 100 · 𝑊 (𝑁𝐸 (𝐺)) −𝑊 (𝑁𝐸 (𝐺 \ {𝑖}))
𝑊 (𝑁𝐸 (𝐺)) , (16)

where 𝑁𝐸 (𝐺) is the Nash equilibrium in the network 𝐺, 𝑁𝐸 (𝐺 \ {𝑖}) is the Nash
equilibrium in the network 𝐺 where node 𝑖 has been removed, and 𝑊 is the social
welfare function (8). Note that 𝑆𝑊𝐶 (𝑖) can be negative if the total social welfare
of the network increases after removing the node 𝑖 (as Example 1 below shows).
This situation can be compared to the well-known Braess paradox [3], where the
efficiency of a network improves due to the removal of a link.

Example 1. We consider the network game on the small network shown in Fig. 1
with three nodes and two links. We assume that the game parameters are 𝛼 = 1,
𝜙 = 2, 𝛾 = 3 and 𝑎𝑖 ∈ [0, 1]. Note that 𝜌(𝐺) =

√
2 so that Theorem 3 guarantees

the existence and uniqueness of the Nash equilibrium in the original network and
the sub-networks obtained by removing one node at a time. The Nash equilibrium in
the network𝐺 is (2/17, 3/34, 3/34) and the corresponding social welfare is equal to
7/68. When the node 1 is removed, the network becomes disconnected and the total
social welfare at equilibrium decreases to 7/100. On the other hand, when node 2
or 3 is removed, the social welfare at equilibrium increases to 7/64, hence the social
welfare centrality of nodes 2 and 3 takes on negative values. More precisely, we have
𝑆𝑊𝐶 = (32,−25/4,−25/4).

Fig. 1 Network topology of
Example 1.

1

2 3
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Example 2. We now compare the social welfare centrality with three well-known
topological centrality measures: degree, closeness and betweenness. We consider
a network game on a graph with 10 nodes, where the adjacency matrix 𝐺 has
been randomly generated (see Fig. 2), and the game parameters are 𝛼 = 1, 𝛾 = 1,
𝜙 = 0.9(1+𝛾)/𝜌(𝐺) and 𝑎𝑖 ∈ [0, 1] for any 𝑖 = 1, . . . , 10. Table 1 shows the ranking
of nodes according to the social welfare centrality measure and the three considered
topological centrality measures. It is interesting noting that the ranking defined by the
new measure is quite different from that provided by the other measures. Moreover,
Fig. 2 gives a graphical representation of the values associated to the network nodes
for each considered centrality measure.

Table 1 Ranking of nodes according to the new social welfare centrality measure and the well
known degree, closeness and betweenness centrality measures.

Centrality measures

Rank Social Welfare Degree Closeness Betweenness

1 2 7 7 7
2 9 2 2 2
3 4 9 9 3
4 7 3 3 9
5 6 1 4 1
6 10 4 1 8
7 3 5 5 4
8 5 6 6 5
9 1 8 8 6
10 8 10 10 10

5 Conclusions and further research perspectives

In future work, we aim to apply our results to some specific social or economic
problems. An interesting account of these applications can be found in the survey
[4]. Also the theory of stochastic variational inequalities [5] could be used to cope
with uncertain parameters in the model.

Acknowledgements The authors are members of the Gruppo Nazionale per l’Analisi Matema-
tica, la Probabilità e le loro Applicazioni (GNAMPA - National Group for Mathematical Analysis,
Probability and their Applications) of the Istituto Nazionale di Alta Matematica (INdAM - National
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Fig. 2 Comparison between the social welfare centrality measure and degree, closeness and be-
tweenness centrality measures.
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