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Abstract

Computational color constancy beyond RGB images
multispectral and temporal extensions

Ilaria Erba

When it comes to visual perception, there are notable differences between the ways in

which humans and machines interpret and understand images. Unlike image acquisition

systems, the human eye can perceive object colors accurately regardless of the light

source’s color cast. To achieve a similar effect in digital images, a pre-processing step called

Computational Color Constancy is used. Its purpose is to render images as if they were

captured under a known light source. This problem is also important for those computer

vision applications that rely on the coherence of objects’ colors. Unfortunately, a unique

solution to this problem is unattainable. However, the scientific community has made

significant efforts in developing both generalized and environment-specific solutions.

Over the past few years, the cost of spectral sensors has decreased, making them more

accessible. So much so, that the first patents for the introduction of low-resolution spectral

sensors in smartphone digital cameras have been published. The acquisition of spectral

images is still influenced by the light source, and when the acquisition takes place in an

uncontrolled environment, the availability of a reliable algorithm for computational color

constancy becomes even more important. Therefore, the focus of the scientific community

partly shifted towards the estimation of a spectral illuminant, in order to provide a solution

for the acquisition of spectral images even in uncontrolled environments. One of the

main purposes of this work is to improve the accuracy of color illuminant estimates by

utilizing spectral information. To achieve this, two effective strategies have been proposed.

The first approach involves employing established statistical-based algorithms to estimate

illuminants. Subsequently, four innovative re-elaboration methods have been introduced.

They utilize these spectral estimations as input and generate an improved version of the

estimations in the color domain. On the other hand, the second strategy involves utilizing

both spectral and color information to enhance color illuminant estimation.

The problem of Computation Color Constancy is complex and has many different

aspects and applications. However, one area that has not received much attention from the



scientific community is the temporal domain. While computational color constancy aims to

accurately render images taken under known light sources, temporal color constancy adds

an additional challenge of ensuring that the color of objects remains consistent across all

frames. Nonetheless, it also provides a temporal sequence of frames that contain valuable

information that can be utilized to improve the illumination estimation. One solution that

has been adopted so far is to apply computational color constancy algorithms to each frame

individually. However, this approach can lead to the creation of artifacts in which the color

of an object changes from frame to frame. To avoid these kinds of issues, it is necessary

to define a metric that can identify them. This thesis not only provides such a metric

but also analyzes the temporal stability of some of the computational color constancy

algorithms when applied in a single-frame manner. Additionally, this thesis also provides

a temporal color constancy method. These methods usually estimate the illuminant of a

selected frame, also called shot-frame, by exploiting information extracted from previous

frames. In this work, this assumption is extended. The method provided takes a window

of frames to return an illuminant estimation for each frame. The assumption underlying

the method is that not only the previous frames can be beneficial to the estimation of the

illuminant of the shot frame, but the assumption is generalized to the adjacent frames.
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Chapter 1

Introduction

1.1 Problem Statement

Photography has undergone a remarkable transformation from its early days of analogical

film to the digital age we live in today (1.1). Today, anyone can capture a digital image

with ease, thanks to the digital cameras in our smartphones (but also in digital devices

such as mirrorless cameras, compact cameras, and so on). As the smartphone market

expanded, so did the expectations of buyers who seek to acquire visually appealing digital

images with minimal effort. One of the main challenges in making a picture appear more

realistic is the color adjustment based on white balancing. For example, the acquisition

of a picture of a white object in certain lighting conditions can appear bluer than how it

is perceived visually. It is called “white balance” but it actually affects all the colors in

the photo. All digital devices come with a white balancing step. In the simplest case, the

device will be calibrated to a specific illuminant type, usually D65, which corresponds to

the average midday light. As a result, the captured picture will appear well-balanced only

when taken under the selected lighting conditions. If the picture is taken with natural

light from an overcast sky, it will have a cold color temperature, with more of a blue tone.

Shooting in unnatural incandescent light with tungsten light bulbs creates a warm color

cast, which appears more yellow or orange. Similarly, shooting under certain types of

fluorescent lights can give a green tint to the pictures. To counteract this, it is possible to

use a more sophisticated camera’s white balance setting or post-production software.

In the realm of photography, it is essential to produce images that are as adherent as

possible to human visual perception. This is particularly important in product or food

photography, where the accurate representation of colors is crucial. To achieve this level of

precision, photographers utilize a tool called a grey card. A grey card is simply a square

material that helps to achieve the correct white balance by providing a neutral reference

point for the camera to adjust the colors.

Not all environments are controlled and allow for color measurements. Fortunately,
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Figure 1.1: An incomplete timeline of photographic innovations between the years 1975
and 2020. Image taken from [28].

digital photography has transformed the way we capture, edit, and share images. One

significant advantage of digital photography over analog photography is the ability to

adjust the white balance after the image is taken. In some situations, an automatic white

balance algorithm is necessary. For example, in medical imaging, the color representation

of tissues and organs must be independent of the illuminant source. Similarly, in security

and surveillance, the color representation of objects is vital for identifying individuals and

objects.

The process of discounting possible color casts from images is known as color constancy

and is commonly used in digital images. Despite being a well-studied problem, there is

no single solution that works for all scenarios due to the ill-posed nature of the problem

as described in section 1.2. Therefore, the scientific community is still searching for

generalized solutions or processing pipelines that can be applied to specific situations. In

this work, we focus on two of the possible extensions of the problem: the multispectral

and the temporal ones.

Multispectral imaging has become increasingly popular in recent years, thanks to

advancements in sensor technology, which have made it more affordable for both researchers

and practitioners. As multispectral sensors continue to decrease in cost and become more

widely available, the scientific community’s interest in this technology continues to grow.

Multispectral imaging provides more spectral information as compared to color images.

Applications for multispectral imaging span a wide range of fields, including remote

sensing and medical imaging. However, multispectral imaging can also be applied to color

constancy. So far, the scientific community focused on providing a multispectral color

constancy algorithm for automatic white balancing of multispectral imaging. Such a tool

would allow for a real-life color acquisition of multispectral imaging in an uncontrolled

environment. In this work, we present two methods; one is based on the re-elaboration of

multispectral illuminant estimations obtained thanks to multispectral-extended statistical

12



Figure 1.2: The top of this figure shows a standard single-frame camera pipeline. The
bottom figure shows the extension to multi-frame (or burst imaging) used by most modern
smartphone cameras. Image taken from [28].

methods [29], while the other proposes a neural network for the combination of color and

low-resolution spectral information [30]. This thesis proves that it is possible to improve

color constancy through spectral images.

With the advancements in digital camera technologies, it has become also possible to

capture videos, and as the expectations of customers for better quality images increased

so did the ones related to video quality. One of the main constraints that videos need

to respect, is the consistency of color between frames. In fact, the acquisition of digital

videos is sensitive to this kind of artifact, especially if it is poorly corrected by naive

algorithms that operate on a frame-by-frame basis. Most modern digital cameras already

have a multi-frame pipeline that performs a color correction frame by frame (Figure 1.2).

Therefore, the second part of this thesis focuses on temporal consistency. In particular, a

general-purpose procedure to assess the temporal consistency of well-known state-of-the-art

methods is provided [17], along with a temporal color constancy method. This method

exploits neural networks, and especially convolutional neural networks to extract spatial

features, and LSTM to capture spatially recurrent features.

1.2 Computational Color Constancy

The appearance of objects is greatly influenced by several factors including the material

they are made of, their shape, and the type of light that illuminates them within the waves

of the electromagnetic spectrum. To provide a clearer understanding of this phenomenon,

Figure 1.3 shows a visual example. In a real-life scenario, the lights frequently change due

to meteorological factors. Therefore, the perception of objects is regularly altered by the

13



Figure 1.3: Close-up look of the color of a cup under different illuminations. Image taken
from [57]

illumination they are exposed to. The human visual system has the ability to perceive the

color of objects constantly, despite the change in the illumination. This ability is called

color constancy [34]. It is not necessary for the human brain to know the source of the

illumination in order to perceive constant the color of objects. This capability is even more

fascinating if we consider that, in real-life scenarios with multiple objects, the illumination

can result from a mixture of direct and indirect irradiation distributed over a range of

incident angles and mutual reflections.

In the last centuries, many experiments have been performed with the only purpose of

understanding how color constancy works. Despite the many efforts we still are not able

to accurately answer this question, but theories regarding why this phenomenon happens

have been formulated. In particular, two explanations have been advanced [34]. According

to the first theory, Color constancy is the result of unconscious inference, which enables a

coherent perception of the world, enabling the observer to recognize objects despite the

change in illumination. As per the second theory, instead, color constancy is a result of

sensory adaptation, allowing the observer to make assumptions about the time of day and

weather.

It is important to note that digital devices are unable to discount or ignore illuminants,

which results in a significant impact on the color of the images captured or displayed.

This leads to discrepancies between how the observer perceives colors in the actual scene

versus the captured scene. Therefore, to display an image coherent with the observer’s
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Figure 1.4: Example of color constancy process. The first step estimates the illuminant
from the given image, while the second step uses the illuminant to correct the image.
Image taken from [28]

perception, we need a pre-processing step to discount the illuminant from the acquired

image.

This pre-processing step is called Computational Color Constancy and can be explained

as a two-step problem [41]. In the first step, the illuminant is extracted from a scene, and

in the second step, the illuminant is used to render the image as if it were acquired under

a canonical illuminant. The illuminant estimation problem is formulated as an inverse

problem, that aims at reversing the commonly accepted imaging model [4] and separating

the reflectance of the object from the illumination

Ik(x, y, λ) =

∫
ω

L(λ)R(x, y, λ)Sk(λ)dλ, (1.1)

where R(x, y, λ) is the surface reflectance, L(λ) the illumination , and Sk(λ) the sensor

characteristics, as a function of the wavelength λ, over the visible spectrum ω. The

subscript k represents the sensor’s response in the kth channel and Ik(x, y, λ) is the image

corresponding to the kth channel (k = R,G,B).The model being referred to in this context

is a simplified version of what actually happens in real-world scenarios. One of the main

simplifications made in this model is with regard to the illuminant L. According to the

formula used in this model, the illuminant is considered to be global and as such, it is

assumed to be constant across all spatial coordinates (x, y).

The following step is the correction process which is often carried out through a von

Kries-like transform [101], using a diagonal 3× 3 matrix to apply independent correction

to the response of cone photoreceptors. Although known to be suboptimal and unable to

fully handle metameric effects [75], the von Kries transform is commonly adopted due to

its simplicity. A visual example of the full process of computational color constancy is

provided in Figure 1.4.

Computational Color Constancy is a problem that has been extensively studied and
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has received a lot of attention in the state of the art. However, it is still an ill-posed

problem, which means that there is no unique solution. For a problem to be well-posed,

three conditions must be met[27]: a solution must exist, the solution must be unique,

and the unique solution must be stable. Moreover, in color constancy, it is difficult to

guarantee the uniqueness and stability of the solution because of the strong correlation

between the color in the image and the color of the illuminant. This correlation leads

to imprecise estimation, and even a slight variation in the correlation can result in a

significant variation in the estimation.

The issue of Computational Color Constancy remains significant given the lack of a

unique solution due to its ill-posed nature, another important factor is that it plays an

important role in color-based computer vision applications, such as digital imaging, object

recognition, tracking and image classification.

Over the decades numerous methods [100, 54, 24, 1, 10] have been proposed for

Computational Color Constancy, however, no unique solution has been identified. Due

to the ill-posed nature of the problem, in fact, color constancy requires the formulation

of specific assumptions on the imaged content or the reliance on data-driven biases. To

this extent, different methods adopt different strategies. Color constancy methods can

be mainly classified into statistical and machine-learning methods. Statistical methods

[100, 24] estimate the illuminant of the image by making assumptions about the color

features of the image itself. For example, the max-RGB algorithm assumes the presence of

a white surface object in the scene [66]. These methods have fast execution time, however,

the resulting performance heavily depends on the underlying assumptions. Machine

learning algorithms [54, 1, 10], instead, establish the relationship between the image color

distribution and the illuminant through a supervised learning process, meaning they do

not need to rely on statistical assumptions and therefore are more adaptive. However one

of the shortcomings of supervised algorithms is that they are highly dependent on the

dataset used to train them [22]. Potentially, they may need to be re-trained on different

datasets to overcome data-related bias.

The human visual system is a complex mechanism that relies on three distinct types of

cones located in the eye [109, 45]. Each of these cones is sensitive to specific wavelengths of

light in the visible spectrum, which are then processed by the brain to form our perception

of color. This process involves the brain combining data from the three cones to create

the full range of colors that we are able to see. Color cameras work on the same principle,

having three filters, named as R, G and B filters. They are sensitive to particular regions

of wavelengths and their combination forms a color image.

16



1.2.1 Evaluation Measures

Computational color constancy algorithms are designed to estimate the original illuminant

vector or the expected illuminant of a scene. The performance of these algorithms is

evaluated by computing the distance between the original illuminant vector and the

estimated one. The most commonly used distance measure is the recovery angular error,

which is computed in the normalized RGB color space based on mathematical principles.

However, mathematical principles may not always reflect human perception accurately. To

determine the correlation between angular error and human perception, Gijsenij et al. [40]

conducted a study. They found that the angular error is a reasonably good indicator of

the perceptual performance of color constancy algorithms. While other distance measures

based on the principles of human vision could be defined, the evaluation benchmark for

computational color constancy algorithms is based on the angular error distance measure,

which is a crucial factor in ensuring the accuracy of these algorithms.

The recovery error [51, 40] is defined as:

erec(U, V ) = arccos

(
U · V
|U ||V |

)
(1.2)

where “·” indicates the dot product, |x| is the euclidean norm, U denotes the RGB

illuminant target, and V is the RGB estimated illuminant.

Finlayson et al. [32] proposed a new metric for evaluating illuminant estimation

algorithms, called the reproduction angular error, which measures the angle between the

reproduction of a true achromatic surface under a white light with the actual reproduction

of an achromatic surface when an estimated illuminant color gets discounted. The

reproduction angular error is defined as follows:

erep(U, V ) = arccos

(
U
V
· (1, 1, 1)
|U
V
|
√
3

)
(1.3)

again, “·” indicates the dot product, |x| is the euclidean norm, U denotes the RGB

illuminant target, and V is the RGB estimated illuminant.

1.3 Related Works For Single Frame RGB Color Con-

stancy

Over the decades numerous methods ([100, 54, 24, 1, 10]) have been proposed for RGB

illuminant estimation, however, no unique solution has been identified. Due to the ill-

posed nature of the problem, in fact, color constancy requires the formulation of specific

assumptions on the imaged content or the reliance on data-driven biases. To this extent,
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different methods adopt different strategies. Color constancy methods can be mainly

classified into statistical and machine-learning methods.

Statistical methods, such as Grey-World [15], White-Patch [66], Shades-of-Grey [31],

and Gray-Edge [100] estimate the illuminant of the image by making assumptions about

the statistical properties of the scene. For example, the gray world algorithm is one of

the oldest and simplest color constancy algorithms. It is based on the assumption that

the color in each sensor channel averages to gray over the entire image. The gray world

algorithm [15] estimates the deviation from the assumptions and is given by a simple

expression:

lr = mean(ER),

lg = mean(EG),

lb = mean(EB)

(1.4)

where lr, lg, lb are the mean value in each channel respectively and ER, EG, EB are individual

image channels. In the White-Patch [66] algorithm, the estimate of the illuminant is

obtained by measuring the maximum of the responses in each channel. The estimation

formulation is very similar to that of the grey world algorithm in equation 1.4, except

for the fact that the mean is replaced by the maximum of the sensor responses in each

channel. These methods have fast execution time, however, the resulting performance is

heavily dependent on the underlying assumptions.

More recently, machine learning algorithms have been proposed for illuminant estima-

tion [54, 1, 10]. Unlike statistical-based algorithms, that relies on statistical assumptions

to estimate the illuminant, machine learning algorithms establish the relationship between

the image color distribution and the illuminant through a supervised learning process,

meaning they do not need to rely on statistical assumptions and therefore they are more

adaptive.

Bianco et al. [13] proposed a color constancy method using Convolutional Neural

Networks (CNNs). They trained a CNN on a large dataset of images with ground truth

illuminant color information to estimate the illuminant color from an input image. Hu

et al. [54] proposed a fully convolutional color constancy method called FC4. Their

method uses a fully convolutional neural network to estimate the illuminant color spatial

distribution of an input image that is used to correct the input image for color constancy.

More recently, alternative approaches for convolution-free deep learning have been applied

to illuminant estimation as well Li et al. [68] proposed a transformer-based multiple

illuminant color constancy method called TransCC. The method uses a transformer-based

network to estimate the illuminant color distributions of an input image under multiple

illuminants. The generative nature of the method is what enables the handling of multiple

illuminant sources, at the same time however introducing potential artifacts in the output
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white-balanced images. However one of the shortcomings of supervised algorithms is that

they are highly dependent on the dataset used to train them [21]. Potentially, they may

need to be re-trained on different datasets to overcome data-related bias.

Forsyth et al. [33], and later Gijsenij et al. [41] introduced gamut-based methods for

color constancy. These are based on the assumption that in real-world images, for a given

illuminant, one observes only a limited number of colors. Consequently, any variations in

the colors of an image (i.e., colors that are different from the colors that can be observed

under a given illuminant) are caused by a deviation in the color of the light source. This

limited set of colors that can occur under a given illuminant is called the canonical gamut

image. Gamut-based methods have a sensitivity to the scene content similar to that of

methods based on lower-level statistics, combined with a non-negligible computational

complexity, especially when handling large-resolution images.
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Chapter 2

Multispectral Color Constancy

Spectral imaging has been rapidly advancing over the past two decades and is divided into

two distinct imaging methods: multispectral and hyperspectral imaging. Although these

terms are often used interchangeably, they each have their own application spaces. Both

technologies offer advantages over conventional machine vision imaging methods that are

limited to acquiring only three spectral bands from the visible spectrum (400-700 nm).

However, the benefits of spectral imaging come with an increased system complexity in

terms of optical design.

Spectrometers are essential instruments in spectral imaging, as they allow for the

measurement of the spectral content of light and electromagnetic radiation. This measure-

ment results in a spectrally resolved image of an object or scene, which is often referred

to as a datacube due to the three-dimensional nature of the data. There are various

types of imaging spectrometers, such as filtered cameras, whisk-broom scanners, and

push-broom scanners, among others. However, these instruments will not be analyzed

further in this thesis since they diverge from the purpose of this work [36]. Multispectral

and hyperspectral cameras differ primarily by the number of bands they record and

the width of these bands. Hyperspectral imaging (HSI) captures and analyzes a large

number of narrow, contiguous bands across the electromagnetic spectrum, resulting in a

high-resolution spectrum for each pixel in the image. On the other hand, a multispectral

imaging (MSI) system captures several preselected and discrete wavebands, as opposed to

the continuous wavelength data collection in HSI, as shown in Figure 2.1. Both imaging

systems result in the acquisition of a data cube. While a hyperspectral data cube has

more than 100 channels, a multispectral one has fewer ones, in the order of tenths.

Hyperspectral imaging provides more detailed data than multispectral imaging, allowing

for more specific analysis and accurate identification of materials and substances. While

some consider MSI to be inferior to HSI due to lower spectral resolution, the two technologies

each have their own advantages that make them a preferred tool for different tasks.

HSI is best suited for applications that require sensitivity to subtle differences in signal
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Figure 2.1: The acquisition techniques of MSI and HSI are different from each other. In
the MSI technique, the system captures only a limited number of wavebands in a discrete
manner. On the other hand, in the HSI technique, the system acquires a larger number of
wavelengths in a contiguous manner, resulting in a higher resolution spectrum for each
pixel in the image. Image taken from [26].

along a continuous spectrum, which could be missed by a system that samples larger

wavebands. However, if there is less spectral information to acquire, the image capture,

processing, and analysis can happen more quickly, allowing the imaging technique to avoid

a noisy acquisition.

The application spaces that require the uses of HSI and MSI continue to grow in

number. Remote sensing, aerial imaging of the earth’s surface with the use of unmanned

aerial vehicles (UAVs) and satellites, has relied on both HSI and MSI for decades. Spectral

photography can penetrate through Earth’s atmosphere and different cloud cover for an

unobscured view of the ground below. This technology can be used to monitor changes in

population, observe geological transformations, and study archeological sites [99]. The

same is true in the medical field. Non-invasive scans of skin to detect diseased or malignant

cells can now be performed by doctors with the help of hyperspectral imaging. Certain

wavelengths are better suited for penetrating deeper into the skin, allowing a more detailed

understanding of a patient’s condition. Cancers and other diseased cells are now easily
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distinguishable from healthy tissue, as they will fluoresce and absorb light under the

correct stimulation [93]. Although application spaces that benefit from HSI and MSI

are large and increasing, limitations in the current technology have led to slow industry

adoption. Currently, these systems are significantly more expensive compared to other

machine vision components. The sensors need to be more complex, have broader spectral

sensitivity, and must be precisely calibrated.

2.1 Related Works

Computational color constancy is a deeply explored field. A large section of the scientific

literature approaches the problem in the RGB domain. However, since the works presented

in the following sections aim at exploiting multispectral information, this section specifically

addresses works that connect spectral imaging (including multispectral and hyperspectral)

with illuminant estimation.

The use of spectral imaging techniques increased in the last years and their involvement

has proven to be beneficial for several fields related to computer vision.

Lenz et al. [67] investigated the tasks of illuminant estimation and color correction

with the aid of multispectral representation. Specifically, they approximate the spectral

description of the scene pixels with a linear combination of bases from a dataset of

known spectra. They then characterize the image through the mode of such combination

coefficients, which is assumed to represent the global illuminant change.

Li et al. [69] proposed an end-to-end unrolling network architecture to estimate both

single and multiple illuminants in the input image, casting the problem as a constrained

matrix factorization. They also constructed a large spectral image dataset for training

and evaluation.

Su et al. [97] proposed a separation of the reflectance and illumination components using

a weighting scheme, factorizing the weighted specular-contaminated pixels to estimate the

illumination spectrum. Despite the demonstrated robustness in both simulation and real

experiments, it is computationally expensive, since this approach requires a number of

iterations for the spectral illuminant estimation of a single image.

Zheng et al. [110] proposed a method that models the separation of illuminant from

reflectance as a low-rank matrix factorization task, and developed a scalable algorithm

that works in the presence of model error and image noise. They demonstrated that

taking advantage of the greater color variety offered by hyperspectral images can improve

separation accuracy, and relax the restrictive subspace illumination assumption in the

existing literature, thus providing supporting evidence for the method proposed in this

work.

Tong et al. [98] proposed a general framework to estimate the spectrum of the
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illumination from specular information in a single hyperspectral image. By utilizing a

specular independent subspace they separated the reflectance components and shaped a

weighting scheme in order to find specular-contaminated pixels so that the illumination

can be directly estimated by factorizing them.

Khan et al. [59, 60] investigated the use of illuminant estimation algorithms for

multispectral imaging systems to overcome the difficulty in the calibration of multispectral

devices. To address this problem, the authors propose directly extending computational

color constancy algorithms to multispectral imaging, including edge-based methods [100] as

well as highlight-based methods [42]. In subsequent works [58, 61] they developed a spectral

adaptation transform to bring the multispectral image data into a canonical representation,

effectively performing illuminant correction. They illustrated the potential benefits of

using multispectral imaging in computer vision applications but also acknowledged that

multispectral imaging can still be sensitive to changes in illumination.

Robles-Kelly et al. [89] presented a convolutional neural network to recover pixel-

wise illuminant in multispectral images. The network takes in input a tensor which is

constructed by making use of an image patch at different scales in order to allow the

network to predict the pixel-wise illuminant using locally-supported multiscale information.

More recently, Kitanovski et al. [62] developed an imaging pipeline for a spectral filter

array camera to estimate scene reflectances in the absence of knowledge about the scene

illuminant. The proposed approach involves estimating the illuminant’s spectral power

radiance, which is shown to stabilize and marginally improve the estimation accuracy

compared to the method that estimates the illuminant in the RGB domain only.

Unlike more traditional computational color constancy algorithms, that estimate

illuminants from RGB images, Koskinen et. al. [63] propose to use the average color

spectra of a scene. They tested several regression functions (such as Kernel Ridge, Random

Forest, and Multilayer Perceptron) to map the spectral pixel to the white point. They

demonstrate that the method is effective even with as few as 10-14 spectral channels.

2.2 RGB Color Constancy Using Multispectral Pixel

Information

In this work [29], has been addressed the problem of RGB color constancy by exploiting

richer multispectral input image data, motivated by the ever-increasing availability of

multispectral imaging devices [83, 80, 50, 35, 84, 108, 23, 95, 81, 6, 7, 8], which are applied

in a variety of computer vision, remote sensing, and medical imaging applications [76, 74].

Multispectral reconstruction methods [3, 73] are also gaining traction in the scientific

community, further incentivizing working in this domain. However, spectral reconstruction

is not yet considered to be a mature field, with several open issues [72, 71]. In order
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Figure 2.2: Pipeline used to retrieve the multispectral estimations and their re-elaborated
version starting from the multispectral data provided by the dataset.

to investigate the practical utility of multispectral information, this research has been

developed under the assumption of data that either come from a multispectral acquisition

device, or from a hypothetical perfect multispectral reconstruction method. Khan et

al. [59, 61] demonstrated the advantages of estimating and processing illuminants in the

multispectral domain. Taking this work as inspiration and as a starting point, our final

color correction takes place in the RGB domain instead, since this is the underlying color

model of many viewing devices for end-user consumption, and the von Kries-like transform

is among the most basic and widely-supported correction models in color imaging pipelines

and in color management systems [28, 11].

Inspired by the works of Khan et al. [59, 61], this work is posed as an investigation

to verify whether multispectral information is useful to improve traditional RGB color

constancy methods. To this end, has been investigated how to extend a selected number of

sensor-independent color constancy methods from the RGB domain to an N-dimensional

multispectral domain. Showing that this extension is not sufficient to achieve computational

color constancy, the work proposes to convert the resulting multispectral estimations to

the RGB domain under the assumption that re-elaborating the multispectral illuminant

estimation may improve the raw RGB converted result, an investigation on several re-

elaboration methods is conducted. The proposed method for color constancy using

multispectral pixel information reaches an improvement of 60% in mean reproduction

error on the NUS dataset by Nguyen et al. [83], when compared to the corresponding

RGB methods. In Figure 2.2 the pipeline for the extraction and the re-elaboration of the

multispectral and raw RGB estimations is shown.

2.2.1 Proposed method for multispectral-based RGB illuminant

estimation

This section is dedicated to the description of the method proposed to exploit multispectral

information for raw RGB illuminant estimation. This procedure is carried out by extending
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a set of camera-independent color constancy algorithms, originally devised for the raw

RGB domain, to the multispectral domain. This has been done consistently with what

was proposed by Khan et al. [59]. Multispectral estimation of the illumination should be

then mapped into raw RGB for performing color correction. To this end, a straightforward

solution for the multispectral-to-raw conversion consists in exploiting the camera sensitivity

function to the multispectral illuminant estimation.

Alternatively, the work proposes that an unequal contribution of the estimated mul-

tispectral illuminant bands may benefit the eventual raw RGB estimation. This pro-

cess, which from now on will be referred to as “multispectral illuminant estimations

re-elaboration” is discussed mainly in Section 2.2.1.2. The concept that is shared among

the multispectral illuminant estimations re-elaboration methods is that there exists a map-

ping (e.g. in the form of weights or biases) that, applied to the multispectral estimation,

reduces the distance between the converted multispectral-based raw RGB estimation and

the expected raw RGB illuminant.

2.2.1.1 Multispectral Illuminant Estimation Algorithms

This work takes into consideration six algorithms belonging to the edge-based color con-

stancy framework (EB), introduced in 2007 by van de Weijer et al. [100] as a generalization

of multiple algorithms based on low-level image statistics. The general equation for

estimation of the illuminant, according to this framework, is

(∫ ∣∣∣∣∂nfσ(x)

∂xn

∣∣∣∣p dx) 1
p

= ken,p,σ. (2.1)

This operation is executed on the separate RGB channels

(∫ ∣∣∣∣∂nfσ(x)

∂xn

∣∣∣∣p dx) 1
p

=

((∫ ∣∣∣∣∂nRσ(x)

∂xn

∣∣∣∣p dx) 1
p

,

(∫ ∣∣∣∣∂nGσ(x)

∂xn

∣∣∣∣p dx) 1
p

,(∫ ∣∣∣∣∂nBσ(x)

∂xn

∣∣∣∣p dx) 1
p

) (2.2)

This framework generates different estimations for the illuminant color, based on three

variables

• n identifies the spatial derivatives order, which is typically set between 0 (no derivative,

as in the case of the grey world algorithm), and 2 (for second order derivative).

• Minkowski norm p determines the relative weights of the multiple measurements

from which the final illuminant color is estimated. For example, with p = 1, the
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illuminant is derived by an averaging operation over the derivatives of the channels.

For p = ∞, the illuminant is computed from the maximum of the derivatives in the

scene.

• σ denotes the scale of the local measurements, specifying the intensity of the

smoothing operation via Gaussian filtering.

The three parameters of these methods (the spatial derivatives order n, the Minkowski

norm p, and standard deviation σ) have been set as proposed in [12]

• grey world (GW) n = 0, p = 1, σ = 0.

• white point (WP) n = 0, p = ∞, σ = 0.

• shades of grey (SoG) n = 0, p = 4, σ = 0.

• general grey world (GGW) n = 0, p = 9, σ = 9.

• 1st order grey edge (GE1) n = 1, p = 1, σ = 6.

• 2nd order grey edge (GE2) n = 2, p = 1, σ = 1.

The RGB color constancy algorithms described in Equation 2.2 is extended to operate

on an arbitrary number of dimensions N , so that they can be applied to multispectral

images, producing a multispectral illuminant estimation. In the following, these algorithms

will be referred to as the spectral counterpart of EB algorithms (e.g. grey World becomes

Spectral grey World).

2.2.1.2 Multispectral and RGB Illuminant Estimations Re-elaboration

Anticipating the experimental results, it is notable that the sole multispectral extension of

raw RGB illuminant estimation algorithms is not sufficient to achieve color constancy. A

hypothesis is formulated as follows the multispectral-to-raw conversion may improve the

raw RGB estimation by adopting an unequal contribution from the N multispectral bands.

The approach consists of learning a N -channel modifier to apply to the multispectral

illuminant estimation, before converting it through the camera sensitivity function. To

verify that the improvement derived from the re-elaboration of the multispectral estimation

is due to the multispectral information and not to the re-elaboration method itself, re-

elaboration methods are also applied to the raw RGB estimations. In order to make the

process steps more understandable, Figure 2.3 shows the baseline of re-elaboration for raw

RGB illuminant estimation.
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Figure 2.3: Pipeline used to retrieve the raw RGB estimations and their re-elaborated
version starting from the multispectral data provided by the dataset.

Figure 2.4: The Feed Forward Neural Network architecture is composed of three hidden
layers. The rectangles with round edges indicate the layers used, in this specific case “FC”
stands for fully connected layers, which are then followed by a sigmoid activation function.
The network re-elaborates the given estimation to better fit the expected illuminant.

Average Multiplicative Weight (AMW) Let IERAW ∈ R3 be the illuminant estima-

tion in raw RGB for a single image, and IEMS ∈ RN be the illuminant estimation in the

multispectral domain. Let GT{RAW,MS} be the corresponding ground truth information.

The relationship between estimated illuminant (IE) and ground truth illuminant (GT )

can be expressed by means of a multiplicative weight (W )

IEMS ∗WMS = GTMS,

IERAW ∗WRAW = GTRAW

(2.3)

From this relationship, given an image, the W factor can be defined as the division between

the ground truth and the illuminant estimation

WMS =
GTMS

IEMS

,

WRAW =
GTRAW

IERAW

(2.4)

Given a training set having cardinality C, a C × N multispectral weights matrix is

obtained and C × 3 raw RGB weights, and subsequently they have been averaged along

the cardinality dimension. This process is replicated for each one of the six selected color

constancy algorithms, estimating in total 6×N multispectral weights and 6× 3 raw RGB

weights.
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Average Additive Bias (AAB) The Average Additive Bias method is based on a

similar idea to the one of the Average Multiplicative Weight. In this case, instead of a

multiplicative weight, the re-elaboration has been modeled through an additive bias (B).

The relationship between estimated and ground truth illuminant is expressed as

IEMS +BMS = GTMS,

IERAW +BRAW = GTRAW

(2.5)

The bias B is calculated by simply subtracting the illuminant estimation from the ground

truth

BRAW = GTRAW − IERAW ,

BMS = GTMS − IEMS

(2.6)

As for the previous approach, given a training set of cardinality C, the C×N multispectral

and the C × 3 raw RGB biases matrices are averaged, and the process is repeated for

each algorithm, resulting again in 6×N multispectral biases and 6× 3 raw RGB biases.

Each bias is then applied to the testing set estimations of the corresponding algorithm

coherently with the relationship expressed in Equation 2.6.

Optimization-Driven Multiplicative Weight (ODMW) The search of the weightW

from Equation 2.3 is here carried out through a direct search method for multidimensional

unconstrained minimization [64]. This is obtained by optimizing the end result in terms of

raw RGB recovery angular error, between the expected RGB illuminant and the estimated

illuminant after the application of the weights

WMS = argminw{erec(GTRAW , csf × (IEMS ∗ w))},

WRAW = argminw{erec(GTRAW , IERAW ∗ w}
(2.7)

where erec is the recovery error 1.2, csf is the camera sensitivity function, w denotes a

possible set of weights and × is the matrix multiplication. The direct search method

for multidimensional unconstrained minimization method is known as the Nelder–Mead

simplex algorithm [64], for which the MATLAB implementation known as “fminsearch”

has been utilized. All weights are initialized as ones, indicating no re-elaboration.

Feed Forward Neural Network (FFNN) The approach selected for the fourth

multispectral illuminant re-elaboration method is learning-based. A topologically simple

neural network has been designed, based on a feed-forward multilayer perceptron [44],

consisting of only three fully connected layers with a sigmoid activation function, as shown
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in Figure 2.4. The first fully-connected layer maps the N -band multispectral input to

a 60-dimensional latent space, while the last layer maps the result back to N values.

Assuming that the input consists of 31-band multispectral data, the dimension of the

latent space has been heuristically defined. The multispectral output of the third fully

connected layer is converted into raw RGB exploiting the camera sensitivity function. The

conversion to raw RGB makes it possible to use, as the loss, function the recovery error

between the raw-converted illuminant estimation and the expected raw illuminant, as

defined in Equation 1.2.

For the sake of comparison, the same re-elaboration method is also applied to the

estimated raw RGB illuminants. In this case, the input dimensionN is 3, the dimensionality

of the latent space has not been modified, instead, it has been kept to 60. The output of

the last fully-connected layer is already in raw RGB format and can be directly used in

the computation of the loss function.

2.2.2 Experimental setup

2.2.2.1 Dataset

The focus of our investigation resides in the use of multispectral imaging to improve

raw RGB illuminant estimation, therefore it has been selected the NUS [83] dataset by

Nguyen et al. from the National University of Singapore, which contains multispectral

data along with the ground-truth of their radiance information and the camera sensitivity

functions. Having this information it is possible to compute raw RGB data by multiplying

the multispectral data by the camera sensitivity functions. The same process of raw

RGB computation is also applied to the ground truth multispectral illuminant data. The

dataset contains 64 multispectral images along with the corresponding illuminant spectra,

that have been acquired using Specim’s PFD-CL-65-V10E (400 nm to 1000 nm) spectral

camera with Specim OLE23 fore lens. For light sources, the dataset varies from natural

sunlight to shade conditions, additionally considering artificial wide-band lights obtained

from metal halide lamps of different color temperatures (2500 K, 3000 K, 3500 K, 4300 K,

6500 K) and a commercial off-the-shelf LED E400. The subjects of the scenes include both

outdoor and indoor images and both natural and man-made objects. Furthermore, a few

images of buildings at very long focal lengths were also included. For each spectral image,

a total of 31 bands were considered at 400 nm to 700 nm, with a spacing of about 10 nm.

Of the total 64 multispectral images in the dataset, 24 are reserved for testing and the

remaining 40 for training. One or multiple color targets are present in the acquired scenes.

In order to reduce computational complexity, the dataset has been processed by re-

scaling the multispectral images to a tenth of their original size, resulting in 24 testing

images of 132×W × 31, and in 40 training images of 132×W × 31, where W is the width
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size that varies between 95 and 237.

2.2.3 Experimental Results

This section is divided into four parts. The first part is dedicated to the analysis of

the performance of multispectral extension color constancy algorithms as defined in

Section 2.2.1.1, compared to the performance of their raw RGB counterpart. The second

part is reserved for the assessment of the four re-elaboration techniques extensively

discussed in Section 2.2.1.2. In order to return a clear idea of how the estimations resulting

from these methods and pipelines perform in the color correction step visual examples

for a visual comparison are shown. The third part is dedicated to the comparison of

the first-section results with two of the main works from the state of the art, namely

those from Khan et al. [59] and Robles-Kelly et al. [89]. In the fourth and final part,

the contribution of each input spectral band in our best solution for multispectral-based

illuminant estimation is measured, so as to provide a form of model explainability.

To compare the aforementioned methods,the reproduction angular error [32] is selected.

The rationale is to evaluate the final effect of applying color constancy in the RGB domain,

as measured via reproduction error, in addition to the intermediate step of illuminant

estimation, as measured via recovery error.

2.2.3.1 Raw RGB vs Multispectral Illuminant Estimation

This section is dedicated to the assessment of the performance of multispectral extended

color constancy algorithms, compared with the original raw RGB edge-based color con-

stancy algorithms. The results are reported in Table 2.1. It has been observed that only

three multispectral extended algorithms perform better than their RGB version spectral

white point, spectral first order grey edge and spectral second order grey edge. While

spectral white point mean reproduction error improves only by 0.08◦ compared to its raw

RGB version (corresponding to a 1% improvement), spectral first order grey edge and

spectral second order grey edge improve respectively by 0.38◦ (6%) and 0.65◦ (9%). The

results for the grey world algorithm are the same for both the multispectral and the raw

RGB input. Additional statistics are reported in the supplementary materials.

2.2.3.2 Iluminant Estimations Re-elaboration

The illuminant estimation re-elaboration will be assessed method by method, comparing

the performance of the re-elaborated raw RGB input and the performance of the re-

elaborated multispectral information. As for the previous assessment, the estimations are

compared with the reproduction error, and the performance is reported in terms of mean

and median errors. Additionally, it shows the percent improvement with respect to the
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input
awb

algorithm
mean

recovery
median
recovery

mean
reproduction

median
reproduction

% mean reproduction
improvement

multispectral GE1 5.09 4.42 6.38 5.23 6%
raw RGB 5.46 4.72 6.76 5.67

multispectral GE2 5.03 4.49 6.32 5.13 9%
raw RGB 5.55 5.26 6.97 6.29

multispectral GGW 3.70 3.15 4.42 3.37 -2%
raw RGB 3.67 2.92 4.33 3.09

multispectral GW 3.81 2.55 4.42 2.91 0%
raw RGB 3.81 2.55 4.42 2.91

multispectral SOG 3.84 3.15 4.63 3.74 -1%
raw RGB 3.84 3.16 4.57 3.71

multispectral WP 4.68 3.93 5.60 4.99 1%
raw RGB 4.81 4.29 5.68 5.26

Table 2.1: Evaluation of raw RGB and multispectral color constancy algorithms perfor-
mance divided by method. Both recovery and reproduction angular errors have been
reported, expressed in degrees (◦). The lower the better. The last column shows the
percentual improvement in mean reproduction angular error of multispectral vs. raw RGB
algorithms. Best results per metric are highlighted in bold.

traditional raw RGB pipeline from Table 2.1. The results for all re-elaboration methods

are presented in Table 2.2 and in Figure 2.5 for a clearer view.

(a) raw input (b) multispectral input

Figure 2.5: Visual representation of Table 2.2. We show the mean recovery angular error
value in the form of a heatmap, one for the raw RGB input and one for the multispectral
input.

Average Multiplicative Weight All illuminant estimation algorithms benefit from

the use of the Average Multiplicative Weight method, both for the multispectral and raw

RGB input. Results in Table 2.2 also show that not only the re-elaboration methods

improve the illuminant estimation accuracy but also that the multispectral input improves

the performance with respect to the raw RGB input. The best improvement is achieved by
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input
relaboration

method
awb

algorithm
mean

recovery
median
recovery

mean
reproduction

median
reproduction

% improvement mean
reproduction error

raw RGB AAB GE1 5.28 4.07 6.46 4.75 4%
raw RGB AAB GE2 5.31 4.20 6.49 4.91 7%
raw RGB AAB GGW 5.32 4.39 6.50 5.25 -50%
raw RGB AAB GW 5.30 4.51 6.48 5.50 -47%
raw RGB AAB SOG 5.38 4.24 6.58 5.08 -44%
raw RGB AAB WP 5.32 4.02 6.51 4.82 -15%

multispectral AAB GE1 4.78 3.63 5.91 4.27 13%
multispectral AAB GE2 4.88 3.93 6.01 4.57 14%
multispectral AAB GGW 4.64 3.60 5.75 4.39 -33%
multispectral AAB GW 4.66 3.73 5.77 4.52 -31%
multispectral AAB SOG 4.76 3.58 5.89 4.46 -29%
multispectral AAB WP 4.66 3.35 5.78 4.10 -2%
raw RGB AMW GE1 4.15 3.36 4.79 4.42 29%
raw RGB AMW GE2 4.16 3.98 4.84 4.30 31%
raw RGB AMW GGW 3.42 2.21 3.82 2.55 12%
raw RGB AMW GW 3.61 3.08 3.95 3.31 11%
raw RGB AMW SOG 3.44 2.28 3.84 2.54 16%
raw RGB AMW WP 5.12 4.79 5.57 5.24 2%

multispectral AMW GE1 3.82 2.88 4.51 3.70 33%
multispectral AMW GE2 3.84 3.30 4.54 3.82 35%
multispectral AMW GGW 3.26 2.23 3.69 2.34 15%
multispectral AMW GW 3.62 2.86 4.03 3.28 9%
multispectral AMW SOG 3.28 2.22 3.73 2.60 18%
multispectral AMW WP 4.86 4.44 5.33 5.00 6%
raw RGB ODMW GE1 4.29 3.46 5.25 4.36 22%
raw RGB ODMW GE2 3.95 3.54 4.80 4.16 31%
raw RGB ODMW GGW 3.27 2.87 3.81 3.45 12%
raw RGB ODMW GW 3.71 3.48 4.36 4.08 1%
raw RGB ODMW SOG 3.00 1.94 3.50 2.40 23%
raw RGB ODMW WP 4.22 3.97 4.84 4.46 15%

multispectral ODMW GE1 4.20 3.41 5.15 4.07 24%
multispectral ODMW GE2 3.62 3.04 4.35 3.61 38%
multispectral ODMW GGW 3.15 2.25 3.59 2.31 17%
multispectral ODMW GW 3.52 2.85 3.99 3.17 10%
multispectral ODMW SOG 3.14 2.18 3.65 2.58 20%
multispectral ODMW WP 4.91 4.01 5.61 4.86 1%
raw RGB FFNN GE1 3.93 3.76 5.13 5.40 24%
raw RGB FFNN GE2 3.05 2.16 3.81 3.19 45%
raw RGB FFNN GGW 3.75 3.69 4.48 3.76 -3%
raw RGB FFNN GW 3.44 2.40 4.02 2.68 9%
raw RGB FFNN SOG 3.74 2.79 4.62 3.86 -1%
raw RGB FFNN WP 5.09 2.75 6.20 3.19 -9%

multispectral FFNN GE1 2.48 2.18 3.15 2.63 53%
multispectral FFNN GE2 2.24 1.33 2.77 1.93 60%
multispectral FFNN GGW 2.24 1.43 2.71 1.55 37%
multispectral FFNN GW 2.47 1.53 2.91 1.63 34%
multispectral FFNN SOG 2.26 1.11 2.71 1.43 41%
multispectral FFNN WP 2.13 1.04 2.58 1.28 55%

Table 2.2: Evaluation of the re-elaboration of the multispectral and raw RGB illuminant
estimations. All values are expressed in degrees (◦), the lower the better. The last column
shows the percentage of improvement of the mean reproduction angular error, between
the selected method and the traditional illuminant estimation algorithm for the raw RGB
input.

multispectral second order grey edge (GE2) but the best performance overall is achieved

by multispectral general grey world (GGW) with a 3.69◦ reproduction error.

Average Additive Bias The only illuminant estimation algorithms that benefit from

the Average Additive Bias re-elaboration are first order grey edge (GE1) and second order
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grey edge (GE2), even in their multispectral extension.

However, with this re-elaboration, the best performing pipeline is the multispectral

general grey world (GGW) with a 5.75◦ mean reproduction error value, which is still

performing worse than the 3.69◦ achieved by the raw RGB general grey world (which is

the best traditional performing algorithm in this investigation).

Optimization-Driven Multiplicative Weight The re-elaboration of the multispectral

estimations obtained with the Optimization-Driven Multiplicative Weight improves the

mean reproduction error value for each algorithm. However, the raw RGB shades of

grey (SoG) estimations actually achieve the best result for the Optimization-Driven

Multiplicative Weight method with a mean reproduction error of 3.5◦, which improves the

value for that metric with respect to the non-re-elaborated raw RGB estimations by 23%.

While the best improvement is achieved by multispectral second order grey edge (GE2)

with a 38% improvement compared to the traditional raw RGB estimation.

Feed-Forward Neural Network The performance of the Feed-Forward re-elaboration

method led to more noticeable improvements in processing multispectral information

with respect to traditional raw RGB data, as can be easily appreciated from Table 2.2.

The mean reproduction error for the multispectral inputs ranges from 3.15◦ for the first

order grey edge (GE1) down to 2.58◦ for the spectral white point (WP), achieving the

best performance overall in our analysis. The white point (WP) re-elaboration method

improves by 55% compared with the traditional raw RGB method for the same illuminant

estimation algorithm.

Figure 2.6 offers a visual representation of the effect of color constancy using our

proposed method in different configurations, including raw RGB or multispectral input,

and the four re-elaboration methods.

2.2.3.3 Comparison with the State of the Art

Among the methods in the state of the art, Robles-Kelly et al. [89] and Khan et al. [59]

are the most similar to the hereby proposed method in terms of approach and final goal,

i.e. RGB color constancy by exploiting multispectral information.

Robles-Kelly presented a method that employs a convolutional neural network to

estimate pixel-wise illuminant in the scene for both trichromatic and spectral images.

Khan et al. [59] proposed to extend statistical illuminant estimation methods (applied

also here, and described in Section 2.2.1.1) to N dimensions, and subsequently developed

a spectral adaptation transform to bring the multispectral image data into canonical, or

target, multispectral representation [61]. In order to enable a direct comparison with our

method it has been necessary to apply a consensus-based strategy for raw RGB illuminant
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(a) raw RGB (b) raw RGB ground truth

(c) raw RGB GGW (1.76◦) (d) MS GGW (2.18◦)

(e) MS GGW + AMW (0.64◦) (f) MS GGW + AAB (1.31◦)

(g) MS GGW + ODMW (0.25◦) (h) MS GGW + FFNN (0.19◦)

Figure 2.6: Visual example of some of the most significant methods. (a) acquired scene; (b)
scene corrected with the expected illuminant in raw RGB; (c-h) scene corrected with the
illuminant estimated via general grey world (GGW) on either raw RGB or multispectral
(MS) input, using different re-elaboration methods. For all corrections, angular errors are
reported in parentheses (the lower, the better).

estimation. The strategy consists in

1. converting the input multispectral radiance image into the RGB domain, to obtain

a raw RGB image that is not white-balanced.

2. dividing the same input multispectral radiance image by the estimated multispectral

illuminant to obtain a multispectral reflectance image.

3. multiplying the obtained multispectral reflectance image for the target multispectral

illuminant, to obtain a new multispectral radiance image.
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Method
mean recovery
angular error

median recovery
angular error

Robles-Kelly et al. [89] 12.56 4.62
Khan et al. (multispectral GGW) [61] 3.96 2.94
Our baseline (raw GGW) 3.67 2.92
Our baseline (multispectral GGW) 3.70 3.15
Our best method (multispectral WP + FFNN) 2.13 1.04

Table 2.3: Mean and median recovery angular error (in degrees ◦, the lower the better) for
Khan’s, Robles-Kelly’s and our method on NUS dataset [83]. In bold the best results.

4. converting the multispectral image resulting from step 3 into the RGB domain, to

obtain a raw RGB image that is white-balanced.

5. obtaining a per-pixel RGB illuminant estimation by dividing the result of point 4 by

the result of point 1.

6. generating a global raw RGB illuminant estimation of the input image by consensus

through average per channel.

In Table 2.3 a comparison of the results of the previously cited methods is shown

against our solution. Two baselines of the presented method without re-elaboration (based

on raw RGB and multispectral data) have been considered, using general grey world as a

reference due to its optimal performance as reported in Table 2.1. Our best-performing

configuration has also been taken into consideration, using multispectral white point and

FFNN re-elaboration as reported in Table 2.2. The comparison is performed in terms of

mean and median recovery angular error in order to allow for a direct comparison with

the results reported by Robles-Kelly et al. [89].

The comparison between the proposed method’s baselines and existing methods from

the state of the art highlights that a simple approach without re-elaboration achieves

similar performance as the solution by Khan et al. Additionally, our complete method

based on output re-elaboration allows for achieving superior performance in raw RGB

illuminant estimation.

2.2.3.4 Further analysis

In order to further study the best model for illuminant estimation from multispectral data,

an investigation regarding the relationship between input and output wavelength bands

has been conducted as a form of model explainability. Specifically, the relevance of each

input spectral band i has been measured by selectively feeding to the trained feed forward

neural network FF a set of band-specific impulses (setting band i to 1, and all the other

bands to 0). The assessment consists in the absolute difference in each of the network’s
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Figure 2.7: Relative importance of wavelength bands for our neural model for illuminant
estimation from multispectral data. Camera sensitivity functions reported for reference.

output bands j compared to the average network’s output A

reli =
∑
j

|FF (impulse(i))j − Aj| (2.8)

Aj =
1

N

∑
i

FF (impulse(i))j (2.9)

The result of this analysis is reported in Figure 2.7. By supporting the visualization with

the camera sensitivity function curves used in the optimization process, three band clusters

emerge, roughly corresponding to the central sections of the cameras color filters, with

local minima corresponding to the overlap between two color channels, where information

is partially redundant (the estimate on the green channel is partially informed by the

information from the blue and red channels). Furthermore, the model presents two outlying

peaks and a generally oscillating behavior.

These observations on band relevance could potentially inform the definition of feature

reduction techniques for hardware optimization, where fewer and selected wavelength

bands are considered in the construction of a multispectral sensor.

37



2.2.4 Conclusions

An investigation to assess whether multispectral information can be beneficial for the raw

RGB color constancy problem has been conducted. The work can be separated into two

main steps. 1) In the first step it is shown an evaluation of the multispectral illuminant

estimations and a comparison of the results with the traditional raw RGB illuminant

estimations. 2) The second step suggested to re-elaborate multispectral estimations to

better fit the expected raw RGB illuminant. Four re-elaboration methods have been

proposed and evaluated, not only by comparison to the traditional raw RGB approach

but also with raw RGB re-elaborated performance.

It has been proved that multispectral information can be used to improve raw RGB

color constancy. In fact, it has been shown that some methods (first-order grey edge,

second-order grey edge and white point) improve with our multispectral-based methods.

Results show that re-elaboration methods improve performance both for multispectral

and raw RGB illuminant estimation respectively with an overall performance increment of

60% and 50%, for the mean reproduction angular error, with respect to the traditional

raw RGB pipeline. Of great relevance is the result achieved by the multispectral white

point with feed-forward neural network re-elaboration, which achieves a mean recovery

error of 2.13◦.

Future development may involve the extension of the work to other illuminant estimation

algorithms, especially machine learning-based algorithms.

2.3 Illuminant estimation exploiting spectral average

radiance

This section is dedicated to investigating whether combining spectral and color information

can improve traditional color constancy [30].

Nowadays smartphones may embed spectral sensors that are able to capture the

spectral average radiance of the scene. A recent patent from Apple [55], for example,

describes an electronic device that includes control circuitry that gathers ambient light

measurements using a color ambient light sensor. Sensor responses are processed to

generate a color rendering index for the ambient light, which is used to correct the color

of the captured images via a color correction matrix. This leads to more accurate and

faithful color reproduction in the captured images. Hybrid-Resolution Spectral Imaging

Systems have also been proposed [77, 78, 79], where a conventional high-resolution RGB

color camera is combined with a low-resolution spectral imaging sensor, producing an

high-resolution spectral image. The focus of this work is to investigate how low-resolution

spectral radiance can be combined with high-resolution RGB color information to produce
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a properly white-balanced RGB color image.

Unlike previous works, that only consider either the RGB or the spectral information,

this work proposes to combine them both to improve the accuracy of illuminant estimation.

This chapter shows that, by incorporating both the RGB and spectral domains, it is

possible to capture a more comprehensive set of features related to the illuminant, which

improves the accuracy of the estimation. In particular, this work poses itself as an

investigation divided into three points 1) the first point concerns which resolution of color

and spectral information brings the higher benefit, 2) the second point regards whether it

is more beneficial to predict the illuminant in the spectral or color domain, and finally, 3)

The third point focuses on whether to use color or spectral domain for illuminant target

during training.

The chapter is structured as follows: Section 2.3.1 describes our proposed method for

illuminant estimation exploiting both RGB and spectral average radiance. Section 2.3.2

presents the experimental setup and results.

2.3.1 Method

The work presented in this chapter poses itself with the purpose of providing a color illu-

minant estimation method that combines RGB color and spectral information. Assuming

the availability of an RGB color image and the spectral average distribution of its corre-

sponding radiance scene, the combination is performed by means of a suitably-designed

neural network. According to this method, the input image has been divided into patches,

and the designed neural network has been trained having as input the RGB color image

patch, and its corresponding spectral average distribution. The size of the patch may

vary, and its tuning is discussed in the experimental results section. The process for each

single patch is visually depicted in Figure 2.8, which illustrates in parallel the process of

RGB color illuminant estimation and spectral illuminant estimation. These two options

will be compared in the experimental results section (2.3.2). Given an input image, the

individual patch estimations are combined with a suitable selection module, as described

in Section 2.3.1.1.

The neural network architecture, depicted in Figure 2.9 is composed of two branches.

The first branch takes as input the RGB color patch having size w× h× 3, and a suitably

designed Convolutional Neural Network (CNN) extracts a feature vector of size N , where N

is the same as the spectral resolution. The second branch takes as input an N -dimensional

vector of the spectral average distribution, and a Feed-Forward Neural Network (FFNN)

extracts a feature vector of the same size N . The two vectors are then concatenated into

a vector of size 2N , which is fed to the final block of the neural network, which differs in

structure and in terms of the final output
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(a) (b)

Figure 2.8: The RGB color and N-dimensional spectral images are divided into patches
of Pw × Ph pixels. The RGB color patch and the spectral average distribution are fed to
the neural network. In figure (a) the network returns an RGB color illuminant estimation
while in figure (b) it returns a spectral illuminant estimation.

• an encoder for the case of RGB color illuminant estimation produces as output a

three-dimensional vector corresponding to the RGB coordinates of the illuminant;

• a Feed-Forward Neural Network (FFNN) for the case of spectral illuminant estimation

produces an N -dimensional vector corresponding to the spectrum of the illuminant.

(a) (b)

Figure 2.9: Figure (a) represents the spectral architecture while figure (b) represents the
color one. The two architectures are identical except for the last block. The network
gets a color patch as input (of dimension h× w × 3) and its spectral average distribution.
The color patch is fed to the convolutional neural network which returns a 1×N feature
map. In the same way, the spectral average distribution is fed to a feed-forward neural
network that elaborates it and returns a 1×N feature map. The two feature maps get
concatenated into a unique feature map. In Figure A the resulting feature map gets fed
to another feed-forward neural network which finally returns a 1×N spectral illuminant
estimation. In Figure B, instead, the resulting future map gets fed to an encoder, which
returns the color illuminant estimation.

The choice of the convolutional part of the network architecture takes into consideration

the scarce availability in the state of the art of spectral datasets that provide illuminant

targets of spectral radiance images. Due to this circumstance, the choice fell on a shallow

convolutional neural network architecture with a small number of trainable parameters.
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More precisely, the selected architecture is the Convolutional Mean architecture [43] which

consists of two convolutional layers (the first being 3 × 3 × 3 × 7 and the second one

3 × 3 × 7 × 14, both of them having stride and padding set to 1) each followed by a

Max Pooling layer (2× 2) and the activation function, next the Weighted Global Average

Pooling Layer which in turn is composed by the third convolutional layer (1× 1× 14× 3

with stride and padding set to 1) followed by a ReLu and a Per-Channel Global Average

Pooling. While the Per-Channel Global Average Pooling layer returns the feature map

averaged by channel, in this work the feature map dimension is only reduced by half with

an average pooling layer and then the resulting feature map is fed to a fully connected

layer to return a vector equal in size to the number of channels of the spectral input. The

ReLu layers have been replaced with leaky ReLu [105] which has proven to be capable of

solving the ”Dead Neuron” problem and is more effective than ReLu. The diagram of the

CNN block is shown in Figure 2.10.

Figure 2.10: The Convolutional Neural Network block architecture contains two 3 × 3
filter convolutional layers (Conv1/2) which are followed by a 2×2 max pooling and a Leaky
ReLU. In the end, there is a final layer which is implemented as a 1×1 convolutional
layer (Conv3) with Leaky ReLU, an average pooling layer that halves the feature maps
dimension and finally a fully connected layer (FC). In this diagram, P and S denote
padding and stride respectively. The other four numbers shown in the Conv box represent
”Filter Size 1 × Filter Size 2 × #Input Channel × #Output Channel” whose product is
the total number of filter parameters. The activation functions are displayed assuming a
patch size of 512.

Figure 2.11 shows the FFNN structures identified in dark grey in Figure 2.9. This

consists of three fully connected layers followed by the leaky ReLu activation function.

The first and second layer of the first structure maps the N -band spectral input (or feature

map) to 60 values, while, the first and second layer of the second structure maps a 2N-band

spectral vector to 60 values. Finally, the last layer in both structures maps them back to

N values.

Finally, Figure 2.12 shows the encoder architecture that produces the RGB illuminant

estimation for an input patch. It consists of three fully connected layers the first one maps

the N input values to 15 values, the second one maps them to 5 and the final layer maps

them to 3, obtaining, therefore, a color illuminant estimation. For the activation function,

the leaky ReLu has been selected, for the same reasons previously explained.
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Figure 2.11: The Feed Forward Neural Network block architecture consists of three hidden
layers. The rectangles with round edges indicate the layers used, in this specific case ”FC”
stands for fully connected layers, which are then followed by a Leaky ReLu activation
function.

Figure 2.12: The encoder block architecture consists of three hidden layers. As for the
figure 2.11, the rectangles with round edges indicate the fully connected layers, which are
again followed by a Leaky ReLu activation function.

2.3.1.1 Selection Module

The model hereby proposed, provides several illuminant estimations corresponding to

the patches of a single input image. Assuming that the illumination is uniform across

the scene, the work proposed an exploitation of a further module in the inference phase

with the purpose of selecting the best color estimation among the several color estimates

corresponding to the analyzed patches. The intuition behind this module is that, among

the suggested estimations, some are to be considered outliers, which must be eliminated,

resulting in a subset of estimations supposedly closer to the actual illuminant in the scene.

In order to implement this intuition, a k-mean clustering [106] has been exploited to assess

a consensus among the estimations. The process is carried out in the inference phase,

after the multispectral-RGB conversion step, therefore, the clustering is computed in the

color domain. The number of clusters is automatically determined by computing the

silhoutte coefficient [111]. The populousness of the clusters determines which are to be

considered outliers and which one is to be taken into consideration to determine the most

likely solution. Two alternative selection strategies have been proposed to determine such

a solution the cluster centroid, and the individual patch estimation that is closest to the

cluster centroid. These two strategies are compared in the experimental results section.

2.3.2 Experiments

This work focuses on the development of a neural network able to estimate the RGB color

of the illuminant of a scene by combining spectral and RGB color information. To this end,

the image is divided into patches, and for each patch, the average radiance has been used
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and the RGB data of the patch itself. In the inference phase, the patches color estimations

are further processed to produce a single illuminant estimation.

The purpose of the following experiments is, not only to investigate whether the average

spectral distribution of the scene can improve the RGB illuminant estimation but also

to investigate the influence of the input patch size. The experiment section also revolves

around another turning point whether predicting the illuminant in the RGB color or

spectral domain is more valuable as input for RGB color correction. The second option,

which consists of predicting a spectral illuminant, brings up two training strategies 1)

training the spectral prediction with the spectral expected illuminant or 2) converting

the prediction to RGB color and then training it with the RGB color expected illuminant

(ground truth). This section will show and analyze the results obtained from these three

”implementation choices”. From now on they will be referred to as

1. RGB color architecture (CA).

2. spectral architecture trained on spectral (SATOS).

3. spectral architecture trained on RGB color (SATOC).

The performance of the model is evaluated through the recovery angular error metric [52]

1.2.

2.3.2.1 Data set

This work requires a dataset that contains both spectral and RGB color images in full

resolution and the corresponding target illuminant in both representations. The dataset

selected fulfills all our requirements and it captures real-world scenes. The NUS dataset

[82] contains 64 spectral radiance images, of which 24 are reserved for testing and 42 for

training. The images have dimensions of 1312×W × 31 pixels, where W varies from 951

to 2374. For each spectral image, a total of 31 bands were captured at 400 nm to 700

nm, with a spacing of 10 nm. The scenes subjects include outdoor and indoor images

and natural and man-made objects. For illumination sources, the dataset varies from

natural sunlight and shade conditions, additionally considering artificial wide-band lights

obtained from metal halide lamps of different color temperatures (2500 K, 3000 K, 3500

K, 4300 K, 6500 K) and a commercial off-the-shelf LED E400. Furthermore, the dataset

is provided with the spectral radiance of the scenes and the camera sensitivity function,

which allows for spectral-to-color conversion. The target illuminant is retrieved from

color-checker targets present in the spectral radiance images. The dataset is provided

under the assumption that the illuminant is global over the entire scene.

According to the proposed method, the input RGB and spectral images are divided

into patches. Given the unequal width dimensions of the dataset elements, to prove the
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effectiveness of our approach it has been decided to limit the analysis to a 512 × 512

central crop of the image. These images are further divided into patches of sizes 4× 4,

8× 8, 16× 16, 32× 32, 64× 64, 128× 128, 256× 256 and finally 512× 512. The RGB

color patches and the corresponding average spectral radiance are used to train our model,

as shown in Figure 2.9. The performance for the different patch sizes is discussed in the

next sections.

2.3.2.2 Experimental Results

The investigation hereby conducted mainly focuses on the resolution of color and spectral

information, and which combination of these two domains best benefits the color illuminant

estimation problem.

2.3.2.3 Patch illuminant estimation

Given the 24 test images, we will assess the network’s capability to accurately estimate

the illuminant of the single image patches The estimated illuminants are compared with

the target illuminants (i.e the illuminant associated with the image and the resulting

recovery angular errors across all patches from all test images are synthesized in 2.4 with

several statistics min, mean, median, percentile 95 percentile and max. As explained in the

method section 2.3.1, this work proposes two different architectures (one that estimates

the illuminant in the RGB color domain, and one in the spectral domain) and two training

strategies (one provides a color target illuminant, while the other provides a spectral target

illuminant). For the sake of simplicity, the training strategies have been summed up as

1) color architecture (trained on color target) (CA) 2) spectral architecture trained on

spectral target (SATOS) and 3) spectral architecture trained on color target (SATOC).

Table 2.4 shows the mean recovery error values go from 1.67◦ to 2.9◦, respectively

achieved by the SATOC on patch size 64 and the SATOS for patch size 512. It is possible

to notice from the metrics illustrated in Table 2.4, and even more evidently in Figure 2.13,

that spectral and color resolution greatly impact the performance of the methods. The

patch of 512×512, which has the highest color resolution and the lowest spectral resolution,

performs the worst. At the same time, though, the best-achieving patch sizes are not the

ones with the highest spectral resolution (from 4×4 to 16×16), but the mid-size ones (from

32×32 to 128×128). A clear comparison between the three proposed methods is shown in

Figure 2.13. The figure shows that there is not a clear winner between CA and SATOC,

while SATOS is the worst-performing method except for patch size 8x8 and patch size

128×128. CA, instead, performs best for patch sizes 8×8 and 512×512, while from patch

size 64×64 to 256×256 the SATOC method performs the best, the performance for the

remaining patch sizes is very similar.
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method patch size min mean median ple95 max

CA

4 0.03 1.92 0.68 9.37 26.85
8 0.03 1.71 0.37 7.16 15.41
16 0.03 1.93 0.18 7.52 16.96
32 0.03 1.80 0.20 7.58 17.25
64 0.03 1.81 0.55 6.72 15.91
128 0.03 2.04 1.12 6.34 15.53
256 0.06 1.98 1.09 6.36 15.96
512 0.08 2.52 1.94 4.90 13.86

SATOS

4 0.03 2.34 0.32 9.44 39.72
8 0.03 2.10 0.47 8.24 29.14
16 0.03 2.29 0.21 12.16 17.26
32 0.03 1.93 0.22 9.17 15.50
64 0.03 1.97 0.31 10.20 15.52
128 0.03 1.84 1.06 7.65 15.02
256 0.03 2.30 1.65 6.81 16.74
512 0.76 2.90 1.79 6.92 12.31

SATOC

4 0.03 1.90 0.04 10.07 45.25
8 0.03 2.21 0.10 9.45 21.22
16 0.03 1.91 0.13 8.20 17.39
32 0.03 1.84 0.37 7.60 15.46
64 0.03 1.67 0.73 6.56 14.07
128 0.03 1.77 0.80 6.42 15.40
256 0.03 1.80 0.83 7.09 16.26
512 0.69 2.80 1.87 6.40 11.80

Table 2.4: Performance of the three methods measured in terms of recovery error in degrees
(the lower the better). In bold it is shown the best results based on the method.
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Figure 2.13: The plot shows the accuracy of the CA, SATOS, and SATOC methods, in
terms of mean recovery angular error in degrees (◦) varying the patch size. The lower the
result the better.
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2.3.2.4 Image illuminant estimation

According to the proposed method, there are several candidates for illuminant correction

in a given image, corresponding to the image patches. For this reason, the method of an

additional selection module has been provided, which has the purpose of identifying a

single illuminant estimation among the ones estimated from the patches. As explained in

section 2.3.2.4 this has been achieved by relying on a simple clustering technique.

method patch size
cluster label
accuracy

centroid
recovery error

closest to centroid
recovery error

closest to gt
recovery error

best-selected
distance

CA

256 0.64 1.82 1.82 1.37 0.45
128 0.56 1.98 2.00 1.00 1.00
64 0.76 1.57 1.58 0.43 1.15
32 0.72 1.53 1.52 0.25 1.28
16 0.64 1.76 1.75 0.14 1.61
8 0.88 1.33 1.33 0.14 1.19
4 0.80 1.58 1.58 0.08 1.50

SATOC

256 0.76 1.78 1.80 1.33 0.47
128 0.56 1.83 1.83 0.72 1.11
64 0.68 1.56 1.57 0.43 1.13
32 0.72 1.75 1.74 0.27 1.48
16 0.80 1.46 1.46 0.16 1.31
8 0.76 1.90 1.90 0.13 1.78
4 0.80 1.63 1.64 0.11 1.53

SATOS

256 0.44 2.28 2.22 1.95 0.27
128 0.48 1.78 1.76 0.72 1.04
64 0.60 1.62 1.63 0.77 0.86
32 0.64 1.89 1.89 0.31 1.58
16 0.64 2.31 2.31 0.21 2.09
8 0.68 1.86 1.86 0.16 1.70
4 0.64 2.04 2.05 0.15 1.89

Table 2.5: Selection module performance. The cluster label accuracy metric is considered
in the range 0-1 where 1 is the best result. While centroid recovery error, closest to
centroid recovery error, and closest to gt recovery error are expressed in degrees, the lower
the better. The best-selected distance indicates the potential for improvement if it were
possible to always select the best estimation, therefore, the lower the better. The best
results based on the selection method are highlighted in bold.

In Table 2.5 the results of the proposed selection module are shown. The evaluation of

the module concerns three different aspects. First, the two illuminant selection strategies

(centroid, and estimation closest to the centroid) are evaluated in terms of mean recovery

error. Second, the section presents an investigation regarding whether the most populated

centroid is the one closest to the ground truth. Finally, the recovery error between the

estimation closest to the ground truth (i.e. the best possible estimation) and the estimation

closest to the centroid. Then, the two errors get subtracted as a way to show how much

the problem could improve. The rationale behind this method is that the closer the two

errors are, the less space for improvement there is, and vice versa. This metric helps

understand the potential for improvement in the selection module. After analyzing the
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results and the graphs presented in 2.15, it becomes clear that the smaller patch sizes

present more opportunities for improvement. Moreover, the metric indicated that the

degree of improvement could range from 25% (for larger patch sizes) to as high as 95%

(for smaller patch sizes).

The assumption behind the selection module is that the majority of estimations

proposed by the network are close to the target illuminant. The clustering process serves

as a voting mechanism, therefore the cluster containing the majority of the estimations also

supposedly contains the estimation closest to the ground truth. Therefore, an accuracy

metric has been included to investigate the veracity of this assumption. Table 2.5 shows

that the selection cluster accuracy goes from 44% to 88%. The SATOS model is confirmed

to have the worst performance. Overall the assumption is verified in more than 60% of

the cases.

We then evaluate the performance of the two different proposed illuminant selections

centroid and estimation closest to the centroid. As also shown in Figure 2.14, the

performance of the two selection strategies is almost identical. From the graph, it is easy to

see that the CA model overall has the best performance, except for patch sizes 4, 8, and 32.

The best performance overall is achieved by the CA model for patch size with a recovery

error of 1.33. The graph also confirms that the SATOS model is the worst-performing

among the proposed ones.

The final metric adopted to evaluate this selection module is the distance between the

selected estimation and the estimation closest to the ground truth. This metric stands for

the improvement that the mean recovery error would have if it were always possible to

select the best estimation. Overall it is possible to see that the improvement ranges from

0.5◦ to 2◦. As expected, there is a tendency, where the difference increases as the patch

size decreases, and therefore, as the number of estimations increases. Figure 2.15 shows

the potential for improvement of the three models if the module were able to always select

the best estimation.

Table 2.6 shows the comparison between our best-performing solution (SATOC on

image patches of size 16× 16 pixels) and Khan’s and Robles-Kelly’s works [59], [89]. Our

method outperforms Khan’s and Robles-Kellys’ work, respectively, by 63% and 88% for

the mean recovery angular error metric.

2.3.2.5 Considerations and observations

The hereby presented work shows that the patch size that leads to the best performance is

patch size 8× 8, and overall, the mid-size patches are the most suited for the problem,

indicating that the problem benefits the most from mid-resolution both for color and

spectral information. The network that provides estimations in the spectral domain and

receives the target in the spectral domain (SATOS) is the worst-performing one. While
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Method
mean recovery
angular error

% improvement
mean recovery error

Our Baseline (SATOC16) 1.46 \
Roble’s Kelly et. al. [89] 12.56 88%
Khan et. al. [61] 3.96 63%
Grey-Edge [100] 5.46 73%

Table 2.6: Mean recovery angular error (in degrees ◦, the lower the better) for Khan’s,
Robles-Kelly’s and this method on NUS dataset [82]. For the method presented SATOC16

has been selected, being the best-performing one. In bold the best results.

Figure 2.14: Comparison between the centroid and the estimation closest to the centroid
performance. The comparison is performed in terms of recovery error in degrees (◦), the
lower the better.

there is no clear winner between the color approach (CA) and the spectral with color

targets approach (SATOC). The CA approach performs better with smaller patch sizes

and SATOC performs better for the larger patch sizes. It is also proven that the selection

module performs better than the average of the result, meaning that it is able to extract

an illuminant estimation closer to the target illuminant most of the time. It is also shown

that the potential for improvement is very large, in fact, the error of the models with

patch size 4× 4 is close to zero. This result also proves how spectral information may be

beneficial for the color illuminant estimation problem.

2.3.3 Conclusions

Spectral sensors are becoming every day cheaper and more available on the market, so

much so that they’re making their first appearances in digital imaging acquisition tools.

This work poses itself as an investigation to verify if the combination of spectral and

color information can improve the result for the RGB color constancy problem. The

investigation has been performed on the standard NUS dataset. The best results, as

identified in this experimental setup, are obtained with a model trained to predict the

illuminant in the spectral domain using an RGB color loss function. We observed that,

in general, by processing data in the form of mid-size image patches it is possible to

achieve better results as compared to using the whole image or smaller image patches. In
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Figure 2.15: Comparison of performance for the three models (CA, SATOS, and SATOC)
with centroid selection, estimation closest to the centroid, estimation closest to ground
truth, and performance before the estimate selection. The comparison is performed in
terms of recovery error (in ◦, the lower the better) based on the patch size.

the future, these results should be confirmed by extending the investigation to a larger

properly annotated dataset. Nonetheless, our experiments show in practice the potential

of combining spectral and RGB color information to improve RGB illuminant estimation.

Future developments may focus on neural network architectures that not only provide

an illuminant estimation but also a level of confidence, as well as spatially varying multi-

illuminant estimation.
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Chapter 3

Temporal Color Constancy

As discussed in the previous sections, color constancy is a crucial aspect of digital image

processing. While there are existing solutions available, they have limitations, and there

is still room for improvement. The previous chapter focused on utilizing multispectral

imaging to improve color constancy in single images. This chapter, however, is devoted

to addressing color constancy in video content. Videos are essentially a sequence of

individual images, which, from now on, will be referred to as ”frames”. The problem of

correcting color distortion in frame sequences is known as Temporal Color Constancy and

is a relatively new and challenging problem that has received little attention from the

scientific community so far. The problem can be formulated as

ĉt = f(It−(N−1), It−(N−2)...It−1, It) (3.1)

where f(·) uses, besides the shot frame It to be corrected, the (N − 1) preceding frames

It−1...It−(N−1) [86].

While most existing algorithms insert citations of algorithms for color constancy were

designed to address illumination changes in individual images, the straightforward approach

to processing videos frame by frame using single-frame methods overlooks the temporal

correlation of illumination changes between adjacent frames. This correlation can play a

critical role in achieving accurate and stable temporal color constancy and is currently not

being exploited by these algorithms. This approach, instead, can lead to the creation of

artifacts.

Color constancy in videos poses several challenges that need to be taken into con-

sideration. A temporal color constancy algorithm needs to maintain two important

characteristics. The first one is to eliminate any color cast from the image and restore it

to its original state as if it were captured under a known light source, which, for the sake

of brevity, will be referred to as ”accuracy” for the rest of the work. In the video domain,

this characteristic should be extended to every frame of the sequence. The consistency
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Figure 3.1: Color correction by temporal methods on frame It using five-frame sequences
with (c)(d) and without (a)(b) significant pictorial content change, with (d) and without
(a)(b)(c) significant illumination color change. Illumination color is visible on the ball
in the bottom right corner. The images are from the SFU Gray Ball linear dataset, i.e.
without gamma correction and thus appear to have unusual color composition. Image
taken from [86]

of object colors from frame to frame when the lighting conditions are constant, known

as ”temporal consistency”, is the second characteristic that a temporal color constancy

algorithm needs to maintain. Achieving temporal consistency is a challenging task for

temporal color constancy algorithms, and the lack of this characteristic creates a visual

artifact known as ”flickering”. The processing of videos frame by frame is prone to the

creation of such artifacts. However, it is essential to achieve this characteristic to ensure

the overall video quality and perception of the viewer. The need to produce accurate and

temporally stable results is not the only challenge to be addressed. While the state of the

art suggests several metrics to evaluate the accuracy of a color constancy method, there is

no metric able to evaluate the temporal stability of a frame sequence. Therefore, section
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3.2 provides a common procedure to evaluate the accuracy and the temporal consistency

of temporal color constancy algorithms. However, the lack of video datasets that include

color targets poses an additional challenge to this task.

3.1 Related Works

Yang et al. [107] suggests a new matching invariant called illumination chromaticity

constancy. They search for correspondence by analyzing the chromaticities of the color

differences between the corresponding pixels in two camera images, define this correspon-

dence as a chromaticity match, and then adopt majority voting for discretized values of

the illuminant chromaticity. However, this method has a limitation in that it assumes

the objects to be stationary and requires the images to be captured by a moving camera

under the same lighting conditions.

Prinet et. al [85] introduces a new physically-based approach for illuminant chromaticity

estimation from a temporal sequence. By keeping the same dichromatic reflection model,

they show, experimentally, that the distribution of the incident light at edge points, where

specularities may be often encountered, can be modeled by a Laplace distribution. This

enables a robust and accurate global illuminant color estimation using a probabilistic

optimization framework. Both Prinet’s and Yang’s methods are limited by the assumption

that some surfaces in the scene have a specular reflectance component, and to process

images in pairs.

Starting from the consideration that the frames in a video are generally highly correlated,

Wang et. al. [102] proposes a video-based illuminant estimation algorithm that takes

advantage of the common information between adjacent frames. The main idea is to

cut the frame sequence into different ”scenes”. Assuming that all the frames in a scene

are under the same illuminant, they propose a combination of frame-based illuminant

estimations to calculate the global illuminant estimation of the scene. The algorithm

consists of four main steps 1) Frame-based illuminant estimation, 2) scene cutting, 3)

scene illuminant calculation 4) frame illumination adjusting.

Qian et. al. [86] proposes the RCC-Net, a novel recurrent deep net, which consists of a

convolutional backbone for extracting spatial features, a convolutional LSTM for recurring

features, a novel simulated sequence component, and a shallow network for merging. The

baseline established by RCCNet was recently overcome by TCCNet [88], an improved

version of the same method featuring a more powerful backbone CNN and a 2DLSTM for

the sequential processing of the encoded frames.
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3.2 On the Evaluation of Temporal and Spatial Sta-

bility of Color Constancy Algorithms

Color constancy methods are usually compared with angular error metrics such as the

recovery error [51] and the reproduction error [32]. The comparison of color constancy

methods based on angular errors is sometimes aided by statistical tools such as the Wilcoxon

test [103], or by graphical tools such as the Angle-Retaining Chromaticity diagram [19].

Angular error evaluation has been extremely useful in assessing color constancy methods

and guiding the research for many years. However, it neglects other important aspects of

the characterization of color constancy algorithms, related to their stability in the video

domain.

Figure 3.2: Changing scene content under constant illuminant conditions moving subjects
in front of the camera (top) and panning/zooming camera (bottom). A color constancy
algorithm that is temporally and spatially stable should provide a self-consistent response
in these scenarios.

This property has become extremely valuable since consumer devices are increasingly

used for video acquisition and reproduction [104] in this context, the discomfort of poor

illuminant correction is potentially amplified if such correction also changes over time

without justification, thus introducing unpleasant flickering artifacts. To this extent,

existing works have tackled the problem of temporally-aware color constancy [86, 88],

exploiting the information coming from multiple frames in order to produce a more robust

illuminant estimation. Nonetheless, traditional single-frame methods can also be applied to

video sequences, with or without the aid of temporal consistency post-processing [65]. As
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such, the main goal of this investigation is to study the direct applicability of single-frame

color constancy algorithms in the video domain [17]. Two possible scenarios of interest

have been identified moving subjects in front of the camera, and panning/zooming camera,

as depicted in Figure 3.2. In these cases, if the scene illuminant remains constant, the

expected behavior of a color constancy algorithm is that the output is also constant,

ignoring the intrinsic chromaticity of newly framed elements.

The two scenarios of interest can be analyzed by resorting to appropriately annotated

datasets for video color constancy, the best to date being the Gray Ball dataset [25], and

the very recent Burst Color Constancy dataset (BCC) [88]. Both scenarios are depicted

in such datasets, and often co-occur in the same video sequence. Temporal stability is

a critical characteristic that determines the reliability of an algorithm. It refers to the

algorithm’s ability to produce consistent output responses when the lighting conditions

remain unchanged, but the scene content changes over time. In other words, an algorithm

with high temporal stability would be able to provide reliable results even when the

environment is dynamic. In addition, the specific “panning/zooming camera” scenario can

be synthetically recreated by introducing cropping operations at various scales in individual

frames of a color constancy dataset. This is similar to a pre-processing technique proposed

by Qian et al. [86] to simulate a camera movement for robust burst color constancy. This

type of analysis of synthetic data allows for a more precise information about the specific

case of a moving camera with stationary content. Given the nature of the experiment, the

term spatial stability will be referred to as the capability of an algorithm to maintain a

consistent illuminant estimation, assuming a unique illumination source, when looking at

different portions of the scene.

For a real-life application, the assumption of unique illumination source is seldom

completely verified, due for example to the presence of multiple lights at different correlated

color temperatures, mutual surface inter-reflections, or coexistence of sun/shadow areas.

Nonetheless, it is arguable that a time-consistent correction of the image color can be a

desirable property, as long as moderate camera movements are in action. In other words,

spatial stability should not be expected, nor enforced, for drastic changes in image framing.

For this reason, the synthetic panning and zooming operations are applied at various

scales, the trending stability is shown at all levels, and eventually focus the conclusions

at the highest scale, which corresponds to the most moderate camera movement. Many

algorithms for single-frame color constancy internally perform a spatially-varying illuminant

estimation, which is eventually mapped back to a global illuminant by consensus [20], or

clustered to perform multi-illuminant estimation [87]. Considerable efforts have been also

put by the scientific community into providing spatially-varying annotation of illuminant

information, resorting to moving color targets such as with the DRONE dataset [5], or to

computer-generated imagery such as with the MIST dataset [46].
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This work first analyzes the aforementioned temporal and spatial stability properties

of existing suitable datasets for computational color constancy. Then it presents a

methodology to analyze the stability of color constancy algorithms themselves. The goal

is to define a common procedure for methods comparison, and to assess the degree to

which such methods are sensitive to changes in the scene that do not depend from the

illuminant source. The information emerging from our analysis identifies methods that

are intrinsically stable, thus holding the greatest potential for expansion to video color

constancy without heavily relying on temporal consistency post-processing techniques.

3.2.1 Datasets selection and pre-processing

In order to perform the stability analysis of color constancy algorithms free of any bias from

the underlying data, it is necessary to exploit datasets that are, respectively, temporally

and spatially stable. This section is dedicated to verify whether this condition is met

on existing datasets and, when it is not, the required pre-processing steps is described.

The same procedure could be potentially applied to any future datasets for video color

constancy that is properly annotated.

3.2.1.1 Gray Ball Dataset

Gray Ball [25] is one of the few datasets potentially suitable for temporal color constancy.

It contains 11,346 images divided into 15 sequences, with many shots acquired at close

interval one from another. Many of the images depict people and include both indoor and

outdoor scenarios, the latter taken in two different locations. The dataset was collected

using a Sony VX-2000 digital video camera, and every shot includes the eponymous gray

ball color target for ground truth annotation in the bottom-right corner. For illuminant

estimation, the images have been masked to exclude the color target starting from pixel

row 135 and column 226. The 360×240px images are provided in non-linear 8bit RGB

format. Since several color constancy methods rely on the assumption of linear sensors,

the following pipeline has been applied

1. Linearize the image (gamma correction with γ = 2.2)

2. Estimate the illuminant

3. De-linearize the estimated illuminant (γ = 1/2.2)

It should be noted that the precise value for gamma correction is derived by common

usages of the Gray Ball dataset [39], but it is not guaranteed to match the actual device

characterization. This linearization strategy, despite being an approximation for color

constancy outside the camera pipeline [2], still allows to process images that are closer to
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the RAW sensor data with respect to the original sRGB, while at the same time performing

error analysis between the output of unaltered existing methods, and the official dataset

ground truth.

The Gray Ball dataset does not respect the temporal stability characteristics needed

for this work, therefore it requires a specific pre-processing to remove temporally-unstable

sequences. For the purpose of this work, a temporally-stable sequence is defined as a

sequence that 1) does not contain video cuts, 2) does not involve abrupt illuminant changes

and 3) does not span a wide set of illuminants (even if gradually changing). These three

conditions will be addressed in three different ways.

The video cuts have been resolved by human selection, meaning that the 15 original

sequences of the Gray Ball dataset have been manually divided into 337 smaller sequences,

containing only smooth transitions of the scene content. The final distribution of the

resulting sequences length is shown in Figure 3.3.

Figure 3.3: Visualization of the number of frames for each sequence of the Gray Ball
dataset before the manual division for video cuts (left) and after (right).

The identification of abrupt illuminant changes has been achieved by quantifying the

largest change in the expected illuminant E = (r, g, b) between consecutive frames. More

precisely, for each pair of consecutive frames in a sequence S, it has been calculated the

recovery error between their ground truth illuminants, and then the maximum of such

errors has been selected. From now on this metric will be called “maximum illuminant

change” (MIC)

MIC(S) = max(errrec(ESi
, ESi+1

)), i = 1...NS − 1 (3.2)

Where NS is the number of frames of sequence S.
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The recovery error [51] as used in Equation 3.2, is computed between two generic illuminants

as in equation 1.2.

Rather, a metric for scatteredness has been used to identify sequences spanning a

large range of illuminants. Specifically, the ground truth illuminants have been converted

into Angle-Retaining Chromaticity (ARC) [19], a bidimensional representation where

euclidean distances correspond to angular distances in the original RGB space. Then, the

standard distance [16] of the resulting points has been computed, which is a bidimensional

generalization of the standard deviation, defined as

STD(S) =

√√√√ NS∑
i=1

(xSi
− xS)2

NS

+

NS∑
i=1

(ySi
− yS)2

NS

(3.3)

where (xSi
, ySi

) are the ARC coordinates of the i-th illuminant of sequence S, and (xS, yS)

indicates the average of each coordinate for the sequence.
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Figure 3.4: Temporal stability analysis of two sequences from the Gray Ball dataset a
stable sequence (MIC = 0.189, STD = 0.115) (top) and an unstable sequence (MIC =
8.812, STD = 14.912) (bottom). For each sequence, it shows a sample of the frames
(left), the illuminant change between consecutive frames (center), and the illuminants
distribution in ARC diagram (right).

The information captured by these measures is visualized in Figure 3.4 for each

sequence, the illuminant change between consecutive frames is shown (whose maximum

corresponds to MIC), as well as the ground truth illuminants distribution in Angle

Retaining Chromaticity (whose scatteredness corresponds to STD). The two metrics,

MIC and STD, were then combined to provide a single value that describes the instability

of each sequence first, it has been computed the standard score of both metrics, by

normalizing them for the corresponding cross-sequence average and standard deviation,

and subsequently, an equal-weight average is been computed. The resulting distribution

was finally split in half by using the median value as a threshold to divide the dataset into

168 stable sequences and 169 unstable sequences. In the following, the term “filtered Gray
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Ball dataset” will stand for the selection of temporally stable sequences. Backtracking this

division to the initial measures, it roughly corresponds to applying a threshold over MIC

at 1.5◦ and STD at 0.8◦, which appear adequate after a visual inspection of the dataset.

However, due to the arbitrary nature of any specific threshold, our entire dataset division

into subsequences is available, along with the corresponding values of stability-related

measures, so as to allow further developments by other researchers [18].

With respect to spatial stability, the Gray Ball dataset has been used for many years

for global illuminant estimation analysis, under the implicit assumption of spatial stability.

This assumption is, however, generally unsubstantiated. It is possible, for example, to

find outdoor scenarios where part of the scene is illuminated by direct sunlight, and part

of it is in shadow, illuminated only by the blue of the sky. This configuration breaks

the assumption of constant illumination across the image, and, furthermore, it cannot be

automatically filtered. Despite the fact that the color target (the gray ball) can capture

incoming light from different directions, it only describes the illumination condition in

the foreground of the picture, and it does not provide any way to associate the different

illuminant chromaticities to specific image regions. Notwithstanding these considerations,

for the sake of completeness and for consistency with the existing corpus of color research,

spatial stability analysis will be performed on this dataset as well.

3.2.1.2 Burst Color Constancy Dataset

The Burst Color Constancy dataset (BCC), sometimes referred to as the Temporal

Benchmark dataset, was recently presented by Qian et al. [88], and it was specifically

collected to meet the requirements of the temporal color constancy problem. It consists of

600 sequences of varying lengths (between 3 and 17 frames), divided into 400 sequences

for the training set and 200 for the test set, the latter used in our analysis. Consistently

with the Gray Ball dataset, BCC covers indoor and outdoor scenes with varying weather

and daylight conditions. The images were shot with the use of a Huawei Mate 20 Pro

mobile phone, and stored in a proprietary 16-bit RAW format. Reprocessed 8-bit PNG

images at 3648×2736px resolution were also made available by the dataset authors, and

these were specifically used in our work.

With respect to the temporal color constancy problem, the sequences collected for

the BCC dataset are assumed implicitly stable by design. This allowed the authors to

avoid capturing the images with a color calibration target installed in the scene, and

thus to avoid unintentionally conveying information to learning-based methods. Instead,

the SpyderCube calibration target was put in the scene immediately after the sequence

acquisition, to create an out-of-sequence reference shot that represents the entire video

sequence. For these reasons, there has been no need, nor possibility, of a pre-processing

step.
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Concerning spatial stability, the BCC dataset was collected and presented without any

explicit statement in terms of single or multiple illuminant sources. A visual inspection of

the dataset images confirmed the absence of images visibly illuminated by multiple sources

of light, with the exception of few daylight/shadow instances as observed in the Gray Ball

dataset as well.

3.2.2 Analyzed color constancy methods

The stability analysis has been conducted on a selected variety of color constancy algorithms,

including traditional solutions based on handcrafted features, as well as more recent

approaches based on deep learning. All methods are sensor-independent and, when

necessary, trained on different datasets than the ones used for our analysis, so as to ensure

the absence of any bias and to provide fair results. This particular set of methods has

been selected as a case study, however, the same procedure can be applied to any existing

method for color constancy.

Edge-based color constancy (EB) [100] is a popular framework introduced in 2007

by van de Weijer et al. as a generalization of multiple algorithms based on low-level

image statistics. The free parameters of these methods (Minkowski norm p and standard

deviation σ) have been selected as reported in [12]

• Grey World (GW) p = 1, σ = 0.

• White Point (WP) p = ∞, σ = 0.

• Shades of Gray (SoG) p = 4, σ = 0.

• General Grey World (GGW) p = 9, σ = 9.

• 1st order Grey Edge (GE1) p = 1, σ = 6.

• 2nd order Grey Edge (GE2) p = 1, σ = 1.

The standard deviation parameter σ describes the Gaussian filter applied by the underlying

algorithms, and as such its impact on the final performance is tightly related to the size of

the input image. The images from the BCC dataset have been downscaled to have the

maximum side be 360 pixels long, thus reaching the same dimensions as the images from

the Gray Ball dataset. Preliminary experiments also showed that downscaling the BCC

dataset resulted, on average, in better performance w.r.t. upscaling the Gray Ball dataset.

This pre-processing has been applied only for Edge-Based color constancy since other

algorithms have different requirements or involve an internal rescaling of the input image.

More recent color constancy algorithms have also been considered. Cheng et al. [24]

introduced a color constancy algorithm based on Principal Component Analysis (PCA),

60



observing that the mere analysis of color distribution provides as much information

for illuminant estimation as a more complex spatial analysis. Their solution selects a

predefined percentage of dark and bright pixels using a projection distance in the color

distribution. In our experiments, the percentage parameter has been set to 3.5% following

the best-performing configuration reported by the authors.

The Grayness Index (GI) [87] is a learning-free metric developed by Qian et al. to

identify neutral surfaces (gray pixels) in an input image following the Dichromatic Reflection

Model [94]. This allows the estimation of single illuminant as well as multiple illuminant

information. The default pre-tuned parameters from the official implementation have been

used in our work.

Quasi-Unsupervised color constancy (QU) [10] was developed by Bianco et al. to detect

achromatic pixels in color images, after conversion to grayscale. Their solution is based on

a convolutional neural network that can be trained without color constancy annotation,

relying instead on the weak assumption that training images have been approximately

balanced. The model used in this analysis was trained on images from the ILSVRC2012

dataset of the ImageNet initiative [90].

Fully Convolutional Color Constancy with Confidence-weighted Pooling (FC4) [54]

by Hu et al. implements a neural network architecture that assigns confidence weights

to various patches of an input image, based on the level of information and reliability

that such patches are estimated to carry for the task of color constancy. The official

implementation is supplied with pre-trained models on each fold of the ColorChecker

dataset [37]. In this analysis, the SqueezeNet-based model [56] pretrained on “fold 2 and

0” has been used.

In Sensor-Independent Illumination Estimation (SIIE) [1] authors Afifi et al. developed

a learnable sensor-independent pseudo-RAW space to be used to “canonicalize” the RGB

values of any given camera, under the explicit assumption of input linear RAW-RGB

images. Due to the nature of the Gray Ball dataset, where images are not in RAW format

but already processed by an undisclosed camera pipeline, this method is expected to

underperform, despite our synthetic linearization. For this analysis, the “MATLAB 2018b”

model pre-trained on the NUS [24] and Cube+ [9] datasets has been used.

3.2.3 Analysis of temporal stability

This section is dedicated to the assessment of the temporal stability of color constancy

algorithms, under the assumption of temporally-stable sequences such as those from the

filtered Gray Ball dataset, and from the Burst Color Constancy (BCC) dataset.

Two measures have been applied to describe the temporal stability of a color constancy

algorithm maximum illuminant change MIC, and standard distance STD. These are the

same criteria defined in equations 3.2 and 3.3 of Section 3.2.1 to automatically identify
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Table 3.1: Temporal stability and error evaluation of color constancy algorithms on the
filtered Gray Ball dataset. All values are expressed in degrees, and the lower the better.

Stability measures Error measures
Method MIC ↓ STD ↓ errrec ↓ errrep ↓

GW [100] 3.38 2.76 6.79 7.06
WP [100] 2.81 1.55 5.76 6.01
SoG [100] 3.14 2.57 5.88 6.06
GGW [100] 3.82 3.01 6.31 6.52
GE1 [100] 2.78 2.35 5.66 5.89
GE2 [100] 1.80 1.39 5.41 5.74
PCA [24] 3.66 2.74 5.75 6.04
GI [87] 7.81 4.95 7.65 8.03
QU [10] 2.89 2.15 5.40 5.63
FC4 [54] 3.35 1.97 4.63 4.97
SIIE [1] 2.32 2.30 6.31 6.65

Figure 3.5: Visualization of the temporal stability and recovery error of different methods
on the Gray Ball dataset. Temporal stability is expressed as either maximum illuminant
change (left) or as standard distance (right). The Pareto front is visualized. For all
measures, the lower the better.

stable sequences in the Gray Ball dataset, however in this case the evaluation has been

performed on estimated illuminants as opposed to ground truth illuminants. Each method

was assigned two temporal stability scores, by averaging each of the two aforementioned

measures across the sequences, for any given dataset.

Temporal stability alone is hardly effective in evaluating the quality of a color constancy

algorithm. For example, a “do nothing” algorithm would score the best value for temporal

stability, while not being able to produce an effective illuminant estimation. For this

reason, all algorithms have also been evaluated in terms of traditional single-frame error

measures, such as the recovery and reproduction error. Recovery error and reproduction

error are computed according to Equation 1.2 and Equation 1.3, respectively.
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For the sake of consistency with the stability measures, in this analysis, the error

values have been averaged for each frame in a sequence and subsequently averaged for

the cross-sequence results. Our stability/error evaluation is conceptually equivalent to

assessing a solution in terms of precision and accuracy. The results related to the filtered

Gray Ball dataset are presented in Table 3.1, in terms of maximum illuminant change

(MIC), standard distance (STD), recovery error (errrec) and reproduction error (errrep).

The two temporal stability metrics are also visualized in Figure 3.5 in conjunction with

the recovery error, in order to better visualize the performance of the analyzed methods.

The first thing that the experiment on the Gray Ball dataset suggests is that methods

perform very similarly for both the standard distance and maximum illuminant change

metrics. Generally speaking, then, stability and accuracy are also partially correlated, as

highlighted in Figure 3.5. This behavior is a consequence of the focus on temporally-stable

datasets on such data, a method can be globally accurate only if it is also temporally

stable. This is specifically manifested in the absence of points in the top-left corner of the

plots. Despite this correlation, several rank inversions are present between stability and

error measures. For example, while FC4 is the most accurate method, it is surpassed in

MIC-based stability by several methods. Of these, GE2 and WP appear to be the most

stable in terms of the STD metric as well. Conversely, the worst method on this dataset,

GI, performs consistently the worst on all the chosen metrics.

The same analysis for temporal stability has been performed on the BCC dataset, as

illustrated in Table 3.2 and Figure 3.6. Similar observations from the Gray Ball can be

extended to this dataset as well, in terms of correlation between the different metrics. The

SIIE method outperformed FC4 on the Gray Ball dataset only in terms of MIC, while it

performs consistently better for both temporal stability metrics on the BCC dataset. In

this case, the single worst-performing method according to all metrics is the very simple

white point (WP) algorithm.

The different conclusions that can be derived from analyzing the two datasets can be

traced back to 1) the type of images the Gray Ball dataset is not distributed in linear

RAW format, thus limiting the accuracy of color constancy algorithms, and 2) the type of

annotations the BCC only has sequence-level ground truth information, which is in line

with the assumption of temporal stability, but reduces the precision of the analysis.

3.2.4 Analysis of spatial stability

This section is dedicated to the assessment of the spatial stability of color constancy

algorithms, under the implicit assumption of spatially stable datasets. Each image has

been divided into five windows on a set of fixed locations that cover the entire image

one for each angle and one in the center. A larger window size implies a higher overlap

among windows, which corresponds to moderate camera movements in our synthetic setup.
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Table 3.2: Temporal stability and error evaluation of color constancy algorithms on the
BCC dataset. All values are expressed in degrees, and the lower the better.

Stability measures Error measures
Method MIC ↓ STD ↓ errrec ↓ errrep ↓

GW [100] 2.70 3.20 5.32 7.08
WP [100] 6.31 5.07 6.98 8.26
SoG [100] 4.10 3.49 5.31 6.95
GGW [100] 4.37 4.01 5.92 7.61
GE1 [100] 3.58 3.40 5.52 7.30
GE2 [100] 3.40 3.01 4.79 6.10
PCA [24] 4.01 3.33 5.16 7.12
GI [87] 4.11 3.50 4.63 6.30
QU [10] 3.26 2.95 4.28 5.87
FC4 [10] 3.08 2.64 4.21 5.75
SIIE [1] 2.54 2.52 4.49 6.06

Figure 3.6: Visualization of the temporal stability and recovery error of different methods
on the BCC dataset. Temporal stability is expressed as either maximum illuminant change
(left) or as standard distance (right). The Pareto front is visualized. For all measures, the
lower the better.

In such scenarios, it is arguable that having a consistent output in the color correction

is a desirable property also for real-life applications, as the change in overall incident

illumination on such scale can be expected to be limited. Given the arbitrary nature

of fixing a window size, information is presented at various scales from 50% to 90% of

the original image sides, with a step of 10%, and the final scale (90%) will be used as a

reference to derive any conclusions about spatial stability.

All the analyzed color constancy methods have been applied to each window of each

image. As for the temporal stability problem, it is important to capture both the accuracy

and precision of analyzed algorithms. Specifically, they are presented in the form of

angular errors errrec and errrep for accuracy, and standard distance STD for precision.
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Table 3.3: Spatial stability evaluation of color constancy algorithms on the Gray Ball
dataset at 90% window side. All values are expressed in degrees, and the lower the better.

Stability measures Error measures
Method STD ↓ errrec ↓ errrep ↓

GW [100] 0.49 7.09 7.62
WP [100] 0.34 6.83 7.08
SoG [100] 0.44 6.17 6.49
GGW [100] 0.60 6.82 7.19
GE1 [100] 0.45 6.05 6.44
GE2 [100] 0.28 5.74 6.16
PCA [24] 0.49 6.40 6.85
GI [87] 0.96 7.02 7.61
QU [10] 0.55 6.45 6.73
FC4 [54] 1.12 5.67 6.02
SIIE [1] 0.49 7.53 7.92

The maximum illuminant change MIC was well suited to highlight flickering phenomena

in temporal sequences, but it does not provide any meaningful information if applied to

the five windows of spatial stability analysis.

Figure 3.7: Visualization of the standard distance (left) and recovery error (right) of
different methods on the Gray Ball dataset. For all measures, the lower the better.

Table 3.3 and Figure 3.7 report the aforementioned metrics on the Gray Ball dataset,

with a detail per window size in the figure. Since larger windows are necessarily more

overlapped, they are expected to lead to better stability, so any comparison should be

made across methods and not across window sizes. This expectation is verified, as visible

in the left side of Figure 3.7, where all curves exhibit a monotonic decreasing behavior.

The plotted information at 90% window side is also presented numerically in Table 3.3.

The most spatially stable algorithm on the Gray Ball dataset is GE2, in line with the
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Table 3.4: Spatial stability evaluation of color constancy algorithms on the BCC dataset
at 90% window side. All values are expressed in degrees, and the lower the better.

Stability measures Error measures
Method STD ↓ errrec ↓ errrep ↓

GW [100] 0.24 5.65 7.46
WP [100] 0.55 6.70 7.99
SoG [100] 0.31 5.52 7.18
GGW [100] 0.40 6.07 7.77
GE1 [100] 0.38 5.88 7.72
GE2 [100] 0.29 5.03 6.38
PCA [24] 0.30 5.40 7.39
GI [87] 0.40 4.87 6.55
QU [10] 0.40 4.45 6.04
FC4 [54] 0.43 3.84 5.33
SIIE [1] 0.29 4.55 6.10

analysis on temporal stability from Section 3.2.3. Interestingly, FC4 is the least stable

algorithm specifically for large window sizes (90%), although it maintains a relatively

consistent stability performance for smaller window sizes, compared to other methods. In

terms of error analysis, a general trend of improvement with larger window sizes is also

expected from the recovery error curves in Figure 3.7. To this extent, the only exception

appears to be WP, which exhibits a reverse trend one possible explanation is that, by

forcing the algorithm to ignore parts of the image, it is more likely to produce a better

estimation from one or more windows. The behavior of FC4 is also unusual, displaying a

significant improvement from 50% window size to 60%, but then essentially maintaining

the same error performance for the remaining window sizes. Nonetheless, it is, in general,

the best-performing method, consistently with the Gray Ball dataset analysis.

Table 3.4 and Figure 3.8 present the same spatial stability analysis on the BCC

dataset, showing an overall comparable behavior. The expectation to observe improving

performance with increasing window sizes is respected also for this dataset, with the only

observed exception being the WP on the recovery error metric. FC4 is the most accurate

algorithm, with a significant gap from the second-best methods QU and SIIE. In terms

of spatial stability, however, the conceptually simple GW appears to exhibit the best

performance.

It is also interesting to observe that, on the BCC dataset, the error statistics on

learning-based algorithms can be neatly separated from those of traditional handcrafted

solutions, while this does not apply to the Gray Ball dataset.
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Figure 3.8: Visualization of the standard distance (left) and recovery error (right) of
different methods on the BCC dataset. For all measures, the lower the better.

3.2.5 Discussion of aggregated results

The analysis presented in this paper highlights the importance of evaluating algorithms

according to multiple measures, and it can be useful in selecting the most appropriate

color constancy method depending on specific application constraints.

To this extent, Table 3.5 presents an aggregated view of the information produced in

the previous sections. The temporal stability rank is based on an average of temporal

stability measures MIC and STD on both the Gray Ball and BCC datasets. Similarly, the

spatial rank is based on the average of spatial STD on both datasets, and the error rank

is based on errrec and errrep on the two datasets. Finally, a global rank is presented in the

last column of Table 3.5. This ordering is determined through Borda’s method for rank

aggregation [14, 70], where individual ranks are averaged, and elements are re-ranked based

on such average. This approach enables the combination of statistics coming from different

domains (temporal, spatial, error), as it provides invariance to the different magnitude

and distribution of the underlying values. Equal-weighted average has been used for our

analysis, although in the future different applications might motivate the selection of

different weights for the temporal, spatial, and error components. In this particular setup,

the best ranking method at a global level appears to be GE2, coherently with the individual

temporal and spatial rank assessments. The second method is SIIE, which strikes a good

balance across all evaluation criteria. The highly-accurate and temporally-stable method

FC4 is penalized in global rank by its spatial instability, thus achieving intermediate overall

performance. Finally, the lowest-ranked method in our experimental setup appears to be

GI, which is negatively impacted by its poor error performance on the Gray Ball dataset,

and by its generally low stability.
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Table 3.5: Aggregated ranks of the analyzed color constancy methods, according to multiple
measures. Underlying values are expressed in degrees

.

Method
Temporal

rank
Spatial
rank

Error
rank

Global
rank

GW [100] 5 (3.01) 2 (0.37) 9 (6.76) 6
WP [100] 10 (3.94) 7 (0.44) 11 (6.95) 9
SoG [100] 7 (3.33) 2 (0.37) 4 (6.19) 3
GGW [100] 9 (3.80) 9 (0.50) 10 (6.78) 9
GE1 [100] 6 (3.03) 6 (0.42) 7 (6.31) 7
GE2 [100] 1 (2.40) 1 (0.28) 3 (5.67) 1
PCA [24] 8 (3.44) 5 (0.40) 6 (6.26) 7
GI [87] 11 (5.09) 10 (0.68) 8 (6.58) 11
QU [10] 4 (2.81) 8 (0.47) 2 (5.61) 4
FC4 [54] 3 (2.76) 11 (0.77) 1 (5.05) 5
SIIE [1] 2 (2.42) 4 (0.39) 5 (6.20) 2

3.2.6 Conclusions

This work presents a new methodology to evaluate color constancy algorithms by taking

into account their temporal and spatial stability. Two color constancy datasets have been

selected from the state of the art the Gray Ball and the BCC, which have been analyzed

and pre-processed for the purpose of this evaluation, making the resulting characterization

available for public download. A case study has been conducted on a wide set of color

constancy algorithms, although the presented evaluation methodology can be applied to

any given method. Concerning temporal stability, which measures the output consistency

throughout frames in a video sequence, it has been observed a general correlation with

traditional error metrics. However, some notable exceptions have been identified. For

example, the popular FC4 algorithm is consistently the best-performing one in terms of

angular error, but it is outperformed in terms of stability by the SIIE algorithm on both

analyzed datasets, and by several other methods on the Gray Ball dataset. The spatial

stability analysis, which evaluates their output consistency across multiple windows of the

input image, also led to similar conclusions FC4 has been identified as the least stable

algorithm for large window sizes on the Gray Ball dataset, and among the least stable

ones on the BCC dataset, despite confirming its supremacy in terms of traditional error

measures.

The analysis conducted in this paper lays the basis for identifying those single-shot

color constancy algorithms that hold the greatest potential for expansion to video color

constancy. Future investigations could also account for computational complexity a method

that is characterized by good or average performance in terms of traditional angular error,

but which displays scarce temporal and spatial stability, would potentially require a
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post-processing step to enforce temporal consistency. The resulting overhead at inference

time could be prohibitive for a video-oriented application if the initial method is not

inherently efficient.

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper are available in

Ref. [18].

3.3 LSTM for the illuminant estimation in mobile

settings

Burst color constancy exploits a small group of frames to estimate the sequence illuminant,

based on the assumption that those frames have been acquired under the same lighting

condition. However, in video acquisition, the illuminant can change from frame to frame,

for example, the video may be acquired by a person walking from a room with natural

light to a room with artificial light, or it may be acquired in a forest where the lighting

changes due to the movement of the sun and the shadows cast by the trees or, yet again,

in a city street where the lighting changes due to the presence of different types of street

lamps. Temporal Color Constancy, instead aims at estimating the illuminant of the Nth

frame of the sequence (referred to as shot-frame). To do so it suggests exploiting the N

preceding frame to the shot frame, in order to base the estimation on more information.

We extend this concept, by saying that if the Nth frame can benefit from the information of

the first frame, then also the first frame can benefit from the information of the Nth frame.

Therefore, we propose a method that given a sequence of frames returns an illuminant

estimation for each frame.

3.3.1 Method

The goal of this work is to establish a method for achieving temporal color constancy that

guarantees consistent illuminant estimations over time. The method takes a sequence of

frames as input and produces an illuminant estimation for each individual frame. The

illuminant estimations not only need to correct the color of each frame, but they also need

to remain stable over time when compared with adjacent frames and frames containing

the same objects.

The method consists of a recurrent neural network, composed of 1) a convolutional

neural block, designed to extract semantic features, and 2) an LSTM block, that pro-

vides spatial recurrent information. For the convolutional neural block, we selected the
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MobileNetv2 architecture since it is specifically tailored for resource-constrained envi-

ronments [92] and fast execution time. This aspect becomes particularly problematic

in a video-oriented domain, where time is considered critical. Fast execution time is

particularly important in real-time scenarios, such as assisted driving, but also for off-line

color constancy set-up, where a fast computation is still critical for long video sequences.

In such scenarios, therefore, it is fundamental to select an efficient architectural design

[112].

Two are the main characteristics of MobileNetv2 the depthwise separable convolution

and the linear bottlenecks.

Depthwise separable convolution [53] is an operation that replaces a full convolutional

operation with a factorized version that splits convolution into two separate layers. The

first layer is called a depthwise convolution, it performs lightweight filtering by applying

a single convolutional filter per input channel. The second layer is a 1 × 1 convolution,

called a pointwise convolution, which is responsible for building new features through

computing linear combinations of the input channels. Depthwise separable convolution

works empirically as well as a traditional convolutional operation and reduces computation

compared to traditional layers by almost a factor of k2, where k is the kernel size.

The linear bottleneck layers, instead, are responsible for reducing the dimensionality

of the activation space by preserving the manifold of interest. The bottleneck blocks

appear similar to residual blocks where each block contains an input followed by several

bottlenecks then followed by expansion [47]. The structure of a bottleneck layer is shown

in Table 3.6 for a block of size h× w, expansion factor t and kernel size k with d′ input
channels and d′′ output channels.

Input Operator Output

h× w × k 1× 1 conv2d, ReLu6 h× w × (tk)
h× w × tk 3× 3 dwise s=s, ReLu6 h

s
× w

s
× (tk)

h
s
× w

s
× (tk) linear 1× 1 conv2d h

s
× w

s
× k′

Table 3.6: Bottleneck residual block transforming from k to k′ channels, with stride s, and
expansion factor t.

Table 3.7, instead, shows the entire architecture of MobileNetV2. The architecture of

MobileNetV2 contains the initial fully convolution layer with 32 filters, followed by 19

residual bottleneck layers described in the Table 3.6. ReLU6 has been selected as the

non-linearity activation function because of its robustness when used with low-precision

computation [27]. Kernel size is also set up to be 3×3 as it is standard for modern networks,

and utilizes dropout and batch normalization during training.

For this work, we used the entire structure of MobileNetV2, with the exception of the

last two layers. Instead, we decided to feed the resulting feature map to an LSTM layer,

70



input operator t c n s

2242 × 3 conv2d - 32 1 2
1122 × 32 bottleneck 1 16 1 1
1122 × 16 bottleneck 6 24 2 2
562 × 24 bottleneck 6 32 3 2
282 × 32 bottleneck 6 64 4 2
142 × 64 bottleneck 6 96 3 1
142 × 96 bottleneck 6 160 3 2
72 × 160 bottleneck 6 320 1 1
72 × 320 conv2d 1× 1 - 1280 1 1
72 × 1280 avgpool 7× 7 - - 1 -

1× 1× 1280 conv2d 1× 1 - k - -

Table 3.7: MobileNetV2 Each line describes a sequence of 1 or more identical (modulo
stride) layers, repeated n times. All layers in the same sequence have the same number c
of output channels. The first layer of each sequence has a stride s and all others use stride
1. All spatial convolutions use 3 × 3 kernels. The expansion factor t is always applied to
the input size as described in Table 3.6.

with the purpose of capturing spatial recurrent features.

Long-short-term memory (LSTM) networks have been first introduced by Hochreiter

and Schmidhuber [49]. They are a special kind of Recurrent Neural Network capable of

learning long-term dependencies in sequences. Traditional Recurrent Neural Networks

are sensitive to back-propagation error, which grows or shrinks at each time step until it

blows up or vanishes. It has been empirically proven that a traditional Recurrent Neural

Network cannot bridge more than 5-10 time steps [96]. LSTM is a gradient-based method

capable of addressing the gradient vanishing problem. A common LSTM unit is composed

of a cell, an input gate, an output gate [48], and a forget gate [38]. The cell remembers

values over arbitrary time intervals and the three gates regulate the flow of information

into and out of the cell. Forget gates decide what information to discard from a previous

state by assigning a previous state, compared to a current input, a value between 0 and 1.

A (rounded) value of 1 means to keep the information, and a value of 0 means to discard

it. Input gates decide which pieces of new information to store in the current state, using

the same system as forget gates. Output gates control which pieces of information in the

current state to output by assigning a value from 0 to 1 to the information, considering

the previous and current states. Selectively outputting relevant information from the

current state allows the LSTM network to maintain useful, long-term dependencies to make

predictions, both in current and future time steps. In greater detail, during training, our

LSTM layer takes a sequence of dimensionality 20× 1280, it computes a series of hidden

states (h1, h2, ..., ht) and produces an output of dimensionality 20× 51. The computation

is carried out by iterating the following operations

71



it = σ(Wiixt + bii +Whiht−1 + bhi)

ft = σ(Wifxt + bif +Whfht−1 + bhf )

gt = tanh(Wigxt + big +Whght−1 + bhg)

ot = σ(Wioxt + bio +Whoht−1 + bho)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)

where ht is the hidden state at time t, ct is the cell state at time t, xt is the input at time

t, ht−1 is the hidden state of the layer at time t− 1 or the initial hidden state at time 0,

and it, ft, gt, ot are the input, forget, cell, and output gates, respectively. σ is the sigmoid

function, and ⊙ is the Hadamard product [91].

The resulting feature map ht is then fed to a fully connected layer, with a σ sigmoid

activation function, of dimensionality 51×3. Thus, the final network architecture resulting

is shown in Table 3.8.

input operator t c n s

2242 × 3 conv2d - 32 1 2
1122 × 32 bottleneck 1 16 1 1
1122 × 16 bottleneck 6 24 2 2
562 × 24 bottleneck 6 32 3 2
282 × 32 bottleneck 6 64 4 2
142 × 64 bottleneck 6 96 3 1
142 × 96 bottleneck 6 160 3 2
72 × 160 bottleneck 6 320 1 1
72 × 320 conv2d 1× 1 - 1280 1 1
nf × 1280 LSTM 1280× 51 - 51 1 -
nf × 51 FC 51× 3 - 3 1 -

Table 3.8: Final architecture structure, where nf is the number of frames provided to the
network. The description of columns t, c, n, and s, is the same as the one provided for 3.7.

3.3.2 Experiments

A temporal color constancy method should provide illuminant estimations that satisfy

two main characteristics. The first one is the ”accuracy”, with this term we indicate the

ability of a color constancy method to return an illuminant estimation able to discard any

color cast from the given image. The second term, instead, is the temporal consistency,

which is the ability of a given algorithm to maintain a consistent output response over
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similar illuminated frames, despite the change of content. Therefore, this work proposes to

evaluate the performance of the hereby presented algorithm by taking into consideration

both the accuracy and the temporal consistency characteristics. The accuracy will be

evaluated in terms of recovery error (as defined in Equation 1.2), while the temporal

consistency will be evaluated in terms of ”max illuminant change” (MIC) and standard

deviation (as defined respectively in Equation 3.2 and 3.3).

sequence mean
recovery error

sequence median
recovery error

sequence max
recovery error

mean standard
deviation

mean MIC
single frame mean
recovery error

all sequences 2.54 2.11 13.16 0.62 0.70 2.40
stable sequences 2.00 0.81 9.52 0.65 0.71 1.90
unstable sequences 2.86 2.45 13.16 0.61 0.70 2.68

Table 3.9: Evaluation of the performance of the presented method. The evaluation has
been conducted both in terms of recovery error (◦), MIC, and standard deviation, for
all the metrics the lower the value the better. The performance is also analyzed by the
stability of the frame sequence.

Table 3.9 returns a view image of the performance of the proposed method for temporal

color constancy. Since the stability of a sequence of frames is a key factor in an analysis like

this one, the performance is reported for all the sequences, and for the stable and unstable

sequences separately. Also, the first four columns report the results of the recovery error

per sequence, which means that first the recovery errors of a sequence get averaged, and

then the other metrics are performed. While, the last column of the table, returns the

single frame mean recovery error performance, which means that the frames are considered

as single images, instead as part of a sequence. As predicted the table shows that the

method performs better for the stable sequences than for the unstable ones in terms of

recovery error, in fact, we can see an improvement of 30% for the sequence mean recovery

error for the stable sequences compared to the unstable ones. This is even more evident

for the sequence median recovery error, where the improvement for the stable sequences

compared to the unstable ones is 66%. Instead, this is not true for the stability metrics, for

which the method has similar performance despite the stability of the sequence provided

as input.

The state-of-the-art does not provide a method that extends the concept of temporal

color constancy as the one proposed in this work, therefore, the most suitable one has been

method mean recovery error median recovery error

RCC 9.33 7.40
MN+LSTM 2.12 1.06

Table 3.10: Performance comparison between the MobileNet+LSTM method with the
state-of-the-art RCC method. The comparison is performed in terms of mean and median
recovery error, expressed in degrees (◦) the lower the better.
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selected for comparison (Recurrent Color Constancy (RCC) [86]). For a fair comparison,

RCC has been run on the Greyball dataset with the partition utilized for the previous

experiment. Table 3.10 shows the comparison between the two methods, carried out in

terms of mean and median recovery error. The proposed temporal color constancy method

outperforms the RCC method in both metrics, in particular, it reaches a 77% improvement

for the mean recovery error and a 85% improvement for the median recovery error.

3.3.3 Conclusions

Temporal color constancy is a new and challenging problem, that has received little

attention in the state of the art. Some of the published methods are based on the

assumption that the preceding frame of the shot frame contains useful information that

can lead to a more accurate illuminant estimation. This work extends the assumption and

proves that if the shot frame can benefit from the information stored in the preceding

frames, then also those frames can benefit from the shot frame. The proposed method is

composed of a backbone that extracts semantic information, and an LSTM layer, that

maintains spatial recurrent information over the frames. The experiments show that an

improvement up to 77% for the mean recovery error is possible with respect to the state-of-

the-art. The work also proves that such results are achievable even in resource-constrained

environments since MobileNetV2 has been selected as the backbone network.
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Chapter 4

Conclusions

In this thesis, the primary objective has been to shed light on the complex and challenging

problem of computational color constancy. The nature of this problem is ill-posed, which

makes it even more challenging. Moreover, it encompasses various multidisciplinary

aspects that need to be taken into account while tackling the issue. The thesis takes a

comprehensive approach and delves into two possible domain extensions of the problem -

multispectral and temporal. The aim is to provide a detailed understanding of the problem

and propose effective solutions to overcome it.

First, the thesis offers a comprehensive insight into the advanced concepts of computa-

tional color constancy, multispectral imaging, and temporal color constancy. It elaborates

on the challenges faced while dealing with these concepts, their related works, and limita-

tions. Second, methods facing the challenges and addressing the presented limitations are

proposed.

Multispectral Color Constancy One of the main contributions of this thesis is to

show that multispectral imaging yields the potential to improve traditional RGB color

constancy algorithms. Traditional imaging systems capture the light in three wavelength

bands, allowing for a spatially accurate representation that enables humans to detect and

recognize objects. However, the spectral information content is limited. The aim of chapter

2 has been to show that the additional information acquired by multispectral imaging can

be used to improve the accuracy of illuminant estimation methods. Two are the approaches

presented to investigate this claim. The work presented in 2.2 suggests extending a selected

group of statistical white balancing methods to the multispectral domain and using the

multispectral illuminant estimation to improve the traditional RGB color constancy. As

shown, converting the multispectral illuminant estimation to the RGB domain is not

sufficient to improve the performance of such methods. Therefore, four re-elaboration

techniques are presented to adjust the multispectral illuminant estimations to better match

the target illuminant after conversion. This approach and its main hypothesis have been
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proven to be successful. The work in section 2.3, instead, aims to investigate whether

using both multispectral and color imaging can help estimate color illuminants. While

multispectral sensors are becoming more affordable and lightweight, full-spatial resolution

sensors are still too expensive. Thus, this work aims to combine color information, and

spectral information at a low resolution. The main focus of this investigation is to evaluate

the accuracy of the illuminant estimation method at different spatial resolutions, while also

determining which domain (color or spectral) is better suited for the learning phase. The

results show that combining color and spectral information can improve the traditional

RGB color constancy problem, but higher-resolution spectral information is necessary to

achieve the best results.

Temporal Color Constancy When attempting to extend color constancy to the

temporal domain, a new set of challenges arises. Firstly, a temporal color constancy

method must be capable of correcting all frames in a sequence, ensuring that the colors of

the scene appear as if they were captured in a controlled environment. Secondly, objects

and colors in these scenes must remain consistent over time and should not create any

unpleasant artifacts. Section 3.2 studies the direct applicability of single-frame methods

to frame sequences. To do so, it provides a common procedure to analyze the temporal

and spatial stability of single-frame color constancy methods. The evaluation of temporal

stability relies largely on the consistency of illuminant estimations provided by the single-

frame methods over time. Thus, evaluating temporal consistency requires a suitable metric

for automatic assessment. This work aims to provide the scientific community with suitable

metrics, in particular, maximum illuminant change (MIC) and standard deviation (SD).

The analysis highlighted a certain correlation between traditional error metrics, designed

to assess the accuracy of the illuminant estimation, and the temporal consistency metrics.

However, the analysis also detected some exceptions. Section 3.3, instead, provides a

method for illuminant estimation in video sequences. The approach involves convolutional

neural networks and Long Short-Term Memory networks (LSTM). This method also

broadens the definition of temporal color constancy. Typically, temporal color constancy is

used to estimate the illuminant of a selected frame by utilizing information from previous

frames. However, the proposed approach expands the idea that all adjacent frames in a

sequence have the potential to improve illuminant estimation, regardless of their order. This

study corroborates this hypothesis and outperforms current state-of-the-art performance.

Furthermore, this outcome is achieved by using a convolutional neural network specifically

designed for resource-limited settings.

76



References

[1] Mahmoud Afifi and Michael S Brown. Sensor-independent illumination estimation

for dnn models. arXiv preprint arXiv:1912.06888, 2019.

[2] Mahmoud Afifi, Brian Price, Scott Cohen, and Michael S Brown. When color

constancy goes wrong: Correcting improperly white-balanced images. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

1535–1544, 2019.

[3] Mirko Agarla, Simone Bianco, Marco Buzzelli, Luigi Celona, and Raimondo Schettini.

Fast-n-squeeze: towards real-time spectral reconstruction from RGB images. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 1132–1139, 2022.

[4] Vivek Agarwal, Besma R Abidi, Andreas Koschan, and Mongi A Abidi. An overview

of color constancy algorithms. Journal of Pattern Recognition Research, 1(1):42–54,

2006.

[5] Hoda Aghaei and Brian Funt. A flying gray ball multi-illuminant image dataset

for color research. In Color and Imaging Conference, volume 2020, pages 142–149.

Society for Imaging Science and Technology, 2020.

[6] Boaz Arad, Ohad Ben-Shahar, and Radu Timofte. Ntire 2018 challenge on spectral

reconstruction from RGB images. In Conference on Computer Vision and Pattern

Recognition Workshops, pages 929–938. IEEE, 2018.

[7] Boaz Arad, Radu Timofte, Ohad Ben-Shahar, Yi-Tun Lin, and Graham D Finlayson.

Ntire 2020 challenge on spectral reconstruction from an RGB image. In Conference

on Computer Vision and Pattern Recognition Workshops, pages 446–447. IEEE/CVF,

2020.

[8] Boaz Arad, Radu Timofte, Rony Yahel, Nimrod Morag, Amir Bernat, Yuanhao Cai,

Jing Lin, Zudi Lin, Haoqian Wang, Yulun Zhang, et al. Ntire 2022 spectral recovery

challenge and data set. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 863–881, 2022.

77
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