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Abstract: The classification of EEG during motor imagery (MI) represents a challenging task in neuro-rehabilitation. In
2016, a deep learning (DL) model called EEGNet (based on CNN) and its variants attracted much attention
for their ability to reach 80% accuracy in a 4-class MI classification. However, they can poorly explain
their output decisions, preventing them from definitely solving questions related to inter-subject variability,
generalization, and optimal classification. In this paper, we propose vEEGNet, a new model based on EEGNet,
whose objective is now two-fold: it is used to classify MI, but also to reconstruct (and eventually generate)
EEG signals. The work is still preliminary, but we are able to show that vEEGNet is able to classify 4 types
of MI with performances at the state of the art, and, more interestingly, we found out that the reconstructed
signals are consistent with the so-called motor-related cortical potentials, very specific and well-known motor-
related EEG patterns. Thus, jointly training vEEGNet to both classify and reconstruct EEG might lead it,
in the future, to decrease the inter-subject performance variability, and also to generate new EEG samples to
augment small datasets to improve classification, with a consequent strong impact on neuro-rehabilitation.

1 INTRODUCTION

Electroencephalography (EEG)-based classification
represents a challenging and critical problem in many
applications, e.g., neuroscience and brain–computer
interface (BCI) to support the diagnosis of move-
ment disorders and motor rehabilitation (Cisotto et al.,
2022). Particularly, besides promising achievements
in supporting disabled individuals, neurorobotics and
BCI systems (Beraldo et al., 2022) are still poorly
performing in many tasks, e.g., motor imagery (MI)
classification. There exist several machine learning
(ML) and deep learning (DL) models to classify EEG
of imagined movements: filter-bank common spa-
tial pattern (FBCSP) (Kai Keng Ang et al., 2008) is
the standard ML model, very common in BCI ap-
plications where it is used also in real-time. More
recently, convolutional neural networks (CNN) have
gained a lot of attention as architectures particularly
good in classifying EEG. In 2016, EEGNet, an ar-
chitecture made of 2 blocks, each one composed of
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2 convolutional layers and a fully-connected layer,
was published by (Lawhern et al., 2016). Given its
success in classifying EEG in different classes of
movements (both executed and imagined), a num-
ber of variants were presented, including Temporary
Constrained Sparse Group Lasso enhanced EEGNet
(TSGL-EEGNet) (Deng et al., 2021), Multibranch
Shallow CNN (MBShallow ConvNet) (Altuwaijri and
Muhammad, 2022), MI-EEGNet (Riyad et al., 2021),
Quantized EEGNet (Q-EEGNet) (Schneider et al.,
2020), DynamicNet (Zancanaro et al., 2021), and
other general-purpose CNN models, namely Channel-
wise CNN (CW-CNN) (Sakhavi et al., 2018), Densely
Feature Fusion CNN (DFFN) (Li et al., 2019a),
and the Monolithic Network (Olivas and Chacon,
2018). They differ from each other by a more (e.g.,
MI-EEGNet) or less (e.g., EEGNet) invasive pre-
processing of the EEG signal, by their architectures
with single or multiple EEGNet units combined to
extract one or a few sets of artificial features (e.g.,
TSGL-EEGNet and MBShallow ConvNet), and by
their feasibility in running on portable devices (e.g.,
Q-EEGNet).

They achieve accuracies in the range of 70% to
80% in a 4-class MI classification. However, they



cannot, or poorly, relate their classification decisions
with well-known EEG patterns or biomarkers.

In this paper, we aim to propose our own DL
model, named as vEEGNet, whose objective is two-
fold: on one side, the model is used to classify EEG
signals obtained during the participant’s MI of dif-
ferent body segments (i.e., one hand, the feet, or the
tongue); on the other side, the model is enriched by
a generative module that is able to reconstruct some
specific EEG components, strongly related to MI.
vEEGNet consists of two learning modules, i.e., an
unsupervised representation learning module, and a
supervised module. The first one is formed by a vari-
ational auto-encoder (VAE) (Kingma and Welling,
2013; Zancanaro et al., 2022; Li et al., 2019b), while
the second is implemented using a feed-forward neu-
ral network (FFNN). In the VAE, we exploit EEGNet
as an encoder (and, conversely, its mirrored version as
a decoder) to extract a compact and highly informa-
tive representation of the EEG. The encoder extracts
a compact and latent representation of the EEG that is
later used by the FFNN to classify the EEG into four
different classes of movement. At the same time, that
representation made it possible to generate new syn-
thetic EEG samples. To take advantage of this com-
bined approach, vEEGNet was trained by minimizing
a joint loss function given by the sum of the VAE loss
and the classifier loss.

To assess the performance of vEEGNet as classi-
fier, we tested it on the public dataset 2a from the BCI
competition IV (containing EEG during four types
of imagined movements) and compared the results
with other models based on EEGNet that were pre-
viously employed to classify the same dataset. We
show that vEEGNet reaches comparable classification
accuracies and Cohen’s κ score as the state of the
art (approximately ranging between 70% and 80%).
Then, we investigated its ability to decode a multi-
channel EEG from its latent representation and we
might speculate that our model is able to reconstruct
a particular low-frequency well-known component of
the EEG that is related to any executed or imagined
movement, i.e., the motor related cortical potential
(MRCP). However, this contribution is still prelimi-
nary and, as such, a number of limitations and open
challenges are also discussed, and will need further
investigations. Nevertheless, this paper represents a
promising way to shed more light on the ability of DL
models to solve very complex tasks, such as recog-
nizing different imagined movements from an EEG,
providing a link to common neurophysiological pat-
terns that the model might be able to identify and also
generate. Furthermore, this paper can contribute to
the research question of how to eventually augment

EEG datasets, that typically suffer from limited sizes,
preventing DL models to reach satisfactory levels of
robustness and generalization.

The rest of this paper is organized as follows: Sec-
tion 2 describes the VAE theory and introduces the
vEEGNet model. Section 3 presents the classification
results with respect to other CNN or EEGNet-based
models, and discusses the reconstruction and gener-
ative potentialities of vEEGNet. Finally, section 4
concludes the paper and paves the way toward new
promising future directions.

2 MATERIALS AND METHODS

2.1 Variational Autoencoder

VAE is an effective encoding-decoding DL approach
that provides a structured latent space to be used
for random sampling and interpolation (Kingma and
Welling, 2013). These properties have led to ef-
ficient implementations of VAEs for several unsu-
pervised and semi-supervised learning problems (see
e.g., (Hinton and Salakhutdinov, 2006; Li et al.,
2019b; Zancanaro et al., 2022)). In probabilistic
terms, a VAE is able to learn a variational (approx-
imate posterior) distribution qφ(z|x) of latent vari-
ables z, given the observations x, as well as a gen-
erative model pθ(x|z) (Blei et al., 2017). This task is
obtained using an encoder-decoder pair of deep net-
works parametrized by φ and θ, respectively. The
training consists of the minimization (w.r.t. param-
eters φ and θ) of the VAE loss, LVAE . Typically,
the VAE loss is expressed in terms of evidence lower
bound (ELBO) for the (evidence) probability p(x),
namely L(θ,φ;x): LVAE =−L(θ,φ;x), provided that

L(θ,φ;x) = Eqφ(z|x)

(
log

pθ(x,z)
qφ(z|x))

)
(1)

Thus, for the VAE training, minimizing LVAE means
maximizing the ELBO for p(x). The gap between
p(x) and L(θ,φ;x) can be best expressed by consid-
ering the Kullback-Leibler divergence (K L) between
the variational qφ(z|x) and posterior pθ(x|z) distribu-
tions, which turns to be

K L [qφ(z|x)||pθ(x|z)] =−L(θ,φ;x)+ p(x) (2)

Since K L [qφ(z|x)||pθ(x|z)] ≥ 0, one arrives at the
lower bound L(θ,φ;x) ≤ p(x). Similarly, ELBO can
be also formulated as

L(θ,φ;x) = Eq(pθ(x|z))−K L [qφ(z|x)||p(z)] (3)



In this way, the second term K L [qφ(z|x)||p(z)] acts
as a regularizer, thus penalizing those surrogate dis-
tributions, qφ(z|x), too far away from the predefined
p(z).

2.2 vEEGNet

In this work, we devised a new combined model based
on a VAE (Kingma and Welling, 2013; Li et al.,
2019b) and our previous implementation of EEG-
Net (Zancanaro et al., 2021), as represented in Fig. 1.
Particularly, the model exploits EEGNet in the VAE,
for both encoding and decoding the EEG samples,
while an FFNN is used for the classification. As
a consequence, the model consists of two different
mechanisms, ruled by an unsupervised and a super-
vised learning, respectively, as further explained in
the following.

2.2.1 Unsupervised mechanism

The unsupervised mechanism (i.e., the VAE) exploits
the EEGNet architecture to supply the latent distri-
bution qφ(z|x) as well as the posterior pθ(x|z). We
assumed isotropic Gaussian distribution for both the
prior p(z) and the approximate posterior, qφ(z|x), i.e.,

p(z) = N (0,I) (4)

qφ(z|x) = N (z;µ(x;φ),σ2(x;φ)III) (5)

where µ(x;φ) and σ(x;φ) are the functions imple-
mented by the vEEGNet encoder to encode the
mean and the (diagonal) covariance matrix of the
Gaussian distribution. With these assumptions,
K L [qφ(z|x)||p(z)] (the regularization term defined in
Section 2.1) can be directly expressed in the compact
analytical form (Kingma and Welling, 2013):

LKL = K L [qφ(z|x)||p(z)] =
1
2

d

∑
i=1

(σ2
i +µ2

i −1− log(σ2
i ))

(6)

where µi and σ2
i are the predicted mean and variance

values of the corresponding i-th latent component
of z. The vEEGNet encoder implements a standard
EEGNet with its usual blocks, i.e., a temporal convo-
lution, a spatial convolution, and a separable convolu-
tion. Lastly, the output is flattened and passed through
a fully-connected layer. From the vEEGNet encoder’s
output (i.e., giving qφ(z|x)), we sample a vector, say
z1

1, and provide it as the input for the vEEGNet de-
coder that has the final aim to reconstruct the origi-
nal EEG signal. The vEEGNet decoder implements

1Because this operation is not differentiable this is typically obtained with
reparametrization by setting z1 = µ+σ ·N(0,111).

a mirrored EEGNet structure using transposed convo-
lutions (in place of the standard convolution) and up-
sample layers (in place of the pooling layers). In both
the vEEGNet encoder and the decoder, batch normal-
ization and dropout layers were added to increase per-
formance and stability during training.

2.2.2 Supervised mechanism

The supervised mechanism is given by an FFNN that
classifies the EEG into 4 different classes. The FFNN
consists of an input layer (128 neurons), followed by
one hidden layer (64 neurons) and one output layer (4
neurons) for the target. In vEEGNet, a second vector
z2 = [µµµ,σσσ2] is obtained by concatenating the output
of the encoder, i.e. the parameters vectors µ̃ = µ(x;φφφ)
and σ̃ = σ(x;φφφ). This new vector is fed into the clas-
sifier to output the predicted class ỹ. For the classifier,
we used the negative log-likelihood loss function de-
fined as:

Lcl f =− log(ỹ) ·y (7)

where log(ỹ) are the log probabilities of possible la-
bels related to input x, and y is a one hot encoded
vector of the true labels of input x.

Overall, vEEGNet aims to minimize the loss func-
tion LTotal given by the sum of the VAE loss func-
tion and the classifier loss function (Lcl f ), as follows:
LTotal = LVAE +Lcl f .

3 RESULTS AND DISCUSSION

3.1 Dataset and vEEGNet
implementation

To test the reliability of vEEGNet as a model for
EEG-based MI, we used it to classify the 4 differ-
ent MI tasks included in the public dataset 2a of the
IV BCI competition (Blankertz et al., 2007). The
latter includes 22-channel EEG recordings from 9
subjects repeatedly performing MI of either right or
left hand, feet or tongue. A set of 288 trials were
available for each subject for the training, and an-
other set of 288 trials for the test set for each sub-
ject. The EEG data have been previously filtered with
a 0.5 − 100Hz band-pass filter and a notch filter at
50 Hz. In line with other works (Riyad et al., 2021;
Lawhern et al., 2016) and our previous paper (Zan-
canaro et al., 2021), we down-sampled the EEG sig-
nals at 128Hz. Then, from each MI repetition, one
4s multi-channel EEG segment was extracted, thus
obtaining a 22× 512 data matrix. We implemented



Figure 1: vEEGNet architecture.

vEEGNet in PyTorch 2 and we trained it using RTX
2070, 500 epochs, AdamW optimizer (Loshchilov
and Hutter, 2019), a learning rate of 0.001, and a
weight decay of 0.00001. The total number of train-
able parameters is 61476, with 52960 of them for the
implementation of the unsupervised mechanism and
the remaining 8516 for the supervised one. We em-
pirically chose d = 16 as the hidden space dimension.
In line with a common empirical approach (the in-
terested reader can refer to the TensorFlow Tutorial3,
we considered the first d/2 neurons as µµµ vector of the
means, and the remaining d/2 neurons account for
the variance σσσ222 vector. Incidentally, we report that we
have tested the results for different values of d, specif-
ically, d = 2,4,8,16,32,64,128, finding comparable
results.

3.2 vEEGNet as classifier

vEEGNet was used to classify the MI class for every
subject in the dataset. Table 1 reports its classifica-
tion performance in terms of accuracy and Cohen’s
κ score with respect to other DL models, including
our previous optimized implementation of EEGNet
(DynamicNet (Zancanaro et al., 2021)) and general-
purpose CNN-based models (i.e., the CW-CNN, the
DFFN, and the Monolithic network). Performance are
reported for each individual subject as well as for the
grand-average (i.e., mean across all subjects).

We decided to include in the comparison only
those papers which reported the individual perfor-
mance for all subjects for the 4-class classification.
Thus, we excluded some previous works implement-
ing CNN- or EEGNet-based architectures that either
considered 2 classes or grand-average accuracy, only
(e.g., (Schirrmeister et al., 2017)). From Table 1,
it can be noticed that those models which combine
multiple EEGNet units (e.g.. TSGL-EEGNet, MB-

2The code is available on GitHub: https://github.com/jesus-333/Variational-
Autoencoder-for-EEG-analysis

3Available at https://www.tensorflow.org/tutorials/generative/cvae

Shallow ConvNet) can reach higher performance, in
the order of 80% (despite of the type of combina-
tion, i.e., in parallel or in series), while other mod-
els achieve accuracy values in the range 71%-78%. It
might be possible that this is due to the different fea-
tures that each specific architecture can extract, lead-
ing to better adaptability to each individual subject.
It is well-known that different subjects share similar
frequency bands to realize MI, but each of them can
have the strongest MI-related component at a slightly
different frequency (Magnuson and McNeil, 2021; Li
et al., 2018; Bressan et al., 2021). In turn, this might
be the reason why models built on a single choice of
frequency-domain features, i.e., including the origi-
nal EEGNet, are not able to generalize well. Also, it
is worth observing that most of the models, includ-
ing ours, apply very basic or no pre-processing at all.
MI-EEGNet is the only EEGNet-based model which
invasively pre-processes the input EEG with a nar-
row band 4-38 Hz filter and a 50 Hz notch, reach-
ing an accuracy value of 74.61% with very high vari-
ability across subjects (i.e., the standard deviation is
15.44%). At the individual subject level, from Ta-
ble 1, we found that there exists a large inter-subject
variability, as expected from the literature on EEG,
with standard deviation values in the range of 6.27%
to 15.44%. At the same time, it is not fully clear why
the classification accuracy for some specific subjects
(e.g., subject nn.3 and 7) is very high, despite the
model used, while for some others the classification
seems to be generally more difficult (e.g., for subject
nn.2 and 6). This requires further investigations in the
future to increase the adaptability and the generaliza-
tion ability of these kinds of DL architectures.

3.3 vEEGNet as generator

Fig. 2 reports an example of reconstructed EEG sig-
nal from channel C3 during the imagination of the
right-hand movement. At a first sight, the reconstruc-
tion seems not to be successful and poorly consistent

https://www.tensorflow.org/tutorials/generative/cvae


Table 1: Comparison of vEEGNet with other DL models in terms of classification accuracy ([%]) and kappa score (when
available, its value is within brackets) in a four classes MI task. The first five columns refer to EEGNet-based models, while
the last three columns refer to general-purpose CNN models. AVG stands for average, STD for standard deviation.

vEEGNet

(d = 16)
EEGNet

TSGL-

EEGNet
MI-EEGNet

MBShallow

ConvNet
CW-CNN DFFN

Monolithic

Network

1 78.13 (0.71) 81.88 85.41 (0.81) 83.68 (0.78) 82.58 (0.77) 86.11 (0.82) 83.2 83.13 (0.67)

2 61.81 (0.49) 60.97 70.67 (0.61) 49.65 (0.33) 70.01 (0.6) 60.76 (0.48) 65.69 65.45 (0.35)

3 84.72 (0.8) 88.54 95.24 (0.94) 89.24 (0.86) 93.79 (0.92) 86.81 (0.82) 90.29 80.29 (0.65)

4 65.28 (0.54) 70.63 80.26 (0.74) 68.06 (0.57) 82.6 (0.77) 67.36 (0.57) 69.42 81.6 (0.62)

5 70.49 (0.61) 68.45 70.29 (0.6) 64.93 (0.53) 77.81 (0.7) 62.5 (0.5) 61.65 76.7 (0.58)

6 60.42 (0.47) 61.46 68.37 (0.58) 56.25 (0.42) 64.79 (0.53) 45.14 (0.27) 60.74 71.12 (0.45)

7 79.86 (0.73) 82.08 90.97 (0.88) 94.1 (0.92) 88.02 (0.84) 90.63 (0.88) 85.18 84 (0.69)

8 79.17 (0.72) 82.15 86.35 (0.82) 82.64 (0.77) 86.91 (0.83) 81.25 (0.75) 84.21 82.66 (0.7)

9 67.71 (0.57) 66.25 83.64 (0.79) 82.99 (0.77) 83.38 (0.78) 77.08 (0.69) 85.48 80.74 (0.64)

AVG 71.95 (0.63) 73.60 81.34 (0.75) 74.61 (0.66) 81.15 (0.75) 73.07 (0.64) 76.44 78.1 (0.59)

STD 8.78 (0.12) 10.20 9.61 (0.13) 15.44 (0.21) 9.03 (0.12) 15.11 (0.2) 11.65 6.27 (0.12)

Figure 2: An example of reconstructed EEG (channel C3).

with the original signal. However, we might recog-
nize in the reconstructed signal a specific EEG com-
ponent that typically appears, following a precise tim-
ing, when a movement is executed or imagined, the
so-called MRCP. MRCPs are low-frequency compo-
nents (typically in the δ or θ bands, i.e., in the range
0.5-4 Hz) that are characterized by a sequence of pos-
itive and negative peaks after the ”GO” cue (i.e., the
time zero in our case) (Magnuson and McNeil, 2021).

Fig. 3 shows four different reconstructed EEG
channels, namely C3, C4, Cz, and the average of FC3
and FC4, selected based on their relevance to the MI
tasks. To be specific, in line with well-known lit-
erature (Lazurenko et al., 2018), the most relevant
electrodes where to retrieve information related to the
hand movement are the controlateral central sensors
C3 and C4, for the right and the left-hand move-
ments, respectively, while for the legs is Cz, and for
the tongue are the frontal sensors F3 and F4 (with a
prevalence of F3). In our dataset, F3 and F4 were

Figure 3: Reconstructed channels C3, C4, Cz, and average
FC3 and FC4.

not available, then we considered the nearest available
sensors which were FC3 and FC4 (as in the Interna-
tional 10-20 System for EEG electrode placement). If
Fig. 3 is compared with the consolidated literature on
MRCP during motor execution and imagery (Magnu-
son and McNeil, 2021; Li et al., 2018; Bressan et al.,
2021), we might recognize a very similar pattern: a
positive peak occurs right after the ”GO” cue, then a
negative peak follows (before 1 s), and finally a re-
bound is observed. The entire waveform almost ex-
pires (i.e., returns to baseline) within approximately
2 s after the cue. Here, we could observe a pattern
that is very consistent with the expected one. There-
fore, we can conclude that vEEGNet is extracting a
compact representation of a multi-channel EEG that
represents its lower frequency component during the
MI. This allows the model to obtain satisfactory accu-
racy values in the classification of 4 different MI tasks
and to extract an MRCP pattern. However, this specu-



lation needs to be confirmed with further analysis and
investigations. Also, in the future, it be might worth
providing further explanations, in line with (Zoppis
et al., 2020; Scapin et al., 2022), of the mechanisms
that the DL models process the EEG signals, and how
to drive the architecture to reconstruct not only the
slower components of the signal (e.g., the MRCPs)
but also the faster ones (e.g., the µ and β components
ranging between 8 and 30 Hz) (Pfurtscheller et al.,
2006).

4 CONCLUSIONS

In this work, we tackled the challenging problem of
the multi-class classification of different MI tasks us-
ing EEG. Several ML and DL models have been pro-
posed to solve this complex problem. Among oth-
ers, EEGNet by (Lawhern et al., 2016) and its several
variants gained a lot of attention in the last few years,
since 2016. However, these models typically pro-
vide medium to high accuracy values (between 70%
and 80% approximately), but can poorly explain how
they decide on the classification output. Therefore,
in this work, we proposed a new DL model, namely
vEEGNet, whose objective is two-fold: the model
is used to classify EEG signals during participants’
MI (i.e., of a hand, the feet, or the tongue); at the
same time, it is enriched by a module that is able to
reconstruct the EEG. In vEEGNet, we employed an
EEGNet to encode a multi-channel EEG dataset, and
to extract a latent representation in e.g., 16 dimen-
sions. Then, a mirrored version of EEGNet is used to
decode such compact representation into a new syn-
thetically generated multi-channel EEG. In parallel,
a FFNN takes in input newly generated EEG sam-
ples from the latent representation and uses them to
recognize one out of four different imagined move-
ments. We show that vEEGNet is able to classify
the EEG with performances that are comparable with
the state of the art. Interestingly, we also found out
that the reconstructed signals resemble some specific,
and well-known, EEG components that are strongly
related to MI, the MRCPs. Thus, this paper presents a
new architecture that has the potentiality to both clas-
sify EEG during MI as well as provide a link between
neurophysiology and the model’s classification deci-
sions. Several limitations are still present in this con-
tribution. They will deserve further investigations, in-
cluding the modification of the architecture to extract
different features and also reconstruct faster compo-
nents that can be relevant to the MI task, e.g., the α

and β frequencies in the range 8 to 30 Hz. Moreover,
vEEGNet could be used to deepen into the problem of

the inter-subject variability that typically prevents DL
models to be easily generalized from subject to sub-
ject (and even experimental session to session of the
same subject). This might be of such an impact in the
field of, e.g., BCI where the system needs to seam-
lessly interact with patients and healthy naı̈ve users.
Finally, future investigations of the potentialities of
vEEGNet as a generative model for EEG can be ad-
dressed to cope with the common lack of large EEG
datasets that make it difficult for DL models to im-
prove their performance and better generalize.
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