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Abstract

Consider a balance law where the flux depends explicitly on the space variable. At jump
discontinuities, modeling considerations may impose the defect in the conservation of some
quantities, thus leading to non conservative products. Below, we deduce the evolution in the
smooth case from the jump conditions at discontinuities. Moreover, the resulting framework
enjoys well posedness and solutions are uniquely characterized. These results apply, for
instance, to the flow of water in a canal with varying width and depth, as well as to the
inviscid Euler equations in pipes with varying geometry.

Keywords Fluid flows in canals and pipes - Non conservative products in balance laws -
Nonhomogeneous Balance laws with measure source term
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1 Introduction

The flow of water in a canal of smoothly varying width and smoothly varying bed elevation
is described by the following balance law
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0ra+0dyqg =0
2 2 2
8,q+8x(i+1gi>zlga—zaxo—gaaxb, (4.1
a 2% o 2% o
see [19, Formula (1.1)]. Here g is gravity, ¢ is time, x is the longitudinal coordinate along the
canal, a = a(t, x) is the wetted cross sectional area, g = ¢(t, x) is the water flow, 0 = o (x)
is the canal width and b = b(x) is the height of the bottom.

The presence of discontinuities in the channel width o or in the bed elevation b prevents
the application of standard theorems to (1.1). Indeed, discontinuities arise in the flux and
non conservative products appear in the source term. As is well know the latter terms lack a
unique way to be defined. As a reference to non conservative products, we refer to [12, 18].

In the present work, we construct a framework where (1.1) has a meaning and is well
posed, requiring o and b to be merely of bounded variation.

Whenever o and b are piecewise constant with jumps at, say, X1, ..., Xy, equation (1.1)
fits into the non—homogeneous system of conservation laws

du+ 0 f (), u)=0 xeR\{xi,...,xn}
equipped with suitable conditions
W (¢(xi+), u(t,xi+), ¢(xi—),u(t,x;i—)) =0 forae.t>0andi=1,...,N (1.2)

where ¢ is as in (1.9).
This junction condition, thanks to to the assumptions below, by [8, Lemma 4.1] and by
an immediate extension of [8, Lemma 4.2], can be reformulated as

f @G, ult,x+) — f (CGE-),u(t,¥—)) = E(((F+), {(&—), u(t,i—)) forae.t>0
(1.3)
where X is any point of jump and E measures the defect in the conservation of u at x.

We show that choosing (1.3) actually singles out the source term in (1.5) below, which
accounts both for the smooth changes as well as for the points of jump in ¢. In the case
of (1.1), this amounts to show that a careful choice of E allows to extend (1.1) to the case of
o and b in BV.

More precisely, when ¢ € BV(R; R?) and given a piecewise constant approximation ¢”
of ¢ with finite number of jumps located at X € Z(¢"), we obtain the following balance law
with measure-valued source term

du+dcfh )= ¥ B("EH."E-).u. 1)) &
x¥eZ(¢ch (1.4)
u(0, x) = uo(x),

where §; denotes the Dirac measure at x.
In the general - non characteristic - setting established below, solutions to (1.4) are shown
to converge as ¢’ converges to ¢ in a suitable - strong - sense, to solutions to

iaru+8xf(§,u)= > BQGEH), ¢(E—), u(-,¥=)) 8z + DY EE, ¢, u) i
xeZ(0)

u(0,x) =u,(x).

The terms in the singular source term above are defined as follows. Since ¢ € BV(R; R?),
the right and left limits ¢ (x+) and ¢(x—) are well defined and the distributional derivative
D¢ can be split in a discrete part and a non discrete one, which may contain a Cantor part:

Dr= Y (C@E+) —¢(E-) S+ vlul, (1.6)

XeZ(¢)
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where the function v is Borel measurable with norm 1 and g is the non atomic part of D¢.
In (1.5) we also used the (one sided) directional derivative

. Bz+tv,z,u) —EB(z,z,u
DfE(z,z,u) = lim ( ) ( ).

1.7
t—0+ t ( )

A preliminary result was obtained in [8], where a sequence of solutions to (1.4) is shown
to converge to a solution to (1.5). Here, we extend the framework in [8] considering space
dependent fluxes, prove that (1.4) generates a Lipschitz semigroup, say S", and show the
convergence of S” to a semigroup whose orbits solve (1.5). Moreover, we provide a full
characterization of the solutions to (1.5) in terms of integral inequalities, in the spirit of [4].

The present results comprise the case of balance laws with a space dependent flux and a
non conservative source term of the type

du + 0x f(¢, u) = DG (¢, u) DY (1.8)
see [8, § 3.4]. Setting p = 2, Z =]0, +oo[xR and
r(x) = [ lé‘zx(;)] and G (z,(a,q)) = [—;ga%(: _gazz} (1.9)
we see that (1.1) fits into (1.8):
dra+ 0xqg =0
9:q + 0x <q:+;g§1a2>=—;ga23x§“1—ga3x§2 (10

and hence our main result, Theorem 2.3, applies setting, for instance,
BNz, u ) =GGE u") -Gz, u).

As noted in [8, Section 3], different choices of & may yield different solutions emanating
from discontinuities in ¢ while giving the same solutions wherever ¢ is smooth.

Moreover, all the applications considered in [8, Section 3] fall within the scope of Theo-
rem 2.3. They are the classical p-system, i.e., isentropic gas dynamics, in a pipe with varying
section or with bends, see also [17], as well as the full Euler compressible system in pipes,
see also [15].

Thus, in addition to the existence of solutions proved in [8], here we also ensure the
Lipschitz continuous dependence of the solutions on the initial data. Further, we provide a
characterization of the solutions by means of the integral relations (i) and (ii) in Theorem 2.3.
These results hold under assumptions on the source terms that are strictly weaker than those
in [1]. Moreover, the present construction encompasses fluxes explicitly depending on the
space variable.

2 Hypotheses and Main Theorem

Here, for a real number x, |x| is its absolute value, while ||v|| is the Euclidean norm of a
vector v and ||| is the total variation of a measure . The open ball in R” centered at u with
radius § is denoted by B (u; §), its closure is B(u; §). We also use the following notation for
left/right limits and for differences at a point:

Fx—)= Slim_ F¢&), Fix+)= glim+ F&) and AF(x) = F(x+) — F(x—).
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Throughout, we choose the left—continuous representatives of BV functions.

The problem we tackle is defined by the flow f and by the functions = and ¢. Here we
detail the key assumptions, €2 being an open convex subset of R” and Z a convex open subset
of R”:

(£1) f e CHZ x uRY);

(f.2) the Jacobian matrix D, f (z, u) is strictly hyperbolic for every z € Z and u € ;

(£.3) each characteristic field is either genuinely nonlinear or linearly degenerate for all
z€Z.

In the latter assumption we refer to the classical definitions by Lax [16], see also [11, § 7.5].

By (f.1) and (f.2) we know that, possibly restricting €2, the eigenvalues A(z, u), ...,
An(z, u) of Dy f(z, u) depend smoothly on z and can be indexed so that, for all u € Q and
7€ Z,

Az, u) < Aoz, u) < -+ < Ay(z, u).

We thus require the usual non resonance condition

(f.4) thereexistsi, € {1,...,n—1}suchthat; (z,u) <0 < X, +1(z, u) forall z € Z and
allu € Q.

Note that both the cases of characteristic speeds being either all positive or all negative are
simpler.

On the function E in (1.3), used to rewrite the coupling condition induced by ¥, we
require:

(E1D)E: Z2x Z > CHQ;RY is a Lipschitz continuous map and E: Z x Z —

C2(Q; R");

(E2)sup+ ez |EGT, 27, ')HCZ(Q;R) < 005

(E3) E(z,z,u) =0foreveryz € Zand u € Q;

(E .4) there exists a non decreasing map o : [0, {[— R with lim,_,¢ o () = 0 such that

for all (z,v,u) € Z x B(0;1) x Q

E(z+1v,z,u) — DfE@ z,u)t]| <o)t

and moreover the map (z, v, u) — Dj‘ E(z, z, u) is Lipschitz continuous.

In the latter condition, recall the definition (1.7) of the Dini right derivative. Our requiring
this low regularity, i.e. the mere existence of the Dini derivative rather than differentiability,
is motivated by the example of a pipe with angles, where E depends on Hz+ —z |, see [8,
Section 3.1].
In Problem (1.5) we require that { € BV(R; Z). Throughout, the map ¢ is assumed to be
left continuous and the set of jump discontinuities in ¢ is denoted by Z(¢), with Z(¢) C R.
We now precisely state what we mean by solution to (1.5).

Definition 2.1 Let u, € L! (R;R"). A map u € C°([0, +oo[; L! (R; R")) with u(t) €

loc loc
BV(R; R") and left continuous for all € R, is a solution to (1.5) if for all test functions

¢ € CL(10, +00[xR; R),

+00
—/0 /R(u(t,x) dp(t, x) + f (£ (x), u(t, x)) dx(r, x)) dxdr

+o0
= Z/O E ({(F4), ¢(%), u(t, ©)) (1, ©)dt

XeZ(2)

+00
[ DR € e u ) ot o a .
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where v, u are as in (1.6), and moreover u(0) = u,.

In the last integral in (2.1), the integrand is Borel measurable in (¢, x) since, for instance,
by the above assumptions on u, we have at every (t,x) € Ry x R

1 X
t = lim — t dy.

Moreover, Borel measurability on R? ensures measurability with respect to the product
measure.

Note that the value of the integrand in the first line in (2.1) is independent of changes of
the integrand on sets of Lebesgue measure 0 in R?, while the latter integrand is integrated
with respect to the product measure ||| ® dr. Nevertheless, (2.1) is meaningful, since u is
prescribed pointwise, at every point and not merely almost everywhere.

The above definition is known not to guarantee uniqueness. Nevertheless, Theorem 2.3
below does guarantee uniqueness, relying on an extension to the case of (1.5) the precise
characterization originally provided in [4] for homogeneous systems of conservation laws.

Definition 2.2 By Generalized Riemann Problem we mean the Cauchy Problem (1.5) with
¢ and the initial datum u, as follows:

L) =27 X o @) +27 X @) and ue() =utx @)+l x| ).

(2.2)
Forz € Z and u € Q, call 6; — H;(z, 0;)(u) the Lax curve of the i—th family w.r.t. f(z, -)
exiting u, see [5, § 5.2] or [11, § 9.3]. Foro = (01, ..., 0,), we use below the notation
H(z,0) = Hy(z,04) o Hy—1(z,0p—1) 0 - 0 Ha(z,02) o Hi(z,01) (u) . (2.3)
Introduce recursively the states wo, ..., w,4+1 € 2 with wo = ut, wp+1 = u” and
Wit = Hip1 (2t oip1) (w;) ifi=0,...,0,—1,
fGE wig) — f@ w,) =EBGET 27, wi,) 24)
wit1 = Hi (27, 07)(w;) ifi=i,+1,...,n.

We thus define as Admissible Solution to the Generalized Riemann Problem (1.5)—(2.2) the
gluing along x = 0 of the Lax solutions to the (standard) Riemann Problems

Ou +0x f(z7,u) =0 du +dx f(zF,u) =0

— ¢ . — s

w(©,) =y, _ o)+ wigxp o (s | 0.2 = wipsrxg o 00 Fu"x, (0
Throughout, we refer to the stationary jump discontinuities due to jumps in z as to zero waves.

Below, Lemma 3.3 ensures that, with the above definition, the Generalized Riemann
Problem (1.5)—(2.2) turns out to be well posed.

Aiming at the characterization of solutions to (1.5), we now extend to the present case
the general definitions introduced in [4], see also [5, Chapter 9]. Fix ¢ € BV(R; Z) and
a function u = u(t, x) with u(¢r) € BV(R; ) for all ¢ and a point (z, &) € [0, +0o[ xR.
Define the function U (ﬁu; .6) 8 the solution to the generalized Riemann Problem

U + 0 f (£6), U)=E(E+), &), u(t,§-)) &
_Ju@, ) x <& (2.5)
v, x = {u(t,.§+) x>E.
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Note that if & ¢ Z(Z), then the right hand side in (2.5) vanishes due to (Z.2) and the above
definition of U 1. Teduces to the classical one in [4, Chapter 9] related to the homogeneous

flow u — f (C(é—') u).

‘We define the function U (wr.£) the unique solution, see Lemma 3.17, to the following

linear hyperbolic problem with constant coefficients and measure-valued source term
{ WU +AIU=¢g

U0, x) = u(t, x) (2.6)

with A = D, f (¢(§), u(r, €)) and g is the stationary vector measure such that for any Borel
subset E of R,

g(E) = Y (B@GEH. ¢ u(m.8) — f G u(m. &) + f €@, u(r. ) 8:(E)
xeZ(¢)
+fE( F0 8 ), (), u(, ) = Dof (¢(x), u(, ) v(0)) el (o).

2.7
where we used the same notation as in (1.6) and (1.7).
We are now ready to state the main result of this work.

Theorem 2.3 Let f satisfy (£.1)-(f.4), E satisfy (E.1)—(ZE.4). Fixz € Z, u € Q. Then, there
exist positive § and L such that for any ¢ € BV(R; Z2) with TV(¢) < Sand ||¢(x) —Z|l < 8
there exists a domain D¢ C i + LY (R; Q) containing all functions u in it + L' (R; ) with
TV(u) < 8 and a semigroup S° : Ry x D¢ — D¢ such that

1. Forallu, € D¢, the orbitt — S,{u(, solves (1.5) in the sense of Definition 2.1.
2. S¢is Ll—Lipschitz continuous, i.e. for all u,, ué, u% e D¢ and forallt, t;, 1 € Ry

HS{ul——Sg 2

L](R R") = L Hu(l) - ug ”LI(R;R");

Sy o — Sty <Ly —n)

L!(R;R")
3. If ¢ € PC(R; 2) and u, € PC(R; Q), then for t sufficiently small, the map (t, x) —

(Sfuy)(x) coincides with the gluing of Admissible Solutions, in the sense of Defini-
tion (2.2), to Generalized Riemann Problems at the points of jumps of u, and of ¢.

Moreover, let i be an upper bound for the (moduli of) characteristic speeds and define
u(t,x) = (Sfuu)(x). Then, for every (1,&) € Ry x R,

(@)

E+05
lim 7/ U +9,) = Ul 0, 00| dx =0,
E—0h

(ii) There exists a constant C such that for every a,b € R witha < & < b and for every
v €10, (b —a)/ 2V,

1 /b DA ‘ b
— u(t+,x)—-U, . (ﬁ,x)‘dx
¥ Joroi (ir)

< CITV u(v), la, bD + TV (¢, la, bDT*.
Ifu: [0, T1 — D= is L'-Lipschitz continuous and satisfies (i) and (ii) for almost every time
T and for all € € R, thent — u(t, -) coincides with an orbit of the semigroup S¢.
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Note that whenever ¢ is piecewise constant, the properties 1., 2. and 3. above uniquely
characterize the semigroup S¢, see Lemma 3.14.

3 Proofs

Below, O(1) denotes a constant depending exclusively on f, E and on a neighborhood of i.
By A we denote an upper bound for (the moduli) of characteristic speeds.

3.1 Preliminary Results

First, we recall a Lipschitz-type estimate on the map E, of use throughout this paper.

Lemma3.1 ([8, Lemma 4.3]) Let W C R™ be non empty, open, bounded and convex. Let
0: Zx Z— CYW;R") be Lipschitz continuous and such that ¢(z, z, w) = 0 for every
z€ Zandw € W. Then,

zt

leGt.zm w)| < o) |+ -2z ‘ A
oGt 27 w) — @™ 27, w)|| < O1) |27 — 27 || lwa — wi . '
Proof Sincep(z~,z~, w) = 0,wehave |p(zt, 27, w)| = |, 27, w) — ", 27, w)|

and the first inequality in (3.1) follows by the global Lipschitz continuity of ¢ with respect
to the z variables.
Observe that Dy, ¢(z~, z~, w) = 0. Hence, using again the Lipschitz continuity of ¢,

”‘P(Z+, Z_a wz) - (P(Z+» 1_7 wl)H

1
/ Dy (27,27, w2+ (w1 — w2)) (wy — wz)dgH
0

1
= H/ [Duwe (27,27, w2 + g (w1 — wy))
0
—Dye (27,27, w2 + g(wi — w2))] (w1 — wa)dg]||
<O |zt —z7 | llwa — will.

[m}

Note that (2.1) and (E.3) are stronger than the assumptions in Lemma 3.1, so that E
satisfies (3.1).
Introduce a map T related to the generalized Riemann Problem.

Lemma3.2 Let f satisfy (£1)—(£.4) and E satisfy (E.1), (E.3). Then, for any 7 € Z and
u € 2, there exists 6 > 0 and a Lipschitzmap T : B(Z; 8)2 — C2(B(@; 8); Q) such that

fEut) = fzu) =Btz ,u")
zt,z7 € B(z;9) = u"=TE )W), (32
ut,u” e B(u; 8)

Furthermore,

1. T(z,2)(w) = u and the map (z*, 77, u) — T(z", 27)(u) — u satisfies the assumptions
of Lemma 3.1.

@ Springer
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2. The following expansion holds:
FE ") = f@ . u") =BG e u) 4+ Dy f(@ u®) (T 27) ) — u)
=0 |77 = (| = [ + [z = 7] + [u —w*])

Proof (This Lemma is an extension of [8, Lemma 4.4] to the case f dependent on z, t00.)
Since u € €2, (f.1) and (f.2) ensure that the function u — f(z, u) has a local C? inverse
@, in the sense that ¢ (z, f(z, u)) = u, for z sufficiently close to z. Define

T2 )W) =g (h, fa )+ B 27, u). 3.3)
T enjoys the required Lipschitz regularity and moreover
T(z,2)(u) =@ (z, f(z,u) + B(z, 2, u)) = ¢ (2, f(z,u)) =u.

To prove 2., rewrite

fE )= f u) =BT 2T u)+ Dy f(@ u) (T 27 W) —u) =E1+E+&

3.4

where we used the definition of 7" and set

= [T u") = [ TEH )W)+ Dy f u*) (TEH, 2)W*) — u)

& = =Dy f . u") (T ", 2)W™) —u*) 4+ Dy f (", u*) (T 27)W*) —u*)

& = =Dy f(" u*) (T 27)W*) —u™) + Dy f&* u™) (T, 27) () — u)
By a Taylor expansion, we have:

l& = o) [Tt 2w —u*|?
=om |t —7|*
Concerning &,
&0l = | Duf G u®) = Dy fE u®)| | TG 7)) — ||
<o |zt =2 | —z7|.
Finally, by Lemma 3.1
I&I = || Duf @ u)|| (TG 2 @) —u*) = (T, 27)@) —u)|
=0 |27 =27 Ju—u],

completing the proof. O

As a consequence, we also prove the well posedness of the Generalized Riemann Prob-
lem (1.5)—(2.2).

Lemma 3.3 Let f satisfy (£.1)—(f.4) and B satisfy (E.1). Then, there exists a positive § such
that ifug, u, € Qand z+, 7~ € Z satisfy

lue —urll <8, |zF—27| <3,

then, the Generalized Riemann Problem (1.5)—(2.2) admits a unique solution in the sense of
Definition 2.2. Moreover, the waves’ sizes (o1, . . ., on) and the states (w1, ..., wy) in (2.4)
exist, are uniquely defined and are Lipschitz continuous functions of 77, 27, u,, uy.

Proof Simply rewrite (2.4) by means of (3.2) to use [1, Lemma 3]. ]
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The following notation is of use below:
©1, -y 00) = E(, 27 ur, up) . (3.5
We separate the waves with negative (6') or positive (") propagation speed as follows:

0'/=(O‘1,...,0i0,0,...,0), 0'N=(0,...,0,Gil]+1,...,0n),

3.6
o =0¢"+0" cR". (36)

Given two n-tuples of waves @ and B, the waves i with size «; # 0 and j with size 8; # 0
are approaching whenever i > j or i = j, the i—th family is genuinely nonlinear and
min {ai, ,3j} < 0,see[5,§7.3]or [11, § 9.9]. Call Ay g the set of these pairs (i, j).

Lemma 3.4 ([21, Theorem p. 30]) Let ¢ € CZ1(B(0, 8) x B(0, 8); R™) be such that

o, B)=0 forall a,Bp with Aypg=9. 3.7
Then, for all a, B
lp@: Bl <0y > e il +Om Al + 181 D e Bil.
(i,j)ri>] i: min{ai,ﬁ;}<0
gen.nonl.

Proof Observe that for all ¢, B in B(O0, 5), we have Ag,0 = Ao,p = 9. Hence,
@@;0) =¢(0; 8) =0 and o, p(a;0) = p,0(0; B) =0

foralli, j =1,...,n. Following [21], we have

lo@: Bl
= lle(@; B) —¢@; 0)]

n
<Y llg@i, ..., 0,...,0:8) — ¢(ar, ..., ai-1,0,...,0; B
i=1
ln o
< Z/(; Haal.go(ozl,...,ai,l,a,O,...,O;ﬂ)”da
i=1

n o
:Z/(‘) Ha"‘f(p(al"--sdifl,a,O,,_,,o;ﬂ)
i=1

—dg, (a1, ..., i—1,a,0,...,0;0)| da

n n

o
ZZ/O |8 0@, .. tic1,a,0,...,0;0,...,0, 85, ..., Bn)

i=1 j=1
=g a1, ... i—1,a,0,...,0;0,...,0,Bj41,..., B | da

n n o ﬁj
ZZ/ / |00, 0p; (1 ..., i -1, a0,
o Jo

i=1 j=1
00 0:0,...,0,b, Bjs1. ..., Bn)| dbda

ai B
< Z /0 /0 \|80,,8,3/.<p(a1,...,ai,l,a,O,

(i,))eAqp

IA

IA
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0 0:0,...,0,b, Bjs1, ..., Bn)| dbda
< |D%¢|lco Y lei Bi| + Lip(D*@) (lll + 18I Y e Bj.

i>j i: min{e;,B;i}<0
gen.nonl.

Above, we noted that some terms in the latter double sum vanish by (3.7), since

a between 0 and o;;

(0, )) ¢ Aap = Aain0i 1,0,0,..,0:0,...0,b.B;41,...5, = ¥ Torall b between 0 and ;.

In the terms with i > j, we use a standard estimate bounding the integral by means of the
C° norm. We are left with the terms with i = j, the i—th field is genuinely nonlinear and
min{e;, B;} < 0. In this case, (3.7) ensures that

ooy, ..., i-1,a,0,...,0;0,...,0,D, Bit1,...,B,) =0 foralla > 0and b > 0.
Hence 9, 35,¢(0; 0) = 0 and |84, 85, ¢ (e, B)|| < Lip(D*¢) (lleell + lIBI). o

Lemma3.5 ([1, Lemma 4] and [8, Lemma 4.8]) Let f satisfy (£.1)—(f.4), E satisfy (E.1)
and (Z.3). Then, there exists a positive § such that if ug, u, € Q and 77,7z~ € Z are such
that

lue —ul <8, |zt —z7| <8
and ifo = E(zT, 27, u,, ug) is as in (3.5), we have
lur —uell =0 (loll + |27 —z7|) and ol =0Q) (lur —uell + ||z —27|).

Lemma3.6 Let f satisfy (£1)-(£.4). For all z € Z, u € Q and for all sufficiently small
a,B eR"

|H(z,B) 0 H(z,a)(u) — H(z,a + B)(w)|| < O(1) Z i Bil (3.8)
(o, Bi)€Ag B

|HG . @)@ — He . a)@] < o) [zt =27 D leil  (3.9)
i=1

Proof The classical Glimm interaction estimate (3.8) follows from Lemma 3.4 with

fle,B)=H(z, B)oH(z,a)(u) — H(z,a + B)(u).
To obtain the second, apply Lemma 3.1 with w, = @, w; = 0 and ¢(z+,z7,a) =
HGE Y, a)(w) — H(z,a)(u). O

The following lemma comprises the interaction estimates necessary below.

Lemma 3.7 Let f satisfy (f.1)-(£.4) and E satisfy (2.1), (E.3). Then, there exists a positive

8 such that ifug, u, € ;75,27 € Zanda, B € R* are such that
lue —ull <8, |zt —z7| <6, lel+I1BI=<3

with reference to Fig. 1, the following general interaction estimate holds:

lus —ul <O | > e By + 27 =27 D] lenl | - (3.10)
(i,))€Aap i>ig
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O/ + /8/ AZ O// + B// ,y

U= Uy U= Uy

Fig. 1 Notation used in Lemma 3.7. y denotes a fictitious wave separating the states us, as defined in (3.11),
and u,. Az denotes the zero wave between z~ and zT

Proof Referring to Fig. 1, we have:

ur = HEZ" B oT(  27) o H(z , B o H(z™,&") o H(z™, &) (ue)

ue =HE @ +B) 0T, 27) o Hz &' + B')(up). (3.11)
Introduce
=HGE B oT (" 27 )oHGE @) o H(z™, ) o H(z™, &) (ur)
=HGE B oHz &) oT (", 27)o H(z ., B) o H(z™ &) (ur)

S S«

so that
= e = Jup ] + i ] + | = |
and by Lemma 3.7, setting it = H(z~,a’)(uyg),
| <0 |HE, B)oHGE & )Yu) — HEZ &) o Hz, B))w)|
— O |HGE . B)oHE .o Yw) — H .o + )W)

<o) Y g
(i,))EAqp

o

Similarly, setting now it = H(z~, 8') o H(z ™, &) (uy),
i —a| <oM|TE 2o HE  o")@) — Hz ") o T, z7)@)|

apply Lemma 3.1 withwy = o”,wy = 0and ¢(z", z7, ") = T(z*,27) o H(z ™, o")(&1) —
H(z™,a") o T(z",z7)(i) to obtain

Ji —a] <o) [zt =27 D lal. (3.12)

i>i,
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o o o4 Az B’

U = Uy U= Uy

Fig.2 Notation used in Lemma 3.8

Finally, using (3.8) in Lemma 3.6,

la—u] <0y > By,
(i,j)€Aqp

completing the proof. O

Note that entirely similar estimates apply to the case where the & waves are on the right
of the zero wave, i.e., in the region where z attains the value zt.

Lemma 3.8 Let f satisfy (f.1)-(£.4) and E satisfy (E.1), (E.3). Then, there exists a positive
8 such that ifug, u, € Q; 75,27 € Zanda, B € R* are such that

lue —urll <8, |zt =27 <8, lel+IBIl<8

with reference to Fig. 2, the following general interaction estimate holds:

lo—@+pl<om| Y |up|+]e" =27 el
(i,))eAap i>i,
Proof Let u, be defined as in (3.11) and use the notation (3.5) to obtain:
lo —@+B)Il < |EGY. 27 ur,u) — EGY, 27 us up) | < O [luy — uyll.
An application of Lemma 3.7 completes the proof. O

Lemmas 3.7 and 3.8 suggest that the quantity ||zJr -z~ || is a convenient way to measure
the strength of the zero—waves associated to the coupling condition. More precisely, we define
the strength of the zero—wave at a junction with parameters z,z~ € Zaso = H vt —z H
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I8 Az B Ve

U = Uy U = Uy

Fig.3 Notation used in Lemma 3.9

Lemma 3.9 Let f satisfy (f.1)-(f.4) and E satisfy (E.1), (E.3). Then, there exists a positive
8 such that ifug, u, € Q; 77,z € Zanda, B € R" are such that

lue —urll <8, |zt =27 <8, lel+IBIl<8

with reference to Fig. 3, the following general interaction estimate holds:

[l = will = [ = wel[| < O [ 3 [B5] + [ =27 ) 1 = e
j=1

Proof Referring to Fig. 3, straightforward computations lead to:

[Nty — il = [lue — |
< o =) = e =i
= [(HG*. B o T 27) 0 H™ . B)ur) — ue)
— (HE. B o TG 2 ) o H ™, B)@) — i) | 3.13)
<|(HG BTG 2o H™ B = T 2)w))  (B.14)
—(HE B oT(  2) o Hz ™, BY@) — T, 2)@)|
(TG 2D @) —ue) = (TE 2@ - a) |

D oIBi+ ue—a |zt — 27| (3.15)

j=1

<o | |lu¢—a

completing the proof. Above we used the fact that the term in the norm (3.13)—(3.14) is a
smooth function that vanishes for u; = u as well as for 8 = 0, see [5, § 2.9]. Moreover,
Lemma 3.1 can be applied to the term (3.15), with o(z*,z7,u) = T(z",z7)(u) —u. O
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Lemma 3.10 Let f satisfy (£.1)—(£.4), E satisfy (E.1)-(Z.3). Then, there exists a § > 0 such
that if it 4" il 0" € Q,57,27,27,2 € Z and

et — 2]+ |a' -

: &t — 2|+ a -

the solutions it and it to the corresponding Generalized Riemann Problems (1.5) with data

Al
it ={ 0128 cm-{z e
. il x<¢ z x<§& (3.16)
uo(x): L\ir x>%— {(x)_ x>$

satisfy the estimate

1 E+Ah
ff li(h, x) — ii(h, x)||/dx
—ih

h ~
ﬁr—ﬁl

< 0(1)(

+min {||2+ —

i —uH—i—Hﬁr—vr

(e =2+ 2+ - 2*1)
. -2},

Proof The self similarity of the solutions to Riemann Problems ensures that

| [E+hh 1A
g/ . Hﬁ(h,x)—ﬁ(h,x)udx:/ A
£ i

Recall thatboth A +— (1, £+A)and A +— u(1, £+A) consist of a sequence of constant states,
jump discontinuities and Lipschitz continuous rarefaction profiles. Call py, pa, ... pan+2 the
positions of waves in i, in the sense that py;—; = py; when a shock, a contact discontinuity
or a zero wave in u is supported there; while py;—; < p; whenever a (non trivial) rarefaction
in 7 is supported on [ py—1, pi]. Define py, pa, ... pans2 similarly, with reference to . The
map (z~, zT, u!, u”") — p is Lipschitz in the 2 variables and smooth in the u variables.

Set po = po = & — A and pou43 = Pony3 = £ + A. Then,

-t

Al E+2) — (1, & +2)|dA.

E+5
/ AL E+ 0 — i, g 4+ n)||da
E—)

(1m+Mﬁj ﬁOﬁy+hHOH
’ 2

— (1, x) | dx

2n+2 n+1

<om | > |pi- p,|+Z
i=1

n+1

w3
=1 [P2j—1,P2j10[P2j—1,P2/]

Above, each of the quantities p; — p;, i (1, %) —u (1, %) and a(1,x) —
1(1, x) can be written as a difference G(2~, 2+, a!, 4") — G(Z~, 2T, ii!, "), the function G

being Lipschitz continuous in z and smooth in u. Hence,

Hc(z—,z+, il iy —GEm sl

A"y - GE Eal an

)

HG(Z 72 7,\] Ar)_G(Z 5Z s lv

+ ”Lvlr _ﬁr

al — it

HG&,Z, Wi —-G@E, i, al,ar

+ 0(1)(
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Moreover,

HG(zi ol -G et Al i

< |(cem.arilan - e il an) - (6 el - g gl ) |
+(cem el i —gem sl ah) - (6l i - 6l i)

/ﬁ,
ﬁl

+FOMmin {1277 = 27 + 27 - 27, 27 - 27 + 2T - 27}
<o) (le= =z |+ 2" -2%))

-+ - ).

=0

=

|D4GE™. 2F il w) — DaGE, £ il w)dw

a—at

+O()min {2+ —2F| + ||z - 27

)

completing the proof. O

3.2 The Case ¢ € PC(R; RP)
3.2.1 Wave Front Tracking

Fix a ¢ € (PCNBV)(R; R?), Z(z) being the set of points of jump in z. Let u € PC(R; 2)
and call Z(u) the set of points of jump in u. Let oy ; be the (signed) strength of the i—
th wave in the solution to the Riemann problem for (1.5) with data u(x—) and u(x+),
ie. (ox1,...,0xn) = E((x4),¢(x—), u(x+), u(x—)) as in (3.5). Define

(1), (0, ) € (T UIE) x {1,....n}h*:
Aw=1{x< yand eitheri > jori = j, thei — —th field is (3.17)
genuinely non linear and min{oy ;, 0y} <0

Extending what introduced in [7], the linear and the interaction potential are

Vi = Y Y ewil+ D Azl

xeZ(u)UI(¢) i=1 xeZ(¢)

Q) = > |0 iy,
((x,1),(y, ) €AS ()

+ 3 Al Y Yleil+ > D el

x€Z(¢) YEIL(u), y<x j>io yeI(u), y>x j<io
YEu) = Vi (u) + Co - QF () (3.18)
where C is a suitable positive constant. For § > 0 sufficiently small, we define
D =l {u i +L" (R, Q) : uis piecewise constant and Y (u) < 8} (3.19)

where the closure is in the strong L!—topology.
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We adapt the wave-front tracking techniques from [1, 5, 8, 9, 13] to construct a sequence
of approximate solutions to the Cauchy problem (1.5) and prove uniform BV-estimates in
space. The approximate solutions converge towards a solution to the Cauchy problem with
finitely many junctions. First, we define the approximations.

Definition 3.11 Let ¢ € BV(R; Z) be piecewise constant. For ¢ > 0, a continuous map
u®: [0, +o00[— LIIOC(R; R™)
is an g-approximate solution to (1.5) if the following conditions hold:

e u®, as a function of (¢, x), is piecewise constant with discontinuities along finitely many
straight lines in the (¢, x)-plane. There are only finitely many wave-front interactions and
at most two waves interact with each other. There are four types of discontinuities: shocks
(or contact discontinuities), rarefaction waves, non—physical waves and zero—waves. We
distinguish these waves’ indexes in the sets 7 = SUR UNP U ZW, the generic index
in J being «.

e Atashock (or contact discontinuity) x, = x4 (), @ € S, the traces u* = u® (¢, xo+) and
u” = u®(t, xo—) are related by ut = H; (£ (xy), 04)(u™) for 1 < iy < n, see (2.3). If
the i—th family is genuinely nonlinear, the admissibility condition o, < 0 holds and

e — diy (C(xa) uT, u7)| <e, (3.20)

where A;, (¢ (xq), ut, u™) is the wave speed described by the Rankine-Hugoniot condi-
tions w.r.t. u — f(Z(xy), u).

e On the sides of a rarefaction wave x, = x4(f), @ € R in a genuinely nonlinear family,
the traces are related by u+ = H;, (£(xg), 00)(m™) where 1 <iy <nand0 <oy < ¢.
Moreover,

o — iy (o), )| < e

e All non—physical fronts x = x,(7), @ € NP travel at the same speed i, = A with
A > sup, ,, ; |4i(z, u)|. The total strength of all non—physical fronts is uniformly bounded
by

Z ||u8(t,xa+) — ug(t,xa—)“ <g¢ forallt > 0.
aeNP

e Zero—waves are located at the discontinuities x, € Z(¢). At a zero—wave xo, @ € ZW,
the traces are related by the coupling condition ut = T (¢(xq+), ¢ (xg)) (u™) for all
t > 0, see (3.2), except at the interaction times.

o Attimet = 0, u® satisfies [|u®(0, ) — uo |1 r:rr) < &

Proposition 3.12 ([8, Theorem 4.11]) Let f satisfy (£.1)—(f.4) and E satisfy (E.1)—(E.3).
Fix 7 € Z and u € Q. Then, there exist 8, K > 0 such that for all piecewise constant
¢ € BV(R; 2) with

C(R) C B(z;8) and TV() <$ (3.21)

and for all initial data u, € Dg, for every € sufficiently small there exists an e—approximate
solution to (1.5) in the sense of Definition 3.11. Moreover, the total variation in space
TV (u®(t, -)) and the total variation in time TV (u® (-, x)) are bounded uniformly for ¢ suffi-
ciently small, i.e., for all t > 0 and for all x € R

YSué@, ) <8+ Ke and TVut(,x)) <K.
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Proof of Proposition 3.12 We use here the well known wave front tracking algorithm origi-
nally introduced in [10] and adapted to the present situation in [1], see also [2, 5, 6, 11, 14].
Indeed, waves supported in the points of jump of ¢, that is the zero waves indexed in ZW,
behave as linearly degenerate waves from the point of view of the wave front tracking algo-
rithm developed in [2], to which we refer also for the terminology. Remark that Lemma 3.7,
Lemma 3.8 and Lemma 3.9 allow to extend to interactions involving zero waves estimates
of the same form as those typically used in standard wave front tracking procedures.

We refer to [8, Theorem 4.11] for more details. ]

3.2.2 An Extended Almost-Decreasing Functional

To prove the Lipschitz continuous dependence of solutions on the initial datum, we introduce a
functional uniformly equivalent to the LI(R, R")-distance [6]. We follow the considerations
in [1, Section 4.2].

Let u, respectively v, be an e—approximate, respectively &’—approximate, solutions as in
Proposition 3.12 with the same piecewise constant ¢ € BV(RR; Z) asin (3.41). The functions
u(0, -) and v(0, -) do not necessarily coincide. Introduce the concatenation of shock curves

S(z,q)(u) = Su(z,gn) 0--- 0 81(z, q1) (W) (3.22)

where g; — Si(z, g;) are the shock curves with respect to the flux function u — f(z, u)

possibly violating the admissibility condition. We define q(z, u#, v) = (q1, ..., qs)(2, u, V)
implicitly by

v=>5(z,q(z, u,v)) () (3.23)

and the i—th shock speed, with the same notation as in (3.20),

Ai(z,u,v) = A; (2, 8; (z,qi(z, u,v)) o--- 0 81 (z,q1(z, u, v)) (u),

Sio1 (2. Qi-1(z . V) 0 -~ 0 S1 (2. Q1 2. 11, V) (1)) - (3-24)

For sufficiently small q(z, u, v) and for z in a small neighborhood of z, we have

1 n
o le—vl =) g u vl < Clu v

i=1
for a constant C > 1. We define the following functional equivalent to the L!(R; R")

distance:

qi(t,x) =q; (§(x), u,x),v(t,x)) i=1,...,n,
O(u,v)(t) = Z/ lgi (¢, x)| W;(t, x)dx, (3.25)
i—1 /R

Wit,x) =14k Bi(t,x) + k2 (Qu,t) + Q(v, 1)), (3.26)

Zxa<x,anW log| ifi <i,,

e (3.27)
Zxa>x,a€ZW |0a| ifi > iy,

Bi(t,x) = A;(t,x) + {

with positive k1, k2, chosen below and with A; defined as in [1, Formula (4.9)], [5, For-
mule (8.8)—(8.9)] or [6, Formulae (2.17)—(2.18)] and Q is the usual Glimm interaction
potential for piecewise constant approximate solutions, see [5, Formula (7.54)], also includ-
ing all zero waves. We follow [5, 6] and ensure that whatever the values of the constants
K1, k2, the parameter § > 0 in (3.21) can be reduced so that 1 < W; (¢, x) < 2.
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We obtain the following result by the same procedure as in the proof of [1, Lemma 9].
Observe that all arguments hold for f(¢(x), -) instead of f by (f.1) and by the smallness of
TV(©).

Lemma 3.13 Let f satisfy (£.1)-(£.4) and E satisfy (E.1)—(E.3). Fixz € Zandu € Q2. There
exist suitable positive k1, k2, § such that if ¢ is piecewise constant and satisfies (3.21), u is
an s—approximate solution and v is an &' —approximate solution as in Theorem 3.12, both
corresponding to ¢, with u(0, -) and v(0, -) in Dg, as defined in (3.19), then the functional
D satisfies forall 0 <s <t

D (u, v)(t) — P(u, v)(s) < O(1) max{e, &'} (t —s).

Proof At any interaction time ¢, the same computations as in [1, 5, 6] ensure that ® strictly
decreases, thanks to the term «3 (Q(u, t) + Q(v, t)) in (3.26).

At a time ¢ between any two interaction times, use the set 7 to index the discontinuities
inu(t,-), v(t, ) and in ¢ at time ¢. The same procedure used in [1, 5, 6], to which we refer
also for the standard notation employed below, allows to compute the derivative of ® with
respect to time as

d n
@O =33 (a7 WG =) =g [W 3T = 0).
veJ i=1

The standard procedure in [1, 5, 6] ensures that the above sum restricted to physical or
non—physical waves is bounded as follows:

n
> 2 (W e =80 = g W) - ) s 0,
veJ\ZW i=l

where, as in Definition 3.11, ZW groups the indexes referring to zero waves.
Now consider zero waves: v € ZW. Then, x, = 0 and

|qiu+|WiU+()‘;‘)+ — %) — |qtv_|Wiv_(k;)_ —Xy)
= W (|l ) W g G- + (W -w g B28)

Now we bound the latter three summands separately. First, we use Lemma 3.1 with w =
(@) ....qp)and p(zt, 27, w) = ¢’ — g, obtaining

n
! " =g/ || < la'" = a7 | = oGt 27 w) — et 27, 0| <0 Az D g~
i=1

Second, by the Lipschitz continuity of A;,

n
a7~ [ =27 = oAzl Y g

i=1

To bound the third term, introduce the sets / = lie{l.....n}:q/" ¢/~ >0} and I =
lie{l,....n}:q/T g~ <0}.Fori e I we have A = A7.1fi <i,then}; < 0and
by (3.27) AB; = ||Az| while if i > i, 4+ 1 then A; > 0 and AB; = —||Az||. In both cases,

the third summand in (3.28) satisfies

l

W =W Da ™[ < —exllazil|g)™ .
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On the other hand, if i € I , Ai+ and A;" are not directly related, but

n
la; |+ la) [ =g/ =g} 7| = 0 1Azl Y g (3.29)
i=1
so that
n
W —wDg! 3~ <omlazll Y g~ (3.30)
i=1
concluding the estimates on the three terms in (3.28). Moreover, by (3.29),
n n
2l I=2"la I+ D0l = Yo lal [+ o Azl 3 e .
i=1 iel iel iel i=1
Hence, for Az sufficiently small,
n
D la =23 a7
i=1 iel
Adding the different estimates obtained, we bound the term in (3.28) by
n
2 (g Wi e = &) = g~ Wi of = &)
i=1
n
< —cki Azl Y|’ [+ oM Azl Y g
iel i=1
<O —cknlazly g~
iel
<0, (3.31)
assuming « sufficiently large.
The proof is now completed by means of standard arguments, refer to [1, 5, 6]. O

3.2.3 Proof of Theorem 2.3 in the Case ¢ € PC(R; RP)

Let f satisfy (£.1)-(f.4), E satisfy (E.1)-(E.4). Fix 7 € Z, u € Q and § as defined in
Lemma 3.13. Choose ¢ € PC(R; Z) with TV(¢) < 6, 1€ — Zllcor:rry < 8 and let DS =
Dg be as in (3.19). Note that D¢ C i + L!(R; Q) contains all functions « in i + L (R; )
with TV(u) < §.

Lemma 3.14 There exist positive 8, L and a unique semigroup S*: Ry x D% — DS such
that D 2 {u € it + L'(R; Q): TV(u) < 8} and points 1., 2. and 3. in Theorem 2.3 hold.
Moreover;, S¢ is obtained as limit of wave front tracking e—approximate solutions.

Proof Since Dg is separable, the existence of a Lipschitz continuous semigroup S¢ enjoying
properties 1., 2. and 3. can be obtained through the limit of (subsequences of) wave front
tracking e—approximations in Definition 3.11 following standard arguments, see for instance,
[1] or [5-8].

To prove uniqueness, let %¢ be any Lipschitz continuous semigroups satisfying 1.,
2. and 3.. Fix an initial datum u, € Dg. Call u® a wave front tracking e—approximate
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solution approaching the orbit # — S%u, as & — 0. Then, by the Lipschitz continuity of %¢
and Lemma 3.13,

HEqu —Sfu

o 14+1). 3.32
L, TOMEA D (332)

¢ e &
<|X 0) — t‘
’ L‘(R;R")_H (@) —u(®)

We now use [5, Theorem 2.9] to bound the first term in the right hand side above:

[2fut @) w4 1)
h

1(TR-TRn
L' (R;R )d'L'

t
Hzfuf(O)—uf(t)‘ < 0(1)/0 lim inf

LI (R:R")

(3.33)
Using the notation as in Definition 3.11 and the classical estimates on physical and non—
physical waves in [5, Lemma 9.1], for / so small that solutions to adjacent Riemann Problems
do not overlap, we have:

Hzcuam -t h)HLl(]R R")

Xo+Ah ¢ .
so;/xa_ih | (e @) 00 = uf ¢ 4+ 10

xa+kh
zgug(t)) (x) — ub(t +h, x)de

<oMeh+ Yy /

aeZW
=0()eh

since for all zero waves ZZug(t)) (x) = uf( + h, x) for a.e. t and wave front tracking

e—approximation solves Riemann Problems at zero waves exactly.
Insert the latter bound in (3.33), so that in the limit ¢ — 0, (3.32) and the arbitrariness of
u, yield the equality of S¢ and %¢. i

Lemma 3.15 Fix & € R and define

Fiey = 166 x=§,
;(x)_{§($+)x>g. (3.34)

Choose u € D5 N DE. Then, for all ¥ > 0,

119/;4;:0 ” Spu(x) — Sgu(x)de <0(1) TV(;; & — 239, E[U]E, £ + 25\19[) .

Proof Let ii* be an e-wave front tracking approximation of S¢u so that

£+

+)»19
/ | 500 = Sfue)|ax < 0(1)s+/ A

E—iv ‘

w9, — (S5t ©)) @) ax.
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By [5, Theorem 2.9],
A0
/g—iﬁ ‘
E+209—A(1+h)
<(’)(1)/ hmlnff/ ‘

h—0+ E—2004A(1+h)

E+200 —A(1+h)
<(’)(l)/ lim inf = / ‘
:

u @, = ($5u°(©)) (0 x

w(t+ ) = (Shut ) (0 duar

w -+ h,x) = (Sfur ) (0 drar - 3.35)

h—0+ —2304A(t+h)
E4+200—A(t+h) .
+O(1)/ lim inf — / H SCut (1)) (o) — (SEuf (1) (x)”dxdt.
h—0+ h g;-,z)tﬂJri([Jrh) ( h ) ( h )
(3.36)

The integral in (3.35) is bounded by O(1) ¢ since u? is a piecewise constant e—approximation
of the trajectory ¢ +—> Sf (#®(0)). The map x +— u®(t, x) is piecewise constant, hence the
integral in (3.36) can be computed estimating the differences in the local solutions to Riemann
Problems arising from the discontinuities in u°(¢) using Lemma 3.10 in the case i, = u,.
Thus, the term in (3.36) is estimated as

1 E+200 —A(1+h) .
lim inf — / [(sfwr ) @) = (spur®)) @) ax
h=0+ h Je_2594+3a+h)
F 1 X [ ¢ e
< x| (seo) o (o) oo
Xo €L (u® (1)) o

Yo €JE—200 A1, E4200 — [
Xa7#E, Xa €L (L)

1 xu+5»h -
+ 3 lim inf - / (st @) 0 = (shur@) o ax
) T e
X EJE—200+At,E+200 —A1[
Xo

+ liminf ~ /g tih (s ) 00 = (sfuf ) 0] dx

h—0+
=0
<o) 3 [ awr e x| e = E )
X €L (u? (1))
X EJE—200+At E+200 —A1[
Xo7E, xa €L()
+0(1) > (lau @ x| ¢ o) = £ | + 18N )
Xa€Z($)
Xo €EE—2A0+At E4+200 —At]
Xo7E
<OM)TV (4‘; 1& — 209, E[U]E, & + 2?\19[) ;
and, in the limit ¢ — 0, the proof of Lemma 3.15 follows. O
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Lemma3.16 Fixu, € D*. Fora & € R define

u,(§—) xe€l§—-4,6[
ux) = u,(6+) xe€l§&+4[ (3.37)
Uy(x) x €] —o00,&—68[UJE + 6, +o0[

and assume that it € D%. Then, for © €0, 8/(2):)[,

:’/;:?9 Hséuo(x) - Sgﬁ(x)de <01 TV (uo; 1€ — 2509, E[UE, £ + 2):190 .

Proof Use the Lipschitz continuity of S¢, see Lemma 3.14, on the dependency domain,

1 et [ e+
7/ [suo00 = sSacofax < 7 oo — o ax
¥ Jeis Y Je_oin
[ [E+2h . R
<= TV (o: 1§ = 29, €[UJE, & + 200 dx
Y Je_2in
and the proof follows. O

We are now ready to complete the proof of (i) in Theorem 2.3 for a piecewise constant £.

Use it as defined in (3.37) with u, = u(t) andE asin (3.34), so that U(:u.r,s) D, x) = (ngl)(x)
for ¥ in a right neighborhood of 0 and x near &: '

E4i0
/éfiﬂ HM(T +0,0) = U ) @, X)de
E+i0 ~
- /s_xﬂ | S5un@) = S5
| £+

< /:m 85 u@n @) — St |ax + /S | i a@w — e |ax

— —

and the latter two terms are estimated by means of Lemmas 3.16 and 3.15, obtaining
1 &+ )
3L 00— G0
<00 (TV (u, 16 230, €1V, & +2001) + TV (5,16 — 249, £[Ulg, & + 2301
(3738)

and the statement follows passing to the limit ¥ — 0.
We now head towards the proof of (ii) in Theorem 2.3. Preliminary is the following result.

Lemma 3.17 Let A be an n x n non singular matrix with n real eigenvalues L1, ..., Ay, 1
linearly independent right, respectively left, eigenvectors ry, ..., ry, respectively ly, ..., I,
and let m be a fixed finite vector measure. Then, the equation

o+ A dyu=m
generates the L'—Lipschitz semigroup

L, :L'(R;R") — L'(R; R")

n
1 X
u —>Zl:l,--(u(x—k,-t)+ki/X_Mdm)r,'.
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The proof relies on a direct computation and is omitted. Note for later use that

n n
Liw=> li-ux—xt)ri+A" Y I /
i=1 i=1

X
dm r;
X—Ajt

The next Lemma proves (ii) in Theorem 2.3 in the case x — u(t, x) is piecewise constant.

Lemma 3.18 Under the same assumptions of Theorem 2.3, assume moreover that x —
u(t, x) is piecewise constant. Then, (ii) in Theorem 2.3 holds.

Proof With the notation in Lemma 3.17, recalling the definition (2.6) of U > in the case of a
piecewise constant ¢,

A=Dyf (£(&), u(x,£)

; O =E (G, £(X), u(t. §))

Uyir) (3. ) = Lou(r) if —f CEH),u(m ) + f (€(©), u(z, &) (39
m= Y k(x)8s.

xeZ(¢)

Below, set for simplicity u, = u(t) and assume that T = 0. Use [5, Theorem 2.9] with the
notation in the statement of Theorem 2.3, recalling that x +— L,u,(x) is piecewise constant,
since so is u, and L is linear.

1 b—A b
— Syu, — U, . de
5 /a”z? H 0™ Huy;0,8)

1

b—i9
Z*/ o ISyup — Lyu,|ldx
¥ Jatio

1 r? b—i(t+h)
<0) —/ lim inf f/ . ISy Liuy — Ly Lyu,|dxdt
% Jo h=>0+ h Jaiian

1 o +ah
o5 A > lim inf » I|Sh Lty — LiLeuy|dxdz.

h—0 _
FeT(Luguz@) T Ah

To compute the latter sum, we distinguish the two cases x ¢ Z(¢) or x € Z(¢).

In the former case, in a neighborhood of x we have that the semigroup L locally coin-
cide with that generated by the homogeneous equation d;u + A d,u = 0. Hence, by [3,
Formula (3.8)], Lemma 3.18 and (3.39), we have

1 F+5h
Z[ . 1SpLiuo — Ly Liuylldx
X

—Ah
=0 S]llpb[ A = Dy f (£(x), (Liuo) D NIA(Ls uo) (Xl
x€la,
=00 S]uPb[ 1D f(§(8), uo(§)) — Du f (§(x), (Litto) )AL uo)(X) |l
=0 S]llph[(llC(X) = CE + lluo(€) — (Liuog) ()N ALy uo) (%) ]
x€la,

= OM) |A(Lsuo) (X)) (TV (o, la, b[) + TV (¢, la, bD)) .
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Hence,

1 X+ah
Z Z/— ~ IISpLiuy — Ly Liu,lldx
X

RET(Louy) ¥¢T(C) —*h

<o) > IA(L o)) (TV (o, 1a, bI) + TV (£, la, b))
Xe€Z(Liuo), x¢L (L)

< O(1) (TV (o, )a, b) + TV (¢, la, b[))* .

Assume now that X € Z(¢). Using the map T defined in Lemma 3.2, define
u = (Liuo)(x—)

wx) = {

u x<Xx
T @&+, ¢(x—) @) x>x

and note that (Lsu,)(x+) = u + Al k(x). Then, Syw = w and LyL;u, = Lsu, in a
neighborhood of x. Moreover, recall the Lipschitz continuity of S, restricted to dependency
domains:

T+rh X42%h
/ ) ||ShL,u0—shw||dxsf " Loty — wildx,
X—Ah xX—2\h

and, using the notation in (3.39), proceed

T4Ah
f/  WShLiuy — LpLiu,|ldx
h Jz—3n

| [E+hh | [E+hh
< f/ ISk Liuy — Spw(dx + — /  IShw — LpLiu,lldx
h T—Ah h X—M\h

<O T @G+, ¢(@) @) — (@+ A" k@)|

<O AT (€(E4), ¢(X)) (@) — (At + k(@)

=OW) [IDuf (&), us(®)) (T (¢ (EF+). ¢ (X)) (@) — ii)
—E(CEH), (), uo(®) + [ (&4, uo(€) = f (), uo(E)]|

<O [AL@ N NIEGEH) = ¢E + 1ACE | + lluo(€) — al))

< O |AL@)]| (TV (o, Ja, b)) + TV (¢, Ja, bD))

where we used 2. in Lemma 3.2. Now, we add over x € Z(¢):

T4Ah

1
Z Z[ IShLiug — Ly Liulldx < O(1) (TV (o, Ja, b)) + TV (¢, Ja, bD)* ,
xeZ(?) xXx—M\h
completing the proof of Lemma 3.18. O

To complete the proof of (ii) in Theorem 2.3, consider the case of x — u(t, x) not
necessarily piecewise constant. We keep using the equalities u(t + ©) = Sy (u(r)) and
U(bu;r’é) = Ly (u(7)), the linear operator L being defined in Lemma 3.17 with A and k
as in (3.39). Then, for ¢ > 0 call u® a piecewise constant approximation of u(t) with
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TV(@®) < TV (u(r)). By the Lipschitz continuity of Sy and L;, we have

| bt b
Iy /L;_;w Hu(r +7,x) — U(M;T’g)(ﬁ,x)de

e 1 b+AD
=< (’)(1)5 + 5/ i ” (Spu®)(x) — (Lzsus)(X)de
=< O(l)g +O0) (TV (u(7), la, b)) + TV (¢, la, bD)*.

Passing first to the limit ¢ — 0 and then to the limit ¥ — 0, we complete the proof.

3.3 The General Case

Consider now the case ¢ € BV(R; R”).

Lemma 3.19 Assume f satisfies (£.1)—-(f.4) and E satisfies (E.1)—(E.4). Then, forall 7 € Z,
veRP. we Q if§ > 0 is sufficiently small,

EGz+68v,z,w) — f(z+ v, w)
+f(z,0) =8 (DyE(z, 2, ) = D, f(z, @) v) + O(1) 5 () 8.

The proof directly follows from—(Z.4) and from the Taylor expansion of f.

Proof of Theorem 2.3 Let ¢ € BV(R; Z). Call Z(¢) the, at most countable, set of points of
jump in ¢. Recall that D¢ is a finite vector measure. Let © and v be as in (1.6). By Lusin
Theorem [20, Theorem 2.24], for any & > 0, there exists a e C? (R; R?) such that

H ﬁh(x)H <1 and D¢ ({x eR: i (x) # v(x)]) <h. (3.40)
Following [8, Step 1, § 4.3], introduce points {x1, ..., xy,—1} € R such that:
(i) xo =—o0,x1 < —1/h,xj—1 <x;fori =2,..., Ny—1,xy,-1 > 1/handxy, = +00.
(ii) erz(;)\zh |AZ(x)]| < hforasuitable setofpointsIh containedin {x1, x2, ..., Xy, —1}.

(iii) Whenever! x; € T, TV (¢, [xi_1, xi[) < h/(1 + #Z").

@{iv) TV (¢, Ixi—1,xi[) <hforalli =1,..., Nj.

) " (") =" (x")| < hforx', x” €lxi—1, xi[,i =1,..., Np.
(vi) x; —x;_1 €]0,h[foralli =2,..., N, — 1.

Points satisfying (i) are easily constructed. Then, adding more points, one fulfills also (ii)
and this condition fully defines Z" and, hence, #Z". Iteratively continuing to add points,
thus increasing Nj,, we satisfy also (iii), (iv), (v) and (vi), in this order. Define the piecewise
constant map

Np—1
h __ .
"= (=00 Xt ; ¢ Gimt ) sy g HE Nt X, g 34D
and note that
") =) and o) = o). (3.42)

1 Everywhere, #A stands the (finite) cardinality of the set A.
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The approximations ¢ converge to ¢ uniformly on R as & — 0. Indeed, fix 4 and for any
x € R, by (i) we have x €]x;_1, x;] (obviously excluding +o00) and fori € {1,..., Np},
by @iv),

[ @ - ¢ = TV @ wimr xD < b,

Call $¢": [0, +oo[><D§h — Dgh the semigroup whose existence is proved in the piecewise
constant case in § 3.2.3, provided § is sufficiently small. We prove that as 7 — 0 the
semigroups S¢" converge to a semigroup S in L.

Using the notation (3.19), introduce the sets:

¢ ¢t e ¢h
D§ = () D§ D5 = D§ (3.43)
h>0 h>0

the latter closure is understood in the strong L! topology. If ¢ has sufficiently small total
variation then suitably choosing positive § and &’

D; € Dy €Dy,
and all these sets are not empty since they contain all # with sufficiently small total variation.
Since ﬁg, is separable with respect to the strong L! topology, by a diagonalization process
there exists a sequence /; such thatforallu € D¢, andforall? € [0, +o0l, the sequence Sf i u
converges in Ll (R; R™) to a limit which we define as Sf u. Clearly, Sf ue ZA)g,. Moreover,

loc
whenever Sfu € Zv?g,, thanks to the Lipschitz continuity of u Sf "I, the semigroup

property holds in the limit #; — 0, i.e., S‘f S,{u = S§+tu forall s > 0.
Define now
Df = {ueDf: 31 e Ry and 3w € B such that Sfw = u} . (3.44)
Note that

% e pf e B
D; C D§ C D§.

Forallt € R, the domain Dg is invariant with respect to Sf ,1in the sense that (Sf Dg) c Dg.
Following the lines of [8, Theorem 2.2], the above construction proves 1. in Theorem 2.3.
Condition 2. in Theorem 2.3 also follows, since the semigroup $¢" admits a Lipschitz
constant independent of 4;. In statement 3. of Theorem 2.3 ¢ is required to be piecewise
constant and the results in § 3.2.3 apply, since in this case for & sufficiently small " coincides
with ¢.
To prove 4. in Theorem 2.3, we consider first (i).
Proof of (i). To simplify the notation, we denote /; by h. By U (ﬁuh 0.6) denote the solution to

the Riemann Problem (2.5) with ¢ replaced by ¢”. Clearly,

% /g:? H <S§u(t)> ) = U(ﬁu:r,é)(ﬂ’ X) de (3.45)
<3 () - (5 o) o
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+$/ o [(55"u) 0 = Uk, o 0| dx

E+i0 0
/ |Uit 6@ 0 = Ul @0 ax. (3.46)

The first integral in the right hand side above vanishes in the limit # — 0. To estimate the
second integral, use (3.38) and [8, Formula (4.29)] to get

L (5w 0 0o

U Jeio
<o (v (u(t) —2Xﬂ,g[u]g,.§+2iﬁ[)

(
+TV< h JE — 250, E[UIE, s+2w[))
<o) (Tv (u('c) — 239, E[UIE, £ + 2119[)
4TV (;, 16 — 239, E[UIE, £ + 2119[) + h) .

In the limits, first for 4 — 0 and then for ¢ — 0, the latter term above vanishes.
Concerning the third term (3.46), use Lemma 3.10 and obtain

1 E+09
& /s—izs
[0t @0 = Uf, o 0,0 ax < 00) ([ @ - c@) | + ¢+ - ce0)])

which vanishes as # — 0 by the uniform convergence of £” to ¢, completing the proof of (i).
Proof of (ii). We now pass to (ii) in item 4. of Theorem 2.3. the following definitions and
preliminary results are of use below.

Recall the notation in (1.6). Fori =1, ..., Ny, let
8 = el (xi—1, x:D ; (3.47)
5 (xic, xiD 8 #0; 348
" {0 §i=0; (5.45)
Nyp—1
h_ .
V= Z vi K1 T th X]xN ],+00[' (3:49)
i=1 h=

Note also that for &; # 0, v; = 5 [, vdlul.

Claim: We have the convergence

ol — denMn =0. (3.50)

h—0 Jr
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Indeed, recalling (3.40),

[ o0 = v e

Z/ 10 = a1l

1
> 5 o) —vIddlpll @ el x, y)
i=1,N; i J(xi—1.xiD?
8; #0

Z /(]xl o [[ve0 = 5" o |+ |5 o) = v [ adiul @ e, v)

8,7&0
/]x 1.xi0)?

The two terms in the integral in (3.51) are estimated in the same way, using (3.40), as

> .

i=1,Np
8; 0

(3.51)
7 0) = 7 ) |dlell @ el e, v). (3.52)

llN
8i #£0

~Jve = 7@ daen @ i, v)

2 f oo = o |diaio

i=1,Np, i—1,%i [
8 #0

[ oo = " atuin
R

: /{xeR: v(x)#0" (x)} (||v(x)|| + Hﬁh(x) H) dflplice)
<2h

— 0 ash— 0.

We now estimate the term (3.52) by means of (v):

1;\’ /x,lx)z

870

1
<h Y o a(lel @ Il y)
=1, O /0 1.%)?

5170

Ni
<h) s
i=1

< h [ul@®)

—-0 ash— 0,

7 0) = 7 ) |dClell @ el »)

completing the proof of the Claim.
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Apply Lemma 3.17 with A = Df (¢(§), u(z, §)), first with m = g as defined in (2.7),
then with m = g" where g" is defined, for all Borel subset E of R, by

B =Y (e( oo uee)

yeZ(h

7 (00 @ o) + £ (") 1. 6)) 8,(E)

and write

n
1 X
Upprrey @) = Y Ii- (u(r,x — M)+ o / dg) ri,
i=1 ] x—A,-z?
n 1 X
Utor ) (9. ) = Zli-(u(r,x—xi ﬁ>+;/ dgh>ri.
i=1 L X—K,‘l?

(3.53)

Similarly to (3.45), fix a, b, £ in R witha < & < b, let 9 €]0, (b — a)/):[ and compute

é /;M [(S5u() @) = gy 0. )

+10
= é / ;j [ (s5u() 00 = (55" u) @) ax (3.54)
1 b—A9
+5 ~/a+)q9 H (Sg M(T)) ) = (u f,é)(ﬁ’ X)de (3.55)
1 b—A9 bh
+5/am (U0t @) = Ug @0 . (3.56)

The first term (3.54) vanishes as 7 — 0 by the above construction of S.
Since ;h is piecewise constant, to bound (3.55) we can use (ii) in Theorem 2.3 as proved

in § 3.2.3 in the piecewise constant case:

2
[(3.55)] < C [TV u(t), la, b)) + TV (;”, la, b[)]
< C[TV (u(x), la,bl) + h + TV (¢, la, bDT?

where we used [8, Formula (4.29)]. In the limit 2 — 0 we obtain the desired estimate.
Compute (3.56) by means of (3.53) as

b= || X N
[(356)]:/a+w ;kili'/x w(dg—dg )|ax
< 0(Q) Z/b a / dg —dgh> dx.
a+io x—=Aj ¥
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We now estimate the latter integrals, assuming that neither x nor x — ;9 are discontinuity
points for ¢ or ¢, Fix i and call J the real interval with extreme points x and x — ;9.

[0

Y (BEQGED, ¢, ulr, £) — f CEH), u(r, £) + f (€(X), u(x, §)))

FeT(t)NT

+/J (Dj(x)a (), ¢(x), u(r,§)) — D f (¢(x), u(z, §)) v(x)) dlfgefl (x)
- Y (5("@. @, u )

xeZ(chHnJ

—f (" @0, uw, ) + 1 (20,1 0))|
<E+E+E+EL+E+ Es.

The terms &1, . . ., & are defined below.
In the first term, using the definition of Z" in (ii), we show that the sum of all jumps in ¢
not in Z" is O(1) h:

& = Z (E@EH), ¢(x), u(T, &) — fC&x+), u(r,§) + f (), u(z, §)))
xe(@O\IMHNJ

< O Z A [By (f.1), (E.1) and (E.3)]
XeL(\I"

< OM)h [By (ii)]

— 0 ash— 0.

Now we estimate the effect of passing from ¢” (¥) to £ (¥) in the jumps X in Z", calling X
the point in Z(¢ hy that precedes x and using (3.42):

= Y [E(@E0.c@.uw o) - 7 (G, u o) + £ €@, ur.6)

xeZ)NThng

& ("G, @ &) + £ (¢ G, ) - £ (@, 9)]|

<00 Z H;“(i) - ;h(i)H [By (f.1) and (E.1)]
xeZ)nIhng }

<o) Y Je® -G [By (3.42)]
xeZ)nIhng

<o) Y TV(¢IEE) [By 3.41]
xeZ)nZhng N

<=0Q) ) Z W [By (iii)]
xeZ@)NIhnJ

<Ok

-0 ash— 0.
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Call X the point in Z(¢") that precedes x. Out of T", the measure ;1 approximates the
measure D¢, so that ¢ h(z)+68v approximates ¢ h(%+) as in (3.48)—(3.49):

&

> [E(dEh @)

ReT(¢MHNI\T
F ("G u@ ) + £ (M@, 9)
2 (¢ + 50, ¢" (), u(z. )
+ (" + 50, u.) - £ (" @ u@ 9)]|
o Y| -t @ - (53|

FeZ(chHnJ\T"

IA

o Y |G -G - (5 )|
XeZ(chHnNJ\Th

oy Y |pg (1%, x1) — u (1%, 1)
xeZ(MHnJ\I"

o) Y I1Ac@|
X¢Ih

< O)h

— 0 ash— 0.

IA

Using Lemma 3.19, the differences at the jumps in ¢” out of Z” are approximated by
means of derivatives:

& > [E(E @+ o)

FeT(EHNNTh

—f (" @ + 55, u@ &) + f (£"®), u(r. )

-5 (DFe (" @ ¢" @, &) = Dof (¢"®.u. ) 5) ]|
o > o®)3s

FeZ(chHnJ\T"
< O0M)o(h)TV()

— 0 ash — 0.

IA

Ifx e 7", [Tl (])%, )E[) =34is negligible, so that by (iii), (3.47), (3.48) and (3.49),

& > [5(per (@ @ uw ) = Dof (60, uz. 9) 5)

FeZ(CMHNI\Th
- /J (Dfi o B (" @) " @) u. &) = Dof (60, u(z, ) v"(X))dIIMII(X)] H
o) Y 5+0()h

xezh

IA
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h
< 1 Hh
o Yy Tt OO
xezh
— 0 ash — 0.

‘We now use the Lipschitz continuity of D, E, see (E.4), and of D, f, see (f.1), the uniform
convergence of ¢ — ¢ and the convergence v — v by (3.50):

£ = H/ HE (6" "0 u@.©) = Dof (") u(@ ) v () ) dilull )

—/J( F B ), (), u(z, ) = Dof (), u(z, €) v(x)) el ()

IA

o [ (Jew = o] + oo = v co] ) dimico
-0 ash— 0.

The proof of (ii) is completed.
We now prove that a Ll—Lipschitz continuous map u satisfying (i) and (ii) for a.e. ¢ is
actually an orbit of S¢. Using [5, Theorem 2.9] as in [5, § 9.2], for any a, b € R witha < b

”u(t) - Sfu(O)‘

L ([a+5t,b—it];R")

t
1
< L/ lim inf —
0 h—0+ h
Let 7 be such that (i) and (ii) hold. Fix ¢ > 0 and choose xo = a + AT, Xp < Xp < x3 <

- < XN—1 < XN, XNy = b — At such that,fori =1,..., N,

TV (u(t); Ixi—1, xi[) + TV(C; 1xi—1, xi)) < e.

u(t +h) — S u(t H 2 i f
(t+h) h ()L]([,H,\(Hh),bfx(wh)];R”)

Then, for 4 > 0 sufficiently small, and for &; €]x;_1, x;[

u(t +h) — Stu(z H . -
H ( + ) h ()L]([a+}x(f+h) b—A(t+h)];R™)

N

:Z/: - Hu(r—i—h X) — (s,fu(r)) (x)de

=1

+Z/

x,+)»h

. |t + 1,2 = (Sfu(0) (0] ax

L

=Z/ ) Hu(r—i—h,x)—U(bu_ré_)(h,x)”dx

i—1 Y% 1+Ah o

N x,-fih b

+Zf NVl 00 = (Sfu®) 0 ax

i=1 Xi—1+Ah

N-1 X,+)»h

+Z/ |t + 1,20 = U, G0

i=1

N—=1 xi4ih

+Z/ HU(MH)(h,x)— (S,fu(r)) (x)de.
Xi—

i=1
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Since both u and §¢ satisfy (ii), we get

1
- W-Spuo| o
hHu(T+ ) = Spu@) LI (la+4 1,b—3T;RM)

N
<O Y (TV @) i1 xiD + TV (€ Ixio1. xiD)>

i=1

(h, x) de

(u;7,x;)

N-1 1 xl-fih
" f/ Hu(r—l—h,x)—U
; h xi+ih

N-1 1 xi—Ah g
" g h /x,-+ih H Uiz, 1 %) = (Spe(T)) (x)de.

Both u and S¢ satisfy (i), hence in the lim inf},_, ¢ the latter two terms vanish. Thus,

1
li 'f—H hy — §¢ H o
mind e @+ =S @ s iy

N
<O Y (TV (u(0): 11, 5 + TV (¢ Ixi1, xD)?
i=1

=O0WM)e (TV (u(1)) + TV()) -

Since ¢ is arbitrary, the term in the left hand side above vanishes. The arbitrariness of a and
b allows to complete the proof. O

Author Contributions All authors contributed equally.

Funding Open access funding provided by Universita degli Studi di Milano - Bicocca within the CRUI-
CARE Agreement. The first and second authors were partly supported by the GNAMPA 2022 project
“Evolution Equations: well posedness, control and applications”. The work of the third author has been
funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Projektnummer
320021702/GRK2326 Energy, Entropy, and Dissipative Dynamics (EDDy).

Data Availability Not applicable.

Declarations

Ethical Approval Not applicable.

Conflict of interest The authors declares that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

@ Springer


http://creativecommons.org/licenses/by/4.0/

Journal of Dynamics and Differential Equations

References

20.
21.

Amadori, D., Gosse, L., Guerra, G.: Global BV entropy solutions and uniqueness for hyperbolic systems
of balance laws. Arch. Ration. Mech. Anal. 162(4), 327-366 (2002)

Baiti, P., Jenssen, H.K.: On the front-tracking algorithm. J. Math. Anal. Appl. 217(2), 395-404 (1998)
Bianchini, S., Colombo, R.M.: On the stability of the standard Riemann semigroup. Proc. Am. Math.
Soc. 130(7), 1961-1973 (2002)

Bressan, A.: The unique limit of the Glimm scheme. Arch. Ration. Mech. Anal. 130(3), 205-230 (1995)
Bressan, A.: Hyperbolic Systems of Conservation Laws. Oxford Lecture Series in Mathematics and its
Applications, vol. 20. Oxford University Press, Oxford (2000). (The one-dimensional Cauchy problem)
Bressan, A., Liu, T.-P.,, Yang, T.: L! stability estimates for n x n conservation laws. Arch. Ration. Mech.
Anal. 149(1), 1-22 (1999)

Colombo, R.M., Guerra, G.: On the stability functional for conservation laws. Nonlinear Anal. 69(5-6),
1581-1598 (2008)

Colombo, R.M., Guerra, G., Holle, Y.: Non conservative products in fluid dynamics. Nonlinear Anal.
Real World Appl. 66, 103539 (2022)

Colombo, R.M., Marcellini, F.: Smooth and discontinuous junctions in the p-system. J. Math. Anal. Appl.
361(2), 440-456 (2010)

Dafermos, C.M.: Polygonal approximations of solutions of the initial value problem for a conservation
law. J. Math. Anal. Appl. 38, 33-41 (1972)

. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der Mathematischen

Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 235, 4th edn. Springer-Verlag,
Berlin (2016)

Dal Maso, G., Lefloch, P.G., Murat, E.: Definition and weak stability of nonconservative products. J.
Math. Pures Appl. 74(6), 483-548 (1995)

Guerra, G., Marcellini, F., Schleper, V.: Balance laws with integrable unbounded sources. SIAM J. Math.
Anal. 41(3), 1164-1189 (2009)

Holden, H., Risebro, N.H.: Front Tracking for Hyperbolic Conservation Laws. Applied Mathematical
Sciences, vol. 152. Springer-Verlag, New York (2002)

. Kroner, D., Thanh, M.D.: Numerical solutions to compressible flows in a nozzle with variable cross-

section. SIAM J. Numer. Anal. 43(2), 796-824 (2005)

Lax, P.D.: Hyperbolic systems of conservation laws. Il. Commun. Pure Appl. Math. 10, 537-566 (1957)
Lefloch, P.G., Thanh, M.D.: The Riemann problem for fluid flows in a nozzle with discontinuous cross-
section. Commun. Math. Sci. 1(4), 763-797 (2003)

Lefloch, P.G., Tzavaras, A.E.: Representation of weak limits and definition of nonconservative products.
SIAM J. Math. Anal. 30(6), 1309-1342 (1999)

Liu, X.: A well-balanced and positivity-preserving numerical model for shallow water flows in channels
with wet-dry fronts. J. Sci. Comput. 85(3), 60 (2020)

Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)

Yong, W.-A.: A simple approach to Glimm’s interaction estimates. Appl. Math. Lett. 12(2), 29-34 (1999)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer



	Well Posedness and Characterization of Solutions to Non Conservative Products in Non Homogeneous Fluid Dynamics Equations
	Abstract
	1 Introduction
	2 Hypotheses and Main Theorem
	3 Proofs
	3.1 Preliminary Results
	3.2 The Case ζinPC(mathbbR; mathbbRp)
	3.2.1 Wave Front Tracking
	3.2.2 An Extended Almost–Decreasing Functional
	3.2.3 Proof of Theorem 2.3 in the Case ζinPC(mathbbR; mathbbRp)

	3.3 The General Case

	References


