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Abstract

Suppose given a Hamiltonian and holomorphic action of G = U(2) on a compact Kéhler
manifold M, with nowhere vanishing moment map. Given an integral coadjoint orbit O for
G, under transversality assumptions we shall consider two naturally associated ‘conic’

. . . —G . . .
reductions. One, which will be denoted M, is taken with respect to the action of G and the

cone over (J; another, which will be denoted HVT , is taken with respect to the action of the
standard maximal torus 7 < G and the ray R, v along which the cone over O intersects
the positive Weyl chamber. These two reductions share a common ‘divisor’, which may
be viewed heuristically as bridging between their structures. This point of view motivates
studying the (rather different) ways in which the two reductions relate to the the latter
divisor. In this paper we provide some indications in this direction. Furthermore, we give
explicit transversality criteria for a large class of such actions in the projective setting, as
well as a description of corresponding reductions as weighted projective varieties,
depending on combinatorial data associated to the action and the orbit.
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lift - Unitary group - Maximal torus - Symplectic reduction - Coadjoint orbit - Irreducible
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1 Introduction

It is a classical fact in algebraic geometry that the quotient M// Gofa complex projective
manifold M by the action of a connected and reductive group G may be taken within the
setting of Geometric Invariant Theory, by considering the subset M* C M of so-called
semistable points for the action, and declaring two orbits in M* to be equivalent if their
closures intersect (on the subet of stable points, two orbits are equivalent if and only if they
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coincide). This construction depends on the choice of a linearization of the action, that is,
the lifting to an ample line bundle A on M. It is also well-known that there is symplectic
counter-part to this construction, which rests on the notion of Hamiltonian action and
Marsden-Weinstein reduction. Namely, assuming that G is the complexification of a
compact and connected Lie group G that acts preserving a Hermitian metric on A, we can
define a moment map for the action of G. One can then characterize semistable points for G
as those points in M with the property that the closure of the G-orbit intersects ®~!(0), and
there is a natural identification of ®~!(0) /G with M//G. The Marsden-Weinstein reduction,
or symplectic quotient, comes equipped with both a quotient symplectic structure and a
curvature form associated to the principal G-bundle ®'(0) — ®~'(0)/G (assuming that G
acts freely on ®~1(0)). For instance, if G = S' we obtain a 2-form on the quotient which in
many interesting cases is also symplectic; if this is the case, since the latter curvature form is
involved in the celebrated Duistermaat-Heckman formula, it seems suggestive to call the
resulting symplectic manifold the Duistermaat-Heckman reduction of M. Obviously with no
pretense of completeness, for a detailed discussion of the above we refer to [3, 5,9, 13, 14].

In several circumstances, however, it happens that @ (0) =), and the previous
approach may not be applied without altering the Hamiltonian structure of the action, i.e.,
the linearization. An alternative approach to obtaining geometrically interesting quotients
consists in replacing, on the symplectic side, the usual Marsden-Weinstein reduction with
reduction respect to different coisotropic loci in the coalgebra g" of K [6]. A natural choice
in this setting is the cone over a coadjoint orbit O C g*; we shall call the corresponding
quotients conic reductions (one should restrict to so-called integral orbits and impose
suitable transversality assumptions to obtain tractable quotients).

For instance, in the special case where G is a compact torus a coadjoint orbit is a point
in gV and the corresponding cone is the ray through that point. Then the corresponding
quotient may interpreted as a Marsden-Weinstein reduction with respect to a certain
subtorus of G, and a natural issue is then to describe how these quotients depend on the
choice of ray.

The main aim of this paper is to provide a body of examples for this conic construction,
and elucidate the geometry of the corresponding quotients, in the special cases where G is
either U(2) or its maximal torus. To give a more precise account, some terminology is in
order.

Let M be a d-dimensional compact and connected Kihler manifold, with complex
structure J, and Kéhler form w. By way of example, M might be complex projective space
P?, and o the Fubini-Study form.

Let us assume, in addition, that G = U(2) and ¢ : G x M — M is a holomorphic and
Hamiltonian action, with moment map ® : M — g", where g = u(2) is the Lie algebra of
G (we refer to [8] for generalities on Hamiltonian actions and moment maps). For example,
M might be PW, where W is a complex unitary representation space for G, with the
naturally associated G-action. We shall equivariantly identify g = gV by the inner product
(1, Ba) == trace(ﬂl FZ), hence one can equivalently view ® as being a g-valued equiv-
ariant map.

An important and ubiquitous geometric construction associated to Hamiltonian actions
is the symplectic reduction with respect to an invariant submanifold R C gV, assuming that
@ is transverse to R; the geometry of the action may lead to different choices of R ([5, 6]).
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Here we shall assume that 0 ¢ ®(M). In this situation, a natural choice for R, suggested
by geometric quantization, is the cone C(0) = R, O C g over an integral coadjoint orbit

O [6].

Example 1.1 To fix ideas on a specific case, consider the Hamiltonian G-space P(Wy,k)
associated to a unitary representation

Wik = P)_,det® @ Sym* (C?), (1)

where L = (I,) € Z', K = (k,) € N". Then 0 ¢ ®(M) if and only if either k, +21, > 0
foralla=1,...,r,ork,+21,<0 for all a = 1,...,r (see Proposition 2.5).

More explicitly (to be precise, with an extra genericity assumption on Wy - see
Definition 2.2) the image of @ is the convex hull of the subsets 1 Ly, + 1,1, C g, where L,
is the set of positive semidefinite Hermitian matrices of trace k,, fora = 1,...,r (see (23)
and Proposition 2.3). Furthermore, if v = (v, v,) € R? and D, is the diagonal matrix
with entries v;, v, then 1D, belongs to the image of ® if and only if v belongs to the
convex hull of the all the vectors (k,+1, I,) and (I, k,+1,), for a=1,...,r
(Corollaries 2.8 and 2.9). In addition, if v; # v, then @ is transverse to the cone over the
orbit O, of 1 D, if and only if v does not belong to the one of rays sprayed by the vectors
(ke—j+1l, j+1l,),fora=1,..,randj=0,... k, (Theorem 2.5).

Assume that 0 & ®(M), that O is an integral orbit, and that ® is transverse to C(O); then
the (coisotropic, real) hypersurface Mg =@ (C(O)) C M is compact and connected
(Theorem 1.2 of [4]). Let ~ be the equivalence relation given by the null foliation. The
symplectic reduction of M with respect to C(O) is Mg := MG/ ~, together with its nat-

urally induced reduced orbifold symplectic structure 6. We shall refer to (M, g, wﬁa) as
(9] o

the conic reduction of M with respect to G and O.

There are other reductions associated to the integral orbit O built into this picture. Let
T < G be the maximal torus of diagonal unitary matrices, and : T x M — M the
restricted action. Then 1/ is also Hamiltonian; let ¥ : M — t =2 t be its moment map. We
shall identify t with z R%.

Assume that 0 ¢ (M) (this is in principle a stronger hypothesis than 0 ¢ ®(M)), and
that P is transverse to a ray R, -zv, where v = (v; v) € Z*\ {0}. Let us set
vi:=(-v2 v)E€E 7% Let Tvll < T be the subgroup generated by zv,. If non-empty,
MVT =y! (R, - 1v) is then a connected compact hypersurface in M, whose null foliation
~ is given by the orbits of T, .

The quotient MVT = MVT /~' is then also an orbifold, with a reduced Kéhler structure
(M: ,Jo, Qp), which can be viewed as the symplectic quotient (symplectic reduction at 0)

for the Hamiltonian action of Tv'L on M. We shall refer to (MVT ,Jo, Qo) as the conic
reduction of M with respect to T and v.

The two hypersurfaces Mg and MVT meet tangentially along the smooth connected locus
MC := ® (R, -1v) (Theorem 1.2 of [4] - in loc. cit. M was assumed to be projective, but
Theorem 1.2 holds true in the Kéhler setting). Furthermore, the null foliations of Mg and
MVT are tangent to MvG since the latter is 7-invariant, and they actually coincide along it.
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.G . . G T .
Therefore, the quotient M, := MP/~ is an orbifold. M, has an intrinsic symplectic

. —G . . .
structure W6 and in fact (Mv , wﬁf) can be interpreted as a symplectic quotient of a
symplectic cross section for the G-action, in the sense of [7]. Furthermore, (1\7IVG ,wﬁc)
. . —T — — .
embeds symplectically in both (M, , Q) and (M(G97 o). Hence, Mf can be viewed as
o

bridging between Mg and MVT . This heuristic point of view motivates investigating Mg and
—T . . —G
M, in relation to M .

Regarding ]\712, we shall prove that in a large class of cases the symplectic orbifold

M g, W0 ) factors as the product of (MVG, wﬁvc) and P!, endowed with a suitable rescaling

of the Fubini-Study form (Theorem 4.1). In the more general situation, 1\_4g is still, in some
sense, topologically close to being a product (Theorem 4.2).

Regarding MVT, we shall see that MVG embeds in it as the zero locus of a transverse
section of an orbifold line bundle L; this section is naturally associated to the moment map
(Theorem 3.1). The curvature of L is the form 96 introduced in [3] to study the variation of
the cohomology class of a symplectic reduction, namely, the curvature to the orbifold S'-

bundle MvT — MVT (striclty speaking, Qg is not uniquely defined as a form, but in our
context there will be a natural choice). If € is symplectic and there exists an orbifold

complex structure on M VT compatible with €, we shall call the triple (A_4VT .10, Q) the v-th
DH-conic reduction of M.

We shall see that this is the case for the spaces P(Wy x) in Example 1.1. More pre-
cisely, we shall classify the corresponding DH-reductions and explicitly describe them as
Kihler weighted projective varieties parametrized by certain combinatoric data depending
on v, L, K. In these cases L is an ample orbifold line bundle on M (Theorem 3.2). Fur-
thermore, for a class of representations that we call uniform (Definition 2.3) the complex
orbifold (M VT, J(/)) remains constant as v ranges within one of the fundamental wedges cut
out by the ‘critical rays’ (see Example 1.1).

Finally, we shall focus on the specific case of the irreducible representations Sym"(Cz).
We shall see that if vi > (k—1)v, >0 then MVT is the weighted projective space
P(1,2,...,k), and that if v > v, > 0 (the bounds might be made effective and depend on
k) then M? is smoothly and symplectically isotopic to P(2,...,k) C P(1,2,...,k)
(Theorem 3.3).

In closing, we recall that in the usual Marsden-Weinstein setting the relation between
the symplectic quotients with respect to a connected compact Lie group and to its maximal
torus has been elucidated in a very terse and precise manner by the theory in [12]; in
particular, it is proved that the two quotients are related by ‘a fibration and an inclusion’,
and building on this the connection between their topological properties is investigated.
Here clearly no comparably general and conclusive results are given, not even in the
special case where G = U(2); nonetheless, the present discussion points to a geometric
relation of a rather different nature between the corresponding two quotients in the present
conic setting, and to the bridging role of the symplectic divisor M? . In this perspective, the
emphasis on the v-th DH-conic reduction of M is motivated by the fact that A_lvc is the zero

locus of a C* section of a complex orbifold line bundle on MVT with curvature €.
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2 Transversality criteria

In this section we shall provide some general transversality criteria involving the moment
map @ : M — g and a cone C(O) over a coadjoint orbit in the case of Hamiltonian G-
actions associated to unitary G-representations. We shall equivariantly identify g = g¥ and
tetY.

Let C := (ey, e;) be the standard basis of C>. Forany k = 1,2, ..., W; := Sym* (032) has
an Hermitian structure naturally induced from the standard one of C%. An orthonormal
basis of W, may be taken B = (Ek J), where

Sy k+1)!
E, ;.= ~kje,, j = 4( 5 .:Oala"wk' 2
k.j Ckj €] 2 Ck,j ’II]' (k *])' J ( )
By means of By, we shall unitarily identify W) =~ C*! and a point w = Zjl;o 7 Er; € Wy
with Z = (3)i, € C**".

Consider the unitary representation = g, of G=U(2) on W;:= c? given by
B—(B' )71 with respect to C. Then y, naturally induces for every k a unitary representation
of G on W;, which we may regard (given 5;) as a a Lie group homomorphism
W :G— U(k+1), with derivative dy, : g — u(k+1). Consequently, we have an
induced holomorphic Hamiltonian action ¢, of G on P* = P(W,) with respect to 2 wps

(here s is the Fubini-Study form); let us compute its moment map @ : P* — g.
Let us set for simplicity E; = Ej;. We have for « € g

du(0)(Ej) = — V/j (k —j+ 1) a1 Ej-y
— [(k—j)our +j o] E (3)
— k=) G+ 1) o2 By
Hence the only non-zero entries of dg (a) are
dp(e);_y = — \/m“ﬂv
dpy(2);; = — [(k —j) o1 +jon], (4)
dpg ()1, =— V' (k=j) (j+ 1) onz

for j=0,...,k. For Z=/(z,.. .,zk)t € C**', let us define the Hermitian matrix
(Z@Z)ij = z;7. As is well-known, the moment map for the action of U(k+ 1) on

(P*2ps), T : P* — u(k + 1), is
I([z]) = —WZ@Z (5)

Given (4) and (5), one obtains by standard arguments that the entries ®@; are given by
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k
(@) ([2) = >~ (=) 3

12 5
k—1

(@0)(12]) = ”2‘”2 VE=DG+ Dz,
Jj=0

(i) ([Z

Z Viltk—j+1)z17,

2
||Z|| =

(@), ([Z J‘ZJ .
||Z||2 Z

We can reformulate this in a more compact form, as follows. Let us define Fy, : cH
C* for a = 1,2 by setting

iz
Pz =| = (VESTF 1), )
o
.
T A = (Via), ®)
Ve

Then

O([Z]) =

l ( IFe @) Fk_2<Z>ka.l<z>>, o)

1Z|* \ Fe1(2) Fea(Z)  IF@)

Definition 2.1 Let k> 1. We shall denote by L; the set of all positive semidefinite Her-
mitian matrices of trace k and rank 1; thus L| is the set of orthogonal projectors onto a 1-

dimensional vector subspace of C?, and L, = kL. Similarly, L; will denote the set of all
2 x 2 Hermitian positive semidefinite matrices of trace k.
In particular, L; is the convex hull of L;c, and L, = kL.

Proposition 2.1 @, (P') =i Li. If k>2, & (P*) =1Ly

Proof For k = 1, (9) specializes to

1 o> 2%
P iz (m W)’ "
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which implies the first statement.
Let us then assume k>2. It is evident from (6) and (9) that CDk([FDk) C1L. Since

@, (Pk) is G-invariant in view of the G-equivariance of @y, to prove the reverse inclusion it
suffices to show that for any 1 € [0, k] we have

A0
! € o (P*).
(o k—i) (%)
To this end, we need only set zo = \/A/k, z;=0forj=1,....k— 1, zx = /(k— A) /k.

Ifv=_(vy v )[6 R?, we shall denote by D, the diagonal matrix with entries v, v, and by
O, C g the orbit of 1D,.
Also, let us set

v v
Jk:={< 1) ZV1,V220,V1+V2:]€}, Jk+2={< 1>EJkZV12V2}.
V2 V2

In other words, J is the segment joining the points (K 0)', (0 k)€ R%.

Corollary 2.1 In the situation of Proposition 2.1, @, (P') = O, where ¢, =(1 0),
while for any k> 2

o P =Jo =] o. (1)

vey veJit

In particular, if v # 0 and v; > v,, then @ (P¥) N C(O,) # () if and only if v, > 0.

The second equality in (11) follows from the fact thatif v = (v; v;) andv' = (v, v ),
then O, = O,.

Let us denote by y, the restricted action of T on P*, and by W) : M — t¥ 2t its
moment map. Then ¥} is the composition of ®; with the orthogonal projection 7 : g — t;
the latter amounts to selecting the diagonal component of a matrix in g.

Corollary 2.2 For any k> 1, ¥, (P*) = 1J, C 1R

Proof of Corollary 2.2 For k = 1, this is immediate from (10). Assume then k >2. Any
matrix in L; has diagonal part in Ji, hence LI’k(ﬂ:"k) C 1J; C tR? by Proposition 2.1.
Conversely, for any 4:= (A1 k — 2)'€ J; in the proof of Proposition 2.1 we have found
[Z] € P* such that ®([Z]) = 1 D;. Hence ¥, ([Z]) = 1 4.

Let us notice the following consequence of Proposition 2.1, due to the fact the diagonal
part of a matrix in Ly is in Ly:

Corollary 2.3 For any k>2, Wi (P*) = & (P*) N't.
Proof of Corollary 2.3 Obviously ‘Pk(Pk) ) (I)k(l]Dk) Nt. Conversely, suppose

o ¥y (IPk ) Viewing o as the diagonal component of a matrix o € @y (Pk), we conclude
that —z o has non-negative (diagonal) entries and trace k. Hence oo € 1 L} = (I)k(lpk).
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Having characterized the images of @y and Wy, let us determine the orbital cones to which
they are transverse. By Corollary 2.1 we may assume k > 2.

Theorem 2.1 Assume that k >2, v, vo >0 and vy # v,. Then the following conditions are
equivalent:

1. @ is transverse to C(O,);
2. jvi# (k—j)v, forallj e {0,1,....k}.

Remark 2.1 Since ®;(P*) = 1L;,ifv=+(1 —1)then ®;(P*)N1R, -v = (), hence we
may assume v; 4 v, # 0. Furthermore, ®;(P¥) is G-invariant and if v/ :== (v, v, ) then
the matrices the diagonal matrices ¢ D, and 1 D,y belong to the same orbit. We may assume
therefore v; > v,, hence - under the hypothesis of Theorem 2.1 - that v; > v,.

Proof of Theorem 2.1 Let X; = S**t! be viewed as the unit circle bundle of the tauto-
logical line bundle on P¥ = P(Wy), with projection 7y : X; — P* (the Hopf map), and let
us set

K = (POWS ), (0§ = (POWG).

Since ¢, is induced by the unitary representation y;, on Wy, there is by restriction of i a
natural lift of ¢, to an action on X, which we shall denote ¢,. We shall also set
(f)k = (I)k omy : Xy — g, ZH(Dk([Z])

By the discussions in §2.2 of [15] and §4.1.1 of [4], @y is transverse to C(O,) if and only if
¢, is locally free on (Xk)g; furthermore, since (Xk)g is the G-saturation of (X;), the latter
condition is in turn equivalent to q~5k being locally free along (Xk)vG
For any f§ € g, let fiy, € X(X;) denote the associated vector field on X;. For any Z € X,
let gy, (Z) C TzXy denote the vector subspace given by the evaluations of all the 8y, ’s at Z,
and similarly for t. Then (jN) is locally free at Z if and only if the evaluation map
valz : g — TzX;, =Py, (Z), has maximal rank, that is, g = 9x, (2).
Let us prove that 2.) implies 1.). Let us remark that 2.) can be equivalently reformulated
as follows:
k—j ,
vi-vp 0 and v # 7 vy, forall j=1,....k—1. (12)

Let us consider Z = (z9,...,2)" € (Xk)vc, so that

= o ||Fk,1(Z)||2 Fi2(2) Fri(2) B k vi O
= (Fk,l(z)tFk,z(Z) |1Fia(2)I? > TR <0 Vz)'

In particular,

v [Fia @) = v IFe2(2)]1 (13)

Lemma 2.1 Given (12), for any Z € (Xk)VG there exist j,1 € {0,1,...,k} with j # 1 and
z-u#0.
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Proof of Lemma 2.1 1If not, Z has only one non-zero component, say z; € S L. Since by (12)
and (13) F,(Z), F2(Z) # 0, we need to have 0<j<k in view of the definition of F;. We
conclude again by (13) that v, (k—j) =v;j for some j=1,....k— 1, against the
assumption.

Let D € T < G be a diagonal matrix with entries ¢'”t, ¢'”> € S'. By definition of ¢ and of
the E,’s in (2), we have with Z = (Za)];:o

430(2) _ (e—l[(k—a) #+a ) Za>.

Now suppose that D is close to I, so that we may assume ¢J,, ¥, ~0, and that D fixes Z.
Then elk-a)itadl, — 7 for every a=0,...,k implies in particular
(k=) +jor=(k—=1)% +19, =0, and so ¢ =¥, = 0. Hence, there is a neigh-
borhood T/ C T of I, such that the only D € T’ that fixes Z is I». In other words, T acts
locally freely on (Xk)f at Z. In particular, valz : t — T;X; is injective.

By the equivariance of @, for any W € X; and § € g we have

dw®(By, (W)) = [B, B(W)]. (14)

Henceif fetCgand Z € (Xk)f then dZ(f)(ﬁxk (Z)) = 0; that is,

ty,(Z) Cker (dz®)  (Z € (X)?). (15)
Now let us define
0 1 0
= (1 5) e= (1 g) amwmtiocs (10
so that g = a @ t. By (14) we have at Z € (Xk)vc:
=~ k(Vl —Vz) =~ k(Vl —Vz)
dz® Z) =—= dz® Z) =———"—""=¢C. 17
;0 (¢, (2)) I, n, dz®(nx, (2)) ——— ¢ (17)

Let us set

'_(z o> ._<o 0)
=0 o) " \o /)

Then (p,y) is a basis for t, and (1, &, p,y) is a basis for g.
Suppose that for some x,y,z,7 € R we have xn+y&+zp +ty € ker(valz):

X0y, (Z) +yEx,(Z) + z2px,(Z) + tyx,(Z) = 0. (18)
Applying d;®, we get by (15) and (17):

0 :Xdzd)(ﬂxk (Z)) + ydzd)(ka (Z))

v —V 19
:kE}11+V22) (=x&+ym). 1)

Hence x=y=0, so that zpy(Z)+1tyx(Z)=0. But this means that
{)=(0); thus we also have z = ¢ = 0. We conclude that ker(val;) = (0)
for any Z € (Xk)f, as claimed.

Ip+tye ker(valz
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Now let us suppose instead that (12) does not hold. We aim to show that then q{) is not
everywhere locally free along (Xk)f. Ifv,=0letZ:=(1 0 --- 0)". Then ® =D,
where D is the diagonal matrix with diagonal entries (k 0); hence Z € (Xk)?. On the
other hand, Z is fixed by the 1-dimensional subgroup of G of diagonal matries with
diagonal entries ( 1 e ), hence d; is not free at Z. One argues similarly when v; = 0, by
choosing instead Z := (0 --- 0 1)". If instead v - v; # 0, then v; = [(k — j)/j] v2 for
some j=1,....,k— 1. Let us consider Z = (z;) with z; =y, [ =0,...,k. Then by (9)
Zc (Xk)vG. On the other hand now Z is fixed by the 1-dimensional subgroup of diagonal
matrices with diagonal entries (e~%/V ¢*=)7), hence again $ is not free at Z.

Let us note in passing that the argument in the proof of Theorem 2.1 can be phrased in
slightly more general terms and actally establishes the following criterion.

Lemma 2.2 Suppose that (M, J) is a complex projective manifold, with w a Hodge form on
it, associated to a positive line bundle (A, h). Let ¢ : G X M — M be a holomorphic
Hamiltonian action on (M,2 ), with moment map ® : M — g. Let X C AV be the unit
circle bundle, with projection m: X — M, and assume that there is a contact lift ¢ :
GxX—X of the Hamiltonian action (P, D). Suppose vi#v,, x€X,

Do n(x) € Ry -1D,, and that T acts locally freely at x. Then G acts locally freely at x.

Corollary 2.4 In the situation of Lemma 2.2, assume in addition that T acts locally freely
along the inverse image XS of MY in X. Then ® is transverse to C(O,).

Next we shall consider the transversality issue for V.

Theorem 2.2 For any k> 1, W, is not transverse to a ray R, v C 1t = R? if and only if v
is a positive multiple of (k—j j)' for some j=0,1,... k.

In other words, the critical rays are those through the points in the intersection J N Z2, up to
the factor 1.

Proof of Theorem 2.2 Let &k denote the action of 7 on X;. As argued in the proof of
Theorem 2.1, i, is not locally free at Z = (z;) € X if and only if |z| = oy for some
j=0,...,k. Hence the rays in t to which ¥ is not transverse are those through the images
under ¥ if the vectors of the standard basis of C**!. As we have remarked, their images

k—j 0
{l( / .):j:O,...,k},
0 J

and we need only take the diagonal part to reach the claimed conclusion. (I

under @ form the set

Let us now extend the previous considerations to a general irreducible representation of G
(see e.g. §2.3 [18], or §IL5 of [2]). More precisely, we shall denote by ;. ; the composition

of the representation det® @Sym* (Cz) with the Lie group automorphism B— (B’ )71:

(t41)5(v) := det(B) " iy g1 (v) (B € G, v e W, =CH). (20)
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The induced action ¢, on P* equals ¢,; however, the change in linearization implies a
change in the moment map. For any / € Z, u,, is the representation on C given by the

character det™. In this case, P° = {[1]} is just a point, and we shall take as definition of
moment map the function @, : [1]/—211,. For k>1, let us view f, as a Lie group
morphism G — U(k + 1). Then, in place of (3), we have for o € g

i (0)(Ey) = = (k= j+ 1) 021 By
— [ttrace(ar) + (k — j) ouyy +j o] E; (21)
= V=) G+ 1)onEj.
It follows that the new moment map, @, ; : P* — g, is given by
D i([Z]) = Bu([Z]) + 111, (22)
where @, is as in (9). Therefore, with the notation of Proposition 2.1,
Oy(P") =1Ly +1lh,  Ou(PY) =1L+l Vk>2. (23)
Let us set
Ci=(1 1), Je = I+ 1L C R

Thus J;, is the segment joining (k41 [)and (I k+1). Also, let C;; C R*\ {0} be the
closed cone through Ji ;.
Then in place of Corollaries 2.1 and 2.2 we have:

Corollary 2.5 Under the previous assumptions,
Q1 4(P') = O¢sig = O, + 11,
and for k >2

Dy (PF) = U Oviig = U Ovug = U O,. (24)

vey veESiy veJiy

In particular, if v # 0 then (I)k,l(lpk) NC(O,) # 0 if and only if v € Cy,.

Corollary 2.6 If ¥y, : P* — t = 1 R? is the moment map for  with respect to M > then
lPk_’](D:Dk) = le,l- (25)

Hence W, (P*) N R - v # () if and only if v € Cy;.

The latter Corollary can of course be derived also by the Convexity Theorem in [1] and [7].
Let us also remark the following analogue of Corollary 2.3:

Corollary 2.7 For any k>2 and | € Z, ¥, (P*) = @, (P*) Nt.
Let us now consider the issue of transversality in this case. By Corollary 2.5, we may

assume k > 1. Furthermore, by Proposition 2.1 and (23), ®;(P*) C Vj;, where V, C g is
the affine subspace of skew-Hermitian matrices of trace zr. If, in particular, k +2/ =0
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then (I)k,,(ﬂj’k) lies in a proper invariant vector subspace (the kernel of the trace), and is
therefore not transverse to any cone C(O) in g intersecting its image. In fact, if C(O) NV, /
= () then by invariance C(O) C Vj. Thus we assume k + 2/ # 0.

Let us denote by qgk", and z/;k_’,, respectively, the actions of G and T on X; given by the
restrictions of the unitary representation g ;. Let (X,Q)g (X,L)VG and (X,Q)VT be defined as
(Xk)g, (Xk)vG and (Xk)vT, but in terms of the new moment maps ®;; and ¥y ;. Then, just as
before, @y is transverse to C(O,) if and only if (;7),(,, is locally free at every Z € (X,’()VG, and
Wy, is transverse to R, - zv if and only if Wy, is locally free on (X,L)vT .

Suppose that Z € X;. If for some j = 0, ...,k we have z; = O for all i # j, then arguing
as in the proof of Theorem 2.1 one sees that l/;ky, is not locally free at Z, and therefore
neither is q;k,l' In this case we have, with <I~)k7, =D 0m
k—j+1 O )

26
0 J+1 (26)

D (Z) =1 (

If, conversely, Z € X; and z; - z; # 0 for distinct j, [ € {0, ..., k}, then a slight adaptation
of the previous arguments shows that t/;k_’, is locally free at Z. Hence we conclude the
following variant of Theorem 2.2:

Theorem 2.3 Suppose that k>?2 and k + 21 # 0. Let us define
vijoi=(k—j+1 j+1),  j=0,. .k

Then ¥y, is not transverse to R, zv if and only if v € R - v ;; for some j =0, ... k.

The previous argument clearly also shows that @ is not transverse to C(O,,,,) C g. In
fact, on the one hand if Z is the j-th basis vectors, then 1&,(_, is not locally free at Z, and
therefore a fortiori neither is ¢, ;. On the other hand, by (26) we also have Z € (X,Q)f

Let us assume on the other hand that v € R v;; for every j and that v; # v,. If
Ze (X,’()VG then there exist /,j € {0,...,k} such that z;-z; # 0. If D € T is a diagonal
matrix with diagonal entries (e’ Ui ptta ) that fixes Z, then we need to have
e 102+ k=a)vi+at] — | for g = j, I. If D is close to I, and we assume that ¥; ~ 0, we
deduce as in the proof of Theorem 2.1 that ¥; =9, = 0. Hence l/;,ﬂ, is locally free on
(X,L)VG To conclude that (Z)k,l is also locally free along (X,’()vG, we may now argue using (14)
as in the proof of Theorem 2.1 (the second summand in (22) does not alter commutators).
Hence we have the following variant of Theorem 2.1:

Theorem 2.4 Suppose k> 2, k + 21 # 0 and v\ # vo. Then Oy is transverse to C(O,) if
and only if v € Ry - v for every j=0,.. k.

Let us now come to a general representation space of the form
Wik = P)_,det™ @ Sym* (C?), (27)

where L = (I,) € Z",K = (k,) € N", as usual composed with the Lie group automorphism
B—(B')"" (see (20)). As an abstract vector space,
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WLk & @;Zlck"+l = ClKHr = P(WLK) o D:D\KH—r—l’

where |K| =), k,. Hence the corresponding morphism of Lie groups upg:G —
U(|K| + r) is given by

i, ey (g)
HL,K(g) =
M, k. (g)

Let us denote by ¢y and g, respectively, the induced Hamiltonian actions of G and T
on P(Wyx), and by @px : P(Wpk) — g, YLk : P(WLk) — t their moment maps. If,
with abuse of notation, we denote the general Z € Wypx as Z= (Z,), with
Zo= (200 -+ Zax, )€ C"! we have

Ok ([2])

Z 1Fe 1 (Z)I + 1| Zall? Fro2(Za) Fipi (Za) (28)
Fioi(Z) Fo2(Za)  FrpZ)I + 1 ||Za)

Let us first consider the case where K=1:=(1 --- 1),L=1:=(l --- 1[). Thus
Wi = det™ ®@W{" is isomorphic to (C*)" as a complex vector space. Then the moment
map @y : P((C*)") — g is as follows. Let us write the general element of (C*)" as
Z=(Z - Z ) where Z € C*. Then

VA
o2 2)) = [Z,- L

izl

2
HZH

; (29)

where Py is the null endomorphism of C2, while for Z # 0 we let Pz denote the orthogonal
projector of C? on span(Z).
Letusset vij;:=(1—j+1 j+1),j=0,1.

Proposition 2.2 For any r > 2, the following holds:

1. (D]I(P(quﬂr)) :lLl +lllz;
2. W) is transverse to t Ry - v if and only if v &€ Ry - vy, for j =1,2;
3. @y is transverse to C(O,) if and only if v & R, - vy, for j = 1,2.

Proof of Proposition 2.2 Let us assume [ = 0; the general case is similar. By (29), the
image of —i @ ; consists of all convex linear combinations of r > 2 orthogonal projectors,
and is therefore contained in L;. Conversely, any matrix in L; is a convex linear combi-
nation of two such projectors, and so the reverse implication holds.

To prove the second statement, consider [Z] = [Z; : - - - : Z,], with ||Z|| = 1, such that
every Z; is a scalar multiple of €) := (1 0). Then @y ([Z]) = 1 D,, and on the other hand
T does not acts locally freely on S¥~! at Z. Hence Wy 1 is not transverse to R, 7 €, and @y ¢
is not transverse to C(O¢, ). The argument for €, is similar. If on the other hand the Z;’s are
neither all multiples of €, nor all multiples of €,, then T acts locally freely at Z and arguing
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as in the proof of Theorem 2.1 (or applying Lemma 2.2), one concludes that the same holds
of G. This proves the second and third statement. O

Let us return to (27). For the sake of simplicity, we shall consider a slightly restricted class
of representation.

Definition 2.2 A representation Wy k is generic if it satisfies the following property.
Suppose that for some / € Z the pair (/, 1) appears in the sequence (I1,k1),..., (L, k).
Then there are 1 <a<b <r such that (1,7) = (ls,ks) = (I, k).

In other words, if det® @C? appears in the isotypical decomposition of Wy k, then it does
so with multiplicity > 2. For example, W, and Wfﬁz @ (det’2 ®W;) @ W, are not generic,
while Wi @ W, is.

If Z, = 0 for some a, then the a-th summand in (28) vanishes; therefore, we may restrict
the sum to those a’s for which Z, # 0, and this restricted sum will be indicated by a prime.
Hence

Ok ([Z])
1Za)* 1 1Fi, 1 (Z)IP + L |Zall> Fr,2(Za) Fei (Za)
B Z ( ) (30)

NZIP ZP\ Fan(Z) FrnZa)  FenZ)IP + b 17

0,
=2 g D

Proposition 2.3 Assume that Wy, x is generic. Then (I)L,K(I]J’(WLK)) C g is the convex hull
of the union of the images ®y, , ([P’k“).

Proof of Proposition 2.3 Let us denote by Hp g C g the convex hull in point. By (28),
(I)L,K(IP’(WL,K)) C Hp k. Conversely, suppose o € Hp k. Then there exist A,>0,

a=1,...,r, such that 3"/ 2, = 1, and for each a with %, > 0 there exists V, € C**' of
unit norm, such that

r
o = Z }vad)ka,la([V
a=1

Letus set Z, := /7 V, if 2, > 0,Z, =0 € C*"if J, =0,and Z := (Z,) € CIK*" Then
[Z|| =1 and ®pk([Z]) = « by (30), hence o € Pp g (P(WLk)).

We can describe Wi x in a similar manner, and deduce the following:

Proposition 2.4 ‘PL,K<P(WL,K)) C t is the convex hull of the union of the images
‘{jku,ln (Pk" ) .

On the other hand, —1 ¥y, (Pk“) is the segment joining (k, +1, 1,) and (I, k,+1,)

for each a. Therefore we conclude the following (which might be also obtained by the
Convexity Theorem):
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Corollary 2.8 —: WLk (P(WLk)) C R? is the convex hull of the collection of the points
(ko +1, 1) and (1, ky+1,)',a=1,....r, or equivalently of the segments Ji, ..

We have the following analogue of Corollaries 2.3 and 2.7:

Corollary 29 If WL,K is generic, then ‘PL,K([FD(WL,K)) = (DL?K(P(WL‘K)) Nt

Proposition 2.5 Assume that Wy x is generic. Then the following conditions are
equivalent:

1. 0 g LPLA,K(P(WL,K));
2. 04 Ok (P(WLK)):
3. eitherk, +2[, >0foralla=1,...,r,ork,+2l,<0foralla=1,...,r.

Proof By Corollary 2.9, 1) and 2) are equivalent. Suppose that 2) holds. By (23), we have
@y, (P*) = 1Ly, + 11, I for every a; if k, + 21, = 0 for some a, then I, <0 and so

~l, 0
myq( ' )+whe%m@ﬂ.

0o -1,
Hence assuming 2) we need to have k, + 21, # 0 for every a = 1,...,r. Suppose that
ks +21, >0 and k;, + 21, <0 for some a, b=1,...,r. Then

1 ke
3 (kg +21,) L = 5 L+1,1 €@, (Pk“)7
and similarly
l kb K
E (kb +21b)12 =1 ? 53 +llb12 c (Dkb‘[b(ﬂ]) )

Hence by the previous dicussion the segment joining these two matrices is contained in
(DLvK(IP’(WL‘K)), and it is obvious that it meets the origin, absurd. Hence 2) implies 3).
Suppose that 3) holds, say with > 0. Then for every a=1,...,r and every o €
Y k. ([P”‘“) we have —itrace(o) =k, + 21, > 0. Since the convex linear combination of
matrices with positive trace has positive trace, 1) also holds by Proposition 2.4. (I

Corollary 2.10 Assume that Wy is generic. Then 0 ¢ @k (P(Wpx)) if and only if
(I)L‘K(I]:D(WLK)) C g is contained in one of the half-spaces defined by the hyperplane
su(2) = ker(trace) C g. In particular, if  0&®Lk(P(WLk)) and
(I)L,K(I]:D(WL,K)) NRy -v# 0, then vi+ vy, #0.

Definition 2.3 The representation Wy, g will be called uniform if it is generic and k, +
21, =k, +21l, foralla, b=1,...,r.

The proof of the following Lemma is left to the reader.

Lemma 2.3 The following conditions are equivalent:

1. Wik is uniform;
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2. ¢y x (equivalently, Y k) is trivial on Z(G) (the center of G).

Let us now assume that the equivalent conditions in Proposition 2.5 are satisfied, and
consider transversality. Let us denote by Xkx C C®*r the unit sphere, by nk : Xk —
PE=1 the Hopf map, and set (INDLAK =@ gomk : Xk — g. Also, let (Z)LK and l/;L’K
denote, respectively, the actions of G and T on Xk by restriction of dN)LﬂK. These are liftings
of the actions ¢y, and Y, g on P(Wy k)

Let us fix Z € Xk, and denote by O” C g the orbit through <I~)L7K(Z). Perhaps after
replacing Z with (qBL‘K) g(Z) for some g € G, without changing O* we may as well assume
that (ISLyK(Z) et

Suppose that only one component of Z in non-zero, say z,; for some a € {1, ...,r} and
Jj€{0,... ,k,}. Then, as in the case r = 1, one sees that there is a 1-dimensional torus
fixing Z; therefore, neither is @k transverse to C(OZ), nor is Wik transverse to
R; WLk (Z). In this case, in view of (30) and (26) we have

- ko —j+ 1, 0
] Z) = Z.) = .
LK(Z) = Or,1,([Za]) l( 0 j+la)

Hence, if we set
Vigjdo = (kg —j+1a j+1) (a=1,....r, j=0,...k), (31)

we conclude that ®p x is not transverse to C(O,, ,, ) and that Wk is not transverse to
R, - v, for every a, j.

If, on the other hand, there exist a € {1,...,r} and j,h € {0, ..., k,} with j # h and
Zaj - Zan 7 0, then the arguments used in the proof of Theorems 2.1, 2.4 imply that both
l/;L‘K and qBLAK are locally free at Z.

Thus we reduced to the case where for eacha = 1,.. ., r at most one component of Z, is
non-zero, and Z, # 0 for at least two distinct values of a. We shall make this assumption in
the following.

So there exist a, b € {1,...,r}, a# b and j, € {0,.. ., ks}, j» € {0,...,kp} such that
Zaj, * by, 7 0, and furthermore z,; = 0 if j # ja, 2p; = 0 if j # ji.

Consider, as before, a diagonal matrix D € T, with diagonal entries Vi = 1,2, and
suppose that D fixes Z. Also, let us assume that D is in a small neighborhood of I, so that

without loss ¥;~0. Then the condition ((f;L_K)D(Z) =7 implies that

ot [l (D1+02)+(ka—ja) V1+ja V2] (91+02)+(kp—J) V1 -+jb V2]

Zaj, = Zaj, and e’ [ty b, = Zbyj,- Since ¥;~0,

this forces
(la + ko = ja) 1 4 (la +Jja) 92 = (Ip + kp — jp) 91 + (I +jp) V2 = 0.

This system has non-trivial solutions if and only if the vectors v ; ;. and vy, j 5, are
linearly dependent (see (31)); if this is the case, then @y, ([Z,]) and @y, , ([Z,]) are both
scalar multiples of the diagonal matrix ¢ Dy, _ , .

Hence we have the following alternatives.

Let I C {1,...,r} be the non-empty subset of those a’s such that Z, # 0. If the vectors

Vi,juls @ € I, are all pairwise linearly dependent, then lﬁLK is not locally free at Z, and

aJas

therefore neither is ‘;)L,K- Hence, @,k is not transverse to C(OZ ) at Z, and similarly W g
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is not transverse to R, - Wy g(Z) at Z. Furthermore, in this case we also obtain that
®p k([Z]) is a multiple of ¢ D,, ., , and so Wy x([Z]) is a multiple of vy, ,-

Suppose, on the other hand, that there exist a,b € I such that v ; ;. A vy, j, 1, 7 0. Then
l/;L‘K is locally free at Z. Since we are assuming that @, x ([Z]) is diagonal and non-zero, we
can apply the argument used in the proof of Theorem 2.1, following (16), to obtain the
stronger statement that &L,K is also locally free at Z, and so @,k is transverse to C(OZ ) at
Z.

The outcome of the previous discussion is the following statement. Recall that v,; was
defined in (31).

Theorem 2.5 Suppose vi # v, and that the equivalent conditions in Proposition 2.5 are
satisfied. Then the following conditions are equivalent:

1. @k is not transverse to C(O,);
2. Wypx is not transverse to R, 1v;
3. there exista € {1,...,r} and j € {0,...,k,}, such that v = vy,

If M C P(Wyx) is a projective submanifold, then the restriction to M of the Fubini-Study
form is a Kihler form w on M. If M is G-invariant, the induced action of G on M is
Hamiltonian with respect to 2 ®, with moment map @y := CI>L7K| wM—ag Similar
considerations apply to the action of 7 on M, which is Hamiltonian with respect to 2 w,
with moment map Wy, := LI’L‘,K‘M: M —t.

For v = (v; )" with v; >0 and v # 0, let us denote by P, C P(Wy k) the locus of

those [Z]=[Zi:...:Z], where Z,=(z,)€C*"", such that z,=0 @if
(ke —j+1L j+1 )t is not a (positive) multiple of (v; v, )t. Then P, = () unless v =
Vi, forsomea=1,...,randj=0,...,k,, and each P, ., is a projective subspace. For

any (a, j) and (b,j'), either P,, orelse Py, = (J; also, the inverse

=Py, np

is the locus over which Wk is not locally free.

Vi

image in Xk ; of UaJ P

Vkajla

Theorem 2.6 In the situation of Theorem 2.5, suppose that M C P(Wy, k) is a G-invariant
projective manifold. Consider v € N? \ {0}. Then the following conditions are equivalent:

1) Wy is not transverse to Ry - 1v;
2) v =y, for some (a, j), and MNP, #0.

If, in addition, vi # v,, then 1) and 2) are equivalent to

3) @y is not transverse to C(O,).

Proof of Theorem 2.6 Let X) C X be the inverse image of M in Xy, k; thus, Xy, is the circle
bundle of the induced polarization. Then (XM)VG = (XL7K)VG N Xy etc. Let us denote by ¢y,
and l/;M, respectively, the restrictions of <;~5L“K and z}L.K to Xy

Let us prove the equivalence of 1) and 2). '

As recalled above, W), is not transverse to R -z v if and only if there exists Z & (XM)VT

such that 1/; » 1s not locally free at Z, that is, such that I;L_’K is not locally free at Z. On the
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other hand, the previous discussion shows that l/;L_’K is not locally free at Z if and only if
[Z] € P,,, for some (a, j), and that if this happens then Wy ([Z]) = W1k ([Z]) is a positive
multiple of 1v,.

Let us assume that v; # v,, and prove the equivalence with 3).

Suppose that 2) holds, and suppose Z € Xy, [Z] € M N P,;. Then I,ZM is not locally free
at Z, and therefore a fortiori neither is qi;M. Furthermore, by the previous discussion
®y([Z]) is a positive multiple of 1D, , so Z € (XM)VGJ Hence 3) holds.

Conversely, suppose that 3) holds. Then there exists Z € (XM)gv such that (]SM is not
locally free at Z; perhaps after replacing Z in its orbit, we may assume without loss that
®y(Z) is diagonal, that is, Z € (XM)f = (Xp)! N (XM)g If ,, was locally free at Z, then
an argument in the proof of Theorem 2.1 (see (14) and (17)) would imply that (],T)M is itself
locally free at Z, absurd. Hence 1/ is not locally free at Z, and therefore [Z] € P, for some
a, j, and @y ([Z]) is ap positive multiple of : D,_.. Hence 1) and 2) hold. O

Vaj*

3 M

We shall assume in this section that 0 ¢ W (M), and that both ¥ and @ are transverse to
R, -zv, where v; > v,. Then MVT C M is a smooth compact connected 7-invariant
hypersurface; furthermore, MC := ®'(R, -1v) C M7 is a smooth, compact and con-
nected T-invariant submanifold of real codimension two (three in M) [4]. In §3.1, M is not
assumed to be projective.

3.1 The Kihler structure of M.

The 1-parameter subgroup
1 9 )~ ol 9 e’ 0
o r . U L o
T, = {Ke(e”) s " €S}, k() = 0 ond (32)

acts locally freely on MVT ; its orbits are the leaves of the null foliation of MVT . If vy and vy
are coprime, as we may assume without loss, rx, : ' — TV'L in (32) is a Lie group
isomorphism.

Let us set

—T —G —T
M, =M/T,, M) =M/T) CM,. (33)

Then M‘T is an orbifold of (real) dimension 2 (d — 1), and MVG C MVT is a suborbifold of real
codimension two, meaning that the topological embedding MVG C MVT can be lifted to an

embedding of local slices. We shall let ¢, : M — MVT denote the projection.
Definition 3.1 1, is the action of Tvll on M given by restriction of .

By means of k,, we shall view I/JVL as a Hamiltonian S'-action, with moment map
W, = (¥,v,). The proof of the following is left to the reader:
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Lemma 3.1 Given that ¥ is transverse to Ry -1v, 0 is a regular value of ¥, , and
MI =w, ~1(0).

As an orbifold, ]\7IVT coincides with the symplectic quotient (symplectic reduction at 0)

M// TVIL. Hence it inherits a reduced Kihler orbifold structure (MVT, ‘]Mf’ wﬁ‘r>

As mentioned in the introduction, ]VI? may also be viewed as a symplectic quotient,
G . . . . .
namely M,” = Y//T, , where Y C M is the ‘symplectic cross section’ discussed in [7].

G . . . G .
Hence M, also carries a symplectic orbifold structure (M,’, wc). Since both w—c and

M

The T-invariant direct sum decomposition g =1@® a determines a splitting
O=¥Y®Y :M— g, whereboth ¥ : M — t and Y’ : M — a are T-equivariant (notation
is as in (16)). By restriction we obtain a T-equivariant smooth map

w—r are both induced from o, (MVG , ) is a symplectic suborbifold of (MvT, )

Y= Y/|M;,r: M! — a. (34)

Since

119 0 —119 0 1 (9 —12)
e ), <? Z) e ) =, /a e Z ’ (35)
0 ezﬁz Z b 0 e*ll}z et (01—1-) z b

identifying a = C by the parameter z in (35), we may interpret Y as a map M! — C with
the equivariance property

Yoyt =€ =)y, (36)

where D(9;,1,) € T is the diagonal matrix with entries e'”.

By Theorem 1.2 of [4], MVT ﬁMg = Mf , and the intersection is tangential, that is,
TvaT = TmMg CT.Mifme Mf . Since M| g is G-invariant, for any f € g the vector field
By € X(M) induced by B is tangent to M. Hence, if m € MY then fB,,(m) € T,,M".
Therefore, ay(m) C TvaT for any m € MVG . The argument used for (17), and the remark

that MS = Y~'(0), imply the following.

Lemma 3.2 Under the previous assumptions, we have:

L. dyY(ay(m)) =a, ¥YmeM!;
2. 0is a regular value of Y;
3. we have a T-equivariant direct sum decomposition

T.M! = T,M® @ ay(m), Yme M. (37)
Lemma 3.3 The summands on the right hand side of (37) are symplectically orthogonal.

Proof of Lemma 3.3 Let us consider the Hamiltonian functions ®":= (®,#) and
¢ := (D, &). Explicitly, if
o= )
Z b
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where a, b: M — C and z: M — C are C™, then @ = —23(z), ®° = 2 R(z).
By definition of MY, z vanishes identically on MY; therefore, for any (m,v) € TMS we
have

0 = d,®"(v) = (1 (m),v),

and similarly for &. (I
Corollary 3.1 ay(m) C T,,M is a symplectic vector subspace, Vm € MS.

Proof of Corollary 3.1 This follows immediately from Lemma 3.3. Alternatively, we need

to show that @y, (i1y,(m), &y (m)) # 0. For m € MF, we have ®(m) =1 (m)D, where
A(m) > 0. Arguing as for (17) we obtain

@ (Mpg (m), Sy (m)) = (du®(Epg(m)), 1) = A(m) (vi = v2) {n, 1) > 0. (38)

O

Definition 3.2 If m € M, F,, < T.. denotes its stabilizer subgroup for i, (Definition
3.1). Furthermore, F, < Tv1 . denotes the stabilizer for ‘//w of a general m € MVTL.

Hence, F, < F,,, Vim € MT.
Lemma 3.4 Ifm € M! \ M{, then F,, < T!. N Z(G). In particular, F, < T!. N Z(G).

Proof of Lemma 3.4 By equivariance, if ¢,(m) = m, then Ad, (®(m)) = ®(m) € g where
Ad is the adjoint action. If m € M \ MS then ®(m) is not diagonal. The claim then
follows from by (35). O

Remark 3.1 For a uniform representation F, = Tv' . NZ(G), since Z(G) acts trivially on M
(Definition 2.3).

Let us introduce the quotients (isomorphic to S')
S'(v):=T)/F,,  T'(v):=Ty./(T\ NZ(G)). (39)

The induced action ¥, :S'(v) x MI — M is locally free and generically free, hence
effective. If (M7 )mg M is the dense open set where F,, = F,, then (M! )sm is a principal
S'(v)-bundle over its image (M:)m.

Given a character y : S'(v) — C* we obtain an Hermitian orbifold line bundle L,. Given
the CR structure on M!, L, is in fact an holomorphic orbifold line bundle on MVT . A smooth
function ¥ : M! — C such that Zo (y, ), = x(g) T for any g € §'(v) determines a
smooth section oy of L,.

By Lemma 3.4, we have a short exact sequence

0— (T,. NZ(G))/F, — S'(v) — T'(v) — 0;
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therefore, any character of T'(v) yields a character of S'(v). In particular, we obtain a
character of S!(v) from any character of T with kernel Z(G), whence from the character

e~ (01=02) appearing in (35). Explicitly, evaluating the latter on 7! 2 S' we obtain the

character ¢'(""*2)? We shall denote by y the corresponding character of S (vy).

By (36), Y determines a section oy of L,. By Lemma 3.2 we conclude the following.

Theorem 3.1 The symplectically embedded orbifold M‘(,; - MVT is the zero locus of the

. - G _ T . . . . .
transverse section oy of Ly. If ip: M, C M, is the inclusion, there is a direct sum
decomposition of orbifold vector bundles

Iy ~G .
zT(TMv) = TMC ® 75 (Ly).

3.2 The case of P(Wy k)

We aim to classify the DH reductions (MVT ,Jo, Q) when M = P(Wp k), assuming that
Wi x is generic (Definition 2.2). In particular, we shall interpret each such Kihler orbifold
as a weighted projective variety, related to certain explicit combinatorial data associated to
L, K, v. Before doing so, in §3.2.1 we shall review a general construction from [16],
producing a Kihler orbifold from a homolomorphic Hamiltonian action with positive
moment map (see [17] for a generalization to torus actions). We shall apply this procedure
first to actions on projective spaces, thus obtaining a class of Kéhler forms on weighted
projective spaces, and then to actions on products of projective spaces, obtaining a class of
Kihler suborbifolds of certain weighted projective spaces. Next, in §3.2.2 we shall describe
a family of Hamiltonian circle actions on projective spaces for which the DH reduction can
be described in terms of the previous construction, applied to a related Hamiltonian

holomorphic action (with positive moment map) on a mixed product P* x [P!; it follows
that the DH reduction of the original action of projective space can be realized as a Kihler
suborbifold of an appropriate weighted projective space. Building on these considerations,
in §3.2.3 we shall determine the DH reductions when M = P(Wy k). Finally, in §3.2.4 we
shall focus on the irreducible representation p;, and give an explicit description of the pair

(M., MC) in the range v; >> v,.

3.2.1 From Hamiltonian circle actions to orbifolds

The object of this section is to review and slightly extend a general construction from [16],
providing a Kéhler orbifold from a Hamiltonian circle action with positive moment map.
This construction generalizes the one of weighted projective spaces. A wider formulation
in the setting of Hamiltonian torus actions is given in [17].

Let R be an r-dimensional connected projective manifold, with complex structure Jg,
and let (B, h) be a positive holomorphic line bundle on R, with V the unique compatible
covariant derivative. Also, let Y C B" be the unit circle bundle, with projection w : ¥ — R;
let « € Q'(Y) be the connection form corresponding to V. Hence (by the positivity of
(B, h)) do. = 2 7*(wg), where wg is a Hodge form on R. Thus (R,Jg,2 wg) is a Kihler
manifold.
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Suppose that there is an holomorphic and Hamiltonian circle action y: T' x R — R on
(R,Jr,2 wg), with (normalized) moment map M : R — R. Then there is an infinitesimal
‘action’ du :t' — X(R) at Lie algebra level. These Hamiltonian data determine an
infinitesimal contact CR action of T! on Y, lifting du [10]: if & = d/0r € Lie(T') = R then

Ey 1= — My € X(Y) (40)

is a contact vector field. Here v* € X(Y) is the horizontal lift of the vector field v € X(R)
with respect to «, and Og is the generator of the structure circle action on Y (fiber rotation).
Furthermore, we write M for Mon:Y — R.

Let us make the stronger hypothesis that that there is an actual group action i :
T' x Y — Y lifting u associated to this infinitesimal lift; that is, dji(¢) = &y. Let us sup-
pose also that M > 0. Then, in view of (40), &y(y) # 0 at every y € Y; thus i is locally
free. Perhaps passing to a quotient group if necessary, we may assume that i is effective,
whence generically free. Therefore the orbit space R’ := Y /i is naturally an orbifold, and
the projection ' : ¥ — R’ is an orbifold circle bundle on R'.

On Y, we have the following distributions:

1. the vertical tangent space for 7, V(n) := ker(dn) = span(0y);
2. the horizontal tangent space for o, H = ker(a);
3. the vertical tangent space for ', V(n') := ker(dn') = span(&y).

Foreveryy €Y, V(n)y C T,Y is the tangent space to the S L_orbit (we denote the circle by
S' when it acts on Y by the structure rotation action), V(n’ )y C TyY is the tangent space to
the T"'-orbit, and H(y) is isomorphic to TR via d,7, and to the uniformized tangent space
Ty R via dyn’. The tangent bundle of Y splits as

TY =V(n)®H=V(7)® H. (41)

Let Jy be the complex structure on the vector bundle H given by pull-back of J. Then
(H,Jy) is a fi-invariant CR structure on Y, and it descends to an orbifold complex structure
Jr on R’ (the arguments in [16] were formulated over the smooth locus, but they can be
extended to the orbifold case; see also [17] ). Thus (R',Jg/) is a complex orbifold.

Let us set f§:=a/M € Q'(Y); then H = ker(f), f is j-invariant and p(&y) = —1.
Hence f is a connection form for g. Thus there exists wgp € Q*(R') such that
df =2 ()" (wg). Since

1 2
dﬁ: 7? dM/\OC"‘M n*((A)R),

dp restricts on each H(y) to a linear symplectic structure compatible with Jg(y); therefore
wp is an orbifold Kiéhler form on (R', Jg) (see §2.2 of [16]).

Remark 3.2 The two orbifold fibrations RLYiR’ are dual to each other, meaning that
(R") = R as Kihler orbifolds. More precisely, the S'-action » on Y given by counter-
clockise fiber rotation descends to an Hamiltonian action i’ on (R', wg ), with moment map
1/M (interpreted as a function on R’), of which it is the contact lift. Applying the same
procedure to (R', Jg, wg, i) we return to (R, Jg, wg, i) (see §2.3 of [16]). In principle, one
would need to phrase the previous discussion assuming that R itself is an orbifold, but this
won’t be needed in the following.
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A special case of this construction is given by weighted projective spaces. Let a =

(ap --- a) be a string of positive integers, and consider the action u® of T' on p*
given by
Wy ifzo e zk]»—>[e7’“°l9z() Do ef“l“?zk]. (42)
Then y* is Hamiltonian with respect to 2 wgg, with normalized moment map
1< )
)= D eyl (43)
121" =

Let H; = Op:(1) be the hyperplane line bundle on P¥, endowed with the standard Her-
mitian metric; its dual HkV is the tautological line bundle, and the unit circle bundle in HkV is
the unit sphere S%*!  C**!, with projection the Hopf map 7 : $**! — PX. A contact lift
of u? is given by the restriction to S**! of the unitary representation

B (z0, oz (6790 29, e Y ). (44)

We shall use the same symbol [ for both the unitary representation and its restriction to
SP+1. fi® is generically free if the a;’s are coprime. The quotient S**!// is the weighted
projective space P(a). Let n' : $%*! — P(a) denote the projection.

The induced orbifold Kihler structure #* € Q*(IP(a)) is as follows. The vector field
generating (44) is —V,, where

k
~ o _ 0
Va=1 E aj (Zj a_Z/ -3 a—?j), (45)

viewed as a vector field on S**1. V, is a contact lift of V,, where —V, is the vector field
generating (42). The corresponding moment map (43) can be obtained by pairing V, with
the connection form

L&

5 Z (Zj dz; — 7 de).

Jj=0

o=

Hence f* := o/®* is a connection form for the action generated by V, on S**! (as usual,
we write ®* for ® o ). Then #? is determined by the relation 2 7' (#?) = df*.

The Kihler structures on PX and P(a) can be changed by modifying the Hermitian
product on C*'!'. Let d = (do, - . .,di) be a string of positive integers, and set

k
~ ~ 12 _
Z Z, E d; Z/ J, Wq = *\S(hd) = 5 EO ddej /\de. (46)
=

The action r_y : Z—e " Z of S on (C**!, 2 @4) is Hamiltonian, with normalized moment
map

k
)= dilzl
=0

Let $2¢1 := N;'(1) € C*"! be the unit sphere for iig. Thus S2*! is the unit circle bundle
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in H; with respect to the line bundle metric induced by hg. The quotient Sgk“ /r is again
P¥, with a new Kihler structure g (the symplectic reduction of @gq). More explicitly, let
7a : S3¥F1 — P be the projection, 1q : S5 — CF*! the inclusion, and set

k
* l = =
Od = lg (2 ]:Zodj (ZJ‘ de — g de)) .
Then o4 is the connection 1-form on Sﬁk“ for mq, and
dog =2 my(wq) = 2 13(Da)-
The action p® in (42) is Hamiltonian on (Pk, 2wd), with normalized moment map
k 2
ijo a; - d; ||
k 2 -
ijo dj |z

The contact lift of u* to Sﬁk“ is again functionally given by (44); we still have
SF+1 /i = P(a), but with a new Kahler form #3. Namely, 3 := aq/®3 is a connection

D3((2]) = (47)

form for i* on Sﬁkﬂ, and #j is determined by the condition

dfa =245 (na), (48)
where g3 : S5! — P(a) is the projection. The linear automorphism fy: CH R
given by (z))—(V/d;z;) descends to automorphisms fg : P¥ — P* and f2 : P(a) — P(a),

satisfying f; (wps) = wq and f3*(11,) = nj.
Let us remark in passing the following homogeneity property.

Lemma 3.5 For any string of positive integers d = (dy -+ dy) and r=1,2,..., we
have w,q = wq € Qz(lpk).

Proof of Lemma 3.5 Let nq : S¥™ — P, m,q : S — P* be the the Hopf maps. We
have, by definition, h., = rh,; therefore, S+ =5, (Sg"“), where 64(Z) = sZ. Since
v

Tla = T © 0L, We have
\/;

Tal@ra) = % (R (0ra)) = 81 (0ra) = Ga = ()

Corollary 3.2 Ifr=1,2,...andr = (r --- r), then o, = wgs (the standard Fubini-
Study form).?ul " ">

Proof wpg correspondsto 1=(1 --- 1).

The following variant yields a class of weighted projective varieties. Let b =
(by --- by) be another string of positive integers. On P* x P!, consider the Kihler
structure m, 1= W, + p (symbols of pull-back are omitted). w,y, is the Hodge form
associated to Hy; := Op«(1)XOpi (1) and the tensor product of the Hermitian products Ay,
hy. The corresponding unit circle bundle X,p C H,X ; can be identified with the image
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S @y, SEHL CH*!' @ ! of the map
Tap : (Z,W) € S x S8 7 @, W € CF @ €M (49)

we have denoted by ®,;: CF! x C'! — CF! @ C'! the tensor product operation.
Equivalently, X,p is the quotient of S x Sﬁ”l by the S'-action
(Z,W)—(e'"Z,e7'" W). The S'-action on X, given by scalar multiplication (clockwise
rotation) is 1. (Z @iy W) := €'V Z®@;; W. The projection map : Xap — Pf x P! s
Tap (Z @iy W) == ([Z], [W]).

Let 14 : Sﬁk“ X S|2,I+1‘—>(Ck+l x C*! be the inclusion. The connection 1-form Oap ON
Xap is determined by the relation

T;b(“a‘b) = ’;,b (&a‘b% (50)
where
P L !
Oap i= 3 a; (Z; dz; —z; de) + Z b; (W, dw; — w; dwj) . (51)
J=0 Jj=0

Furthermore, daap = 275 1 (wap)-

The product 7'-action

R 0|
= ([2D), u5 (W)
is clearly Hamiltonian on ([P’]‘ x P!, Zwaﬁb), with normalized moment map
a([2), W) := DA([2]) + BR(W), (53)

where ®% and <Dl|; are as in (47). Its contact lift ®P is the restriction to Xup =
§2+1 @, S2H of the tensor product representation i @ fi® on C*™!' @ C'*!. The latter is
the unitary representation /i : (X;)— (e %" X;;) associated to the string ¢ = (c;), with
ciji=a; +b; > 0.

We shall set

P(a,b) := Xap /™",

with projection 7, ), : Xap — P(a,b), orbifold complex structure Ky, and Kihler form
Nap- Explicitly, B,p, := dtap/®ap is a connection form for , ,, and 1, ), is determined by
the relation

2n/;,b(17a7b) = dﬁa,b' (54)

We can interpret P(a,b) as a weighted projective variety, as follows. Consider the Segre
embedding

Ok, : ([Z], [W]) < [l:Dk X pll—>[Z Rk W] S p(CkJrl ® CHl) = Pkl+k+l.

In coordinates, this is given by Tj; = Z; W;. Let C; C CH! @ C*! be the affine cone over
akvl(ﬂ:"k x P!); its ideal 1 (Crs) KX, is generated by the quadratic polynomials Tj; T, —
Ty Ty (0<i,a<k, 0<j,b<])).
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Let us denote by /f.. the extension of /i to C*, and consider the weighted projective
space

P(c) := (CH' @ C"'\ {0}) /i

The weighted projective subvarieties of P(c) are in one-to-one correspondence with the
prime ideals of K[7}] that are homogeous with respect to the grading deg,(7};) = c;;. Since
I(Cy,;) is generated by deg.-homogenous elements, it determines a weighted projective
subvariety

P(Ciy;c) := Ciy/iig- C P(c).

Let d = (d;;) be any positive sequence, and let Sf,(kaH)H c CH!' @ €™ be the unit

sphere for the Hermitian product hgq. Then Si(kaH)H is fi°-invariant, and

P(c) = Si(kaH)H /€. With this description, P(c) inherits the orbifold Kihler structure

(KHkH) +1 | okl

ng- Explicitly, let 14 : Sﬁ ® C"*! be the inclusion, and set

)

Cld 7"1..2
ag(ir) = =2 ST ooy, 56
Zi,/’ dij |Tij|
. 1
ﬁd = 58 od, (57)
where in the latter relation ®f is viewed as a function on S§<k[+k+l>+]. Then Sy is a

connection 1-form for the projection gg : Si“‘”kﬂ)ﬂ — P(c), and n§ satisfies
244" (na) = df (58)

(recall (48) and (47)). Hence, n§ restricts to an orbifold Kiahler structure on the complex
suborbifold P(Cy;¢) C P(c).
The following is left to the reader:

Lemma 3.6 Ifdij =a;- bj, then Ci; N Si<kl+k+l)+l = Xa,b- Hence P(Ck,ﬁ c) = P(a’b)

Lemma 3.7 Assume c; = a; + bj, dj = a; b;. Let 3: P(a,b)—P(c) be the inclusion, and
let n,y, be as in (54). Then 7y = Nap:

Proof of Lemma 3.7 In view of (54), (57) and (58), we need only prove that ¢q and @ pull
back on X, to, respectively, oy in (50) and @44 in (53). This follows from a straigh-

forward computation by setting T;; = Z; W; in (55) and (56).

Summing up, we have proved the following .
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Proposition 3.1 Let a = (ag,...,ax), b= (bo,...,b;) be sequences of positive integers,
and set ¢;j == a; + bj. Define a grading on K[T};| by setting deg.(T;;) = c;. Then the ideal
IQK(T;] with generators T; Ty, — Ty Tyj is deg.-homogenous, and P(a,b) C P(c) is the
corresponding weighted projective variety. Furthermore, if d;j := a; b; then (P(a,b),1,)
is a Kdhler suborbifold of (P(c),ng)-

The T"'-action on P* x [P!
uf‘,’*b([Z], [W]) ::([ef’”oﬂzo R ef“’kﬁzk}, [e’b‘”?wo R e’b”gwl])

= (w5 ([2]), 12, (WD)

can be interpreted in terms of the previous case by passing to the opposite Kihler structure
1b; —1b; ¥

(59)

on P!, and noting that e ej=c¢e e ¢;, where (e;) is the standard basis and e denotes

scalar multiplication in cH, Namely, let us consider PF x ﬁ, endowed with the Kihler
form w, 1 := wa — wyp. The latter is the Hodge form associated to the holomorphic line
bundle H, ; := Opx (1)&(9@(1) and the positive metric on it given by the tensor product of

the Hermitian metrics induced by 4, on C**! and &, on C'*!. The corresponding unit circle
bundle X, _p = S*™! @, ; Syt is the image of the map

Ta—b : (Z,W) € Sik“ X Slz)l+1»—>Z @ W e cHl g CH,

we have denoted by ®, ; : CHH 5 €M s CFF @ €T the tensor product operation. Thus
componentwise (Z;) ®,; (W;) = (Z; W;). Equivalently, it is the quotient of 2! x Sp/*!
by the S'-action (Z,W)—(e'’Z,e'”W). The projection ma_p : Xa_p — P* x P s
Z ®,; W ([Z],[W]), and the connection form o, is determined by obvious variants of
(50) and (51). We have 27; (@, p) = dota p.

Then 1P in (59) is Hamiltonian with respect to 2 m, _, with normalized moment map
@, , in (53). Its contact lift i~ to X, _y, is the tensor product (for ® ) of the flows % and
fiy®. We shall set P(a, —b) := X, _p,/a* P, with projection g, _p : Xa’_,,b — P(a, —b), and
denote by n, _, and K, _p its (orbifold) symplectic and complex structures, respectively.
Thus

2q;,—b(7/la,—h) = dﬁa,—bv where Ba,—b = aa-ﬁb/q)ayb' (60)

The Segre embedding
0+ (2, W) € P x B! = P x Phfz i W] € P(C4 0 T),

given in coordinates by T;; = Z; W,, intertwines p® x u® with &7 WP = u€, where
c¢ij = a; + b;. The unitary representation fi° on CH!' @ C"! is defined in terms of the
k

identification C**! @ C'*1 o CH**+1 given by the basis e; = e} @, ¢, where (ef);_

and (eJ’-)Jl.ZO are, respectively, the standard basis of C*'! and C'"'. Coordinatewise,

w5 ([T50) = [e*wv’ﬁ Tu} . The same argument used above realizes [P(a, —b) as the weighted
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projective variety associated to the cone ij c ck! ®E[+1 over akj(ﬂj’k X W) and the
weighting ¢, with induced orbifold Kéhler structure 7, _y,.

The latter case is equivalent to the previous one, once we use the standard basis to
induce a unitary isomorphism €1 o "', The reason for emphasizing the coexistence of
the complex structures on P! and P is the following. Being the quotient of S2*! x SIZ)IH
by the S'-action (Z, W)—(e'? Z,e'” W), X, _p is diffeomorphic to the submanifold ¥, _ C
P11 given by

Yoo = {[Z: W] € PHEL izl = ([WIl, }- (61)

Explicitly, the diffeomorphism
w

V4
Jab:[Z: W] €Yy p— ® € Xa—p 62
: iz, g, < X ©2)
intertwines the S'-action
r: (6”9, [Z:W]) e S' X Ya_p [e’ﬁ/zZ ce /2 W} € Ya b (63)

with the structure bundle action on X, _, given by scalar multiplication.

As a hypersurface in P¥+! ¥, _y inherits an alternative CR structure. To interpret the
latter, notice that Y,_p may be identified with the unit circle bundle
Za—b C Ope(—1)®Op(1). To make this explicit, given a one-dimensional complex vector
space L and £ €L, £ #0, let £* € LV be the uniquely determined element such that
£*(¢) = 1. Then the diffeomorphism

Z w ¥
8a—b - [Z W} € Ya_p— ®kl (—> c Z, ~b (64)
" iz, W1, !

intertwines the action (63) with the structure bundle action on Z, h given by scalar

8a,
multiplication. Thus we have two S'-equivariant diffeomorphisms Xa, b<— Ya. b—h>Za b

and the composition f, _p o gzkh : Za b — Xap covers the identity Pk x P! — Pk x Pl

3.2.2 Application to symplectic reductions

Let be given an Hamiltonian action 8 : S' x N — N on a symplectic manifold (N, Q), with
normalized moment map B : N — R, such that 0 is a regular value of B. Then the quotient
No := B7'(0)/p is an orbifold.

Let m: B '(0) — Ny be the projection, and 1: B~ '(0)—N be the inclusion. The
reduced orbifold symplectic structure Q is determined by the condition 1*(Q) = 7*(Qy).

One the other hand, given a connection 1-form o for the § !_action on B! (0), a closed
form €, on Ny is determined by the condition do = 2 *(€) [3]. [Qy] € H?(No, R) is the
Chern class of a principal S'-bundle naturally associated to 7 (see [3, 19] for a precise
discussion).

Let J be a complex structure on N compatible with Q, so that (N,J,Q) is a Kéhler
manifold, and such that § is holomorphic (i.e., B, : M — M is J-holomorphic for every
g € S'); then J descends to an orbifold complex structure Jy on Ny compatible with Q.
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Thus (No,Jo, ) is a Kihler orbifold. On the other hand, even if € turns out to be
symplectic, Jo needn’t be compatible with €.

We shall apply the considerations in §3.2.1 to describe a class of Hamiltonian circle
actions for which Qg is a symplectic form; furthermore, there is a natural alternative choice
of a complex structure J; on Ny, compatible with €. Therefore, in this situation the triple
(No,J§, ) is a Kihler orbifold, generally different from (Np,Jo, ). Since [Q] €
H?(Ny, R) is the class appearing in the Duistermaat-Heckman Theorem on the variation of
cohomology in symplectic reduction [3], we shall call (Ny,Jj, ) the DH-reduction of
(N,J, Q) under f.

Given integers k, [>1,leta=(ay --- ax),b=(by --- by) be strings of posi-
tive integers, and consider the holomorphic action of T! on P! given by

V:};b([zoz~-~:Zk:wo:n-:wl})

— [e—laOﬁZO Cas e—mkﬁzk . elboﬁwo cs e‘hkﬁwl].

(65)

Then 7y~ is Hamiltonian with respect to Q = 2 wps, with normalized moment map

k

ra,—b([z' W]) = ||Z||2 n HWHz (Z i 1] ; bi| |]) (66)

Jj=0

Hence l";'_h(O) = Ya_p (see (61)), and O is a regular value of I'y _y, [7]. In fact, the
diffeomorphism f, _p, in (62) intertwines y»~® and i®~P. Therefore, the Kihler orbifold
(No,Q,J) is in this case isomorphic to (P(a,—b),n, ) (hence abstractly to
(P(a> b)v 77a,b))~

We can relate the complex structures Jy and Jj pointwise, as follows. Let 7’ :=
Ga—b © fa—b : Ya—» — P(a,—b) be the projection, and consider [Z : W] € Y, _p. We may
assume [|Z||, = |[W|l, =1, ie. Z€ S, We S Let Hz(S¥!) C T,8%*! and
Hy (Sg) C TwS§ ™" be the maximal complex subspaces (with respect to the complex
structures of C*™' and C'*!, respectively), with respective complex structures K, and Ly
Then the uniformized tangent space of P(a, —b) at 7/([Z : W]) is canonically isomorphic to
Hz(S%+1) x Hy (Sp") as a real vector space. The complex structures Jo and Jj at ' ([Z :
W]) correspond to Kz x Ly and Kz x (—Ly), respectively.

The previous considerations extend to the cases k = 0,/ > 0, and k > 0, [ = 0. Consider
an action y of T! on P! of the form

Yoo ([20 -+ 12kt wo)) == [e"“”ﬁz() R e R wo},

with moment map

1 k
Iifzo:  rz:wolmr—5—— {Zaf Zj|2b0|w02}.

gTe—) 2
1ZI” + [wol™ |55

Hence Y :=T"! (0) is entirely contained in the affine open set where wy # 0; explicitly,

1 k
Y = {[zo:---:zzc:\/—b—o} : Z“jkﬂzzl} 2 5.
=0
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The diffeomorphism [z : 1/v/bg] € Yz € S**! intertwines y with the action
Joo  (z7)— (e7 @) 7 7). Assuming, say, that the integers a; + by are coprime, Y /7 may
be identified with the weighted projective space P(by + ao, ..., bo + ai), and under the
same identification € is the Kahler form 7, +a)- In this case, Jo = Jq.

3.2.3 The DH-reduction of P(W k)

We aim to describe the DH-reductions of a general P(Wy, k) with respect to TV'L, when v
varies in Z2. We shall call this as the v-th DH-reduction of P(WL k). Recall that this is the
triple (No,Jj, ) (in the notation in the preample of §3.2.2) when N = P(WLk) and
B =1, (the restriction of ®p to TvlL =~ §1 - see (32)).

By way of example, let us start with two special cases.

Example 3.1 Consider the representation uf” of G on W', for some r>1, as usual
composed with the Lie group automorphism BH(B’)fl. This corresponds to (27) with
K=1:=(1 --- 1),L=0. Let us assume vy, v, > 0.

By (7) and (8), Fy, : C* — C for j = 1,2 are given by F} 1(Z) = zo and F),(Z) = z,
where Z = (zo z1). Hence by (28) the moment map @y : I]D(Wf’;’) — g is

_ v Dot |Za,0|2 et Za1 Za
1ZIP \ S za0Zar Sy lzaa

Here Z = (Zy,...,Z,) € (C*)" = C*, and for each a Z, = (240 2z ). Therefore, with
M = B(W).

Do,1([Z]) (67)

MVT = {[Z] R0 Z‘Zaﬁo‘z =V Z|Za¢l|2}-
a=1 a=l1

Let us define S; : (C*)" — C” by setting S;(Z) := (z1; -+ z;) for j =0,1. With the
unitary change of coordinates Z € C*'+—(S,(Z), So(Z)) € C*, we can identify M! with

My = {51 o] € P wllsy = va 1ol }-
Let us identify 7!, with S' as in (32). Then the action y, of T, on P! corresponds to
the circle action given by
Ve [S1 :S()]H[e_”‘ VS e”'zﬁSo]. (68)

Hence if we set vo:= (v, -+ w),vi:=(vy -+ vy)€Z then y =7"""2, where
notation is as in (65).
We can use f,, _y, in (62) to identify M’ VT ~M VT with the unit circle bundle X,, _,, over

P! x P!, with projection m,, _, : [Si : So]—([Si],[So]). Since y covers the trivial
action on P! x P! P(vy, —vy) = P x PL,

. T . . .
The connection form o, _,, on M, =X, _,, as unit circle bundle in

Opr-1(=1)RO5=(—1), is as follows. Let
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E(ZW) e x s iz W eM,

and let j: 85! x §~1—C" x C" be the inclusion; clearly, S5 ' = §*~'(1/,/%) and
Sit = §1(1/,/v2) where $~!(r) is the sphere centered at the origin of radius r > 0.

Then E*(ay, —y,) = J* (dy,,—v, ), Where

r r
~ 1/ _ _ _ _
Oy vy =5 [Vl Z(Zjl dzji =z dz) — w2 E (z0dzjo — Zodzp) |-

= =1

The corresponding Kihler structure o on P’ x P"~! is then uniquely determined by the
condition that

28 (7}, 1y (0)) =25 (A0, 0,)-

Either by direct inspection, or by appealing to Corollary 3.2, one can verify that w =

7} (wps) — 5 (wps) (m; is the projection of P! x P! onto the Jj-th factor). Furthermore,
by (53) we have @, ,, =v;+v, (constant) and so by (60) we conclude that

[/ ——— (V1 + V2)71 @.
It is evident from (67) that oy (see Theorem 3.1) is the section of Op’(l)@@ﬁ(l) given

by the bi-homogeneous polynomial S; -Sy. Hence MVG C P" x P is a (holomorphic)
(1, 1)-divisor.

Example 3.2 Let us consider the representation 5" on Wy'; thus K =2:= (2 --- 2),
L = 0 in (27). The functions F»; : C*—-C%in (7) and (8) are given by
Fai:(z20 21 2)~(V2z20 z), Fa2:(20 2 2)—(a V2z2)

For j = 0,1,2 let us define S; : (C*)"— C’ by setting

SiZy,onZe) = (2 0 2
then by (28)
Do2([2])
o 2@ + ISP V2(5i12)So@) + S:(2) $i(2))
NP\ v (s S @+ 5@ %@) 1@ +2 8@

(69)
Assume v; > v, > 0. With the unitary change of coordinates
Ze (@) =(512) $2) @) e,
M! may be identified with
M ={$1:8:8eP ! =PC aC &C)
(v =) 1P+ 20 (IS = 202 ||So\|2}-
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Furthermore, if we identify TV‘L with S! as in (32), its action on M’ VT corresponds to
Yot ([SO T Sz]) = |:e*l(“l*V2>'l9 S : o2 ? Sy : Pty SO}- (70)

Let us define a, € N*" and b, € N" by setting
a,:=(vi—vy - vi—vy 2v; -+ 2vp), b, :=(2v; ---2v;),

where v; — v, and 2v; are repeated r times. Then by (70) we have y = P (see (65)).
By means of f, _p,, we can identify M’VT with the unit circle bundle

)(a,,.—bv C 0”}2!71 (—1)|EOF(_1)’

with respect to the Hermitian metric induced by h, and hp, with projection
Tay—b, © [S1 52+ So]—([S1 @ S, [So]). The structure S'-action given by clockwise fibre
rotation is

oo 2 [S1 182 SQ}’_)|:67“9/2 S eV, 6”9/250}.

Thus y may be identified with the contact lift i~ to X, _p, of the Hamiltonian S'-action

w7 on ([P’Z”1 X P”I,Zwaw,b‘,) having moment map @, ;, (see the discussion fol-
lowing (59)). Hence (No,J, Q) in §3.2.2 with N=M and S' = TV'L is in this case

([I:D(aw _bv): nav,—bv)-
We can rewrite (70) as

Ve ([So : S1: 82]) = [e” (i40)0 g 0 g 2titn)V g, So}. (71)

Passing to the quotient group T'(v) in (39), this is the action
Voo = [S1 282 :80) € M’va—> [e’”;Sl ce g, So} € M’VT. The latter is functionally inde-
pendent of v, , and it follows that the quotients P(a,, —b,) are all isomorphic as complex
orbifolds when v; > v, > 0.

Let us come to a general representation Wy, k. Let us introduce some terminology.

Definition 3.3 If Wik is a representation fullfilling the equivalent conditions of Propo-
sition 2.5, let

I(L,K) := {(a,j) cae{l,..,r}j€{0,..  k.}}.
Given v = (v; ;) € 77, let us define n, : Z(L,K) — Z by setting
ny(a,j) == —va (ko —j+la) +vi (la + ) (72)

Let us assume that @k (P(Wpx)) N Ry - 1v # 0, and that @y is transverse to R - tv.
Then, by Proposition 2.3 and Theorem 2.5, v lies in the interior of one of the wedges cut
out by the rays through the integral vectors vy, ;, defined in (31). It follows that:

1. ny(a,j) # 0 for every (a,j) € Z(L,K);
2. there exist (a,j), (b,h) € Z(L,K) such that n,(a,j) - n,(b, h) <0.
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Definition 3.4 Under the previous assumptions, let us define

Py(L,K) := {(a,j) € Z(L,K) : ny(a,j) >0}, (73)

N,y (L,K) = {(a,)) € Z(L,K) : ny(a,j)<0}. (74)

Then Z(L,K) is the disjoint union of P,(L,K) and N ,(L,K), both of which are non-
empty. Furthermore, let us define
a,(L,K) := (|nV(a7j)|)(a,j)e7>,,(L,K) € NWDV(L’K)M

b,(L,K) := (‘nV(aJ)D(a,j)ENV(L‘K) € N LT

Theorem 3.2 Let Wy be a representation fullfilling the equivalent conditions of
Proposition 2.5. Suppose that v = (vi va2), vi # V2, and that

1. (DL~K([|:D(WLK)) N R+ LAY # @;
2. @y is transverse to Ry - zv.

Then the v-th DH-reduction of P(W k) is

(P (@v(L,K), ~by (LK), (110 150 )- (75)

Furthermore, if Wy, k is a uniform representation (Definition 2.3) then the complex orbifold
P(a,(L,K), —b,(L,K)) remains constant as v ranges in the interior of one of the wedges
cut out by the rays through the vy ; ;. ’s.

aJas

Remark 3.3 As discussed in §3.2.1, (75) is a weighted projective subvariety and a Kéihler
suborbifold of the weighted projective space

(LK
(P K5
where

¢,(L,K); := a,(L,K); + b,(L,K),, d,(L,K); := a,(L,K); - b,(L,K)..

Proof of Theorem 3.2 By (28) we have with M = P(Wp k)

{[z vzz(m] AR
=V Z(HFk 2Z)IIP + o |1 Zall )}

In view of (7) and (8), the relation in (76) may be rewritten
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0= mlaj) |zl

aj)eZ(LK

(aj)€Z(LK) . i | 2 )
= > Im@)llzai = D Inv(@i)llza,

(aj)€Py(LK) (aj)EN, (LK)

This can be reformulated as follows. Let us consider C/P*®@¥)l ang ¢V V(L"K)l, with coor-
dinates Z = (2aj) (wjyep, k) W = Waj)wjen, (i) respectively. On CP B and

CMVY @K we have the positive definite Hermitian products given by

hawi)(Z,Z) = > In(@)) 22
(a))EP, (LK)

Iy, ) (W, W) = Z [y (@, )| Waj W,
(a)EN (LK)

and so by (76)
M =~ M'VT ::{[Z W] e P(C‘PV(L‘K” @ CW"(L’K”) :
hay k) (Z, Z) = hy, k) (W, W) }.

Therefore MvT may be identified by fy . x),—b,(LK) in (62) with the unit circle bundle in

(78)

Xa‘,(L,K),fbv(L,K) C Op\‘Pv(L,K)\—I (*Ugom(*l),

relative to the Hermitian metric induced by h,,(Lx) and &y, (L k); the bundle projection is
n (2 W (2], W)
In the notation (65), the action of Tvli on M’ VT given by restriction of ¢,k is

7O () = (wa)])

etV

= [(e—mvw.jw Za,},) : (e—m.«amwa_jH (79)

- Keﬂlnvw”')lﬁza:,-) : (ez\n.«awm)],

y corresponds, under the previous identification, to the contact lift
2 (LK), =by (LK) of the Hamiltonian action p®(LK):—b (LK) (see (59)) on

a,(L,K),—b, (LK)

(p\ﬂ(L,Kn—l x PVERIET 50 0k bv(m),

with moment map @, (1. k), LK) (recall (53)). Thte first statement of the Theorem follows
from this.

Let us assume that Wy x is a uniform representation. By definition, there is s € Z
(independent of a) such that k, +21, = s for a = 1,...,r. Then (72) may be rewritten

nv(a>j) =—"s+ (Vl =+ V2) (la JFJ) (80)

Therefore, (79) may be rewritten
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, (L,K),—b, (LK
A (DR )
_ [(6‘[ [v2 s—(la+i) (vi+v2) V] Za,j) . (e’ [v2 5= (vi+v2) (L)) V] Wa,j)} (81)

- {(e*l(vﬁvz)(laﬂ')ﬂ] Z”) : (e*l(\’lﬂ’z)(lﬁrj)ﬂWa].)}_

After passing to the quotient group T'(v) in (39), we obtain the action
Zai) : Wai) = [(e7tUatD? 7, ) ¢ (e7t Lty Y], which is functionally independent of

J J J J y p
v, and the claim can be readily deduced from this. O

3.2.4 The case of g, and v; > v,

Let us focus on the special case of i, for k >2 and v in the in the range v, >> v,. For any
positive sequence @ = (@, --- a; ), the quotient of the sphere S2~! C C* by the circle
action with weights (1 2 --- k) is P(1,2,...,k); the image in P(1,2,...,k) of
§2-1'N(z; = 0) is a canonically embedded copy of P(2,...,k), independent of a. We
shall denote by j7:P(2,...,k)—P(1,2,...,k) the inclusion, which is a holomorphic
orbifold embedding.

Theorem 3.3 Under the previous assumptions, suppose Vi > Vv,. Then

M: ~ P(1,2,...,k). Furthermore, there is a smooth isotopy of orbifold embeddings
J:[0,1] x P(2,....k) — P(1,2,...,k)

such that:

L Jo=1y
2. L(PQ,...k) =M
3. Ji(P(2,...,k)) is a symplectically embedded orbifold in (MVT, Q) for every ¢t € [0, 1];

In particular, M is diffeomorphic to P(2,...,k).

v

The following argument will produce J,([FD(Z7 .. .,k)) as the zero locus of a smoothly
varying family of transverse sections of the orbifold line bundle in Theorem 3.1.

Proof of Theorem 3.3 We have M = P* = P(W,). By (7), (8) and (9), M is contained in

the affine open set AS = (20 # 0). More explicitly, let us define a, (k) € i by setting
av(k)j =vij— v (k—j);

thus a,(k); > 0 for j=1,...,kif vi > (k — 1) v2. Then

1 - 2 _
MVT—{L/k_vz:vl :-o»:vk] € P* > ay(k); |yl —1} = SH0- (82)
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Being irreducible, g is uniform, hence T'(v) = S'(v) in (39). Under the isomorphism
Ky 1 St TvlL in (32), TvlL N Z(G) corresponds to the subgroup of S' of (v; + v)-th roots of
unity; thus the quotient map Tvll — T'(v) corresponds to the Lie group epimorphism
em? c Sl>—>el("‘+v2)ﬁ c Sl.

Identified with S' as in (32), T, acts on M! as

)

1 B ! o - ,
= |: e ”9(V1+”)D| c s e (i) viieeece 1k (vi4v2)

\/k Vo

Passing to the action 7 of the quotient group 7' (v) 2 S', we conclude that Jo = Jj, and

(83)

Dk

M: =~ [P(1,2,...,k). Furthermore, the intersection ng‘(k; N (v = 0) is clearly J-invariant,
and it projects down to P(2,....k) C P(1,2,...,k).

As 7 is effective, any character y of 7' (v) defines an orbifold line bundle L, on M, . T We
shall write L = L, if y = ¥, corresponds to the identity of S'. Any function f : S2k —C
which is the restriction of a C* (respectively, holomorphic) function on C* and sat1sﬁes
fo7¥,w=e"f determines a C (respectively, holomorphic) section ar of L.

With abuse of notation, in view of (82) let us regard @), as defined on Sﬁk(ki by (6),

1
Op(V)=—g——7> v + Vk=7) G+ 1) oo (84)
(kva)™" 4V f Z Y
Let us consider the continuous function A : [0, 1] X Sfl’v‘(’k; — C given by
A:(1,V)
: (85)
o = v+t Y (k=) (+ 1) T ;
(kvo) " 1|V [ Z Y
we shall write A,(V) := A(z,V).
Let (e, ..., ) denote the standard basis of C¥, and let (e7,...,ep) be the dual basis.
Then
AO = lk\/geﬂszk(*kl)V Al = q)127 At o ?e"” = elﬂ Ata Vt € [07 1]7 (86)
in particular, A, corresponds to a C* section g, of L;.
The following is left to the reader:
Lemma 3.8 Let || - || : C* — R be the standard Euclidean norm. If vy >2 (k — 1) vy, then

VI <\/2/vi for all V € S}
Using (85) and Lemma 3.8, one can also prove the following two Lemmas.

Lemma 3.9 Let us set A, := —1 (k \/52)71 A,, and let us view A, as defined on C* (by the

same functional equation). Then, uniformly in V € Sik(k; we have
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Vi

dvﬂ,:€T+O< 2)

Lemma 3.10 There exists C > 0 (independent of k, t and v) such that if V € Sif((’k; and
A(V) =0 for some t € [0,1], then |v;| < Ck (\/v2/v1).

The general V € Si"(*k; has the form

i

1 4/a,(k)

k
V:

k
¢, where ;€ C, Z P = 1. (87)
j !

B

Lemma 3.10 and (87) imply that if V € S35} and A,(V) =0 for some 7 € [0, 1], then
v; = ri1/y/ay(k), where r; € C satisfies

|r1|§Ck%,/av(k)1§Ck\/%. (88)

Hence, if R = R'(V) := ZJI'C:Z rje; then

vi/ma>2C K2 = |RIP=1—=|n">1-=C*>(va/n1)>1/2.

Hence there exists j € {2,...,k} such that |r;] >1/+v/2k. Perhaps after renumbering, we
may assume that j = 2.
Therefore, we can draw the following conclusion.

Lemma 3.11 Suppose vi/v, > 0. If V € Sﬁ’f(’k)l and A(V) =0 for some t € [0, 1] then,

perhaps after a renumbering of (2,...,k) we have
r mn

V=———e +———e+5(V), 89

a,(k), a, (k), (89)

where S(V) € spang(es, . .., e;), r1 satisfies (88) and |rp| > 1/v2k.

Let us set
_ _ (90)

Then spang(Ny) C Tngi‘(’ki and ||Ny|| > 1/(2k) by Lemma 3.11. In view of Lemma 3.9,

we obtain for every ¢/ € S!
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10 7

v ('N) = ———C 2 Lo [2).

v t(e v) 1—(k—1)"—2+ " (91)
vy

It follows that dy A, restricts to a surjective R-linear map spang (Ny) — C; therefore the
same is true a fortiori of the restriction of dyA, to TVSi/:&;~

Thus we conclude the following:

Lemma 3.2 Suppose vi/v2 >0, VeSS rel01], and A(V)=0. Then

dVA,|TVSzH — C is a surjective R-linear map.
ay (k)
Lemma 3.12 has the following consequences:

Corollary 3.3 In the situation of Lemma 3.12, Z, := A, '(0) C Sﬁf(’k; is a smooth y-in-

variant submanifold of ng(‘ki, of (real) codimension 2.

Corollary 34 Z,:=Z/y C Mvr is a smoothly embedded orbifold of real codimension 2.

Corollary 3.5 Let Z := A™'(0) C [0,1] x SX;. Then:

1. Z is a submanifold (with boundary) of codimension 2 of [0, 1] x S}

2. the projection p : Z — [0,1] is a submersion;
3. Z =p '(¢) for every t.

T'(v) acts on [0,1] x Sik(}; trivially on the first factor and via 7 on the second, and this
action preserves Z in view of (86). The product metric on [0, 1] x Sﬁk(‘ki restricts to an

invariant Riemannian metric gz on Z. By gz, we can define an invariant horizontal
distribution for p, whence an invariant horizontal vector field, whose integral curves are the
horizontal lifts of [0, 1] for gz. These horizontal lifts define an invariant family l//p of

paths, one for each p € Zy; for each ¢, the assignment ' : p € Zon—upp(t) €7 is a -
equivariant diffeomorphism. Therefore, 1/’ descends to a smoothly varying family of
orbifold diffeomorphisms wt : Zo — Z;. In particular, Z is diffeomorphic to Z;.

Let a, (k)" := (a,(k),,...,a,(k);). Then in view of (86)

Zo={v=0}N Sflf(*k;, = {0} x ij(;j,; (92)

by (83), Zp = P(2,3,...,k). Thus every Z, C MVT is diffeomorphic to P(2,3, ..., k).

Let us show that every Z, is symplectically embedded in (MVT ,Qp). By construction,
Sﬁf{k; ~M!I' = ‘I’vil (0) (¥,, is as in Lemma 3.1). Let g : Sﬁf@% — ]\7IVT be the projection,
and let 1 : Sﬁf@}%@k =~ Ak C P¥ be the inclusion; then ¢*(Qp) = 1*(wps).

Let wg := (1/2) Z;(:l dv; A dt; be the standard symplectic structure on C¥. Expressing

wrs in affine coordinates, by a standard computation we obtain on Ag
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wps = wo + Ra(V), (93)
where R; is a differential form vanishing to second order at the origin. By Lemma 3.8,
along Sﬁf&% we have ||V||2 <2/vi <2v,/vy; hence (93) implies that wrs = wg + O(v2/v1)

on ng‘(’k; . Therefore,

* * * v
4" (Q) = 1*(wps) = 1* (o) +0(V—T>. (94)
With A, : Af = C* — C as in Lemma 3.9, let us set Z, := A, (0); thus Z, = Z, N S2).
Let (€1, €,. .., €x—1, €x) be the real basis (ej,tey,... e, 1e;) of CF =~ R*. Then by
Lemma 3.9

dyA, =€ + 16 + 0<\/:E) (Ve Sxa) (95)
1

and this implies that if v; /v, >> 0 then ker(dv/i,) is a (real) symplectic vector subspace of
(C*, wy) whenever V e Sﬁk(k)' and t € [0,1]. Given this and (94), we conclude the
following:

Lemma 3.13 [f v{ /v, > 0, then the following holds. For every t € [0,1] and V € Sﬁ’j(k;

such that A,(V) = 0, the tangent space TyZ, is a symplectic vector subspace of (C*, wps).

Corollary 3.6 If vi /v, >> 0, there exists a j-invariant open neighborhood U C C onglv‘(’k)l,

such that ZZ := 7, N U is a symplectic submanifold of real codimension 2 of (C*, wps), for
every t € [0,1].

Let j : Z~,’<—>Ck be the inclusion, and set @, := j; (wps). The restriction i, := W, oy, is the
moment map for the action of T, on (Z], w,), and Z, = y, '(0). Hence Z, := Z! /7, with the
reduced symplectic structure @;, is the symplectic reduction of (Z~,’7 @), and as such it is a
symplectic suborbifold of (]T/IVT , Qo).

G
4 M

We shall assume throughout that 0 ¢ ®(M) and that @ is transverse to C(O), and focus on
Mg and its relation to M? . We do not assume that M be projective.

Given that @ is transverse to C(O), ¢ has rank >3 along Mg, meaning that for every
m e Mg the evaluation map val,, : £ € g—&y(m) € TmMg has rank >3 [4, 15]. Let us
give a direct proof for the reader’s convenience.

Proposition 4.1 Given that @ is transverse to C(O), for any m € Mg the evaluation map
valy, : § — T,,M is injective on ker (®(m)).
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Proof If m € M%, then by equivariance @ is transverse to C(O) at m if and only if it is
transverse to the ray R, ®(m) at m. Hence, d,®(T,M) + R®(m) = g¥. Suppose that
¢ € ker (®(m)), and that &y (m) = 0. Pick o € g¥. Then there exists v € T,M and 1 € R
such that o = d,,®(v) + A ®(m). Thus
2(¢) = dn®(v) (&) + AD(m)(£)
=d, ®(v)(¢) = d,, ®° (v) = 2 (Ey(m),v) = 0.

Thus o(¢) =0 Vo € g¥, whence & = 0.

For example, when ¢ = ¢y x for a uniform representation (Definition 2.3), ¢ is bound to
have constant rank 3 along Mg.

We shall accordingly distinguish two cases: 1): ¢ has constant rank 3 along MS; 2): ¢ is
generically locally free along Mg. Before, however, it is in order to sum up some general
facts.

If m € MG, then by definition there exist unique Z,(m) > 0 and h,, T € G/T such that

W) =t () ) (96)

The applications 4, and m—h,, T are C**. Furthermore, hy, (y T = ghy,, T and 4, = 4y o i,

by the equivariance of ®.
Let us define

Ty i =huT) b, Twi=h,Th,  (meM). (97)
Then Tvlhm < T, < G are well-defined, and
T! =gT, 1T i =8Tng"" G MG
vogm) = 8Lvim& " S Ly m) = 81m 8 (g€ G, meMp). (98)

In particular, if g € T, then Tﬂg(m) = T,,; hence T,y = T, for every m’' € T,, - m; similarly
for Ty, -
Definition 4.1 Let us define the action p : §! x Mg — Mg by setting

Perd (m) = ¢h,,, Ky (et) hy,! (m)7

where «, : S' — T!, is as in (32).

Thus the p-orbit of m € Mg is T,, - m. The following facts are more or less well-known,
and are either discussed in [4], or can be deduced using arguments in [4, 6]:

Lemma 4.1 Mg C M is a compact and connected G-invariant hypersurface, and p is

locally free. The isotropic leaves of Mg are the p-orbits. Hence, the quotient M(GQ is an
orbifold of real dimension 2d — 2, with a reduced symplectic structure wc.
o

Let p : M$ — Mg be the projection. Then p(MC) is diffeomorphic to MVG in (33); with

abuse of notation, we shall write MVG = p(M%). We have seen that MvG has an intrinsic
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symplectic structure ., and that (11_4VG7 w;c) is a symplectic suborbifold of (MVT s 0r).

Arguing as in §3.1 one obtains the following.

Lemma 4.2 Under the previous identification, (ZVIVG, wMG) is a symplectic suborbifold of

—G
(Mo, a)M(c;)
Furthermore, we have:

Lemma 4.3 For every ¢’ € §', g € G, m € Mg we have

Pew © ¢g(m) = ¢g O Perw (m)

Corollary 4.1 ¢ (restricted to M$) descends to a smooth action
$:Gx M — M,

Furthermore, ¢ is symplectic for W6
o

In view of (96) and Definition 4.1, @] MG is p-invariant, and therefore it descends to a

.= —G
smooth function ® : M, — g.

Corollary 4.2 ¢ is Hamiltonian for 2wy, with moment map [0}
o

4.1 Case 1)

In this case, we shall establish in Theorem 4.1 that ]\713 factors symplectically as the

product of ]WVG and a coadjoint orbit.

Proposition 4.2  [f the rank of ¢ along Mg is generically 3, then it is 3 everywhere on Mg.
Furthermore, the stabilizer F,, < G of any m € Mg is 1-dimensional subgroup F,, < T,,

1 .
transverse to Tmm in T,,.

This will be the case, for instance, if u is associated to a uniform representation, in which
case the connected component of F,, is Z(G).

Proof of Proposition 4.2 Let us first assume that m € MC, so that T,, = T. Then any g € F,
commutes with ®(m), therefore g € T since v; # v,. Thus F,, < T. Since the action of TJL
is locally free at m, F,, has to be transverse to TvlL in T. The general case follows from this
and (98).

Forme M (O;, let F5; denote the stabilizer of 7 for Ii.
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Corollary 4.3 Under the hypothesis of Proposition 4.2, Fy, = T,,, for any m € M(O; and
m € p~'(m). In particular, Fr; = T, for any m € M‘?.

Corollary 4.4 Under the hypothesis of Proposition 4.2, ¢ is trivial on Z(G). If, in addition,
vi + vo # 0, then A, is constant.

Proof of Corollary 4.4 For any m € M(O;, F; is a maximal torus, hence contains Z(G). This
proves the first statement. As to the second, 4, descends to a well-defined smooth function

on Mg, which we shall denote by the same symbol. Furthermore, the Hamiltonian function
. . —G p— .
for the (trivial) action of Z(G) on (M, Zwﬁg ) is (®,1L) = 4, (vi +v2). Since

vi + v2 # 0, 4, needs to be contant.

By (96), if m € Mg and m € p~!(m) we have

i (m) €MT, () € M.

Thus we obtain well-defined and C* orbifold maps
A:Tie MgH(a,%. (7). T) e M° x (G/T), (99)
and
©: (7, hT) € M, x (G/T)—d,(m) € M. (100)

Notice that A and © are well-defined by Corollary 4.3, and ® = A~'. Hence A and @ are
diffeomorphism. Furthermore, G acts on MVG x (G/T) by

o, (M, hT) := (m, ghT).

It is clear from (100) that © intertwines o and ¢, that is, ® o Olg = @ 0@ for all g € G.
Let us identify G/T with P! by the equivariant diffeomorphism

0:hT € G/T—lhe)] € P!,

where (e, e;) is the standard basis of C>. We have proved the following:

Proposition 4.3 Under the hypothesis of Proposition 4.2, Mg is equivariantly diffeo-

morphic to M? x P,
By the Kiinneth formula, we obtain:

Corollary 4.5 Under the hypothesis of Proposition 4.2, there is a ring isomorphism
« (770 * v *
H* (M) = H* (M) @ H*(P").

Let us set wgr := 0" (wps), where wpg is the Fubini-Study form. On IWVG x (G/T) con-

sider the product symplectic structure wyc © wg/r. Let us assume that v; + v, # 0; then

Ay > 0 is a constant (Corollary 4.4), and we may consider the symplectic form
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g =2 (Vi +v2) Ay 067
We can strengthen Proposition 4.3 in the following manner:

Theorem 4.1 Under the assumptions on Proposition 4.2, assume in addition that
vi +v2 #0. Then

—G —G
A: (Mo,wﬁg) — (M, x (G/T),a)ﬁvc ® wg,r)
is a symplectomorphism.

Remark 4.1 The assumption that v; + v, # 0 is guaranteed in the case of P(Wrk), by
Corollary 2.10.

Proof of Theorem 4.1 M is the Ti-saturation of M. ; furthermore, M. maps diffeomor-
phically under A onto HVG x {I, T}. Since ¢ is symplectic on (]Vlg, w56 ), o is symplectic
o

on (MVG X (G/T), w6 & wg /7). and A intertwines the two symplectic actions, it suffices
to prove the statement along MvG. Explicitly, suppose g € M 5; and 7m = $g(m0) for some
g €G; then Ao Eg = o, o A implies diA o dm(@g = dam,)% © dim, A. Hence if dzA is a
linear symplectomorphism for every m € MVG, then it is so also for every m € Mg.

For every v € g, let V376 denote the corresponding orbifold vector field on ]Wg (see

o

[11]).If &, i, aare as in (16), Lemma 3.3 and Corollary 3.1 imply that there is a symplectic
direct sum of orbifold (uniformized) tangent bundles

% (g0 770 *
7 (TMgy) =TM, @ (am)7

where 7 : MVG %]\_42 is the inclusion.
Let us fix m € M?, so that A(m) = (m, I, T). We have

—G —G —G
Twnr (M, % (G/T)) = Tu(M)) ® T1,7(G/T) = T(M, ) x a;

in both cases, the two summands are symplectically orthogonal. Furthermore, it is apparent
from our definition of A that, in terms of the previous isomorphisms

TyMey 2= Tr(MJ) x a 22 T, T T) (Mf x (G/T)), dzA corresponds to the identity map
Tm(]VIf )X a— Tm(MvG) x a. Therefore, we are reduced to comparing the symplectic
structures on a coming from wg/7 and from Mg.

On the one hand, with wq the standard symplectic structure on (Dz,

oo (&) = oo(Eerm) =3 (édzj Adzj) ((0> (é)) -

On the other,
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Wy6 = (éﬁg (m), vy (m)) :dﬁéé ("Mg (m))

M y,m

4.2 Case 2)

Let us relax the assumption that the rank of ¢ is everywhere 3 on M. On MVG x B(0,7/2)
let us define a relation ~ as follows: (7;,z1)~ (72, 22) if and only if either

(mi,z1) = (M2, z2), or else z; = (m/2) e, j=1,2, and m; = $D(Hlﬁ92)(m.), where

e (02—01) 0
D(0,,0,) :—( 0 S0t |

Let MG = M? x B(0,7/2)/ ~ denote the corresponding identification space. If the rank
of ¢ along M is constant and equal to three, as in Proposition 4.3, then T acts trivially on

MVG : hence there is a homeomorphism MY = MVG x 82

Theorem 4.2 Suppose that 0 & ®(M), and that ® is transverse to C(O). Then:

1. M¢ is homeomorphic to MG,
2. For every g we have an isomorphism

9 (115) = 12 (30) & 19 (317).

Proof of Theorem 4.2 Let us consider the R-linear isomorphism

0 z
B:z€C—B,:=1| _ 0 €acCag. (101)
Z

Lemma 4.4 For any z € C, we have

sin(|z
cos(lz]) ¢ |i|| D z
o= = c08(|2[) 2 + Bain(jz) 1
sin(jz) _
D 2 o)

The previous expression is well-defined only for z # 0, but sin(w)/w extends to an even
analytic function F(w?) on C; therefore sin(|z|) z/|z| = F(|z|*) z extends to a real-analytic
function of z. We shall regard ¢ as a real-analytic function C — G.
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Proof of Lemma 4.4 The statement follows from a computation based on the identities

B%k _ (7])/( |Z|2k I, = (l ‘Z‘)Zk 12’ B§k+1 _ (7])1{ |Z‘2k Bz _ (l |Z‘)2k BZ.

Let D, be the diagonal matrix with diagonal entries (v; v,). Then by Lemma 4.4 we
have

e D, e B
Z

v cos(|z|)2 + v, sin(|z|)2 1 (vy — vy) cos(|z]) sin(|z|) ¥ (102)

<

|2

The function 4, : M| g — R, being G-invariant, descends to a smooth function on Mg, that
will be denoted by the same symbol.

1 (v — v2) cos(|z]) sin(z]) v cos(|z])* + v sin(|z])

Corollary 4.6 Let 6Tv1L : Mg — 1R be the moment map for the Hamiltonian action of Tvli
on the symplectic orbifold (]\_4(69, W6 ). Let us identify T‘}L with S' by the isomorphism K, in
o

(32). Then for every m € ]\71‘(,; and z € C we have

Dy (e (M) = 1 (v = v3) Ay(m) sin(|2])’.

Let us set v/ := (va vy ), MG := ® (R, -v'). Hence,

=G =1

M, =0 (Ry-v)=pMZ).
Furthermore,

— — 0 1
G G
MG =¢,(M), M, = ¢,,(Mv), y = < 0) = e (103)
Proposition 4.4 The map
F:(m,z) € MY x B(0, 1/2)— 0 () € Mo,

satisfies the following properties:

1. F is surjective;
2. F restricts to a diffeomorphism ]Vlf x B(0,7/2) — Mg \ MvG;

3. F induces a homeomorphism between MS 2 M5,
Proof of Proposition 4.4 Let us prove that F is surjective. First note that M? =

F(M{ x {0}) and that My = F(M, x {r/2}) by (103). Pick m € Mg \ (M. UM,).
Then there exists g € G such thatm € @, (Mf), and we need to show that ¢ may be chosen
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of the form €%, for some z € B(0,7/2). We know that g is neither diagonal nor antidi-

agonal. Furthermore, since M? is T-invariant, we are free to replace g by any element in
g T. In particular, we may assume g € SU(2) and then, muliplying by a suitable diagonal
matrix in SU(2), that it has the form

B < cos(x) — sin(x) e‘“f')
~ \sin(x) ¢! cos(x) '

Perhaps multiplying by —I,, we may further assume that cos(x) > 0, and since g is not
diagonal we may assume x € (—n/2,0) U (0,7/2). If x € (0,7/2), set z=1xe"'"; we
conclude from Lemma 4.4 that g = €5 If x € (—n/2,0), replace it by ¥ = —x € (0, 7/2)
to reach the same conclusion.

Let us prove that F is injective on Mf x B(0,7/2). Suppose (7}, zj) € MVG x B(0,7/2)
and F(my,z1) = F(m,,z;). We may assume that |z > 0 for j = 1,2. We have, by defi-
nition of F,

(/)5321 (n_11) = ¢eBz2 (mZ) = m= ¢g*322 P (ml)
Since v # vy, this forces

B, -B

BB = e Ba b T,

Computing the (1, 2) entry of the latter product by Lemma 4.4, we obtain

. Z . Z
1| cos(|za]) sm(\m)ﬁ— sin(|za]) cos(fz ) é =0

Given that |z;| € (0,7/2), this implies z; = z,; it also follows therefore that 7, = i,.
Let us prove that F is an orbifold embedding on MVG x B(0,7/2). We can lift (the
restriction of) F to a map
F:(m,z) € MS x B(0,1/2)—¢,s.(m) € MG\ MS.

Let S' act on MY x B(0,7/2) by the product of the action of T, 25" on MY and the
trivial action on B(0,7/2). If p is as in Definition 4.1, it follows from Lemma 4.3 that F is
S'-equivariant, and F is the map induced by F on the quotient spaces. To prove the claim, it
thus suffices to show that F is a (local) diffeomorphism. We know that F is a local
diffeorphism along MY x {0}. If m € MY and v € T,,MS, then for any z € B(0,7/2) we
have

d(m.z)F<(Uv 0)) = dm(be”f (D)’ (104)

which is tangent to ¢,s. (MC) at ¢,s. (m). On the other hand, for 5 ~0 € C we have

eBers — oB: pBs — pB: pBs—3(BBsl+Rs(0)
Hence
1
4 F((0.0)) = s ((Bcs)M(m) -3 [Bz,Ba]Mw)). (105)

Since [B., Bs) is diagonal and 7,,MC is T-invariant, [B;, Bs],;(m) € T,,MS. On the other
hand, (B;),,(m) # 0 for § # 0, and is normal to MS. Hence it follows (104) and (105) that
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dimo)F : Timy (ME x B(0,7/2)) = T,,M§ x C — T4n Mg

is an isomorphism of real vector spaces.

Finally, let us show that the topology of Mg is indeed the quotient topology of F.
Clearly F is continuous, hence F~!(U) is open for every U C A_lg. Suppose by contra-
diction that F~!(U) is open for some U C Mg which is not open. Let m € U be such that
there exists a sequence 77; € Mg,j =1,2,..., such that m; — m and m; € U for every j.
The subset R := {m}; U {m} Cﬂg is compact, and since F is proper so is F~'(R).
Consider (7, z;) € M® x B(0,7/2) such that F(7;, z;) = 7; for every j. Perhaps passing to
a subsequence, we may assume 7i; — 71 € MS and z; — z € B(0,7/2), and therefore by
continuity and uniqueness of the limit F(7,z) = m € U. Hence (77,z) € F~'(U), and since
the latter is open by assumption we need to have (77;,z;) € F~'(U) for all j > 0. But then
m; = F(7;,z;) € U, a contradiction.

These considerations may be repeated inverting the roles of v and v'. Thus, we can replace
F in the statement of Proposition 4.4 by a similarly defined map

F': (7,n) € My, x B0, w/2) s (7) € M,
and prove an analogue of Proposition 4.4. In particular, we obtain two diffeomorphisms
W) B*(0,7/2)-5MG \ (M) U )L x B (0,7/2),
where B*(0,7/2) := B(0,7/2) \ {0}.

Lemma 4.5 Suppose (my,z1) € M‘,G x B*(0,n/2), (mp,z) € Mg x B*(0,7/2), and
F(my,z1) = F'(ma,z2). Then |z1] + |z2] = 7/2.

Proof of Lemma 4.5 Let m := F(my,z;). Then m, m;, m, are all in the same G-orbit.
Therefore, A, (7111) = A,(m) = A, (7). By (102) and Corollary 4.6 and their analogues with
v and V' interchanged, we have

Dy () =1 (v —3) A(m) sin(|z1])® = ¢ (v} = v3) A(m) cos(|z])*.
Since |z1], |z2| € (0,7/2), this forces |z1] + |z2| = 7/2.
Let us set
U= F(Mf x B(0,3 n/s)), U =F (W x B(0,3 n/S)). (106)

Then U, U’ C Mg are open and diffeomorphic to MVG x B(0,3 7/8) by Proposition 4.4 and
its analogue for F’. Furthermore, by Lemma 4.5,
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v ::Fl<{(m’z) €M7 < BO7/2) <[22 g n}> (107)

:F({(m,z) € M0 x B0,7/2) : 1| < % n}) cu.

Hence {U, U’} is an open cover of M$. By (106) and (107) we have

— 1 3
UﬂU’:F(foA(an,gn)), (108)
where for a<b<0 we set A(0,a,b) = {z€ C : a<|z]<b}. Also, F induces a diffeo-

morphism MVG x A(0,7/8, 37/8) and U N U'. Therefore, in view of (108) and the Kiin-
neth formula, the Mayer-Vietoris sequence for the open cover {U, U’} of Mg has the form

L HY (Mg) — H(M) @ H (M) (109)
— HI(M)) & H'' (M) — HO (M) — -

which splits in short exact sequences

0— HI! (Mf) — I (Mg) — HI! (MG) — 0.

v
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