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Abstract
Suppose given a Hamiltonian and holomorphic action of G ¼ Uð2Þ on a compact Kähler

manifold M, with nowhere vanishing moment map. Given an integral coadjoint orbit O for

G, under transversality assumptions we shall consider two naturally associated ‘conic’

reductions. One, which will be denoted M
G
O, is taken with respect to the action of G and the

cone over O; another, which will be denoted M
T
m , is taken with respect to the action of the

standard maximal torus T 6 G and the ray Rþ ım along which the cone over O intersects

the positive Weyl chamber. These two reductions share a common ‘divisor’, which may

be viewed heuristically as bridging between their structures. This point of view motivates

studying the (rather different) ways in which the two reductions relate to the the latter

divisor. In this paper we provide some indications in this direction. Furthermore, we give

explicit transversality criteria for a large class of such actions in the projective setting, as

well as a description of corresponding reductions as weighted projective varieties,

depending on combinatorial data associated to the action and the orbit.
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1 Introduction

It is a classical fact in algebraic geometry that the quotient M== ~G of a complex projective

manifold M by the action of a connected and reductive group ~G may be taken within the

setting of Geometric Invariant Theory, by considering the subset Mss � M of so-called

semistable points for the action, and declaring two orbits in Mss to be equivalent if their

closures intersect (on the subet of stable points, two orbits are equivalent if and only if they
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coincide). This construction depends on the choice of a linearization of the action, that is,

the lifting to an ample line bundle A on M. It is also well-known that there is symplectic

counter-part to this construction, which rests on the notion of Hamiltonian action and

Marsden-Weinstein reduction. Namely, assuming that ~G is the complexification of a

compact and connected Lie group G that acts preserving a Hermitian metric on A, we can

define a moment map for the action of G. One can then characterize semistable points for ~G

as those points in M with the property that the closure of the ~G-orbit intersects U�1ð0Þ, and

there is a natural identification of U�1ð0Þ=G with M== ~G. The Marsden-Weinstein reduction,

or symplectic quotient, comes equipped with both a quotient symplectic structure and a

curvature form associated to the principal G-bundle U�1ð0Þ ! U�1ð0Þ=G (assuming that G

acts freely on U�1ð0Þ). For instance, if G ¼ S1 we obtain a 2-form on the quotient which in

many interesting cases is also symplectic; if this is the case, since the latter curvature form is

involved in the celebrated Duistermaat-Heckman formula, it seems suggestive to call the

resulting symplectic manifold the Duistermaat-Heckman reduction of M. Obviously with no

pretense of completeness, for a detailed discussion of the above we refer to [3, 5, 9, 13, 14].

In several circumstances, however, it happens that U�1ð0Þ ¼ ;, and the previous

approach may not be applied without altering the Hamiltonian structure of the action, i.e.,

the linearization. An alternative approach to obtaining geometrically interesting quotients

consists in replacing, on the symplectic side, the usual Marsden-Weinstein reduction with

reduction respect to different coisotropic loci in the coalgebra g_ of K [6]. A natural choice

in this setting is the cone over a coadjoint orbit O � g_; we shall call the corresponding

quotients conic reductions (one should restrict to so-called integral orbits and impose

suitable transversality assumptions to obtain tractable quotients).

For instance, in the special case where G is a compact torus a coadjoint orbit is a point

in g_ and the corresponding cone is the ray through that point. Then the corresponding

quotient may interpreted as a Marsden-Weinstein reduction with respect to a certain

subtorus of G, and a natural issue is then to describe how these quotients depend on the

choice of ray.

The main aim of this paper is to provide a body of examples for this conic construction,

and elucidate the geometry of the corresponding quotients, in the special cases where G is

either U(2) or its maximal torus. To give a more precise account, some terminology is in

order.

Let M be a d-dimensional compact and connected Kähler manifold, with complex

structure J, and Kähler form x. By way of example, M might be complex projective space

Pd , and x the Fubini-Study form.

Let us assume, in addition, that G ¼ Uð2Þ and / : G�M ! M is a holomorphic and

Hamiltonian action, with moment map U : M ! g_, where g ¼ uð2Þ is the Lie algebra of

G (we refer to [8] for generalities on Hamiltonian actions and moment maps). For example,

M might be PW , where W is a complex unitary representation space for G, with the

naturally associated G-action. We shall equivariantly identify g ffi g_ by the inner product

hb1; b2i :¼ trace
�
b1 b

t

2

�
; hence one can equivalently view U as being a g-valued equiv-

ariant map.

An important and ubiquitous geometric construction associated to Hamiltonian actions

is the symplectic reduction with respect to an invariant submanifold R � g_, assuming that

U is transverse to R; the geometry of the action may lead to different choices of R ([5, 6]).
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Here we shall assume that 0 62 UðMÞ. In this situation, a natural choice for R, suggested

by geometric quantization, is the cone CðOÞ ¼ RþO � g_ over an integral coadjoint orbit

O [6].

Example 1.1 To fix ideas on a specific case, consider the Hamiltonian G-space PðWL;KÞ
associated to a unitary representation

WL;K :¼a
r

a¼1
det�la � Symka C2

� �
; ð1Þ

where L ¼ ðlaÞ 2 Zr, K ¼ ðkaÞ 2 Nr . Then 0 62 UðMÞ if and only if either ka þ 2 la [ 0

for all a ¼ 1; . . .; r, or ka þ 2 la\0 for all a ¼ 1; . . .; r (see Proposition 2.5).

More explicitly (to be precise, with an extra genericity assumption on WL;K - see

Definition 2.2) the image of U is the convex hull of the subsets ı Lka þ ı la I2 � g, where Lka
is the set of positive semidefinite Hermitian matrices of trace ka, for a ¼ 1; . . .; r (see (23)

and Proposition 2.3). Furthermore, if m ¼ m1 m2ð Þ 2 R2 and Dm is the diagonal matrix

with entries m1; m2, then ıDm belongs to the image of U if and only if m belongs to the

convex hull of the all the vectors ka þ la lað Þ and la ka þ lað Þ, for a ¼ 1; . . .; r
(Corollaries 2.8 and 2.9). In addition, if m1 6¼ m2 then U is transverse to the cone over the

orbit Om of ıDm if and only if m does not belong to the one of rays sprayed by the vectors

ka � jþ la jþ lað Þ, for a ¼ 1; . . .; r and j ¼ 0; . . .; ka (Theorem 2.5).

Assume that 0 62 UðMÞ, that O is an integral orbit, and that U is transverse to CðOÞ; then

the (coisotropic, real) hypersurface MG
O :¼ U�1

�
CðOÞ

�
� M is compact and connected

(Theorem 1.2 of [4]). Let 	 be the equivalence relation given by the null foliation. The

symplectic reduction of M with respect to CðOÞ is M
G
O :¼ MG

O=	 , together with its nat-

urally induced reduced orbifold symplectic structure x
M

G

O

. We shall refer to ðMG
O; xM

G

O

Þ as

the conic reduction of M with respect to G and O.

There are other reductions associated to the integral orbit O built into this picture. Let

T 6 G be the maximal torus of diagonal unitary matrices, and w : T �M ! M the

restricted action. Then w is also Hamiltonian; let W : M ! t ffi t_ be its moment map. We

shall identify t with ıR2.

Assume that 0 62 WðMÞ (this is in principle a stronger hypothesis than 0 62 UðMÞ), and

that W is transverse to a ray Rþ � ı m, where m ¼ m1 m2ð Þ 2 Z2 n f0g. Let us set

m? :¼ �m2 m1ð Þ 2 Z2. Let T1
m?

6 T be the subgroup generated by ı m?. If non-empty,

MT
m :¼ W�1ðRþ � ı mÞ is then a connected compact hypersurface in M, whose null foliation

	 0 is given by the orbits of T1
m?

.

The quotient M
T
m ¼ MT

m =	 0 is then also an orbifold, with a reduced Kähler structure

ðMT
m ; J0;X0Þ, which can be viewed as the symplectic quotient (symplectic reduction at 0)

for the Hamiltonian action of T1
m?

on M. We shall refer to ðMT
m ; J0;X0Þ as the conic

reduction of M with respect to T and m.

The two hypersurfaces MG
O and MT

m meet tangentially along the smooth connected locus

MG
m :¼ U�1ðRþ � ı mÞ (Theorem 1.2 of [4] - in loc. cit. M was assumed to be projective, but

Theorem 1.2 holds true in the Kähler setting). Furthermore, the null foliations of MG
O and

MT
m are tangent to MG

m since the latter is T-invariant, and they actually coincide along it.
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Therefore, the quotient M
G
m :¼ MG

m =	 is an orbifold. M
G
m has an intrinsic symplectic

structure x
M

G

m

, and in fact
�
M

G
m ;xM

G

m

�
can be interpreted as a symplectic quotient of a

symplectic cross section for the G-action, in the sense of [7]. Furthermore,
�
M

G
m ;xM

G

m

�

embeds symplectically in both ðMT
m ;X0Þ and ðMG

O; xM
G

O

Þ. Hence, M
G
m can be viewed as

bridging between M
G
O and M

T
m . This heuristic point of view motivates investigating M

G
O and

M
T
m in relation to M

G
m .

Regarding M
G
O, we shall prove that in a large class of cases the symplectic orbifold

ðMG
O; xM

G

O

Þ factors as the product of ðMG
m ;xM

G

m

Þ and P1, endowed with a suitable rescaling

of the Fubini-Study form (Theorem 4.1). In the more general situation, M
G
O is still, in some

sense, topologically close to being a product (Theorem 4.2).

Regarding M
T
m , we shall see that M

G
m embeds in it as the zero locus of a transverse

section of an orbifold line bundle L; this section is naturally associated to the moment map

(Theorem 3.1). The curvature of L is the form X00 introduced in [3] to study the variation of

the cohomology class of a symplectic reduction, namely, the curvature to the orbifold S1-

bundle MT
m ! M

T
m (striclty speaking, X00 is not uniquely defined as a form, but in our

context there will be a natural choice). If X00 is symplectic and there exists an orbifold

complex structure on M
T
m compatible with X00, we shall call the triple

�
M

T
m ; J

0
0;X

0
0

�
the m-th

DH-conic reduction of M.

We shall see that this is the case for the spaces PðWL;KÞ in Example 1.1. More pre-

cisely, we shall classify the corresponding DH-reductions and explicitly describe them as

Kähler weighted projective varieties parametrized by certain combinatoric data depending

on m; L; K. In these cases L is an ample orbifold line bundle on M (Theorem 3.2). Fur-

thermore, for a class of representations that we call uniform (Definition 2.3) the complex

orbifold
�
M

T
m ; J

0
0

�
remains constant as m ranges within one of the fundamental wedges cut

out by the ‘critical rays’ (see Example 1.1).

Finally, we shall focus on the specific case of the irreducible representations SymkðC2Þ.
We shall see that if m1 [ ðk � 1Þ m2 [ 0 then M

T
m is the weighted projective space

Pð1; 2; . . .; kÞ, and that if m1 
 m2 [ 0 (the bounds might be made effective and depend on

k) then M
G
m is smoothly and symplectically isotopic to Pð2; . . .; kÞ � Pð1; 2; . . .; kÞ

(Theorem 3.3).

In closing, we recall that in the usual Marsden-Weinstein setting the relation between

the symplectic quotients with respect to a connected compact Lie group and to its maximal

torus has been elucidated in a very terse and precise manner by the theory in [12]; in

particular, it is proved that the two quotients are related by ‘a fibration and an inclusion’,

and building on this the connection between their topological properties is investigated.

Here clearly no comparably general and conclusive results are given, not even in the

special case where G ¼ Uð2Þ; nonetheless, the present discussion points to a geometric

relation of a rather different nature between the corresponding two quotients in the present

conic setting, and to the bridging role of the symplectic divisor M
G
m . In this perspective, the

emphasis on the m-th DH-conic reduction of M is motivated by the fact that M
G
m is the zero

locus of a C1 section of a complex orbifold line bundle on M
T
m with curvature X00.
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2 Transversality criteria

In this section we shall provide some general transversality criteria involving the moment

map U : M ! g_ and a cone CðOÞ over a coadjoint orbit in the case of Hamiltonian G-

actions associated to unitary G-representations. We shall equivariantly identify g ffi g_ and

t ffi t_.

Let C :¼ ðe1; e2Þ be the standard basis of C2. For any k ¼ 1; 2; . . ., Wk :¼ Symk C2
� �

has

an Hermitian structure naturally induced from the standard one of C2. An orthonormal

basis of Wk may be taken Bk ¼ Ek;j

� �
, where

Ek;j :¼ ck;j e
k�j
1 ej2; ck;j :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk þ 1Þ!

p j! ðk � jÞ!

s

; j ¼ 0; 1; . . .; k: ð2Þ

By means of Bk, we shall unitarily identify Wk ffi Ckþ1, and a point w ¼
Pk

j¼0 zj Ek;j 2 Wk

with Z ¼ ðzjÞkj¼0 2 Ckþ1.

Consider the unitary representation l ¼ l1 of G ¼ Uð2Þ on W1 :¼ C2 given by

B 7!ðBtÞ�1
with respect to C. Then l1 naturally induces for every k a unitary representation

of G on Wk, which we may regard (given Bk) as a a Lie group homomorphism

lk : G! Uðk þ 1Þ, with derivative dlk : g! uðk þ 1Þ. Consequently, we have an

induced holomorphic Hamiltonian action /k of G on Pk ¼ PðWkÞ with respect to 2xFS

(here xFS is the Fubini-Study form); let us compute its moment map Uk : P
k ! g.

Let us set for simplicity Ej ¼ Ek;j. We have for a 2 g

dlkðaÞðEjÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ðk � jþ 1Þ

p
a21 Ej�1

�
�
ðk � jÞ a11 þ j a22

�
Ej

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk � jÞ ðjþ 1Þ

p
a12 Ejþ1:

ð3Þ

Hence the only non-zero entries of dlkðaÞ are

dlkðaÞj�1;j ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ðk � jþ 1Þ

p
a21;

dlkðaÞj;j ¼�
�
ðk � jÞ a11 þ j a22

�
;

dlkðaÞjþ1;j ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk � jÞ ðjþ 1Þ

p
a12

ð4Þ

for j ¼ 0; . . .; k. For Z ¼ ðz0; . . .; zkÞt 2 Ckþ1, let us define the Hermitian matrix

ðZ � ZÞij :¼ zi zj. As is well-known, the moment map for the action of Uðk þ 1Þ on

Pk; 2xFS

� �
, C : Pk ! uðk þ 1Þ, is

Cð½Z�Þ :¼ � ı

kZk2
Z � Z: ð5Þ

Given (4) and (5), one obtains by standard arguments that the entries Uij are given by
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ðUkÞ11ð½Z�Þ ¼
ı

kZk2

Xk

j¼0

ðk � jÞ jzjj2;

ðUkÞ12ð½Z�Þ ¼
ı

kZk2

Xk�1

j¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk � jÞ ðjþ 1Þ

p
zjþ1 zj;

ðUkÞ21ð½Z�Þ ¼
ı

kZk2

Xk

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ðk � jþ 1Þ

p
zj�1 zj;

ðUkÞ22ð½Z�Þ ¼
ı

kZk2

Xk

j¼0

j jzjj2:

ð6Þ

We can reformulate this in a more compact form, as follows. Let us define Fk;a : C
kþ1 !

Ck for a ¼ 1; 2 by setting

Fk;1ðZÞ :¼

ffiffiffi
k
p

z0ffiffiffiffiffiffiffiffiffiffiffi
k � 1
p

z1

..

.

zk�1

0

BBBB@

1

CCCCA
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � jþ 1

p
zj�1

� �k

j¼1
; ð7Þ

Fk;2ðZÞ :¼

z1ffiffiffi
2
p

z2

..

.

ffiffiffi
k
p

zk

0

BBBB@

1

CCCCA
¼

ffiffi
j

p
zj

� �k

j¼1
: ð8Þ

Then

Ukð½Z�Þ ¼
ı

kZk2

kFk;1ðZÞk2 Fk;2ðZÞt Fk;1ðZÞ
Fk;1ðZÞt Fk;2ðZÞ kFk;2ðZÞk2

 !

: ð9Þ

Definition 2.1 Let k 1. We shall denote by L0k the set of all positive semidefinite Her-

mitian matrices of trace k and rank 1; thus L01 is the set of orthogonal projectors onto a 1-

dimensional vector subspace of C2, and L0k ¼ k L01. Similarly, Lk will denote the set of all

2� 2 Hermitian positive semidefinite matrices of trace k.

In particular, Lk is the convex hull of L0k, and Lk ¼ k L1.

Proposition 2.1 U1 P1
� �

¼ ı L01. If k 2, Uk Pk
� �

¼ ıLk.

Proof For k ¼ 1, (9) specializes to

U1ð½Z�Þ ¼
ı

kZk2

jz0j2 z1 z0

z0 z1 jz1j2

 !

; ð10Þ
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which implies the first statement.

Let us then assume k 2. It is evident from (6) and (9) that Uk Pk
� �

� ı Lk. Since

Uk Pk
� �

is G-invariant in view of the G-equivariance of Uk, to prove the reverse inclusion it

suffices to show that for any k 2 ½0; k� we have

ı
k 0

0 k � k

	 

2 Uk Pk

� �
:

To this end, we need only set z0 ¼
ffiffiffiffiffiffiffiffi
k=k

p
, zj ¼ 0 for j ¼ 1; . . .; k � 1, zk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk � kÞ=k

p
.

If m ¼ m1 m2ð Þt2 R2, we shall denote by Dm the diagonal matrix with entries m1; m2 and by

Om � g the orbit of ıDm .

Also, let us set

Jk :¼
m1

m2

	 

: m1; m2 0; m1 þ m2 ¼ k

� �
; Jkþ :¼

m1

m2

	 

2 Jk : m1 m2

� �
:

In other words, Jk is the segment joining the points k 0ð Þt; 0 kð Þt2 R2.

Corollary 2.1 In the situation of Proposition 2.1, U1 P1
� �

¼ O�1
, where �1 ¼ 1 0ð Þ,

while for any k 2

Uk Pk
� �

¼
[

m2Jk
Om ¼

[

m2Jkþ
Om: ð11Þ

In particular, if m 6¼ 0 and m1 m2, then Uk Pk
� �

\ CðOmÞ 6¼ ; if and only if m2 0.

The second equality in (11) follows from the fact that if m ¼ m1 m2ð Þt and m0 ¼ m2 m1ð Þt,
then Om ¼ Om0 .

Let us denote by wk the restricted action of T on Pk, and by Wk : M ! t_ ffi t its

moment map. Then Wk is the composition of Uk with the orthogonal projection p : g! t;

the latter amounts to selecting the diagonal component of a matrix in g.

Corollary 2.2 For any k 1, Wk Pk
� �

¼ ı Jk � ıR2.

Proof of Corollary 2.2 For k ¼ 1, this is immediate from (10). Assume then k 2. Any

matrix in Lk has diagonal part in Jk, hence Wk Pk
� �

� ı Jk � ıR2 by Proposition 2.1.

Conversely, for any k :¼ k k � kð Þt2 Jk in the proof of Proposition 2.1 we have found

½Z� 2 Pk such that Uð½Z�Þ ¼ ıDk. Hence Wkð½Z�Þ ¼ ı k.

Let us notice the following consequence of Proposition 2.1, due to the fact the diagonal

part of a matrix in Lk is in Lk:

Corollary 2.3 For any k 2, Wk Pk
� �

¼ Uk Pk
� �

\ t.

Proof of Corollary 2.3 Obviously Wk Pk
� �

� Uk Pk
� �

\ t. Conversely, suppose

a 2 Wk Pk
� �

. Viewing a as the diagonal component of a matrix a0 2 Uk Pk
� �

, we conclude

that �ı a has non-negative (diagonal) entries and trace k. Hence a 2 ı Lk ¼ Uk Pk
� �

.
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Having characterized the images of Uk and Wk, let us determine the orbital cones to which

they are transverse. By Corollary 2.1 we may assume k 2.

Theorem 2.1 Assume that k 2, m1; m2 0 and m1 6¼ m2. Then the following conditions are
equivalent:

1. Uk is transverse to CðOmÞ;
2. j m1 6¼ ðk � jÞ m2 for all j 2 f0; 1; . . .; kg.

Remark 2.1 Since UkðPkÞ ¼ ı Lk, if m ¼ � 1 �1ð Þ then UkðPkÞ \ ıRþ � m ¼ ;, hence we

may assume m1 þ m2 6¼ 0. Furthermore, UkðPkÞ is G-invariant and if m0 :¼ m2 m1ð Þ then

the matrices the diagonal matrices ıDm and ıDm0 belong to the same orbit. We may assume

therefore m1 m2, hence - under the hypothesis of Theorem 2.1 - that m1 [ m2.

Proof of Theorem 2.1 Let Xk ¼ S2kþ1 be viewed as the unit circle bundle of the tauto-

logical line bundle on Pk ¼ PðWkÞ, with projection pk : Xk ! Pk (the Hopf map), and let

us set

ðXkÞGm :¼ p�1
k PðWkÞGm
� �

; ðXkÞGO :¼ p�1
k PðWkÞGO
� �

:

Since /k is induced by the unitary representation lk on Wk, there is by restriction of lk a

natural lift of /k to an action on Xk, which we shall denote ~/k. We shall also set
~Uk :¼ Uk � pk : Xk ! g, Z 7!Ukð½Z�Þ.

By the discussions in §2.2 of [15] and §4.1.1 of [4], Uk is transverse to CðOmÞ if and only if
~/k is locally free on ðXkÞGO; furthermore, since ðXkÞGO is the G-saturation of ðXkÞGm , the latter

condition is in turn equivalent to ~/k being locally free along ðXkÞGm .

For any b 2 g, let bXk
2 XðXkÞ denote the associated vector field on Xk. For any Z 2 Xk,

let gXk
ðZÞ � TZXk denote the vector subspace given by the evaluations of all the bXk

’s at Z,

and similarly for t. Then ~/ is locally free at Z if and only if the evaluation map

valZ : g! TZXk, b7!bXk
ðZÞ, has maximal rank, that is, g ffi gXk

ðZÞ.
Let us prove that 2.) implies 1.). Let us remark that 2.) can be equivalently reformulated

as follows:

m1 � m2 6¼ 0 and m1 6¼
k � j

j
m2; for all j ¼ 1; . . .; k � 1: ð12Þ

Let us consider Z ¼ ðz0; . . .; zkÞt 2 ðXkÞGm , so that

~UkðZÞ ¼ ı
kFk;1ðZÞk2 Fk;2ðZÞt Fk;1ðZÞ

Fk;1ðZÞt Fk;2ðZÞ kFk;2ðZÞk2

 !

¼ ı
k

m1 þ m2

m1 0

0 m2

	 

:

In particular,

m2 kFk;1ðZÞk2 ¼ m1 kFk;2ðZÞk2: ð13Þ

Lemma 2.1 Given (12), for any Z 2 ðXkÞGm there exist j; l 2 f0; 1; . . .; kg with j 6¼ l and

zj � zl 6¼ 0.
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Proof of Lemma 2.1 If not, Z has only one non-zero component, say zj 2 S1. Since by (12)

and (13) F1ðZÞ; F2ðZÞ 6¼ 0, we need to have 0\j\k in view of the definition of Fj. We

conclude again by (13) that m2 ðk � jÞ ¼ m1 j for some j ¼ 1; . . .; k � 1, against the

assumption.

Let D 2 T 6 G be a diagonal matrix with entries eı#1 ; eı#2 2 S1. By definition of / and of

the Ea’s in (2), we have with Z ¼ ðzaÞka¼0

~/DðZÞ ¼ e�ı ½ðk�aÞ#1þa#2� za

� �
:

Now suppose that D is close to I2, so that we may assume #1; #2	 0, and that D fixes Z.

Then eı ½ðk�aÞ#1þa#2� za ¼ za for every a ¼ 0; . . .; k implies in particular

ðk � jÞ#1 þ j#2 ¼ ðk � lÞ#1 þ l#2 ¼ 0, and so #1 ¼ #2 ¼ 0. Hence, there is a neigh-

borhood T 0 � T of I2 such that the only D 2 T 0 that fixes Z is I2. In other words, T acts

locally freely on ðXkÞGm at Z. In particular, valZ : t! TZXk is injective.

By the equivariance of U, for any W 2 Xk and b 2 g we have

dW ~U
�
bXk
ðWÞ

�
¼ b; ~UðWÞ
� �

: ð14Þ

Hence if b 2 t � g and Z 2 ðXkÞGm then dZ ~U
�
bXk
ðZÞ
�
¼ 0; that is,

tXk
ðZÞ � ker

�
dZ

~U
�

ðZ 2 ðXkÞGm Þ: ð15Þ

Now let us define

g :¼
0 1

�1 0

	 

; n :¼

0 ı

ı 0

	 

; a :¼ spanðg; nÞ � g; ð16Þ

so that g ¼ a� t. By (14) we have at Z 2 ðXkÞGm :

dZ ~U
�
nXk
ðZÞ
�
¼ k ðm1 � m2Þ

m1 þ m2

g; dZ
~U
�
gXk
ðZÞ
�
¼ � k ðm1 � m2Þ

m1 þ m2

n: ð17Þ

Let us set

q :¼
ı 0

0 0

	 

; c :¼

0 0

0 ı

	 

:

Then ðq; cÞ is a basis for t, and ðg; n; q; cÞ is a basis for g.

Suppose that for some x; y; z; t 2 R we have x gþ y nþ z qþ t c 2 kerðvalZÞ:

x gXk
ðZÞ þ y nXk

ðZÞ þ z qXk
ðZÞ þ t cXk

ðZÞ ¼ 0: ð18Þ

Applying dZU, we get by (15) and (17):

0 ¼ x dZ ~U
�
gXk
ðZÞ
�
þ y dZ

~U
�
nXk
ðZÞ
�

¼ k ðm1 � m2Þ
m1 þ m2

ð�x nþ y gÞ:
ð19Þ

Hence x ¼ y ¼ 0, so that z qXk
ðZÞ þ t cXk

ðZÞ ¼ 0. But this means that

z qþ t c 2 ker valZ jt
� �

=(0); thus we also have z ¼ t ¼ 0. We conclude that kerðvalZÞ ¼ ð0Þ
for any Z 2 ðXkÞGm , as claimed.
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Now let us suppose instead that (12) does not hold. We aim to show that then ~/ is not

everywhere locally free along ðXkÞGm . If m2 ¼ 0, let Z :¼ 1 0 � � � 0ð Þt. Then ~U ¼ ıD,

where D is the diagonal matrix with diagonal entries k 0ð Þ; hence Z 2 ðXkÞGm . On the

other hand, Z is fixed by the 1-dimensional subgroup of G of diagonal matries with

diagonal entries 1 eı#
� �

, hence ~/ is not free at Z. One argues similarly when m1 ¼ 0, by

choosing instead Z :¼ 0 � � � 0 1ð Þt. If instead m1 � m2 6¼ 0, then m1 ¼ ½ðk � jÞ=j� m2 for

some j ¼ 1; . . .; k � 1. Let us consider Z ¼ ðzlÞ with zl ¼ dlj, l ¼ 0; . . .; k. Then by (9)

Z 2 ðXkÞGm . On the other hand now Z is fixed by the 1-dimensional subgroup of diagonal

matrices with diagonal entries e�ı j# eıðk�jÞ#
� �

, hence again ~/ is not free at Z.

Let us note in passing that the argument in the proof of Theorem 2.1 can be phrased in

slightly more general terms and actally establishes the following criterion.

Lemma 2.2 Suppose that (M, J) is a complex projective manifold, with x a Hodge form on
it, associated to a positive line bundle (A, h). Let / : G�M ! M be a holomorphic

Hamiltonian action on ðM; 2xÞ, with moment map U : M ! g. Let X � A_ be the unit

circle bundle, with projection p : X ! M, and assume that there is a contact lift ~/ :
G� X ! X of the Hamiltonian action ð/;UÞ. Suppose m1 6¼ m2, x 2 X,

U � pðxÞ 2 Rþ � ıDm, and that T acts locally freely at x. Then G acts locally freely at x.

Corollary 2.4 In the situation of Lemma 2.2, assume in addition that T acts locally freely

along the inverse image XG
m of MG

m in X. Then U is transverse to CðOmÞ.

Next we shall consider the transversality issue for Wk.

Theorem 2.2 For any k 1, Wk is not transverse to a ray Rþ m � ı t ffi R2 if and only if m

is a positive multiple of k � j jð Þt for some j ¼ 0; 1; . . .; k.

In other words, the critical rays are those through the points in the intersection J \ Z2, up to

the factor ı.

Proof of Theorem 2.2 Let ~wk denote the action of T on Xk. As argued in the proof of

Theorem 2.1, ~wk is not locally free at Z ¼ ðzlÞ 2 X if and only if jzlj ¼ dlj for some

j ¼ 0; . . .; k. Hence the rays in t to which W is not transverse are those through the images

under W if the vectors of the standard basis of Ckþ1. As we have remarked, their images

under ~Uk form the set

ı
k � j 0

0 j

	 

: j ¼ 0; . . .; k

� �
;

and we need only take the diagonal part to reach the claimed conclusion. h

Let us now extend the previous considerations to a general irreducible representation of G
(see e.g. §2.3 [18], or §II.5 of [2]). More precisely, we shall denote by lk;l the composition

of the representation det�l�Symk C2
� �

with the Lie group automorphism B 7!ðBtÞ�1
:

ðlk;lÞBðvÞ :¼ detðBÞ�l lkðBtÞ�1ðvÞ ðB 2 G; v 2 Wk ffi Ckþ1Þ: ð20Þ
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The induced action /k;l on Pk equals /k; however, the change in linearization implies a

change in the moment map. For any l 2 Z, l0;l is the representation on C given by the

character det�l. In this case, P0 ¼ f½1�g is just a point, and we shall take as definition of

moment map the function U0;l : ½1�7!ı l I2. For k 1, let us view lk;l as a Lie group

morphism G! Uðk þ 1Þ. Then, in place of (3), we have for a 2 g

dlk;lðaÞðEjÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ðk � jþ 1Þ

p
a21 Ej�1

�
�
l traceðaÞ þ ðk � jÞ a11 þ j a22

�
Ej

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk � jÞ ðjþ 1Þ

p
a12 Ejþ1:

ð21Þ

It follows that the new moment map, Uk;l : P
k ! g, is given by

Uk;lð½Z�Þ :¼ Ukð½Z�Þ þ ı l I2; ð22Þ

where Uk is as in (9). Therefore, with the notation of Proposition 2.1,

U1;l P
1

� �
¼ ı L01 þ ı l I2; Uk;l P

k
� �

¼ ı Lk þ ı l I2 8 k 2: ð23Þ

Let us set

f :¼ 1 1ð Þt; Jk;l :¼ Jk þ l f � R2:

Thus Jk;l is the segment joining k þ l lð Þ and l k þ lð Þ. Also, let Ck;l � R2 n f0g be the

closed cone through Jk;l.

Then in place of Corollaries 2.1 and 2.2 we have:

Corollary 2.5 Under the previous assumptions,

U1;l P
1

� �
¼ O�1þl f ¼ O�1

þ l I2;

and for k 2

Uk;l P
k

� �
¼
[

m2Jk
Omþl f ¼

[

m2Jkþ
Omþl f ¼

[

m2Jk;l
Om: ð24Þ

In particular, if m 6¼ 0 then Uk;l P
k

� �
\ CðOmÞ 6¼ ; if and only if m 2 Ck;l.

Corollary 2.6 If Wk;l : P
k ! t ffi ıR2 is the moment map for w with respect to lk;l, then

Wk;l P
k

� �
¼ ı Jk;l: ð25Þ

Hence Wk;l P
k

� �
\ Rþ � m 6¼ ; if and only if m 2 Ck;l.

The latter Corollary can of course be derived also by the Convexity Theorem in [1] and [7].

Let us also remark the following analogue of Corollary 2.3:

Corollary 2.7 For any k 2 and l 2 Z, Wk;l P
k

� �
¼ Uk;l P

k
� �

\ t.

Let us now consider the issue of transversality in this case. By Corollary 2.5, we may

assume k 1. Furthermore, by Proposition 2.1 and (23), Uk;l P
k

� �
� Vkþ2l, where Vr � g is

the affine subspace of skew-Hermitian matrices of trace ı r. If, in particular, k þ 2l ¼ 0
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then Uk;l P
k

� �
lies in a proper invariant vector subspace (the kernel of the trace), and is

therefore not transverse to any cone CðOÞ in g intersecting its image. In fact, if CðOÞ \ V0 6
¼ ; then by invariance CðOÞ � V0. Thus we assume k þ 2l 6¼ 0.

Let us denote by ~/k;l and ~wk;l, respectively, the actions of G and T on Xk given by the

restrictions of the unitary representation lk;l. Let ðX0kÞ
G
O, ðX0kÞ

G
m and ðX0kÞ

T
m be defined as

ðXkÞGO, ðXkÞGm and ðXkÞTm , but in terms of the new moment maps Uk;l and Wk;l. Then, just as

before, Uk;l is transverse to CðOmÞ if and only if ~/k;l is locally free at every Z 2 ðX0kÞ
G
m , and

Wk;l is transverse to Rþ � ı m if and only if ~wk;l is locally free on ðX0kÞ
T
m .

Suppose that Z 2 Xk. If for some j ¼ 0; . . .; k we have zi ¼ 0 for all i 6¼ j, then arguing

as in the proof of Theorem 2.1 one sees that ~wk;l is not locally free at Z, and therefore

neither is ~/k;l. In this case we have, with ~Uk;l :¼ Uk;l � p:

~Uk;lðZÞ :¼ ı
k � jþ l 0

0 jþ l

	 

: ð26Þ

If, conversely, Z 2 Xk and zl � zj 6¼ 0 for distinct j; l 2 f0; . . .; kg, then a slight adaptation

of the previous arguments shows that ~wk;l is locally free at Z. Hence we conclude the

following variant of Theorem 2.2:

Theorem 2.3 Suppose that k 2 and k þ 2 l 6¼ 0. Let us define

mk;j;l :¼ k � jþ l jþ lð Þt; j ¼ 0; . . .; k:

Then Wk;l is not transverse to Rþ ı m if and only if m 2 Rþ � mk;j;l for some j ¼ 0; . . .; k.

The previous argument clearly also shows that Uk;l is not transverse to CðOmk;j;lÞ � g. In

fact, on the one hand if Z is the j-th basis vectors, then ~wk;l is not locally free at Z, and

therefore a fortiori neither is ~/k;l. On the other hand, by (26) we also have Z 2 ðX0kÞ
G
m .

Let us assume on the other hand that m 62 Rþmj;l for every j and that m1 6¼ m2. If

Z 2 ðX0kÞ
G
m , then there exist l; j 2 f0; . . .; kg such that zl � zj 6¼ 0. If D 2 T is a diagonal

matrix with diagonal entries eı#1 eı#2

� �
that fixes Z, then we need to have

eı ½lð#1þ#2Þþðk�aÞ#1þa#2� ¼ 1 for a ¼ j; l. If D is close to I2, and we assume that #j	 0, we

deduce as in the proof of Theorem 2.1 that #1 ¼ #2 ¼ 0. Hence ~wk;l is locally free on

ðX0kÞ
G
m . To conclude that ~/k;l is also locally free along ðX0kÞ

G
m , we may now argue using (14)

as in the proof of Theorem 2.1 (the second summand in (22) does not alter commutators).

Hence we have the following variant of Theorem 2.1:

Theorem 2.4 Suppose k 2, k þ 2l 6¼ 0 and m1 6¼ m2. Then Uk;l is transverse to CðOmÞ if
and only if m 62 Rþ � mk;j;l for every j ¼ 0; . . .; k.

Let us now come to a general representation space of the form

WL;K :¼a
r

a¼1
det�la � Symka C2

� �
; ð27Þ

where L ¼ ðlaÞ 2 Zr , K ¼ ðkaÞ 2 Nr , as usual composed with the Lie group automorphism

B 7!ðBtÞ�1
(see (20)). As an abstract vector space,
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WL;K ffia
r

a¼1
Ckaþ1 ffi CjKjþr ) PðWL;KÞ ffi PjKjþr�1;

where jKj ¼
P

a ka. Hence the corresponding morphism of Lie groups lL;K : G!
UðjKj þ rÞ is given by

lL;KðgÞ :¼

ll1;k1
ðgÞ

. .
.

llr ;kr ðgÞ

0

BB@

1

CCA:

Let us denote by /L;K and wL;K, respectively, the induced Hamiltonian actions of G and T

on PðWL;KÞ, and by UL;K : PðWL;KÞ ! g, WL;K : PðWL;KÞ ! t their moment maps. If,

with abuse of notation, we denote the general Z 2 WL;K as Z ¼ ðZaÞ, with

Za ¼ za;0 � � � za;kað Þt2 Ckaþ1, we have

UL;Kð½Z�Þ

¼ ı

kZk2

Xr

a¼1

kFka;1ðZaÞk
2 þ la kZak2 Fka;2ðZaÞ

t Fka;1ðZaÞ
Fka;1ðZaÞ

t Fka;2ðZaÞ kFka;2ðZaÞk
2 þ la kZak2

 !

:
ð28Þ

Let us first consider the case where K ¼ 1 :¼ 1 � � � 1ð Þ, L ¼ l :¼ l � � � lð Þ. Thus

Wl;1 ¼ det�l�W�r1 is isomorphic to ðC2Þr as a complex vector space. Then the moment

map Ul;1 : PððC2ÞrÞ ! g is as follows. Let us write the general element of ðC2Þr as

Z ¼ Z1 � � � Zrð Þ where Zj 2 C2. Then

Ul;1

�
½Z1 : � � � : Zr�

�
¼ ı

Xr

j¼1

kZjk2

kZk2
PZj þ l I2

" #

; ð29Þ

where P0 is the null endomorphism of C2, while for Z 6¼ 0 we let PZ denote the orthogonal

projector of C2 on spanðZÞ.
Let us set m1;j;l :¼ 1� jþ l jþ lð Þ, j ¼ 0; 1.

Proposition 2.2 For any r 2, the following holds:

1. Ul;1

�
PðW�r1 Þ

�
¼ ı L1 þ ı l I2;

2. Wl;1 is transverse to ıRþ � m if and only if m 62 Rþ � m1;j;l for j ¼ 1; 2;

3. Ul;1 is transverse to CðOmÞ if and only if m 62 Rþ � m1;j;l for j ¼ 1; 2.

Proof of Proposition 2.2 Let us assume l ¼ 0; the general case is similar. By (29), the

image of �ıU0;1 consists of all convex linear combinations of r 2 orthogonal projectors,

and is therefore contained in L1. Conversely, any matrix in L1 is a convex linear combi-

nation of two such projectors, and so the reverse implication holds.

To prove the second statement, consider ½Z� ¼ ½Z1 : � � � : Zr�, with kZk ¼ 1, such that

every Zj is a scalar multiple of �1 :¼ 1 0ð Þ. Then U0;1ð½Z�Þ ¼ ıD�1
, and on the other hand

T does not acts locally freely on S4r�1 at Z. Hence W0;1 is not transverse to Rþ ı �1, and U0;1

is not transverse to CðO�1
Þ. The argument for �2 is similar. If on the other hand the Zj’s are

neither all multiples of �1, nor all multiples of �2, then T acts locally freely at Z and arguing
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as in the proof of Theorem 2.1 (or applying Lemma 2.2), one concludes that the same holds

of G. This proves the second and third statement. h

Let us return to (27). For the sake of simplicity, we shall consider a slightly restricted class

of representation.

Definition 2.2 A representation WL;K is generic if it satisfies the following property.

Suppose that for some l 2 Z the pair (l, 1) appears in the sequence ðl1; k1Þ; . . .; ðlr; krÞ.
Then there are 1� a\b� r such that ð1; rÞ ¼ ðla; kaÞ ¼ ðlb; kbÞ.

In other words, if det�l�C2 appears in the isotypical decomposition of WL;K, then it does

so with multiplicity  2. For example, W1 and W�2
1 � ðdet�2�W1Þ �W2 are not generic,

while W�2
1 �W2 is.

If Za ¼ 0 for some a, then the a-th summand in (28) vanishes; therefore, we may restrict

the sum to those a’s for which Za 6¼ 0, and this restricted sum will be indicated by a prime.

Hence

UL;Kð½Z�Þ

¼ ı
X0 r

a¼1

kZak2

kZk2
� 1

kZak2

kFka;1ðZaÞk
2 þ la kZak2 Fka;2ðZaÞ

t Fk;1ðZaÞ
Fka;1ðZaÞ

t Fka;2ðZaÞ kFka;2ðZaÞk
2 þ la kZak2

 !

¼
X0 r

a¼1

kZak2

kZk2
Uka;lað½Za�Þ:

ð30Þ

Proposition 2.3 Assume that WL;K is generic. Then UL;K

�
PðWL;KÞ

�
� g is the convex hull

of the union of the images Uka;la Pka
� �

.

Proof of Proposition 2.3 Let us denote by HL;K � g the convex hull in point. By (28),

UL;K

�
PðWL;KÞ

�
� HL;K. Conversely, suppose a 2 HL;K. Then there exist ka 0,

a ¼ 1; . . .; r, such that
P0

a ka ¼ 1, and for each a with ka [ 0 there exists Va 2 Ckaþ1 of

unit norm, such that

a ¼
X0r

a¼1

kaUka;lað½Va�Þ

Let us set Za :¼
ffiffiffiffiffi
ka
p

Va if ka [ 0, Za ¼ 0 2 Ckaþ1 if ka ¼ 0, and Z :¼ Zað Þ 2 CjKjþr. Then

kZk ¼ 1 and UL;Kð½Z�Þ ¼ a by (30), hence a 2 UL;K

�
PðWL;KÞ

�
.

We can describe WL;K in a similar manner, and deduce the following:

Proposition 2.4 WL;K

�
PðWL;KÞ

�
� t is the convex hull of the union of the images

Wka;la Pka
� �

.

On the other hand, �ıWka;la Pka
� �

is the segment joining ka þ la lað Þt and la ka þ lað Þt
for each a. Therefore we conclude the following (which might be also obtained by the

Convexity Theorem):
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Corollary 2.8 �ıWL;K

�
PðWL;KÞ

�
� R2 is the convex hull of the collection of the points

ka þ la lað Þt and la ka þ lað Þt, a ¼ 1; . . .; r, or equivalently of the segments Jka;la .

We have the following analogue of Corollaries 2.3 and 2.7:

Corollary 2.9 If WL;K is generic, then WL;K

�
PðWL;KÞ

�
¼ UL;K

�
PðWL;KÞ

�
\ t.

Proposition 2.5 Assume that WL;K is generic. Then the following conditions are

equivalent:

1. 0 62 WL;K

�
PðWL;KÞ

�
;

2. 0 62 UL;K

�
PðWL;KÞ

�
;

3. either ka þ 2 la [ 0 for all a ¼ 1; . . .; r, or ka þ 2 la\0 for all a ¼ 1; . . .; r.

Proof By Corollary 2.9, 1) and 2) are equivalent. Suppose that 2) holds. By (23), we have

Uka;la Pka
� �

¼ ı Lka þ ı la I2 for every a; if ka þ 2 la ¼ 0 for some a, then la� 0 and so

ð0Þ ¼ ı
�la 0

0 � la

	 

þ ı la I2 2 Uka;la Pka

� �
:

Hence assuming 2) we need to have ka þ 2 la 6¼ 0 for every a ¼ 1; . . .; r. Suppose that

ka þ 2 la [ 0 and kb þ 2 lb\0 for some a; b ¼ 1; . . .; r. Then

1

2
ðka þ 2 laÞ I2 ¼

ka
2

I2 þ la I2 2 Uka;la Pka
� �

;

and similarly

ı

2
ðkb þ 2 lbÞ I2 ¼ ı

kb
2

I2 þ ı lb I2 2 Ukb;lb Pkb
� �

:

Hence by the previous dicussion the segment joining these two matrices is contained in

UL;K

�
PðWL;KÞ

�
, and it is obvious that it meets the origin, absurd. Hence 2) implies 3).

Suppose that 3) holds, say with [ 0. Then for every a ¼ 1; . . .; r and every a 2
Wla;ka Pka

� �
we have �ı traceðaÞ ¼ ka þ 2 la [ 0. Since the convex linear combination of

matrices with positive trace has positive trace, 1) also holds by Proposition 2.4. h

Corollary 2.10 Assume that WL;K is generic. Then 0 62 UL;K

�
PðWL;KÞ

�
if and only if

UL;K

�
PðWL;KÞ

�
� g is contained in one of the half-spaces defined by the hyperplane

suð2Þ ¼ kerðtraceÞ � g. In particular, if 0 62 UL;K

�
PðWL;KÞ

�
and

UL;K

�
PðWL;KÞ

�
\ Rþ � m 6¼ ;, then m1 þ m2 6¼ 0.

Definition 2.3 The representation WL;K will be called uniform if it is generic and ka þ
2 la ¼ kb þ 2 lb for all a; b ¼ 1; . . .; r.

The proof of the following Lemma is left to the reader.

Lemma 2.3 The following conditions are equivalent:

1. WL;K is uniform;
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2. /L;K (equivalently, wL;K) is trivial on Z(G) (the center of G).

Let us now assume that the equivalent conditions in Proposition 2.5 are satisfied, and

consider transversality. Let us denote by XK � CjKjþr the unit sphere, by pK : XK !
PKþr�1 the Hopf map, and set ~UL;K ¼ UL;K � pK : XK ! g. Also, let ~/L;K and ~wL;K

denote, respectively, the actions of G and T on XK by restriction of ~/L;K. These are liftings

of the actions /L;K and wL;K on PðWL;KÞ
Let us fix Z 2 XK, and denote by OZ � g the orbit through ~UL;KðZÞ. Perhaps after

replacing Z with ð ~/L;KÞgðZÞ for some g 2 G, without changing OZ we may as well assume

that ~UL;KðZÞ 2 t.

Suppose that only one component of Z in non-zero, say zaj for some a 2 f1; . . .; rg and

j 2 f0; . . .; kag. Then, as in the case r ¼ 1, one sees that there is a 1-dimensional torus

fixing Z; therefore, neither is UL;K transverse to C OZ
� �

, nor is WL;K transverse to

RþWL;KðZÞ. In this case, in view of (30) and (26) we have

~UL;KðZÞ ¼ Uka;lað½Za�Þ ¼ ı
ka � jþ la 0

0 jþ la

	 

:

Hence, if we set

mka;j;la :¼ ka � jþ la jþ lað Þt ða ¼ 1; . . .; r; j ¼ 0; . . .; kaÞ; ð31Þ

we conclude that UL;K is not transverse to CðOmka ;j;la
Þ and that WL;K is not transverse to

Rþ � mka;j;la for every a; j.

If, on the other hand, there exist a 2 f1; . . .; rg and j; h 2 f0; . . .; kag with j 6¼ h and

zaj � zah 6¼ 0, then the arguments used in the proof of Theorems 2.1, 2.4 imply that both
~wL;K and ~/L;K are locally free at Z.

Thus we reduced to the case where for each a ¼ 1; . . .; r at most one component of Za is

non-zero, and Za 6¼ 0 for at least two distinct values of a. We shall make this assumption in

the following.

So there exist a; b 2 f1; . . .; rg, a 6¼ b and ja 2 f0; . . .; kag, jb 2 f0; . . .; kbg such that

za;ja � zb;jb 6¼ 0, and furthermore za;j ¼ 0 if j 6¼ ja, zb;j ¼ 0 if j 6¼ jb.

Consider, as before, a diagonal matrix D 2 T , with diagonal entries eı#i , i ¼ 1; 2, and

suppose that D fixes Z. Also, let us assume that D is in a small neighborhood of I2, so that

without loss #j	 0. Then the condition ð ~/L;KÞDðZÞ ¼ Z implies that

eı ½la ð#1þ#2Þþðka�jaÞ#1þja #2� za;ja ¼ za;ja and eı ½lb ð#1þ#2Þþðkb�jbÞ#1þjb #2� zb;jb ¼ zb;jb . Since #j	 0,

this forces

ðla þ ka � jaÞ#1 þ ðla þ jaÞ#2 ¼ ðlb þ kb � jbÞ#1 þ ðlb þ jbÞ#2 ¼ 0:

This system has non-trivial solutions if and only if the vectors mka;ja;la and mkb;;jb;lb are

linearly dependent (see (31)); if this is the case, then Uka;lað½Za�Þ and Ukb;lbð½Zb�Þ are both

scalar multiples of the diagonal matrix ıDmka ;ja ;la
.

Hence we have the following alternatives.

Let I � f1; . . .; rg be the non-empty subset of those a’s such that Za 6¼ 0. If the vectors

mka;ja;la , a 2 I, are all pairwise linearly dependent, then ~wL;K is not locally free at Z, and

therefore neither is ~/L;K. Hence, UL;K is not transverse to C OZ
� �

at Z, and similarly WL;K
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is not transverse to Rþ �WL;KðZÞ at Z. Furthermore, in this case we also obtain that

UL;Kð½Z�Þ is a multiple of ıDmka ;ja ;la
, and so WL;Kð½Z�Þ is a multiple of ı mka;ja;la .

Suppose, on the other hand, that there exist a; b 2 I such that mka;ja;la ^ mkb;jb;lb 6¼ 0. Then
~wL;K is locally free at Z. Since we are assuming that UL;Kð½Z�Þ is diagonal and non-zero, we

can apply the argument used in the proof of Theorem 2.1, following (16), to obtain the

stronger statement that ~/L;K is also locally free at Z, and so UL;K is transverse to C OZ
� �

at

Z.

The outcome of the previous discussion is the following statement. Recall that ma;j was

defined in (31).

Theorem 2.5 Suppose m1 6¼ m2 and that the equivalent conditions in Proposition 2.5 are
satisfied. Then the following conditions are equivalent:

1. UL;K is not transverse to CðOmÞ;
2. WL;K is not transverse to Rþ ı m;

3. there exist a 2 f1; . . .; rg and j 2 f0; . . .; kag, such that m ¼ mka;j;la .

If M � PðWL;KÞ is a projective submanifold, then the restriction to M of the Fubini-Study

form is a Kähler form x on M. If M is G-invariant, the induced action of G on M is

Hamiltonian with respect to 2x, with moment map UM :¼ UL;K


M
: M ! g. Similar

considerations apply to the action of T on M, which is Hamiltonian with respect to 2x,

with moment map WM :¼ WL;K


M
: M ! t.

For m ¼ m1 m2ð Þt with mj 0 and m 6¼ 0, let us denote by Pm � PðWL;KÞ the locus of

those ½Z� ¼ ½Z1 : . . . : Zr�, where Za ¼ ðzajÞ 2 Ckaþ1, such that zaj ¼ 0 if

ka � jþ la jþ lað Þt is not a (positive) multiple of m1 m2ð Þt. Then Pm ¼ ; unless m ¼
mka;j;la for some a ¼ 1; . . .; r and j ¼ 0; . . .; ka, and each Pmka ;j;la

is a projective subspace. For

any (a, j) and ðb; j0Þ, either Pmka ;j;la
¼ Pmkb ;j0 ;la0

, or else Pmka ;j;la
\ Pmkb ;j0 ;la0

¼ ;; also, the inverse

image in XK;L of
S

a;j Pmka ;j;la
is the locus over which WK;L is not locally free.

Theorem 2.6 In the situation of Theorem 2.5, suppose that M � PðWL;KÞ is a G-invariant

projective manifold. Consider m 2 N2 n f0g. Then the following conditions are equivalent:

1) WM is not transverse to Rþ � ı m;

2) m ¼ mka;j;la for some (a, j), and M \ Pmka ;j;la
6¼ ;.

If, in addition, m1 6¼ m2, then 1) and 2) are equivalent to

3) UM is not transverse to CðOmÞ.

Proof of Theorem 2.6 Let XM � X be the inverse image of M in XL;K; thus, XM is the circle

bundle of the induced polarization. Then ðXMÞGm ¼ ðXL;KÞGm \ XM etc. Let us denote by ~/M

and ~wM , respectively, the restrictions of ~/L;K and ~wL;K to XM .

Let us prove the equivalence of 1) and 2).

As recalled above, WM is not transverse to Rþ � ı m if and only if there exists Z 2 ðXMÞTm
such that ~wM is not locally free at Z, that is, such that ~wL;K is not locally free at Z. On the
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other hand, the previous discussion shows that ~wL;K is not locally free at Z if and only if

½Z� 2 Pma;j for some (a, j), and that if this happens then WMð½Z�Þ ¼ WL;Kð½Z�Þ is a positive

multiple of ı ma;j.

Let us assume that m1 6¼ m2, and prove the equivalence with 3).

Suppose that 2) holds, and suppose Z 2 XM , ½Z� 2 M \ Pa;j. Then ~wM is not locally free

at Z, and therefore a fortiori neither is ~/M . Furthermore, by the previous discussion

UMð½Z�Þ is a positive multiple of ıDma;j , so Z 2 ðXMÞGma;j . Hence 3) holds.

Conversely, suppose that 3) holds. Then there exists Z 2 ðXMÞGOm
such that ~/M is not

locally free at Z; perhaps after replacing Z in its orbit, we may assume without loss that
~UMðZÞ is diagonal, that is, Z 2 ðXMÞGm ¼ ðXMÞTm \ ðXMÞGO. If ~wM was locally free at Z, then

an argument in the proof of Theorem 2.1 (see (14) and (17)) would imply that ~/M is itself

locally free at Z, absurd. Hence ~w is not locally free at Z, and therefore ½Z� 2 Pa;j for some

a, j, and UMð½Z�Þ is ap positive multiple of ıDma;j . Hence 1) and 2) hold. h

3 M
T
m

We shall assume in this section that 0 62 WðMÞ, and that both W and U are transverse to

Rþ � ı m, where m1 [ m2. Then MT
m � M is a smooth compact connected T-invariant

hypersurface; furthermore, MG
m :¼ U�1ðRþ � ı mÞ � MT

m is a smooth, compact and con-

nected T-invariant submanifold of real codimension two (three in M) [4]. In §3.1, M is not

assumed to be projective.

3.1 The Kähler structure of M
T
m

The 1-parameter subgroup

T1
m?

:¼ jm eı#
� �

: eı# 2 S1
� �

; jm eı#
� �

:¼ e�ı m2 # 0

0 eı m1 #

 !

ð32Þ

acts locally freely on MT
m ; its orbits are the leaves of the null foliation of MT

m . If m1 and m2

are coprime, as we may assume without loss, jm : S1 ! T1
m?

in (32) is a Lie group

isomorphism.

Let us set

M
T
m :¼ MT

m =T
1
m?
; M

G
m :¼ MG

m =T
1
m?
� M

T
m : ð33Þ

Then M
T
m is an orbifold of (real) dimension 2 ðd � 1Þ, and M

G
m � M

T
m is a suborbifold of real

codimension two, meaning that the topological embedding M
G
m � M

T
m can be lifted to an

embedding of local slices. We shall let qm : M
T
m ! M

T
m denote the projection.

Definition 3.1 wm? is the action of T1
m?

on M given by restriction of w.

By means of jm , we shall view wm? as a Hamiltonian S1-action, with moment map

Wm? :¼ hW; m?i. The proof of the following is left to the reader:
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Lemma 3.1 Given that W is transverse to Rþ � ı m, 0 is a regular value of Wm? , and

MT
m ¼ Wm?

�1ð0Þ.

As an orbifold, M
T
m coincides with the symplectic quotient (symplectic reduction at 0)

M==T1
m?

. Hence it inherits a reduced Kähler orbifold structure M
T
m ; JMT

m

; x
M

T

m

� �
.

As mentioned in the introduction, M
G
m may also be viewed as a symplectic quotient,

namely M
G
m ¼ Y==T1

m?
, where Y � M is the ‘symplectic cross section’ discussed in [7].

Hence M
G
m also carries a symplectic orbifold structure ðMG

m ; xM
G

m

Þ. Since both x
M

G

m

and

x
M

T

m

are both induced from x, ðMG
m ; xM

G

m

Þ is a symplectic suborbifold of ðMT
m ; xM

T

m

Þ.
The T-invariant direct sum decomposition g ¼ t� a determines a splitting

U ¼ W� !0 : M ! g, where both W : M ! t and !0 : M ! a are T-equivariant (notation

is as in (16)). By restriction we obtain a T-equivariant smooth map

! :¼ !0jMT
m
: MT

m ! a: ð34Þ

Since

eı#1 0

0 eı#2

 !

ı
a z

z b

	 

e�ı#1 0

0 e�ı#2

 !

¼ ı
a eı ð#1�#2Þ z

e�ı ð#1�#2Þ z b

 !

; ð35Þ

identifying a ffi C by the parameter z in (35), we may interpret ! as a map MT
m ! C with

the equivariance property

! � wDð#1;#2Þ�1 ¼ e�ı ð#1�#2Þ !; ð36Þ

where Dð#1; #2Þ 2 T is the diagonal matrix with entries eı#j .

By Theorem 1.2 of [4], MT
m \MG

O ¼ MG
m , and the intersection is tangential, that is,

TmM
T
m ¼ TmM

G
O � TmM if m 2 MG

m . Since MG
O is G-invariant, for any b 2 g the vector field

bM 2 XðMÞ induced by b is tangent to MG
O. Hence, if m 2 MG

m then bMðmÞ 2 TmM
T
m .

Therefore, aMðmÞ � TmM
T
m for any m 2 MG

m . The argument used for (17), and the remark

that MG
m ¼ !�1ð0Þ, imply the following.

Lemma 3.2 Under the previous assumptions, we have:

1. dm!
�
aMðmÞ

�
¼ a, 8m 2 MT

m ;

2. 0 is a regular value of !;

3. we have a T-equivariant direct sum decomposition

TmM
T
m ¼ TmM

G
m � aMðmÞ; 8m 2 MG

m : ð37Þ

Lemma 3.3 The summands on the right hand side of (37) are symplectically orthogonal.

Proof of Lemma 3.3 Let us consider the Hamiltonian functions Ug :¼ hU; gi and

Un :¼ hU; ni. Explicitly, if

U ¼ ı
a z

z b

	 

;
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where a; b : M ! C and z : M ! C are C1, then Ug ¼ �2IðzÞ, Un ¼ 2RðzÞ.
By definition of MG

m , z vanishes identically on MG
m ; therefore, for any ðm; vÞ 2 TMG

m we

have

0 ¼ dmU
g
�
v
�
¼ xm

�
gMðmÞ; v

�
;

and similarly for n. h

Corollary 3.1 aMðmÞ � TmM is a symplectic vector subspace, 8m 2 MG
m .

Proof of Corollary 3.1 This follows immediately from Lemma 3.3. Alternatively, we need

to show that xm

�
gMðmÞ; nMðmÞ

�
6¼ 0. For m 2 MG

m , we have UðmÞ ¼ ı kðmÞDm where

kðmÞ[ 0. Arguing as for (17) we obtain

xm

�
gMðmÞ; nMðmÞ

�
¼
�
dmU

�
nMðmÞ

�
; g
�
¼ kðmÞ ðm1 � m2Þ hg; gi[ 0: ð38Þ

h

Definition 3.2 If m 2 MT
m , Fm 6 T1

m? denotes its stabilizer subgroup for wm? (Definition

3.1). Furthermore, Fm 6 T1
m? denotes the stabilizer for wm? of a general m 2 MT

m? .

Hence, Fm 6 Fm, 8m 2 MT
m .

Lemma 3.4 If m 2 MT
m nMG

m , then Fm 6 T1
m? \ ZðGÞ. In particular, Fm 6 T1

m? \ ZðGÞ.

Proof of Lemma 3.4 By equivariance, if /gðmÞ ¼ m, then Adg
�
UðmÞ

�
¼ UðmÞ 2 g where

Ad is the adjoint action. If m 2 MT
m nMG

m then UðmÞ is not diagonal. The claim then

follows from by (35). h

Remark 3.1 For a uniform representation Fm ¼ T1
m? \ ZðGÞ, since Z(G) acts trivially on M

(Definition 2.3).

Let us introduce the quotients (isomorphic to S1)

S1ðmÞ :¼ T1
m?=Fm; T1ðmÞ :¼ T1

m?=
�
T1
m? \ ZðGÞ

�
: ð39Þ

The induced action wm? : S1ðmÞ �MT
m ! MT

m is locally free and generically free, hence

effective. If MT
m

� �
sm
� MT

m is the dense open set where Fm ¼ Fm , then MT
m

� �
sm

is a principal

S1ðmÞ-bundle over its image ðMT
m Þsm.

Given a character v : S1ðmÞ ! C� we obtain an Hermitian orbifold line bundle Lv. Given

the CR structure on MT
m , Lv is in fact an holomorphic orbifold line bundle on M

T
m . A smooth

function R : MT
m ! C such that R � ðwm?Þg�1 ¼ vðgÞR for any g 2 S1ðmÞ determines a

smooth section rR of Lv.

By Lemma 3.4, we have a short exact sequence

0! T1
m? \ ZðGÞ

� �
=Fm ! S1ðmÞ ! T1ðmÞ ! 0;
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therefore, any character of T1ðmÞ yields a character of S1ðmÞ. In particular, we obtain a

character of S1ðmÞ from any character of T with kernel Z(G), whence from the character

e�ı ðh1�h2Þ appearing in (35). Explicitly, evaluating the latter on T1
m ffi S1 we obtain the

character eı ðm1þm2Þ#. We shall denote by v the corresponding character of S1ðm?Þ.
By (36), ! determines a section r! of Lv. By Lemma 3.2 we conclude the following.

Theorem 3.1 The symplectically embedded orbifold M
G
m � M

T
m is the zero locus of the

transverse section r! of Lv. If iT : M
G
m � M

T
m is the inclusion, there is a direct sum

decomposition of orbifold vector bundles

i�T TM
T
m

� �
¼ TM

G
m � i�T Lað Þ:

3.2 The case of PðWL,KÞ

We aim to classify the DH reductions ðMT
m ; J

0
0;X

0
0Þ when M ¼ PðWL;KÞ, assuming that

WL;K is generic (Definition 2.2). In particular, we shall interpret each such Kähler orbifold

as a weighted projective variety, related to certain explicit combinatorial data associated to

L; K; m. Before doing so, in §3.2.1 we shall review a general construction from [16],

producing a Kähler orbifold from a homolomorphic Hamiltonian action with positive

moment map (see [17] for a generalization to torus actions). We shall apply this procedure

first to actions on projective spaces, thus obtaining a class of Kähler forms on weighted

projective spaces, and then to actions on products of projective spaces, obtaining a class of

Kähler suborbifolds of certain weighted projective spaces. Next, in §3.2.2 we shall describe

a family of Hamiltonian circle actions on projective spaces for which the DH reduction can

be described in terms of the previous construction, applied to a related Hamiltonian

holomorphic action (with positive moment map) on a mixed product Pk � Pl; it follows

that the DH reduction of the original action of projective space can be realized as a Kähler

suborbifold of an appropriate weighted projective space. Building on these considerations,

in §3.2.3 we shall determine the DH reductions when M ¼ PðWL;KÞ. Finally, in §3.2.4 we

shall focus on the irreducible representation lk and give an explicit description of the pair

ðMT
m ;M

G
m Þ in the range m1 
 m2.

3.2.1 From Hamiltonian circle actions to orbifolds

The object of this section is to review and slightly extend a general construction from [16],

providing a Kähler orbifold from a Hamiltonian circle action with positive moment map.

This construction generalizes the one of weighted projective spaces. A wider formulation

in the setting of Hamiltonian torus actions is given in [17].

Let R be an r-dimensional connected projective manifold, with complex structure JR,

and let (B, h) be a positive holomorphic line bundle on R, with r the unique compatible

covariant derivative. Also, let Y � B_ be the unit circle bundle, with projection p : Y ! R;

let a 2 X1ðYÞ be the connection form corresponding to r. Hence (by the positivity of

(B, h)) da ¼ 2p�ðxRÞ, where xR is a Hodge form on R. Thus ðR; JR; 2xRÞ is a Kähler

manifold.
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Suppose that there is an holomorphic and Hamiltonian circle action l : T1 � R! R on

ðR; JR; 2xRÞ, with (normalized) moment map M : R! R. Then there is an infinitesimal

‘action’ dl : t1 ! XðRÞ at Lie algebra level. These Hamiltonian data determine an

infinitesimal contact CR action of T1 on Y, lifting dl [10]: if n ¼ o=or 2 LieðT1Þ ffi R then

nY :¼ n]R �M oh 2 XðYÞ ð40Þ

is a contact vector field. Here t] 2 XðYÞ is the horizontal lift of the vector field t 2 XðRÞ
with respect to a, and oh is the generator of the structure circle action on Y (fiber rotation).

Furthermore, we write M for M � p : Y ! R.

Let us make the stronger hypothesis that that there is an actual group action ~l :

T1 � Y ! Y lifting l associated to this infinitesimal lift; that is, d~lðnÞ ¼ nY . Let us sup-

pose also that M[ 0. Then, in view of (40), nYðyÞ 6¼ 0 at every y 2 Y; thus ~l is locally

free. Perhaps passing to a quotient group if necessary, we may assume that ~l is effective,

whence generically free. Therefore the orbit space R0 :¼ Y=~l is naturally an orbifold, and

the projection p0 : Y ! R0 is an orbifold circle bundle on R0.
On Y, we have the following distributions:

1. the vertical tangent space for p, VðpÞ :¼ kerðdpÞ ¼ spanðohÞ;
2. the horizontal tangent space for a, H ¼ kerðaÞ;
3. the vertical tangent space for p0, Vðp0Þ :¼ kerðdp0Þ ¼ spanðnYÞ.
For every y 2 Y , VðpÞy � TyY is the tangent space to the S1-orbit (we denote the circle by

S1 when it acts on Y by the structure rotation action), Vðp0Þy � TyY is the tangent space to

the T1-orbit, and H(y) is isomorphic to TpðyÞR via dyp, and to the uniformized tangent space

Tp0ðyÞR
0 via dyp0. The tangent bundle of Y splits as

TY ¼ VðpÞ � H ¼ Vðp0Þ � H: ð41Þ

Let JH be the complex structure on the vector bundle H given by pull-back of J. Then

ðH; JHÞ is a ~l-invariant CR structure on Y, and it descends to an orbifold complex structure

JR0 on R0 (the arguments in [16] were formulated over the smooth locus, but they can be

extended to the orbifold case; see also [17] ). Thus ðR0; JR0 Þ is a complex orbifold.

Let us set b :¼ a=M 2 X1ðYÞ; then H ¼ kerðbÞ, b is ~l-invariant and bðnYÞ ¼ �1.

Hence b is a connection form for q. Thus there exists xR0 2 X2ðR0Þ such that

db ¼ 2 ðp0Þ�ðxR0 Þ. Since

db ¼ � 1

M2
dM ^ aþ 2

M
p�ðxRÞ;

db restricts on each H(y) to a linear symplectic structure compatible with JHðyÞ; therefore

xR0 is an orbifold Kähler form on ðR0; JR0 Þ (see §2.2 of [16]).

Remark 3.2 The two orbifold fibrations R p Y!p
0
R0 are dual to each other, meaning that

ðR0Þ0 ¼ R as Kähler orbifolds. More precisely, the S1-action r on Y given by counter-

clockise fiber rotation descends to an Hamiltonian action l0 on ðR0;xR0 Þ, with moment map

1=M (interpreted as a function on R0), of which it is the contact lift. Applying the same

procedure to ðR0; JR0 ;xR0 ; l0Þ we return to ðR; JR;xR; lÞ (see §2.3 of [16]). In principle, one

would need to phrase the previous discussion assuming that R itself is an orbifold, but this

won’t be needed in the following.
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A special case of this construction is given by weighted projective spaces. Let a ¼
a0 � � � akð Þ be a string of positive integers, and consider the action la of T1 on Pk

given by

la# : ½z0 : � � � : zk�7! e�ı a0 # z0 : � � � : e�ı ak # zk
� �

: ð42Þ

Then la is Hamiltonian with respect to 2xFS, with normalized moment map

UaðZÞ :¼ 1

kZk2

Xk

j¼0

aj jzjj2: ð43Þ

Let Hk ¼ OPkð1Þ be the hyperplane line bundle on Pk, endowed with the standard Her-

mitian metric; its dual H_k is the tautological line bundle, and the unit circle bundle in H_k is

the unit sphere S2kþ1 � Ckþ1, with projection the Hopf map p : S2kþ1 ! Pk. A contact lift

of la is given by the restriction to S2kþ1 of the unitary representation

~la# : ðz0; � � � ; zkÞ7! e�ı a0 # z0; � � � ; e�ı ak # zk
� �

: ð44Þ

We shall use the same symbol ~la# for both the unitary representation and its restriction to

S2kþ1. ~la is generically free if the aj’s are coprime. The quotient S2kþ1=~la is the weighted

projective space PðaÞ. Let p0 : S2kþ1 ! PðaÞ denote the projection.

The induced orbifold Kähler structure ga 2 X2
�
PðaÞ

�
is as follows. The vector field

generating (44) is � ~Va, where

~Va ¼ ı
Xk

j¼0

aj zj
o

ozj
� zj

o

ozj

	 

; ð45Þ

viewed as a vector field on S2kþ1. ~Va is a contact lift of Va, where �Va is the vector field

generating (42). The corresponding moment map (43) can be obtained by pairing ~Va with

the connection form

a ¼ ı

2

Xk

j¼0

zj dzj � zj dzj
� �

:

Hence ba :¼ a=Ua is a connection form for the action generated by Va on S2kþ1 (as usual,

we write Ua for Ua � p). Then ga is determined by the relation 2 p0�ðgaÞ ¼ dba.

The Kähler structures on Pk and PðaÞ can be changed by modifying the Hermitian

product on Ckþ1. Let d ¼ ðd0; . . .; dkÞ be a string of positive integers, and set

hd Z; Z 0ð Þ :¼
Xk

j¼0

dj zj z
0
j; ~xd :¼ �IðhdÞ ¼

ı

2

Xk

j¼0

dj dzj ^ dzj: ð46Þ

The action r�# : Z 7!e�ı# Z of S1 on ðCkþ1; 2 ~xdÞ is Hamiltonian, with normalized moment

map

NdðZÞ :¼
Xk

j¼0

dj jzjj2:

Let S2kþ1
d :¼ N�1

d ð1Þ � Ckþ1 be the unit sphere for hd. Thus S2kþ1
d is the unit circle bundle
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in H_k with respect to the line bundle metric induced by hd. The quotient S2kþ1
d =r is again

Pk, with a new Kähler structure xd (the symplectic reduction of ~xd). More explicitly, let

pd : S2kþ1
d ! Pk be the projection, id : S2kþ1

d ! Ckþ1 the inclusion, and set

ad :¼ i�d
ı

2

Xk

j¼0

dj zj dzj � zj dzj
� �

 !

:

Then ad is the connection 1-form on S2kþ1
d for pd, and

dad ¼ 2 p�dðxdÞ ¼ 2 i�dð ~xdÞ:

The action la in (42) is Hamiltonian on Pk; 2xd

� �
, with normalized moment map

Ua
dð½Z�Þ :¼

Pk
j¼0 aj � dj jzjj

2

Pk
j¼0 dj jzjj

2
: ð47Þ

The contact lift of la to S2kþ1
d is again functionally given by (44); we still have

S2kþ1
d =~la ¼ PðaÞ, but with a new Kähler form gad. Namely, bad :¼ ad=U

a
d is a connection

form for ~la on S2kþ1
d , and gad is determined by the condition

dbad ¼ 2 qad
�ðgadÞ; ð48Þ

where qad : S2kþ1
d ! PðaÞ is the projection. The linear automorphism ~fd : Ckþ1 ! Ckþ1

given by ðzjÞ7!ð
ffiffiffi
d
p

j zjÞ descends to automorphisms fd : Pk ! Pk and f ad : PðaÞ ! PðaÞ,
satisfying f �d ðxFSÞ ¼ xd and f ad

�ðg0aÞ ¼ gad.

Let us remark in passing the following homogeneity property.

Lemma 3.5 For any string of positive integers d ¼ d0 � � � dkð Þ and r ¼ 1; 2; . . ., we

have xr d ¼ xd 2 X2ðPkÞ.

Proof of Lemma 3.5 Let pd : S2kþ1
d ! Pk, pr d : S2kþ1

r d ! Pk be the the Hopf maps. We

have, by definition, hra ¼ r ha; therefore, S2kþ1
r a ¼ d 1ffi

r
p S2kþ1

a

� �
, where dsðZÞ ¼ s Z. Since

pa ¼ pra � d 1ffi
r
p , we have

p�aðxr aÞ ¼ d�1ffi
r
p p�raðxr aÞ
� �

¼ d�1ffi
r
p ~xr að Þ ¼ ~xa ¼ p�aðxaÞ:

Corollary 3.2 If r ¼ 1; 2; . . . and r ¼ r � � � rð Þ, then xr ¼ xFS (the standard Fubini-
Study form).?ul " "?>h

Proof xFS corresponds to 1 ¼ 1 � � � 1ð Þ.

The following variant yields a class of weighted projective varieties. Let b ¼
b0 � � � blð Þ be another string of positive integers. On Pk � Pl, consider the Kähler

structure xa;b :¼ xa þ xb (symbols of pull-back are omitted). xa;b is the Hodge form

associated to Hk;l :¼ OPkð1Þ�OPlð1Þ and the tensor product of the Hermitian products ha,

hb. The corresponding unit circle bundle Xa;b � H_k;l can be identified with the image
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S2kþ1
a �k;l S

2lþ1
b � Ckþ1 � Clþ1 of the map

sa;b : ðZ;WÞ 2 S2kþ1
a � S2lþ1

b 7!Z �k;l W 2 Ckþ1 � Clþ1; ð49Þ

we have denoted by �k;l : C
kþ1 � Clþ1 ! Ckþ1 � Clþ1 the tensor product operation.

Equivalently, Xa;b is the quotient of S2kþ1
a � S2lþ1

b by the S1-action

ðZ;WÞ7! eı h Z; e�ı h W
� �

. The S1-action on Xa;b given by scalar multiplication (clockwise

rotation) is reı#ðZ �k;l WÞ :¼ eı# Z �k;l W . The projection pa;b : Xa;b ! Pk � Pl is

pa;bðZ �k;l WÞ :¼ ð½Z�; ½W�Þ.
Let ia;b : S2kþ1

a � S2lþ1
b ,!Ckþ1 � Clþ1 be the inclusion. The connection 1-form aa;b on

Xa;b is determined by the relation

s�a;bðaa;bÞ ¼ i�a;b ~aa;b
� �

; ð50Þ

where

~aa;b :¼ ı

2

Xk

j¼0

aj zj dzj � zj dzj
� �

þ
Xl

j¼0

bj wj dwj � wj dwj

� �
" #

: ð51Þ

Furthermore, daa;b ¼ 2p�a;bðxa;bÞ.
The product T1-action

la;b#

�
½Z�; ½W �Þ ¼ e�ı a0 # z0 : � � � : e�ı ak # zk

� �
; e�ı b0 # w0 : � � � : e�ı bl # wl

� �� �

¼ la#
�
½Z�Þ; lb#

�
½W�Þ

� � ð52Þ

is clearly Hamiltonian on Pk � Pl; 2xa;b

� �
, with normalized moment map

Ua;bð½Z�; ½W �Þ :¼ Ua
að½Z�Þ þ Ub

bð½W �Þ; ð53Þ

where Ua
a and Ub

b are as in (47). Its contact lift ~la;b is the restriction to Xa;b ¼
S2kþ1
a �k;l S

2lþ1
b of the tensor product representation ~la � ~lb on Ckþ1 � Clþ1. The latter is

the unitary representation ~lc# : ðXijÞ7! e�ı cij # Xij

� �
associated to the string c ¼ ðcijÞ, with

cij :¼ ai þ bj [ 0.

We shall set

Pða; bÞ :¼ Xa;b=~l
a;b;

with projection p0a;b : Xa;b ! Pða; bÞ, orbifold complex structure Ka;b, and Kähler form

ga;b. Explicitly, ba;b :¼ aa;b=Ua;b is a connection form for p0a;b, and ga;b is determined by

the relation

2p0�a;bðga;bÞ ¼ dba;b: ð54Þ

We can interpret Pða; bÞ as a weighted projective variety, as follows. Consider the Segre

embedding

rk;l : ð½Z�; ½W �Þ 2 Pk � Pl 7!½Z �k;l W � 2 P Ckþ1 � Clþ1
� �

ffi Pklþkþl:

In coordinates, this is given by Tij ¼ Zi Wj. Let Ck;l � Ckþ1 � Clþ1 be the affine cone over

rk;lðPk � PlÞ; its ideal IðCk;lÞEK½Xij� is generated by the quadratic polynomials Tij Tab �
Tib Taj (0� i; a� k, 0� j; b� l).
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Let us denote by ~lcC� the extension of ~lc to C�, and consider the weighted projective

space

PðcÞ :¼ Ckþ1 � Clþ1 n f0g
� �

=~lcC� :

The weighted projective subvarieties of PðcÞ are in one-to-one correspondence with the

prime ideals of K½Tij� that are homogeous with respect to the grading degcðTijÞ ¼ cij. Since

IðCk;lÞ is generated by degc-homogenous elements, it determines a weighted projective

subvariety

PðCk;l; cÞ :¼ Ck;l=~l
c
C� � PðcÞ:

Let d ¼ ðdijÞ be any positive sequence, and let S
2ðklþkþlÞþ1
d � Ckþ1 � Clþ1 be the unit

sphere for the Hermitian product hd. Then S
2ðklþkþlÞþ1
d is ~lc-invariant, and

PðcÞ ¼ S
2ðklþkþlÞþ1
d =~lc. With this description, PðcÞ inherits the orbifold Kähler structure

gcd. Explicitly, let id : S
2ðklþkþlÞþ1
d ,!Ckþ1 � Clþ1 be the inclusion, and set

ad :¼ i�d
ı

2

X

i;j

dij Tij dTij � Tij dTij
� �

 !

; ð55Þ

Uc
dð½T�Þ :¼

P
i;j cij � dij jTijj

2

P
i;j dij jTijj

2
ð½T � 2 P Ckþ1 � Clþ1

� �
Þ; ð56Þ

bcd :¼ 1

Uc
d

ad; ð57Þ

where in the latter relation Uc
d is viewed as a function on S

2ðklþkþlÞþ1
d . Then bcd is a

connection 1-form for the projection qcd : S
2ðklþkþlÞþ1
d ! PðcÞ, and gcd satisfies

2 qcd
� gcd
� �

¼ dbcd ð58Þ

(recall (48) and (47)). Hence, gcd restricts to an orbifold Kähler structure on the complex

suborbifold PðCk;l; cÞ � PðcÞ.
The following is left to the reader:

Lemma 3.6 If dij ¼ ai � bj, then Ck;l \ S
2ðklþkþlÞþ1
d ¼ Xa;b. Hence PðCk;l; cÞ ¼ Pða; bÞ.

Lemma 3.7 Assume cij ¼ ai þ bj, dij ¼ ai bj. Let | : Pða; bÞ,!PðcÞ be the inclusion, and

let ga;b be as in (54). Then |�ðgcdÞ ¼ ga;b.

Proof of Lemma 3.7 In view of (54), (57) and (58), we need only prove that ad and Uc
d pull

back on Xa;b to, respectively, aa;b in (50) and Ua;b in (53). This follows from a straigh-

forward computation by setting Tij ¼ Zi Wj in (55) and (56).

Summing up, we have proved the following .
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Proposition 3.1 Let a ¼ ða0; . . .; akÞ, b ¼ ðb0; . . .; blÞ be sequences of positive integers,
and set cij :¼ ai þ bj. Define a grading on K½Tij� by setting degcðTijÞ ¼ cij. Then the ideal

IEK½Tij� with generators Tij Tab � Tib Taj is degc-homogenous, and Pða; bÞ � PðcÞ is the
corresponding weighted projective variety. Furthermore, if dij :¼ ai bj then ðPða; bÞ; ga;bÞ
is a Kähler suborbifold of ðPðcÞ; gcdÞ.

The T1-action on Pk � Pl

la;�b#

�
½Z�; ½W �Þ :¼ e�ı a0 # z0 : � � � : e�ı ak # zk

� �
; eı b0 # w0 : � � � : eı bl # wl

� �� �

¼ la#
�
½Z�Þ; lb�#

�
½W �Þ

� � ð59Þ

can be interpreted in terms of the previous case by passing to the opposite Kähler structure

on Pl, and noting that eı bj # ej ¼ e�ı bj # � ej, where ðejÞ is the standard basis and � denotes

scalar multiplication in Clþ1. Namely, let us consider Pk � Pl, endowed with the Kähler

form xa;�b :¼ xa � xb. The latter is the Hodge form associated to the holomorphic line

bundle Hk;l :¼ OPk ð1Þ�O
Plð1Þ and the positive metric on it given by the tensor product of

the Hermitian metrics induced by ha on Ckþ1 and hb on Clþ1. The corresponding unit circle

bundle Xa;�b ¼ S2kþ1
a �k;l S

2lþ1
b is the image of the map

sa;�b : ðZ;WÞ 2 S2kþ1
a � S2lþ1

b 7!Z �k;l W 2 Ckþ1 � Clþ1;

we have denoted by �k;l : C
kþ1 � Clþ1 ! Ckþ1 � Clþ1 the tensor product operation. Thus

componentwise ðZiÞ �k;l ðWjÞ ¼ ðZi WjÞ. Equivalently, it is the quotient of S2kþ1
a � S2lþ1

b

by the S1-action ðZ;WÞ7! eı h Z; eı h W
� �

. The projection pa;�b : Xa;�b ! Pk � Pl is

Z �k;l W 7!ð½Z�; ½W �Þ, and the connection form aa;�b is determined by obvious variants of

(50) and (51). We have 2p�a;�bðxa;�bÞ ¼ daa;�b.

Then la;�b in (59) is Hamiltonian with respect to 2xa;�b, with normalized moment map

Ua;b in (53). Its contact lift ~la;�b to Xa;�b is the tensor product (for �k;l) of the flows ~la# and

~l�b# . We shall set Pða;�bÞ :¼ Xa;�b=~la;�b, with projection qa;�b : Xa;�b ! Pða;�bÞ, and

denote by ga;�b and Ka;�b its (orbifold) symplectic and complex structures, respectively.

Thus

2 q�a;�bðga;�bÞ ¼ dba;�b; where ba;�b :¼ aa;�b=Ua;b: ð60Þ

The Segre embedding

rk;l : ð½Z�; ½W �Þ 2 Pk � Pl ¼ Pk � Pl 7!½Z �k;l W� 2 P Ckþ1 � C
lþ1

� �
;

given in coordinates by Ti;j ¼ Zi Wj, intertwines la � l�b with la �k;l l
�b ¼ lc, where

cij ¼ ai þ bj. The unitary representation ~lc on Ckþ1 � Clþ1 is defined in terms of the

identification Ckþ1 � Clþ1 ffi Ck lþkþlþ1 given by the basis eij :¼ eki �k;l e
l
j, where ðeki Þ

k
i¼0

and ðeljÞ
l
j¼0 are, respectively, the standard basis of Ckþ1 and Clþ1. Coordinatewise,

lc#ð½Ti;j�Þ ¼ e�ı cij# Ti;j

h i
. The same argument used above realizes Pða;�bÞ as the weighted
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projective variety associated to the cone Ck;l � Ckþ1 � C
lþ1

over rk;lðP
k � PlÞ and the

weighting c, with induced orbifold Kähler structure ga;�b.

The latter case is equivalent to the previous one, once we use the standard basis to

induce a unitary isomorphism Clþ1 ffi Clþ1. The reason for emphasizing the coexistence of

the complex structures on Pl and Pl is the following. Being the quotient of S2kþ1
a � S2lþ1

b

by the S1-action ðZ;WÞ7! eı h Z; eı h W
� �

, Xa;�b is diffeomorphic to the submanifold Ya;�b �
Pkþlþ1 given by

Ya;�b :¼ ½Z : W� 2 Pkþlþ1 : kZka ¼ kWkb
� �

: ð61Þ

Explicitly, the diffeomorphism

fa;�b : ½Z : W� 2 Ya;�b 7!
Z

kZka
�k;l

W

kWkb
2 Xa;�b ð62Þ

intertwines the S1-action

r : eı#; ½Z : W �
� �

2 S1 � Ya;�b 7! eı#=2 Z : e�ı#=2 W
h i

2 Ya;�b ð63Þ

with the structure bundle action on Xa;�b given by scalar multiplication.

As a hypersurface in Pkþlþ1, Ya;�b inherits an alternative CR structure. To interpret the

latter, notice that Ya;�b may be identified with the unit circle bundle

Za;�b � OPk ð�1Þ�OPlð1Þ. To make this explicit, given a one-dimensional complex vector

space L and ‘ 2 L, ‘ 6¼ 0, let ‘� 2 L_ be the uniquely determined element such that

‘�ð‘Þ ¼ 1. Then the diffeomorphism

ga;�b : ½Z : W � 2 Ya;�b 7!
Z

kZka
�k;l

W

kWkb

	 
�
2 Za;�b ð64Þ

intertwines the action (63) with the structure bundle action on Za;�b given by scalar

multiplication. Thus we have two S1-equivariant diffeomorphisms Xa;�b �
fa;�b

Ya;�b�!
ga;�b

Za;�b

and the composition fa;�b � g�1
a;�b : Za;�b ! Xa;�b covers the identity Pk � Pl ! Pk � Pl.

3.2.2 Application to symplectic reductions

Let be given an Hamiltonian action b : S1 � N ! N on a symplectic manifold ðN;XÞ, with

normalized moment map B : N ! R, such that 0 is a regular value of B. Then the quotient

N0 :¼ B�1ð0Þ=b is an orbifold.

Let p : B�1ð0Þ ! N0 be the projection, and i : B�1ð0Þ,!N be the inclusion. The

reduced orbifold symplectic structure X0 is determined by the condition i�ðXÞ ¼ p�ðX0Þ.
One the other hand, given a connection 1-form a for the S1-action on B�1ð0Þ, a closed

form X00 on N0 is determined by the condition da ¼ 2p�ðX00Þ [3]. ½X00� 2 H2ðN0;RÞ is the

Chern class of a principal S1-bundle naturally associated to p (see [3, 19] for a precise

discussion).

Let J be a complex structure on N compatible with X, so that ðN; J;XÞ is a Kähler

manifold, and such that b is holomorphic (i.e., bg : M ! M is J-holomorphic for every

g 2 S1); then J descends to an orbifold complex structure J0 on N0 compatible with X0.
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Thus ðN0; J0;X0Þ is a Kähler orbifold. On the other hand, even if X00 turns out to be

symplectic, J0 needn’t be compatible with X00.

We shall apply the considerations in §3.2.1 to describe a class of Hamiltonian circle

actions for which X00 is a symplectic form; furthermore, there is a natural alternative choice

of a complex structure J00 on N0, compatible with X00. Therefore, in this situation the triple

ðN0; J
0
0;X

0
0Þ is a Kähler orbifold, generally different from ðN0; J0;X0Þ. Since ½X00� 2

H2ðN0;RÞ is the class appearing in the Duistermaat-Heckman Theorem on the variation of

cohomology in symplectic reduction [3], we shall call ðN0; J
0
0;X

0
0Þ the DH-reduction of

ðN; J;XÞ under b.

Given integers k; l 1, let a ¼ a0 � � � akð Þ; b ¼ b0 � � � blð Þ be strings of posi-

tive integers, and consider the holomorphic action of T1 on Pkþlþ1 given by

ca;�b
eı#

�
½z0 : � � � : zk : w0 : � � � : wl�

�

¼ e�ı a0 # z0 : � � � : e�ı ak # zk : eı b0 # w0 : � � � : eı bk # wl

� �
:

ð65Þ

Then ca;�b is Hamiltonian with respect to X ¼ 2xFS, with normalized moment map

Ca;�b
�
½Z : W�

�
:¼ 1

kZk2 þ kWk2

Xk

j¼0

aj jzjj2 �
Xl

j¼0

bj jwj2j

 !

: ð66Þ

Hence C�1
a;�bð0Þ ¼ Ya;�b (see (61)), and 0 is a regular value of Ca;�b [7]. In fact, the

diffeomorphism fa;�b in (62) intertwines ca;�b and ~la;�b. Therefore, the Kähler orbifold

ðN0;X
0
0; J
0
0Þ is in this case isomorphic to

�
Pða;�bÞ; ga;�b

�
(hence abstractly to

�
Pða; bÞ; ga;b

�
).

We can relate the complex structures J0 and J00 pointwise, as follows. Let p0 :¼
qa;�b � fa;�b : Ya;�b ! Pða;�bÞ be the projection, and consider ½Z : W � 2 Ya;�b. We may

assume kZka ¼ kWkb ¼ 1, i.e. Z 2 S2kþ1
a , W 2 S2lþ1

b . Let HZðS2kþ1
a Þ � TZS

2kþ1
a and

HWðS2lþ1
b Þ � TWS

2lþ1
b be the maximal complex subspaces (with respect to the complex

structures of Ckþ1 and Clþ1, respectively), with respective complex structures KZ and LW .

Then the uniformized tangent space of Pða;�bÞ at p0ð½Z : W �Þ is canonically isomorphic to

HZðS2kþ1
a Þ � HWðS2lþ1

b Þ as a real vector space. The complex structures J0 and J00 at p0ð½Z :
W �Þ correspond to KZ � LW and KZ � ð�LWÞ, respectively.

The previous considerations extend to the cases k ¼ 0, l[ 0, and k[ 0, l ¼ 0. Consider

an action c of T1 on Plþ1 of the form

ceı#
�
½z0 : � � � : zk : w0�

�
:¼ e�ı a0 # z0 : � � � : e�ı ak # zk : eı b0# w0

� �
;

with moment map

C : ½z0 : � � � : zk : w0�7!
1

kZk2 þ jw0j2
Xk

j¼0

aj jzjj2 � b0 jw0j2
" #

:

Hence Y :¼ C�1ð0Þ is entirely contained in the affine open set where w0 6¼ 0; explicitly,

Y ¼ z0 : � � � : zk :
1
ffiffiffiffiffi
b0

p
� �

:
Xk

j¼0

aj jzjj2 ¼ 1

( )

ffi S2kþ1
a :
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The diffeomorphism ½z : 1=
ffiffiffi
b
p

0� 2 Y 7!z 2 S2kþ1
a intertwines c with the action

ĉeı# : ðzjÞ7! e�ı ðajþb0Þ# zj
� �

. Assuming, say, that the integers aj þ b0 are coprime, Y=~c may

be identified with the weighted projective space Pðb0 þ a0; . . .; b0 þ akÞ, and under the

same identification X00 is the Kähler form gðb0þajÞ. In this case, J0 ¼ J00.

3.2.3 The DH-reduction of PðWL,KÞ

We aim to describe the DH-reductions of a general PðWL;KÞ with respect to T1
m?

, when m

varies in Z2. We shall call this as the m-th DH-reduction of PðWL;KÞ. Recall that this is the

triple ðN0; J
0
0;X

0
0Þ (in the notation in the preample of §3.2.2) when N ¼ PðWL;KÞ and

b ¼ wm? (the restriction of UL;K to T1
m?
ffi S1 - see (32)).

By way of example, let us start with two special cases.

Example 3.1 Consider the representation l�r1 of G on W�r1 , for some r 1, as usual

composed with the Lie group automorphism B 7!ðBtÞ�1
. This corresponds to (27) with

K ¼ 1 :¼ 1 � � � 1ð Þ, L ¼ 0. Let us assume m1; m2 [ 0.

By (7) and (8), F1;j : C
2 ! C for j ¼ 1; 2 are given by F1;1ðZÞ ¼ z0 and F1;2ðZÞ ¼ z1,

where Z ¼ z0 z1ð Þ. Hence by (28) the moment map U0;1 : P W�r1

� �
! g is

U0;1ð½Z�Þ ¼
ı

kZk2

Pr
a¼1 jza;0j

2 Pr
a¼1 za;1 za;0Pr

a¼1 za;0 za;1
Pr

a¼1 jza;1j
2

 !

: ð67Þ

Here Z ¼ ðZ1; . . .; ZrÞ 2 ðC2Þr ffi C2r , and for each a Za ¼ za;0 za;1ð Þ. Therefore, with

M ¼ P W�r1

� �
,

MT
m ¼ ½Z� : m2

Xr

a¼1

jza;0j2 ¼ m1

Xr

a¼1

jza;1j2
( )

:

Let us define Sj : ðC2Þr ! Cr by setting SjðZÞ :¼ z1j � � � zrjð Þ for j ¼ 0; 1. With the

unitary change of coordinates Z 2 C2r 7!
�
S1ðZÞ; S0ðZÞ

�
2 C2r, we can identify MT

m with

M0
T
m ¼ ½S1 : S0� 2 P2r�1 : m1 kS1k2 ¼ m2 kS0k2

n o
:

Let us identify T1
m? with S1 as in (32). Then the action wm? of T1

m? on P2r�1 corresponds to

the circle action given by

ceı# : ½S1 : S0�7! e�ı m1 # S1 : eı m2 # S0

� �
: ð68Þ

Hence if we set m2 :¼ m2 � � � m2ð Þ; m1 :¼ m1 � � � m1ð Þ 2 Zr then c ¼ cm1;�m2 , where

notation is as in (65).

We can use fm1;�m2
in (62) to identify M0Tm ffi MT

m with the unit circle bundle Xm1;�m2
over

Pr�1 � Pr�1, with projection pm1;�m2
: ½S1 : S0�7!ð½S1�; ½S0�Þ. Since c covers the trivial

action on Pr�1 � Pr�1, Pðm1;�m2Þ ¼ Pr�1 � Pr�1.

The connection form am1;�m2
on M0Tm ffi Xm1;�m2

, as unit circle bundle in

OPr�1ð�1Þ�O
Pr�1ð�1Þ, is as follows. Let
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N : ðZ;WÞ 2 S2r�1
m1
� S2r�1

m2
7!½Z : W� 2 M0

T
m

and let | : S2r�1
m1
� S2r�1

m2
,!Cr � Cr be the inclusion; clearly, S2r�1

m1
¼ S2r�1ð1= ffiffiffiffiffi

m1
p Þ and

S2r�1
m2
¼ S2r�1ð1= ffiffiffiffiffi

m2
p Þ where S2r�1ðrÞ is the sphere centered at the origin of radius r[ 0.

Then N�ðam1;�m2
Þ ¼ |� ~am1;�m2

� �
, where

~am1;�m2
:¼ ı

2
m1

Xr

j¼1

zj1 dzj1 � zj1 dzj1
� �

� m2

Xr

j¼1

zj0 dzj0 � zj0 dzj0
� �

" #

:

The corresponding Kähler structure x on Pr�1 � Pr�1 is then uniquely determined by the

condition that

2N� p�m1;�m2
ðxÞ

� �
¼ 2 |� d~am1;�m2

� �
:

Either by direct inspection, or by appealing to Corollary 3.2, one can verify that x ¼
p�1ðxFSÞ � p�2ðxFSÞ (pj is the projection of Pr�1 � Pr�1 onto the j-th factor). Furthermore,

by (53) we have Um1;m2
¼ m1 þ m2 (constant) and so by (60) we conclude that

gm1;�m2
¼ ðm1 þ m2Þ�1 x.

It is evident from (67) that r! (see Theorem 3.1) is the section of OPr ð1Þ�O
Pr ð1Þ given

by the bi-homogeneous polynomial S1 � S0. Hence M
G
m � Pr � Pr is a (holomorphic)

(1, 1)-divisor.

Example 3.2 Let us consider the representation l�r2 on W�r2 ; thus K ¼ 2 :¼ 2 � � � 2ð Þ,
L ¼ 0 in (27). The functions F2;j : C

3 ! C2 in (7) and (8) are given by

F2;1 : z0 z1 z2ð Þ7!
ffiffiffi
2
p

z0 z1

� �
; F2;2 : z0 z1 z2ð Þ7! z1

ffiffiffi
2
p

z2

� �
:

For j ¼ 0; 1; 2 let us define Sj : C3
� �r! Cr by setting

SjðZ1; . . .; ZrÞ :¼ z1;j � � � zr;jð Þ;

then by (28)

U0;2ð½Z�Þ

¼ ı

kZk2

2 kS0ðZÞk2 þ kS1ðZÞk2
ffiffiffi
2
p

S1ðZÞt S0ðZÞ þ S2ðZÞt S1ðZÞ
� �

ffiffiffi
2
p

S0ðZÞt S1ðZÞ þ S1ðZÞt S2ðZÞ
� �

kS1ðZÞk2 þ 2 kS2ðZÞk2

0

B@

1

CA:

ð69Þ

Assume m1 [ m2 [ 0. With the unitary change of coordinates

Z 2 C3
� �r 7! S1ðZÞ S2ðZÞ S0ðZÞð Þ 2 Crð Þ3;

MT
m may be identified with

M0
T
m :¼ ½S1 : S2 : S0� 2 P3r�1 ¼ P Cr � Cr � Crð Þ

�

: ðm1 � m2Þ kS1k2 þ 2 m1 kS2k2 ¼ 2 m2 kS0k2
o
:
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Furthermore, if we identify T1
m? with S1 as in (32), its action on M0Tm corresponds to

ceı#
�
½S0 : S1 : S2�

�
:¼ e�ı ðm1�m2Þ# S1 : e�2 ı m1 # S2 : e2ı m2 # S0

h i
: ð70Þ

Let us define am 2 N2r and bm 2 Nr by setting

am :¼ m1 � m2 � � � m1 � m2 2 m1 � � � 2 m1ð Þ; bm :¼ 2 m2 � � � 2 m2ð Þ;

where m1 � m2 and 2 m1 are repeated r times. Then by (70) we have c ¼ cam ;�bm (see (65)).

By means of fam ;�bm , we can identify M0Tm with the unit circle bundle

Xam ;�bm � OP2r�1ð�1Þ�O
Pr�1ð�1Þ;

with respect to the Hermitian metric induced by ham and hbm , with projection

pam ;�bm : ½S1 : S2 : S0�7!ð½S1 : S2�; ½S0�Þ. The structure S1-action given by clockwise fibre

rotation is

re�ı# : ½S1 : S2 : S0�7! e�ı#=2 S1 : e�ı#=2 S2 : eı#=2 S0

h i
:

Thus c may be identified with the contact lift ~lam ;�bm to Xam ;�bm of the Hamiltonian S1-action

lam ;�bm on ðP2r�1 � Pr�1; 2xam ;�bm Þ having moment map Uam ;bm (see the discussion fol-

lowing (59)). Hence ðN0; J
0
0;X

0
0Þ in §3.2.2 with N ¼ M and S1 ffi T1

m?
is in this case

�
Pðam;�bmÞ; gam ;�bm

�
.

We can rewrite (70) as

ceı#
�
½S0 : S1 : S2�

�
:¼ e�ı ðm1þm2Þ# S1 : e�2 ı ðm1þm2Þ# S2 : S0

h i
: ð71Þ

Passing to the quotient group T1ðmÞ in (39), this is the action

ceı# : ½S1 : S2 : S0� 2 M0Tm 7! e�ı# S1 : e�2 ı# S2 : S0

� �
2 M0Tm . The latter is functionally inde-

pendent of m?, and it follows that the quotients Pðam;�bmÞ are all isomorphic as complex

orbifolds when m1 [ m2 [ 0.

Let us come to a general representation WL;K. Let us introduce some terminology.

Definition 3.3 If WL;K is a representation fullfilling the equivalent conditions of Propo-

sition 2.5, let

IðL;KÞ :¼
�
ða; jÞ : a 2 f1; . . .; rg; j 2 f0; . . .; kagg:

Given m ¼ m1 m2ð Þ 2 Z2, let us define nm : IðL;KÞ ! Z by setting

nmða; jÞ :¼ �m2 ðka � jþ laÞ þ m1 ðla þ jÞ: ð72Þ

Let us assume that UL;K

�
PðWL;KÞ

�
\ Rþ � ı m 6¼ ;, and that UL;K is transverse to Rþ � ı m.

Then, by Proposition 2.3 and Theorem 2.5, m lies in the interior of one of the wedges cut

out by the rays through the integral vectors mka;ja;la defined in (31). It follows that:

1. nmða; jÞ 6¼ 0 for every ða; jÞ 2 IðL;KÞ;
2. there exist ða; jÞ; ðb; hÞ 2 IðL;KÞ such that nmða; jÞ � nmðb; hÞ\0.
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Definition 3.4 Under the previous assumptions, let us define

PmðL;KÞ :¼
�
ða; jÞ 2 IðL;KÞ : nmða; jÞ[ 0

�
; ð73Þ

N mðL;KÞ :¼
�
ða; jÞ 2 IðL;KÞ : nmða; jÞ\0

�
: ð74Þ

Then IðL;KÞ is the disjoint union of PmðL;KÞ and N mðL;KÞ, both of which are non-

empty. Furthermore, let us define

amðL;KÞ :¼
�
jnmða; jÞj

�
ða;jÞ2PmðL;KÞ 2 NjPmðL;KÞj;

bmðL;KÞ :¼
�
jnmða; jÞj

�
ða;jÞ2N mðL;KÞ 2 NjN mðL;KÞj:

Theorem 3.2 Let WL;K be a representation fullfilling the equivalent conditions of

Proposition 2.5. Suppose that m ¼ m1 m2ð Þ, m1 6¼ m2, and that

1. UL;K

�
PðWL;KÞ

�
\ Rþ � ı m 6¼ ;;

2. UL;K is transverse to Rþ � ı m.

Then the m-th DH-reduction of PðWL;KÞ is

P amðL;KÞ;�bmðL;KÞð Þ; gamðL;KÞ;�bmðL;KÞ
� �

: ð75Þ

Furthermore, if WL;K is a uniform representation (Definition 2.3) then the complex orbifold

P amðL;KÞ;�bmðL;KÞð Þ remains constant as m ranges in the interior of one of the wedges

cut out by the rays through the mka;ja;la ’s.

Remark 3.3 As discussed in §3.2.1, (75) is a weighted projective subvariety and a Kähler

suborbifold of the weighted projective space

P cmðL;KÞð Þ; gcmðL;KÞdmðL;KÞ

� �
;

where

cmðL;KÞij :¼ amðL;KÞi þ bmðL;KÞj; dmðL;KÞij :¼ amðL;KÞi � bmðL;KÞj:

Proof of Theorem 3.2 By (28) we have with M ¼ PðWL;KÞ

MT
m ¼ ½Z� : m2

Xr

a¼1

kFka;1ðZaÞk
2 þ la kZak2

� �
(

¼ m1

Xr

a¼1

kFka;2ðZaÞk
2 þ la kZak2

� �
)

:

ð76Þ

In view of (7) and (8), the relation in (76) may be rewritten
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0 ¼
X

ða;jÞ2IðL;KÞ
nmða; jÞ jza;ja j

2

¼
X

ða;jÞ2PmðL;KÞ
jnmða; jÞj jza;ja j

2 �
X

ða;jÞ2N mðL;KÞ
jnmða; jÞj jza;ja j

2:
ð77Þ

This can be reformulated as follows. Let us consider CjPmðL;KÞj and CjN mðL;KÞj, with coor-

dinates Z ¼ ðza;jÞða;jÞ2PmðL;KÞ, W ¼ ðwa;jÞða;jÞ2N mðL;KÞ, respectively. On CjPmðL;KÞj and

CjN mðL;KÞj we have the positive definite Hermitian products given by

hamðL;KÞðZ; Z 0Þ ¼
X

ða;jÞ2PmðL;KÞ
jnmða; jÞj za;j z0a;j;

hbmðL;KÞðW ;W 0Þ ¼
X

ða;jÞ2N mðL;KÞ
jnmða; jÞjwa;j w0a;j;

and so by (76)

MT
m ffi M0

T
m :¼ ½Z : W� 2 P CjPmðL;KÞj � CjN mðL;KÞj

� �
:

n

hamðL;KÞðZ; ZÞ ¼ hbmðL;KÞðW ;WÞ
�
:

ð78Þ

Therefore MT
m may be identified by famðL;KÞ;�bmðL;KÞ in (62) with the unit circle bundle in

XamðL;KÞ;�bmðL;KÞ � OPjPm ðL;KÞj�1ð�1Þ�O
PjN m ðL;KÞj�1

ð�1Þ;

relative to the Hermitian metric induced by hamðL;KÞ and hbmðL;KÞ; the bundle projection is

p : ½Z : W�7!ð½Z�; ½W�Þ.
In the notation (65), the action of T1

m? on M0Tm given by restriction of /L;K is

camðL;KÞ;�bmðL;KÞ
eı#

��
ðza;jÞ : ðwa;jÞ

�
Þ

¼ e�ı nmða;jÞ# za;j

� �
: e�ı nmða;jÞ# wa;j

� �h i

¼ e�ı jnmða;jÞj# za;j

� �
: eı jnmða;jÞj# wa;j

� �h i
:

ð79Þ

camðL;KÞ;�bmðL;KÞ corresponds, under the previous identification, to the contact lift

~lamðL;KÞ;�bmðL;KÞ of the Hamiltonian action lamðL;KÞ;�bmðL;KÞ (see (59)) on

PjPmðL;KÞj�1 � PjN mðL;KÞj�1; 2xamðL;KÞ;�bmðL;KÞ

� �
;

with moment map UamðL;KÞ;bmðL;KÞ (recall (53)). Thte first statement of the Theorem follows

from this.

Let us assume that WL;K is a uniform representation. By definition, there is s 2 Z

(independent of a) such that ka þ 2 la ¼ s for a ¼ 1; . . .; r. Then (72) may be rewritten

nmða; jÞ ¼ �m2 sþ ðm1 þ m2Þ ðla þ jÞ: ð80Þ

Therefore, (79) may be rewritten
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camðL;KÞ;�bmðL;KÞ
eı#

��
ðza;jÞ : ðwa;jÞ

�
Þ

¼ eı ½m2 s�ðlaþjÞ ðm1þm2Þ#� za;j

� �
: eı ½m2 s�ðm1þm2Þ ðlaþjÞ#� wa;j

� �h i

¼ e�ı ðm1þm2Þ ðlaþjÞ#� za;j

� �
: e�ı ðm1þm2Þ ðlaþjÞ# wa;j

� �h i
:

ð81Þ

After passing to the quotient group T1ðmÞ in (39), we obtain the action�
ðza;jÞ : ðwa;jÞ

�
7! e�ı ðlaþjÞ#� za;j
� �

: e�ı ðlaþjÞ#� wa;j

� �� �
, which is functionally independent of

m, and the claim can be readily deduced from this. h

3.2.4 The case of lk and m1 
 m2

Let us focus on the special case of lk, for k 2 and m in the in the range m1 
 m2. For any

positive sequence a ¼ a1 � � � akð Þ, the quotient of the sphere S2k�1
a � Ck by the circle

action with weights 1 2 � � � kð Þ is Pð1; 2; . . .; kÞ; the image in Pð1; 2; . . .; kÞ of

S2k�1
a \ ðz1 ¼ 0Þ is a canonically embedded copy of Pð2; . . .; kÞ, independent of a. We

shall denote by | : Pð2; . . .; kÞ,!Pð1; 2; . . .; kÞ the inclusion, which is a holomorphic

orbifold embedding.

Theorem 3.3 Under the previous assumptions, suppose m1 
 m2. Then

M
T
m ffi Pð1; 2; . . .; kÞ. Furthermore, there is a smooth isotopy of orbifold embeddings

J : ½0; 1� � Pð2; . . .; kÞ ! Pð1; 2; . . .; kÞ

such that:

1. J0 ¼ |;

2. J1

�
Pð2; . . .; kÞ

�
¼ M

G
m ;

3. Jt
�
Pð2; . . .; kÞ

�
is a symplectically embedded orbifold in ðMT

m ; X0Þ for every t 2 ½0; 1�;

In particular, M
G
m is diffeomorphic to Pð2; . . .; kÞ.

The following argument will produce Jt
�
Pð2; . . .; kÞ

�
as the zero locus of a smoothly

varying family of transverse sections of the orbifold line bundle in Theorem 3.1.

Proof of Theorem 3.3 We have M ¼ Pk ¼ PðWkÞ. By (7), (8) and (9), MT
m is contained in

the affine open set Ak
0 ¼ ðz0 6¼ 0Þ. More explicitly, let us define amðkÞ 2 Nk by setting

amðkÞj :¼ m1 j� m2 ðk � jÞ;

thus amðkÞj [ 0 for j ¼ 1; . . .; k if m1 [ ðk � 1Þ m2. Then

MT
m ¼

1
ffiffiffiffiffiffiffiffi
k m2

p : v1 : � � � : vk
� �

2 Pk :
Xk

j¼1

amðkÞj jvjj
2 ¼ 1

( )

ffi S2k�1
amðkÞ : ð82Þ
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Being irreducible, lk is uniform, hence T1ðmÞ ¼ S1ðmÞ in (39). Under the isomorphism

jm : S1 ffi T1
m?

in (32), T1
m?
\ ZðGÞ corresponds to the subgroup of S1 of ðm1 þ m2Þ-th roots of

unity; thus the quotient map T1
m?
! T1ðmÞ corresponds to the Lie group epimorphism

eı# 2 S1 7!eı ðm1þm2Þ# 2 S1.

Identified with S1 as in (32), T1
m? acts on MT

m as

ceı#
1
ffiffiffiffiffiffiffiffi
k m2

p : v1 : � � � : vk
� �	 


¼ 1
ffiffiffiffiffiffiffiffi
k m2

p : e�ı# ðv1þv2Þ v1 : � � � : e�ı j# ðv1þv2Þ vj : � � � : e�ı k # ðv1þv2Þ vk

� �
:

ð83Þ

Passing to the action c of the quotient group T1ðmÞ ffi S1, we conclude that J0 ¼ J00, and

M
T
m ffi Pð1; 2; . . .; kÞ. Furthermore, the intersection S2k�1

amðkÞ \ ðv1 ¼ 0Þ is clearly c-invariant,

and it projects down to Pð2; . . .; kÞ � Pð1; 2; . . .; kÞ.
As c is effective, any character v of T1ðmÞ defines an orbifold line bundle Lv on M

T
m . We

shall write L ¼ L1 if v ¼ v1 corresponds to the identity of S1. Any function f : S2k�1
amðkÞ ! C

which is the restriction of a C1 (respectively, holomorphic) function on Ck and satisfies

f � ce�ı# ¼ eı# f determines a C1 (respectively, holomorphic) section rf of La.

With abuse of notation, in view of (82) let us regard U12 as defined on S2k�1
amðkÞ ; by (6),

U12ðVÞ ¼
ı

ðk m2Þ�1 þ kVk2

1
ffiffiffiffiffi
m2
p v1 þ

Xk�1

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk � jÞ ðjþ 1Þ

p
vjþ1 vj

" #

: ð84Þ

Let us consider the continuous function K : ½0; 1� � S2k�1
amðkÞ ! C given by

K : ðt;VÞ

7! ı

ðk m2Þ�1 þ t kVk2

1
ffiffiffiffiffi
m2
p v1 þ t

Xk�1

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk � jÞ ðjþ 1Þ

p
vjþ1 vj

" #

;
ð85Þ

we shall write KtðVÞ :¼ Kðt;VÞ.
Let ðe1; . . .; ekÞ denote the standard basis of Ck, and let ðe�1; . . .; e�kÞ be the dual basis.

Then

K0 ¼ ı k
ffiffiffiffiffi
m2

p
e�1

S2k�1
am ðkÞ

; K1 ¼ U12; Kt � ce�ı# ¼ eı# Kt; 8 t 2 ½0; 1�; ð86Þ

in particular, Kt corresponds to a C1 section rKt
of L1.

The following is left to the reader:

Lemma 3.8 Let k � k : Ck ! R be the standard Euclidean norm. If m1 2 ðk � 1Þ m2, then

kVk�
ffiffiffiffiffiffiffiffiffi
2=m1

p
for all V 2 S2k�1

amðkÞ .

Using (85) and Lemma 3.8, one can also prove the following two Lemmas.

Lemma 3.9 Let us set ~Kt :¼ �ı ðk
ffiffiffi
m
p

2Þ
�1 Kt, and let us view ~Kt as defined on Ck (by the

same functional equation). Then, uniformly in V 2 S2k�1
amðkÞ we have
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dV
~Kt ¼ e�1 þ O

ffiffiffiffiffi
m2

m1

r	 

:

Lemma 3.10 There exists C[ 0 (independent of k, t and m) such that if V 2 S2k�1
amðkÞ and

KtðVÞ ¼ 0 for some t 2 ½0; 1�, then jv1j �C k ð ffiffiffiffiffim2
p

=m1Þ.

The general V 2 S2k�1
amðkÞ has the form

V ¼
Xk

j¼1

rjffiffiffiffiffiffiffiffiffiffiffiffi
amðkÞj

q ej; where rj 2 C;
Xk

j¼1

jrjj2 ¼ 1: ð87Þ

Lemma 3.10 and (87) imply that if V 2 S2k�1
amðkÞ and KtðVÞ ¼ 0 for some t 2 ½0; 1�, then

v1 ¼ r1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
amðkÞ1

p
where r1 2 C satisfies

jr1j �C k

ffiffiffiffiffi
m2
p

m1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
amðkÞ1

q
�C k

ffiffiffiffiffi
m2

m1

r
: ð88Þ

Hence, if R0 ¼ R0ðVÞ :¼
Pk

j¼2 rj ej then

m1=m2 [ 2C2 k2 ) kR0k2 ¼ 1� jr1j2 1� C2 k2 ðm2=m1Þ 1=2:

Hence there exists j 2 f2; . . .; kg such that jrjj  1=
ffiffiffiffiffiffi
2 k
p

. Perhaps after renumbering, we

may assume that j ¼ 2.

Therefore, we can draw the following conclusion.

Lemma 3.11 Suppose m1=m2 
 0. If V 2 S2k�1
amðkÞ and KtðVÞ ¼ 0 for some t 2 ½0; 1� then,

perhaps after a renumbering of ð2; . . .; kÞ we have

V ¼ r1ffiffiffiffiffiffiffiffiffiffiffiffiffi
amðkÞ1

p e1 þ
r2ffiffiffiffiffiffiffiffiffiffiffiffiffi
amðkÞ2

p e2 þ SðVÞ; ð89Þ

where SðVÞ 2 spanCðe3; . . .; ekÞ, r1 satisfies (88) and jr2j  1=
ffiffiffiffiffiffi
2 k
p

.

Let us set

NV :¼ ffiffiffiffiffi
m1

p � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
amðkÞ1

p r2 e1 þ
1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
amðkÞ2

p r1 e2

" #

¼� r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðk � 1Þ m2

m1

q e1 þ
r1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� ðk � 2Þ m2

m1

q e2:

ð90Þ

Then spanCðNVÞ � TVS
2k�1
amðkÞ and kNVk[ 1=ð2kÞ by Lemma 3.11. In view of Lemma 3.9,

we obtain for every eıh 2 S1
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dV ~Kt eıh NV

� �
¼ � eıh r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðk � 1Þ m2

m1

q þ O

ffiffiffiffiffi
m2

m1

r	 

: ð91Þ

It follows that dV
~Kt restricts to a surjective R-linear map spanCðNVÞ ! C; therefore the

same is true a fortiori of the restriction of dVKt to TVS
2k�1
amðkÞ .

Thus we conclude the following:

Lemma 3.12 Suppose m1=m2 
 0, V 2 S2k�1
amðkÞ , t 2 ½0; 1�, and KtðVÞ ¼ 0. Then

dVKtjTVS2k�1
am ðkÞ
! C is a surjective R-linear map.

Lemma 3.12 has the following consequences:

Corollary 3.3 In the situation of Lemma 3.12, Zt :¼ K�1
t ð0Þ � S2k�1

amðkÞ is a smooth c-in-

variant submanifold of S2k�1
amðkÞ , of (real) codimension 2.

Corollary 3.4 Zt :¼ Zt=c � M
T
m is a smoothly embedded orbifold of real codimension 2.

Corollary 3.5 Let Z :¼ K�1ð0Þ � ½0; 1� � S2k�1
amðkÞ . Then:

1. Z is a submanifold (with boundary) of codimension 2 of ½0; 1� � S2k�1
amðkÞ ;

2. the projection p : Z ! ½0; 1� is a submersion;

3. Zt ¼ p�1ðtÞ for every t.

T1ðmÞ acts on ½0; 1� � S2k�1
amðkÞ trivially on the first factor and via c on the second, and this

action preserves Z in view of (86). The product metric on ½0; 1� � S2k�1
amðkÞ restricts to an

invariant Riemannian metric gZ on Z. By gZ , we can define an invariant horizontal

distribution for p, whence an invariant horizontal vector field, whose integral curves are the

horizontal lifts of [0, 1] for gZ . These horizontal lifts define an invariant family wp of

paths, one for each p 2 Z0; for each t, the assignment wt : p 2 Z0 7!wpðtÞ 2 Zt is a c-

equivariant diffeomorphism. Therefore, wt descends to a smoothly varying family of

orbifold diffeomorphisms w
t
: Z0 ! Zt. In particular, Z0 is diffeomorphic to Z1.

Let amðkÞ0 :¼
�
amðkÞ2; . . .; amðkÞk

�
. Then in view of (86)

Z0 ¼ fv1 ¼ 0g \ S2k�1
amðkÞ0 ¼ f0g � S2k�3

amðkÞ0 ; ð92Þ

by (83), Z0 ffi Pð2; 3; . . .; kÞ. Thus every Zt � M
T
m is diffeomorphic to Pð2; 3; . . .; kÞ.

Let us show that every Zt is symplectically embedded in ðMT
m ;X0Þ. By construction,

S2k�1
amðkÞ ffi MT

m ¼ W�1
m?
ð0Þ (Wm? is as in Lemma 3.1). Let q : S2k�1

amðkÞ ! M
T
m be the projection,

and let i : S2k�1
amðkÞ ,!Ck ffi Ak

0 � Pk be the inclusion; then q�ðX0Þ ¼ i�ðxFSÞ.
Let x0 :¼ ðı=2Þ

Pk
j¼1 dvj ^ dvj be the standard symplectic structure on Ck. Expressing

xFS in affine coordinates, by a standard computation we obtain on Ak
0
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xFS ¼ x0 þ R2ðVÞ; ð93Þ

where R2 is a differential form vanishing to second order at the origin. By Lemma 3.8,

along S2k�1
amðkÞ we have kVk2� 2=m1� 2 m2=m1; hence (93) implies that xFS ¼ x0 þ Oðm2=m1Þ

on S2k�1
amðkÞ . Therefore,

q�ðX0Þ ¼ i�ðxFSÞ ¼ i�ðx0Þ þ O
m2

m1

	 

: ð94Þ

With ~Kt : A
n
0 ffi Ck ! C as in Lemma 3.9, let us set ~Zt :¼ ~K�1

t ð0Þ; thus Zt ¼ ~Zt \ S2k�1
amðkÞ .

Let ð�1; �2; . . .; �2k�1; �2kÞ be the real basis ðe1; ı e1; . . .; ek; ı ekÞ of Ck ffi R2k. Then by

Lemma 3.9

dV
~Kt ¼��1 þ ı ��2 þ O

ffiffiffiffiffi
m2

m1

r	 

ðV 2 S2k�1

amðkÞ Þ; ð95Þ

and this implies that if m1=m2 
 0 then kerðdV
~KtÞ is a (real) symplectic vector subspace of

ðCk;x0Þ whenever V 2 S2k�1
amðkÞ and t 2 ½0; 1�. Given this and (94), we conclude the

following:

Lemma 3.13 If m1=m2 
 0, then the following holds. For every t 2 ½0; 1� and V 2 S2k�1
amðkÞ

such that KtðVÞ ¼ 0, the tangent space TV ~Zt is a symplectic vector subspace of ðCk;xFSÞ.

Corollary 3.6 If m1=m2 
 0, there exists a c-invariant open neighborhood U � Ck of S2k�1
amðkÞ ,

such that ~Z 0t :¼ ~Zt \ U is a symplectic submanifold of real codimension 2 of ðCk;xFSÞ, for
every t 2 ½0; 1�.

Let |t : ~Z 0t ,!Ck be the inclusion, and set xt :¼ |�t ðxFSÞ. The restriction wt :¼ Wm? � |t is the

moment map for the action of T1
m? on ð ~Z 0t ;xtÞ, and Zt ¼ w�1

t ð0Þ. Hence Zt :¼ ~Z 0t=c, with the

reduced symplectic structure xt, is the symplectic reduction of ð ~Z 0t ;xtÞ, and as such it is a

symplectic suborbifold of ðMT
m ;X0Þ.

4 MG
O

We shall assume throughout that 0 62 UðMÞ and that U is transverse to CðOÞ, and focus on

M
G
O and its relation to M

G
m . We do not assume that M be projective.

Given that U is transverse to CðOÞ, / has rank  3 along MG
O, meaning that for every

m 2 MG
O the evaluation map valm : n 2 g7!nMðmÞ 2 TmM

G
O has rank  3 [4, 15]. Let us

give a direct proof for the reader’s convenience.

Proposition 4.1 Given that U is transverse to CðOÞ, for any m 2 MG
O the evaluation map

valm : g! TmM is injective on ker
�
UðmÞ

�
.
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Proof If m 2 MG
O, then by equivariance U is transverse to CðOÞ at m if and only if it is

transverse to the ray Rþ UðmÞ at m. Hence, dmUðTmMÞ þ RUðmÞ ¼ g_. Suppose that

n 2 ker
�
UðmÞ

�
, and that nMðmÞ ¼ 0. Pick a 2 g_. Then there exists v 2 TmM and k 2 R

such that a ¼ dmUðvÞ þ kUðmÞ. Thus

aðnÞ ¼ dmUðvÞðnÞ þ kUðmÞðnÞ
¼ dmUðvÞðnÞ ¼ dmU

nðvÞ ¼ 2x
�
nMðmÞ; v

�
¼ 0:

Thus aðnÞ ¼ 0 8 a 2 g_, whence n ¼ 0.

For example, when / ¼ /L;K for a uniform representation (Definition 2.3), / is bound to

have constant rank 3 along MG
O.

We shall accordingly distinguish two cases: 1): / has constant rank 3 along MG
O; 2): / is

generically locally free along MG
O. Before, however, it is in order to sum up some general

facts.

If m 2 MG
O, then by definition there exist unique kmðmÞ[ 0 and hm T 2 G=T such that

UðmÞ ¼ ı kmðmÞ hm
m1 0

0 m2

	 

h�1
m : ð96Þ

The applications km and m 7!hm T are C1. Furthermore, hlgðmÞ T ¼ g hm T and km ¼ km � lg
by the equivariance of U.

Let us define

T1
m?;m

:¼ hm T1
m?
h�1
m ; Tm :¼ hm T h�1

m ðm 2 MG
OÞ: ð97Þ

Then T1
m?;m

6 Tm 6 G are well-defined, and

T1
m?;lgðmÞ ¼ g Tm? ;m g�1

6 TlgðmÞ ¼ g Tm g�1 ðg 2 G; m 2 MG
OÞ: ð98Þ

In particular, if g 2 Tm then TlgðmÞ ¼ Tm; hence Tm0 ¼ Tm for every m0 2 Tm � m; similarly

for Tm?;m.

Definition 4.1 Let us define the action q : S1 �MG
O ! MG

O by setting

qeı#ðmÞ :¼ /hm jmðeı#Þ h�1
m
ðmÞ;

where jm : S1 ! T1
m? is as in (32).

Thus the q-orbit of m 2 MG
O is Tm � m. The following facts are more or less well-known,

and are either discussed in [4], or can be deduced using arguments in [4, 6]:

Lemma 4.1 MG
O � M is a compact and connected G-invariant hypersurface, and q is

locally free. The isotropic leaves of MG
O are the q-orbits. Hence, the quotient M

G
O is an

orbifold of real dimension 2d � 2, with a reduced symplectic structure x
M

G

O

.

Let p : MG
O ! M

G
O be the projection. Then pðMG

m Þ is diffeomorphic to M
G
m in (33); with

abuse of notation, we shall write M
G
m ¼ pðMG

m Þ. We have seen that M
G
m has an intrinsic
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symplectic structure x
M

G

m

, and that ðMG
m ;xM

G

m

Þ is a symplectic suborbifold of ðMT
m ;xM

T

m

Þ.
Arguing as in §3.1 one obtains the following.

Lemma 4.2 Under the previous identification, ðMG
m ;xM

G

m

Þ is a symplectic suborbifold of

ðMG
O;xM

G

O

Þ.

Furthermore, we have:

Lemma 4.3 For every eı# 2 S1, g 2 G, m 2 MG
O we have

qeı# � /gðmÞ ¼ /g � qeı#ðmÞ:

Corollary 4.1 / (restricted to MG
O) descends to a smooth action

/ : G�M
G
O ! M

G
O:

Furthermore, / is symplectic for x
M

G

O

.

In view of (96) and Definition 4.1, UjMG
O

is q-invariant, and therefore it descends to a

smooth function U : M
G
O ! g.

Corollary 4.2 / is Hamiltonian for 2x
M

G

O

, with moment map U.

4.1 Case 1)

In this case, we shall establish in Theorem 4.1 that M
G
O factors symplectically as the

product of M
G
m and a coadjoint orbit.

Proposition 4.2 If the rank of / along MG
O is generically 3, then it is 3 everywhere on MG

O.

Furthermore, the stabilizer Fm 6 G of any m 2 MG
O is 1-dimensional subgroup Fm 6 Tm,

transverse to T1
m?;m

in Tm.

This will be the case, for instance, if l is associated to a uniform representation, in which

case the connected component of Fm is Z(G).

Proof of Proposition 4.2 Let us first assume that m 2 MG
m , so that Tm ¼ T . Then any g 2 Fm

commutes with UðmÞ, therefore g 2 T since m1 6¼ m2. Thus Fm 6 T . Since the action of T1
m?

is locally free at m, Fm has to be transverse to T1
m?

in T. The general case follows from this

and (98).

For m 2 M
G
O, let Fm denote the stabilizer of m for l.
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Corollary 4.3 Under the hypothesis of Proposition 4.2, Fm ¼ Tm, for any m 2 M
G
O and

m 2 p�1ðmÞ. In particular, Fm ¼ T , for any m 2 M
G
m .

Corollary 4.4 Under the hypothesis of Proposition 4.2, / is trivial on Z(G). If, in addition,

m1 þ m2 6¼ 0, then km is constant.

Proof of Corollary 4.4 For any m 2 M
G
O, Fm is a maximal torus, hence contains Z(G). This

proves the first statement. As to the second, km descends to a well-defined smooth function

on M
G
O, which we shall denote by the same symbol. Furthermore, the Hamiltonian function

for the (trivial) action of Z(G) on ðMG
O; 2x

M
G

O

Þ is hU; ı I2i ¼ km ðm1 þ m2Þ. Since

m1 þ m2 6¼ 0, km needs to be contant.

By (96), if m 2 M
G
O and m 2 p�1ðmÞ we have

/h�1
m
ðmÞ 2 MG

m ; /h�1
m
ðmÞ 2 M

G
m :

Thus we obtain well-defined and C1 orbifold maps

D : m 2 M
G
O 7! /h�1

m
ðmÞ; hm T

� �
2 M

G
m � ðG=TÞ; ð99Þ

and

H : m; h Tð Þ 2 M
G
m � ðG=TÞ7!/hðmÞ 2 M

G
O: ð100Þ

Notice that D and H are well-defined by Corollary 4.3, and H ¼ D�1. Hence D and H are

diffeomorphism. Furthermore, G acts on M
G
m � ðG=TÞ by

ag m; h Tð Þ :¼ m; gh Tð Þ:

It is clear from (100) that H intertwines a and /, that is, H � ag ¼ /g �H for all g 2 G.

Let us identify G/T with P1 by the equivariant diffeomorphism

r : h T 2 G=T 7!½h e2� 2 P1;

where ðe1; e2Þ is the standard basis of C2. We have proved the following:

Proposition 4.3 Under the hypothesis of Proposition 4.2, M
G
O is equivariantly diffeo-

morphic to M
G
m � P1.

By the Künneth formula, we obtain:

Corollary 4.5 Under the hypothesis of Proposition 4.2, there is a ring isomorphism

H�ðMG
OÞ ffi H�ðMG

m Þ � H�ðP1Þ.

Let us set xG=T :¼ r�ðxFSÞ, where xFS is the Fubini-Study form. On M
G
m � ðG=TÞ con-

sider the product symplectic structure x
M

G

m

� xG=T . Let us assume that m1 þ m2 6¼ 0; then

km [ 0 is a constant (Corollary 4.4), and we may consider the symplectic form
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x0G=T :¼ 2 ðm1 þ m2Þ km xG=T :

We can strengthen Proposition 4.3 in the following manner:

Theorem 4.1 Under the assumptions on Proposition 4.2, assume in addition that
m1 þ m2 6¼ 0. Then

D : ðMG
O;xM

G

O

Þ !
�
M

G
m � ðG=TÞ;xM

G

m

� x0G=T
�

is a symplectomorphism.

Remark 4.1 The assumption that m1 þ m2 6¼ 0 is guaranteed in the case of PðWL;KÞ, by

Corollary 2.10.

Proof of Theorem 4.1 M
G
O is the l-saturation of M

G
m ; furthermore, M

G
m maps diffeomor-

phically under D onto M
G
m � fI2 Tg. Since / is symplectic on ðMG

O;xM
G

O

Þ, a is symplectic

on
�
M

G
m � ðG=TÞ;xM

G

m

� xG=T

�
, and D intertwines the two symplectic actions, it suffices

to prove the statement along M
G
m . Explicitly, suppose m0 2 M

G
m and m ¼ /gðm0Þ for some

g 2 G; then D � /g ¼ ag � D implies dmD � dm0
/g ¼ dDðm0Þag � dm0

D. Hence if dmD is a

linear symplectomorphism for every m 2 M
G
m , then it is so also for every m 2 M

G
O.

For every t 2 g, let t
M

G

O

denote the corresponding orbifold vector field on M
G
O (see

[11]). If n; g; a are as in (16), Lemma 3.3 and Corollary 3.1 imply that there is a symplectic

direct sum of orbifold (uniformized) tangent bundles

|�ðTMG
OÞ ¼ TM

G
m � |�ða

M
G

O

Þ;

where | : M
G
m ,!M

G
O is the inclusion.

Let us fix m 2 M
G
m , so that DðmÞ ¼ ðm; I2 TÞ. We have

Tðm;I2 TÞ
�
M

G
m � ðG=TÞ

�
ffi TmðM

G
m Þ � TI2 TðG=TÞ ffi TmðM

G
m Þ � a;

in both cases, the two summands are symplectically orthogonal. Furthermore, it is apparent

from our definition of D that, in terms of the previous isomorphisms

TmM
G
O ffi TmðM

G
m Þ � a ffi Tðm;I2 TÞ

�
M

G
m � ðG=TÞ

�
, dmD corresponds to the identity map

TmðM
G
m Þ � a! TmðM

G
m Þ � a. Therefore, we are reduced to comparing the symplectic

structures on a coming from xG=T and from M
G
O.

On the one hand, with x0 the standard symplectic structure on C2,

xG=T ;I2 Tðn; gÞ ¼ x0ðn e1; g1Þ ¼
ı

2

X2

j¼1

dzj ^ dzj

 !
ı

0

	 

;

1

0

	 
	 

¼ �1:

On the other,
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x
M

G

O ;m

�
n
M

G

O

ðmÞ; g
M

G

O

ðmÞ
�
¼dmU

n
g
M

G

O

ðmÞ
� �

¼ g;UðmÞ
� �

; n
� �

¼ �2 ðm1 þ m2Þ km:

4.2 Case 2)

Let us relax the assumption that the rank of / is everywhere 3 on MG
m . On M

G
m � Bð0; p=2Þ

let us define a relation 	 as follows: ðm1; z1Þ	 ðm2; z2Þ if and only if either

ðm1; z1Þ ¼ ðm2; z2Þ, or else zj ¼ ðp=2Þ eı hj , j ¼ 1; 2, and m2 ¼ /Dðh1;h2Þðm1Þ, where

Dðh1; h2Þ :¼
eı ðh2�h1Þ 0

0 eı ðh1�h2Þ

 !

:

Let M̂G
O :¼ M

G
m � Bð0; p=2Þ=	 denote the corresponding identification space. If the rank

of / along MG
O is constant and equal to three, as in Proposition 4.3, then T acts trivially on

M
G
m ; hence there is a homeomorphism M̂G

O ¼ M
G
m � S2.

Theorem 4.2 Suppose that 0 62 UðMÞ, and that U is transverse to CðOÞ. Then:

1. M
G
O is homeomorphic to M̂G

O.

2. For every q we have an isomorphism

Hq
�
M

G
O

�
ffi Hq�2

�
M

G
m

�
� Hq

�
M

G
m

�
:

Proof of Theorem 4.2 Let us consider the R-linear isomorphism

B : z 2 C 7!Bz :¼ ı
0 z

z 0

	 

2 a � g: ð101Þ

Lemma 4.4 For any z 2 C, we have

eBz ¼
cosðjzjÞ ı

sinðjzjÞ
jzj z

ı
sinðjzjÞ
jzj z cosðjzjÞ

0

BB@

1

CCA ¼ cosðjzjÞ I2 þ BsinðjzjÞ z=jzj:

The previous expression is well-defined only for z 6¼ 0, but sinðwÞ=w extends to an even

analytic function Fðw2Þ on C; therefore sinðjzjÞ z=jzj ¼ Fðjzj2Þ z extends to a real-analytic

function of z. We shall regard eBz as a real-analytic function C! G.

123

2558 R. Paoletti



Proof of Lemma 4.4 The statement follows from a computation based on the identities

B2k
z ¼ ð�1Þk jzj2k I2 ¼ ðı jzjÞ2k I2; B2kþ1

z ¼ ð�1Þk jzj2k Bz ¼ ðı jzjÞ2k Bz:

Let Dm be the diagonal matrix with diagonal entries m1 m2ð Þ. Then by Lemma 4.4 we

have

eBz Dm e
�Bz

¼
m1 cosðjzjÞ2 þ m2 sinðjzjÞ2 ı ðm2 � m1Þ cosðjzjÞ sinðjzjÞ z

jzj

ı ðm1 � m2Þ cosðjzjÞ sinðjzjÞ z

jzj m2 cosðjzjÞ2 þ m1 sinðjzjÞ2

0

BB@

1

CCA:
ð102Þ

The function km : MG
O ! R, being G-invariant, descends to a smooth function on M

G
O, that

will be denoted by the same symbol.

Corollary 4.6 Let UT1
m?

: M
G
O ! ıR be the moment map for the Hamiltonian action of T1

m?

on the symplectic orbifold ðMG
O;xM

G

O

Þ. Let us identify T1
m?

with S1 by the isomorphism jm in

(32). Then for every m 2 M
G
m and z 2 C we have

UT1
m?

�
/eBz ðmÞ

�
¼ ı m2

1 � m2
2

� �
kmðmÞ sinðjzjÞ2:

Let us set m0 :¼ m2 m1ð Þ, MG
m0 :¼ U�1ðRþ � m0Þ. Hence,

M
G
m0 :¼ U

�1ðRþ � m0Þ ¼ p MG
m0

� �
:

Furthermore,

MG
m0 ¼ /c MG

m

� �
; M

G
m0 ¼ /c M

G
m

� �
; c :¼

0 ı

ı 0

	 

¼ eBp=2 : ð103Þ

Proposition 4.4 The map

F : ðm; zÞ 2 M
G
m � Bð0; p=2Þ7!/eBz ðmÞ 2 M

G
O:

satisfies the following properties:

1. F is surjective;

2. F restricts to a diffeomorphism M
G
m � Bð0; p=2Þ ! M

G
O nM

G
m ;

3. F induces a homeomorphism between M̂G
O ffi M

G
O.

Proof of Proposition 4.4 Let us prove that F is surjective. First note that M
G
m ¼

F
�
M

G
m � f0g

�
and that M

G
m0 ¼ F

�
M

G
m � fp=2g

�
by (103). Pick m 2 M

G
O n

�
M

G
m [M

G
m0
�
.

Then there exists g 2 G such that m 2 /gðM
G
m Þ, and we need to show that g may be chosen
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of the form eBz , for some z 2 Bð0; p=2Þ. We know that g is neither diagonal nor antidi-

agonal. Furthermore, since M
G
m is T-invariant, we are free to replace g by any element in

g T . In particular, we may assume g 2 SUð2Þ and then, muliplying by a suitable diagonal

matrix in SU(2), that it has the form

g ¼
cosðxÞ � sinðxÞ e�ı c

sinðxÞ eı c cosðxÞ

	 

:

Perhaps multiplying by �I2, we may further assume that cosðxÞ[ 0, and since g is not

diagonal we may assume x 2 ð�p=2; 0Þ [ ð0; p=2Þ. If x 2 ð0; p=2Þ, set z ¼ ı x e�ı c; we

conclude from Lemma 4.4 that g ¼ eBz . If x 2 ð�p=2; 0Þ, replace it by x0 ¼ �x 2 ð0; p=2Þ
to reach the same conclusion.

Let us prove that F is injective on M
G
m � Bð0; p=2Þ. Suppose ðmj; zjÞ 2 M

G
m � Bð0; p=2Þ

and Fðm1; z1Þ ¼ Fðm2; z2Þ. We may assume that jzjj[ 0 for j ¼ 1; 2. We have, by defi-

nition of F,

/eBz1 m1ð Þ ¼ /eBz2 m2ð Þ ) m2 ¼ /e�Bz2 eBz1 m1ð Þ:

Since m1 6¼ m2, this forces

eB�z2 eBz1 ¼ e�Bz2 eBz1 2 T :

Computing the (1, 2) entry of the latter product by Lemma 4.4, we obtain

ı cosðjz2jÞ sinðjz1jÞ
z1

jz1j
� sinðjz2jÞ cosðjz1jÞ

z2

jz2j

� �
¼ 0:

Given that jzjj 2 ð0; p=2Þ, this implies z1 ¼ z2; it also follows therefore that m1 ¼ m2.

Let us prove that F is an orbifold embedding on M
G
m � Bð0; p=2Þ. We can lift (the

restriction of) F to a map

~F : ðm; zÞ 2 MG
m � Bð0; p=2Þ7!/eBz ðmÞ 2 MG

O nMG
m0 :

Let S1 act on MG
m � Bð0; p=2Þ by the product of the action of T1

m?
ffi S1 on MG

m and the

trivial action on Bð0; p=2Þ. If q is as in Definition 4.1, it follows from Lemma 4.3 that ~F is

S1-equivariant, and F is the map induced by ~F on the quotient spaces. To prove the claim, it

thus suffices to show that ~F is a (local) diffeomorphism. We know that ~F is a local

diffeorphism along MG
m � f0g. If m 2 MG

m and v 2 TmM
G
m , then for any z 2 Bð0; p=2Þ we

have

dðm;zÞF
�
ðv; 0Þ

�
¼ dm/eBz ðvÞ; ð104Þ

which is tangent to /eBz ðMG
m Þ at /eBz ðmÞ. On the other hand, for d	 0 2 C we have

eBzþd ¼ eBz eBd ¼ eBz eBd�1
2
½Bz;Bd�þR3ðdÞ:

Hence

dðm;zÞF
�
ð0; dÞ

�
¼ dm/eBz ðBdÞMðmÞ �

1

2
½Bz;Bd�MðmÞ

	 

: ð105Þ

Since ½Bz;Bd� is diagonal and TmM
G
m is T-invariant, ½Bz;Bd�MðmÞ 2 TmM

G
m . On the other

hand, ðBdÞMðmÞ 6¼ 0 for d 6¼ 0, and is normal to MG
m . Hence it follows (104) and (105) that
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dðm;0ÞF : Tðm;zÞ M
G
m � Bð0; p=2Þ

� �
ffi TmM

G
m � C! T/eBz ðmÞM

G
O

is an isomorphism of real vector spaces.

Finally, let us show that the topology of M
G
O is indeed the quotient topology of F.

Clearly F is continuous, hence F�1ðUÞ is open for every U � M
G
O. Suppose by contra-

diction that F�1ðUÞ is open for some U � M
G
O which is not open. Let m 2 U be such that

there exists a sequence mj 2 M
G
O, j ¼ 1; 2; . . ., such that mj ! m and mj 62 U for every j.

The subset R :¼ fmgj [ fmg � M
G
O is compact, and since F is proper so is F�1ðRÞ.

Consider ðnj; zjÞ 2 MG
m � Bð0; p=2Þ such that Fðnj; zjÞ ¼ mj for every j. Perhaps passing to

a subsequence, we may assume nj ! n 2 MG
m and zj ! z 2 Bð0; p=2Þ, and therefore by

continuity and uniqueness of the limit Fðn; zÞ ¼ m 2 U. Hence ðn; zÞ 2 F�1ðUÞ, and since

the latter is open by assumption we need to have ðnj; zjÞ 2 F�1ðUÞ for all j
 0. But then

mj ¼ Fðnj; zjÞ 2 U, a contradiction.

These considerations may be repeated inverting the roles of m and m0. Thus, we can replace

F in the statement of Proposition 4.4 by a similarly defined map

F0 : ðm; gÞ 2 M
G
m0 � Bð0; p=2Þ7!/eBg ðmÞ 2 M

G
O;

and prove an analogue of Proposition 4.4. In particular, we obtain two diffeomorphisms

M
G
m � B�ð0; p=2Þ�!F M

G
O n M

G
m [M

G
m0

� �
 �F
0
M

G
m0 � B�ð0; p=2Þ;

where B�ð0; p=2Þ :¼ Bð0; p=2Þ n f0g.

Lemma 4.5 Suppose ðm1; z1Þ 2 M
G
m � B�ð0; p=2Þ, ðm2; z2Þ 2 M

G
m0 � B�ð0; p=2Þ, and

Fðm1; z1Þ ¼ F0ðm2; z2Þ. Then jz1j þ jz2j ¼ p=2.

Proof of Lemma 4.5 Let m :¼ Fðm1; z1Þ. Then m; m1; m2 are all in the same G-orbit.

Therefore, kmðm1Þ ¼ kmðmÞ ¼ kmðm2Þ. By (102) and Corollary 4.6 and their analogues with

m and m0 interchanged, we have

UT1
m?
ðmÞ ¼ ı m2

1 � m2
2

� �
kmðmÞ sinðjz1jÞ2 ¼ ı m2

1 � m2
2

� �
kmðmÞ cosðjz2jÞ2:

Since jz1j; jz2j 2 ð0; p=2Þ, this forces jz1j þ jz2j ¼ p=2.

Let us set

U :¼ F M
G
m � Bð0; 3 p=8Þ

� �
; U0 :¼ F0 M

G
m0 � Bð0; 3p=8Þ

� �
: ð106Þ

Then U; U0 � M
G
O are open and diffeomorphic to M

G
m � Bð0; 3p=8Þ by Proposition 4.4 and

its analogue for F0. Furthermore, by Lemma 4.5,
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U0
c
:¼F0 ðm; zÞ 2 M

G
m0 � Bð0; p=2Þ : jzj  3

8
p

� �	 


¼F ðm; zÞ 2 M
G
m � Bð0; p=2Þ : jzj � 1

8
p

� �	 

� U:

ð107Þ

Hence fU;U0g is an open cover of MG
O. By (106) and (107) we have

U \ U0 ¼ F M
G
m � A 0;

1

8
p;

3

8
p

	 
	 

; ð108Þ

where for a\b\0 we set Að0; a; bÞ ¼ fz 2 C : a\jzj\bg. Also, F induces a diffeo-

morphism M
G
m � A 0; p=8; 3 p=8ð Þ and U \ U0. Therefore, in view of (108) and the Kün-

neth formula, the Mayer-Vietoris sequence for the open cover fU;U0g of M
G
O has the form

:::! Hq M
G
O

� �
! Hq

�
M

G
m

�
� Hq

�
M

G
m

�

! Hq
�
M

G
m

�
� Hq�1

�
M

G
m

�
! Hqþ1

�
M

G
O

�
! � � � ;

ð109Þ

which splits in short exact sequences

0! Hq�1
�
M

G
m

�
! Hqþ1

�
M

G
O

�
! Hqþ1

�
M

G
m

�
! 0:
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