
LOOP EQUATIONS AND A PROOF OF ZVONKINE’S @A -ELSV FORMULA

P. DUNIN-BARKOWSKI, R. KRAMER, A. POPOLITOV, AND S. SHADRIN

Abstract. We prove the 2006 Zvonkine conjecture that expresses Hurwitz numbers with completed
cycles in terms of intersection numbers with the Chiodo classes via the so-called A -ELSV formula, as well
as its orbifold generalization, the so-called @A -ELSV formula.
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1. Introduction

This paper is concerned with spin Hurwitz numbers, which have been conjectured by Zvonkine [Zvo06]
to be expressable as integrals over the moduli space of curves, in a generalized ELSV formula, called
Zvonkine’s A -ELSV formula. In [KLPS19], the authors conjectured an orbifold generalization of this
formula, called Zvonkine’s @A -ELSV formula. In this paper, we prove the latter, and hence also the
former, formula, via topological recursion and quadratic loop equations. We will introduce all of these
concepts in this introduction.

1.1. @-orbifold A -spin Hurwitz numbers. In this section we introduce the @-orbifold A -spin Hurwitz
numbers, following [OP06, Zvo06, SSZ12, SSZ15, KLPS19]. They are a very important and natural type
of Hurwitz numbers; more precisely, they are a special case of completed Hurwitz numbers. Completed
Hurwitz numbers were introduced by Okounkov and Pandharipande in [OP06] to establish a relation
between Hurwitz numbers and relative Gromov-Witten invariants; in this section we recall their result
speci�ed for the @-orbifold A -spin case.

1.1.1. Completed cycles. A partition _ of an integer 3 is a non-increasing �nite sequence _1 ≥ · · · ≥ _;
such that

∑
_8 = 3 .

It is known that the irreducible representations d_ of the symmetric group (3 are in a natural one-to-
one correspondence with the partitions _ of 3 . On the other hand, to a partition _ of 3 one can assign
a central element �?,_ of the group algebra C(? for any positive integer ? . The coe�cient of a given
permutation f ∈ (? in �?,_ is de�ned as the number of ways to choose and label ; cycles of f so that
their lengths are _1, . . . , _; , and the remaining ? −3 elements are �xed points of f . Thus the coe�cient
of f vanishes unless its cycle lengths are _1, . . . , _; , 1, . . . , 1. In particular, �?,_ = 0 if ? < 3 . Thus �?,_
is the sum of permutations with ; numbered cycles of lengths _1, . . . , _; and any number of non-numbered
�xed points.
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The collection of elements �?,_ for ? = 1, 2, . . . is called a stable center element �_ . For example,
the stable element � (2) is the sum of all transpositions in C(? , which is well-de�ned for each ? , and in
particular equals zero for ? = 1.

Let _ be a partition of 3 and ` a partition of ? . Consider the representation d` : (? → End(+ ), +
being the representation space with the dimension given by the hook length formula. Since�?,_ lies in
the center of C(? , its image under d` (extended to the group algebra) is an operator, corresponding to
a multiplication by a constant. Denote this constant by 5_ (`). Thus to a stable center element �_ we
have assigned a function 5_ de�ned on the set of all partitions, P. We are interested in the vector space
spanned by the functions 5_ .

To study this space, one de�nes some new functions on the set of partitions as follows:

(1.1) pA+1(`) =
1

A + 1

∑
8≥1

[
(`8 − 8 +

1
2
)A+1 − (−8 + 1

2
)A+1

]
(A ≥ 0) .

(The standard de�nition [OP06, p.11] involves certain additive constants that we have dropped to sim-
plify the expression, since these constants play no role in this paper.)

Theorem 1.1 (Kerov, Olshansky [KO94]). The vector space spanned by the functions 5_ coincides with
the algebra generated by the functions p1, p2, . . . .

As a corollary, to each stable center element �_ we can assign a polynomial in p1, p2, . . . and, con-
versely, each pA+1 corresponds to a linear combination of stable center elements �_ .

De�nition 1.2. The linear combination of stable center elements corresponding to pA+1 is called the
completed (A + 1)-cycle and denoted by � (A+1) .

The �rst completed cycles are:

� (1) = � (1) ,(1.2)

� (2) = � (2) ,

� (3) = � (3) +� (1,1) +
1
12
� (1) ,

� (4) = � (4) + 2� (2,1) +
5
4
� (2) ,

� (5) = � (5) + 3� (3,1) + 4� (2,2) +
11
2
� (3) + 4� (1,1,1) +

3
2
� (1,1) +

1
80
� (1) .

De�nition 1.3. We say that a stable center element�_ involved in the completed cycle� (A+1) has genus
defect [A + 2 −∑(_8 + 1)]/2.

1.1.2. A -spin Hurwitz numbers. Let 6 ∈ Z≥0 and A ∈ Z≥1. Let ®̀ = (`1, . . . , `=) be an integer partition of
length = = ℓ (`) such that< B (∑=

8=1 `8 + = + 26 − 2)/A is an integer, and let 3 B |` | = ∑=
8=1 `8 .

Recall that the completed (A + 1)-cycle can be considered as a central element of the group algebra
C(3 . An A -factorization of type (`1, . . . , `=) in the symmetric group (3 is a factorization

(1.3) f1 . . . f< = f

such that
(i) the cycle lengths of f equal `1, . . . , `= and

(ii) for each permutation f8 , the stable center element corresponding to its cyclic type enters the
completed (A + 1)-cycle with a nonzero coe�cient.

The product of these coe�cients for 8 going from 1 to< is called the weight of the A -factorization.
Choose< points H1, . . . , H< ∈ C and a system of< loops B8 ∈ c1(C \ {H1, . . . , H<}), B8 going around

H8 . Then to an A -factorization one can assign a family of stable maps from nodal curves to C%1. This is
done in the following way.

(i) Consider the covering of C%1 rami�ed over H1, . . . , H< , and ∞ with monodromies given by
f1, . . . , f< and f−1 (relative to the chosen loops).
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(ii) If f8 has ;8 distinguished cycles and genus defect 68 , glue a curve of genus 68 with ;8 marked
points to the ;8 preimages of the 8-th rami�cation point that correspond to the distinguished
cycles. The covering mapping is extended on this new component by saying that it is entirely
projected to the 8-th rami�cation point.

(iii) Among the newly added components, contract those that are unstable.
One can easily check that the arithmetic genus of the curve� constructed in this way is equal to 6. The
complex structure on the newly added components of � can be chosen arbitrarily, which implies that
in general we obtain not a unique stable map, but a family of stable maps.

An A -factorization is called transitive if the curve� assigned to the factorization is connected. To give
a more formal description, consider for each f: , : = 1, . . . ,<, the set of transpositions)f: that consists
of (8 9) ∈ (3 for all 8, 9 belonging to possibly di�erent distinguished cycles of f: . Then an A -factorization
is called transitive if the subgroup of (3 generated by f and ∪<

:=1)f: acts transitively on {1, . . . , 3}.

De�nition 1.4. The disconnected A -spin Hurwitz number ℎ•,A
6; ®̀ is the sum of weights of all A -factorizations

of type (`1, . . . , `=), divided by |` |!<!.

De�nition 1.5. The connected A -spin Hurwitz number ℎ◦,A
6; ®̀ is the sum of weights of transitive A -facto-

rizations of type (`1, . . . , `=), divided by |` |!<!.

Note that connected and disconnected A -spin Hurwitz numbers are related via the usual inclusion-
exclusion formula.

1.1.3. @-orbifold A -spin Hurwitz numbers. The @-orbifold A -spin Hurwitz numbers arise as a general-
ization of the previous case, when one adds another rami�cation point with pro�le [@@ . . . @]. In the
language of the symmetric group this looks as follows.

Let 6 ∈ Z≥0, A ∈ Z≥1 and @ ∈ Z≥1. Let ®̀ = (`1, . . . , `=) be an integer partition of length = = ℓ (`)
such that 3 B |` | = ∑=

8=1 `8 is divisible by @ and< B (3/@ + = + 26 − 2)/A is an integer.
A @, A -factorization of type (`1, . . . , `=) in the symmetric group (3 is a factorization

(1.4) f1 . . . f<W = f

such that
(i) the cycle lengths of W are all equal to @,

(ii) the cycle lengths of f equal `1, . . . , `= and
(iii) each permutation f8 enters the completed (A + 1)-cycle with a nonzero coe�cient.

The product of these coe�cients for 8 going from 1 to< is called the weight of the A -factorization.
In a way completely analogous to the non-orbifold case we can de�ne transitive @, A -factorizations.

Then we can proceed to de�ning disconnected and connected @-orbifold A -spin Hurwitz numbers:

De�nition 1.6. The disconnected @-orbifold A -spin Hurwitz number ℎ•,@,A
6; ®̀ is the sum of weights of all

@, A -factorizations of type (`1, . . . , `=), divided by |` |!<!.

De�nition 1.7. The connected@-orbifold A -spin Hurwitz number ℎ◦,@,A
6; ®̀ is the sum of weights of transitive

@, A -factorizations of type (`1, . . . , `=), divided by |` |!<!.

Again, connected and disconnected @-orbifold A -spin Hurwitz numbers are related via the usual
inclusion-exclusion formula.

Naturally, for @ = 1 one recovers the A -spin Hurwitz numbers, for A = 1 one recovers the @-orbifold
Hurwitz numbers, while for @ = A = 1 one arrives at the classical simple Hurwitz numbers.

1.1.4. Semi-in�nite wedge formalism. This subsection is devoted to writing @-orbifold A -spin Hurwitz
numbers in terms of the semi-in�nite wedge formalism (also known as free-fermion formalism to physi-
cists).

First, we de�ne the basic ingredients of this formalism. For a more complete introduction see e.g.
[Joh15]. We will write Z′ B Z + 1

2 for the set of half-integers.

De�nition 1.8. The Lie algebra A∞ is the C-vector space of matrices (�8 9 )8, 9 ∈Z′ with only �nitely
many non-zero diagonals, together with the commutator bracket.

In this algebra, we will consider the following elements:
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(1) The standard “matrix unit” elements {�8, 9 | 8, 9 ∈ Z′} such that (�8, 9 ):,; = X8,:X 9,; ; here and below
X8, 9 is the Kronecker delta;

(2) The diagonal algebra elements (operators) F= B
∑
:∈Z′ :

=�:,: . In particular, � B F0 is the
charge operator and � B F1 is the energy operator. An algebra element � has energy 4 ∈ Z if
[�, �] = 4�;

(3) For any non-zero integer =, the energy = element U= B
∑
:∈Z′ �:−=,: .

The semi-in�nite wedge space is a certain projective representation of this algebra, which we will
construct now.

De�nition 1.9. Let+ be the vector space spanned by Z′: + =
⊕

8∈Z′ C8 , where the 8 are basis elements.
We de�ne the semi-in�nite wedge space V B ∧∞

2 + to be the span of all one-sided in�nite wedge
products
(1.5) 81 ∧ 82 ∧ · · · ,

with 81 < 82 < · · · ∈ Z′, such that there exists a constant 2 with 8: + : − 1
2 = 2 for large : . The constant

2 is called the charge.

Remark 1.10. Notice that A∞ has a natural representation on + , but this cannot be extended to V
easily, as one would have to deal with in�nite sums.

De�nition 1.11. For a partition _, de�ne

(1.6) {_ B _1 −
1
2
∧ _2 −

3
2
∧ · · · .

In particular, de�ne the vacuum |0〉 B { ∅ and let the covacuum 〈0| be its dual inV∗.
De�neV0 to be the charge-zero subspace ofV . ThenV0 =

⊕
_∈P C{_ .

De�nition 1.12. For an endomorphism O of V0, de�ne its vacuum expectation value or disconnected
correlator to be
(1.7) 〈O〉• B 〈0|O|0〉.

De�nition 1.13. De�ne a projective representation ofA∞ onV0 as follows: for 8 ≠ 9 or 8 = 9 > 0, �8, 9
checks whether {_ contains 9 as a factor and replaces it by 8 if it does. If 8 = 9 < 0, �8,8{_ = −{_ if {_
does not contain 8 . In all other cases it gives zero.

Equivalently, this gives a representation of the central extension Ã∞ = A∞ ⊕C1, with commutation
between “matrix unit” elements
(1.8)

[
�0,1, �2,3

]
= X1,2�0,3 − X0,3�2,1 + X1,2X0,3 (X1>0 − X3>0)1.

With these de�nitions, it is easy to see that � is identically zero on V0 and �{_ = |_ |{_ . Therefore,
any positive-energy operator annihilates the vacuum. Similarly, so do all FA .

The @-orbifold A -spin Hurwitz numbers can be represented as vacuum expectations of certain oper-
ators. We will write ` = 0[`]0 + 〈`〉0 for the integral division of an integer ` by a natural number 0. If
0 = @A , we may omit the subscript.

The @-orbifold A -spin Hurwitz numbers can be represented in terms of the semi-in�nite wedge for-
malism as described in the following proposition.

Proposition 1.14. The disconnected @-orbifold A -spin Hurwitz numbers can be expressed in terms of semi-
in�nite wedge formalism as

(1.9) ℎ
•,@,A
6; ®̀ =

〈 (U@
@

) |` |
@ 1( |` |

@

)
!

F<A+1
<!(A + 1)<

; ( ®̀)∏
8=1

U−`8
`8

〉
,

where the number of (A + 1)-completed cycles is

(1.10) < =
26 − 2 + ; (`) + |` |

@

A
.

This statement follows from the basic character formula for general Hurwitz numbers, see [OP06].
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De�nition 1.15. The generating series of @-orbifold A -spin Hurwitz numbers is de�ned as

(1.11) � •,@,A ( ®̀, D) B
∞∑
6=0

ℎ
•,@,A
6; ®̀ D

A< =

〈
4
U@

@ 4D
A FA+1
A+1

; ( ®̀)∏
8=1

U−`8
`8

〉
.

The free energies are de�ned as

(1.12) �
@,A
6,= (-1, . . . , -=) B

∞∑
`1,...,`==1

ℎ
◦,@,A
6; ®̀ 4

∑=
8=1 `8-8

With the help of semi-in�nite wedge formalism, in [KLPS19] the following quasi-polynomiality the-
orem was proved in a purely combinatorial way:

Theorem 1.16 ([KLPS19]). For 26 − 2 + ℓ ( ®̀) > 0, the connected @-orbifold A -spin Hurwitz numbers can
be expressed in the following way:

(1.13) ℎ
◦,@,A
6, ®̀ =

; ( ®̀)∏
8=1

`
[`8 ]
8

[`8]!
% 〈 ®̀〉 (`1, . . . , `; ( ®̀) ),

where % are symmetric polynomials in the variables `1, . . . , `; ( ®̀) whose coe�cients depend on the param-
eters 〈`1〉, . . . , 〈`; ( ®̀)〉, and which has an upper bound on its degree in all variables that is independent
of ®̀.

1.1.5. Relative Gromov-Witten invariants and the Okounkov-Pandharipande formula. The @-orbifold A -
spin Hurwitz numbers were originally introduced in [OP06] because of their relation to relative Gromov-
Witten invariants of C%1; this relation is a special case of the Okounkov-Pandharipande theorem from
[OP06], which we would like to recall.

LetM6,<;`1,...,`= ;@
(
C%1) be the space of stable genus 6 maps to C%1 relative to {∞, 0} ∈ C%1 with

pro�les (`1, . . . , `=) and (@, @, . . . , @) respectively and with< marked points in the source curve, where
< = ( |` |/@ += +26−2)/A . Let [M6,<;`1,...,`= ;@

(
C%1)]vir be its virtual fundamental class. See e.g. [Vak08]

for the precise de�nition and main properties. Let l ∈ � 2(C%1) be the Poincaré dual class of a point.
A special case of Okounkov–Pandharipande theorem from [OP06] states that

Theorem 1.17 (Okounkov–Pandharipande, [OP06]). Connected @-orbifold, A -spin Hurwitz numbers are
equal to certain relative Gromov-Witten invariants of C%1. Speci�cally, we have:

(1.14) ℎ
◦,@,A
6, ®̀ =

(A !)<
<!

∫
[M6,<;`1,...,`= ;@ (C%1) ]vir

ev∗1 (l)kA1 · · · ev∗< (l)kA<

Here ev8 denotes the evaluation mapM6,<;`1,...,`= ;@
(
C%1) → C%1 at the 8-th marked point, 8 = 1, . . . ,<,

andk8 ∈ � 2
(
M6,<;`1,...,`= ;@

(
C%1) ) is thek -class corresponding to the 8-th marked point.

1.2. Chiodo classes and Zvonkine’s conjecture. The central objects in Zvonkine’s conjecture are
the so-called Chiodo classes, which are cohomology classes on the moduli spaces of stable curvesM6,= .
In this section we brie�y recall their de�nition, as well as properties relevant for our proof. More details
can be found in [Chi08b, CR10, JPPZ17, SSZ15, KLPS19, CJ18].

1.2.1. Geometric de�nition. Let A ≥ 1 be an integer and 6 ≥ 0, = ≥ 1, 1 ≤ 01, . . . , 0= ≤ A , and B ≥ 0 be
integers satisfying

(1.15) (26 − 2 + =)B −
=∑
8=1

08 ∈ AZ

Let [�, ?1, . . . , ?=] ∈ M6,= be a nonsingular curve with distinct marked points. Furthermore, let
llog = l� (

∑
?8) be its log-canonical bundle. The condition (1.15) ensures that A th tensor roots ! of the

line bundle

(1.16) l ⊗Blog

(
−

∑
08?8

)
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on � exist. There is a natural compacti�cation of this moduli space of A th roots, denotedMA,B

6;01,...,0= ,
which is an analog of the Deligne-Mumford compacti�cation ofM6,= and was constructed in [Chi08a,
Jar00, AJ03, CCC07].

Let c : CA,B6;01,...0= →M
A,B

6;01,...0= be the universal curve and let L → CA,B6;01,...0= be the universal A th root.
The Chiodo class is the full Chern class of the derived push-forward 2 (−'•c∗L).

In practice, we only need an expression for the pushforward of the Chiodo class to the compacti�ed
moduli space of curvesM6,= . There is an explicit formula for this pushforward in terms of tautological
classes, which we recall below.

1.2.2. Formula in terms of tautological classes. The Chern characters of the derived push-forward'•c∗L
are given by Chiodo’s formula [Chi08b]. In order to give this formula, we �rst need to give some
de�nitions. For any nodal curve inMA,B

6;01,...0= , the nodes must have automorphism groupZ/AZ, inducing
a primitive character on the cotangent line at each side of the branch (we pick one side). The line bundle
! at this side is naturally a Z/AZ-representation, because it is an A -th root. This representation is then
an 0-th power of the representation of the cotangent line at the point for some 0. This 0 is locally
constant on the boundary divisor, and hence we can split this divisor into components. We let 90 be the
boundary map for the 0-th component. We also write k ′,k ′′ for the k -classes at the two branches of
the node (in general, we use standard notation fork and ^ tautological classes, see e.g. [Vak03, Zvo12]).
Then Chiodo’s formula is

ch< ('•c∗L) =
�<+1( BA )
(< + 1)!^< −

=∑
8=1

�<+1( 08A )
(< + 1)! k

<
8 +

A

2

A−1∑
0=0

�<+1( 0A )
(< + 1)! ( 90)∗

(k ′)< + (−1)<−1(k ′′)<
k ′ +k ′′ .(1.17)

The Bernoulli polynomials �; (G) used in this formula are generated by the function
∞∑
;=0

�; (G)
C;

; !
=

C4GC

4C − 1
.(1.18)

Let n be the forgetful map

(1.19) n :MA,B

6;01,...,0= →M6,=

We are interested in the pushforwards of the Chiodo classes

C6,= (A, B;01, . . . , 0=) := n∗2 (−'•c∗L) = n∗
[
2 ('1c∗L)/2 ('0c∗L)

]
(1.20)

= n∗ exp

( ∞∑
<=1
(−1)< (< − 1)!ch< ('•c∗L)

)
∈ � even(M6,=).

The pushforwards of the Chiodo classes form a cohomological �eld theory in the sense of [KM94]
(with non-�at unit if B > A ), and can therefore be written explicitly in terms of the Givental graphs,
see [LPSZ17].

1.2.3. Zvonkine’s @A -ELSV formula. In [KLPS19] the authors proposed the following conjecture, which
is a direct orbifold generalization of Zvonkine’s conjecture.

Conjecture 1.18. [KLPS19, Conjecture 6.1] @-orbifold A -spin Hurwitz numbers are given by the formula

ℎ
◦,@,A
6,`1,...,`= = A 26−2+= (@A )

(26−2+=)@+∑=
9=1 `9

@A

=∏
9=1

( ` 9
@A

) [` 9 ]
[` 9 ]!

∫
M6,=

C6,= (@A, @;@A − 〈`1〉 , . . . , @A − 〈`=〉)∏=
9=1(1 −

`8
@A
k8)

,(1.21)

where ` = @A [`] + 〈`〉 is the integral division of ` by @A .

This conjecture expresses the @-orbifold A -spin Hurwitz numbers as an explicit ELSV-like integral
over the moduli space of curves, where the role of the Hodge class 1 − _1 + · · · ± _6 is played by the
pushforward of the Chiodo class, C6,= (A, B;01, . . . , 0=). We call this formula for the @-orbifold A -spin
Hurwitz numbers Zvonkine’s @A -ELSV formula.

This conjecture is already known for @ = A = 1 (in this case it is the standard ELSV formula proved
in [ELSV01], see also [GV03, DBKO+15]), A = 1, @ ≥ 1 (then it is the Johnson-Pandharipande-Tseng
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formula proved in [JPT11], see also [DBLPS15]), and A = 2, @ ≥ 1 (proved in [BKL+21]). It is also known
to hold for any @, A ≥ 1 in genus 6 = 0 [BKL+21].

The main result of this paper is a proof of conjecture 1.18 in full generality:

Theorem 1.19. Zvonkine’s @A -ELSV formula holds.

The proof of this theorem uses the formalism of CEO topological recursion explained below. Let us
note one more fact before proceeding to that. Namely, our main result, theorem 1.19, together with
Okounkov–Pandharipande’s theorem (theorem 1.17) immediately imply the following purely intersec-
tion theory statement

Corollary 1.20.

(A !)<
<!

∫
[M6,<;`1,...,`= ;@ (C%1) ]vir

ev∗1 (l)kA1 · · · ev∗< (l)kA<(1.22)

=

∫
M6,=

C6,= (@A, @;@A − 〈`1〉 , . . . , @A − 〈`=〉)∏=
9=1(1 −

`8
@A
k8)

· A 26−2+= (@A )
(26−2+=)@+∑=

9=1 `9
@A

=∏
9=1

( ` 9
@A

) [` 9 ]
[` 9 ]!

.

1.3. Topological recursion.

1.3.1. General setup. The topological recursion of Chekhov, Eynard, and Orantin [CE06, EO07, Eyn14b]
associates to a Riemann surface Σ (the so-called spectral curve) equipped with two functions-, H : Σ→
C and a symmetric bidi�erential � on Σ2 satisfying some extra conditions a family of meromorphic
symmetric =-di�erentials (CEO-di�erentials) l6,= de�ned on Σ= , 6 ≥ 0, = ≥ 1. We assume that 3- is
meromorphic and all critical points ?1, . . . , ?A of - are simple, H is holomorphic near ?8 and 3H ≠ 0 at
?8 , 8 = 1, . . . , A , and � has no singularities except for a double pole on the diagonal with biresidue 1. We
set by de�nition l0,1 = H3- , l0,2 = �, and for 26 − 2 + = > 0 we de�ne:

l6,= (I {1,...,=}) =
1
2

A∑
8=1

Res
I→?8

∫ f8 (I)
I

l0,2(·, I1)
l0,1(f8 (I)) − l0,1(I)

[
l6−1,=+1(I, f8 (I), I {2,...,=})+(1.23) ∑

61+62=6
�1t�2={2,...,=}
(68 , |�8 |)≠(0,0)

l61,1+|�1 | (I, I�1)l62,1+|�2 | (f8 (I), I�2)
]
.

Here f8 is the deck transformation for - near the point ?8 , 8 = 1, . . . , A , and all l−1,= , = ≥ 1, are set to
be equal to 0. Furthermore, for a set � , we write I� = {I8}8∈� .

Eynard proved in [Eyn14a] that for 26 − 2 + = > 0 the meromorphic di�erentials l6,= can be re-
presented as linear combinations of the intersection numbers of some explicitly computed tautological
classes onM6,= multiplied by some auxiliary di�erentials. Under some extra conditions, see [DBOSS14]
and also [DNO+19, DNO+18], it is proved in [DBOSS14] that the meromorphic di�erentials l6,= can be
represented in terms of the correlators of a semi-simple cohomological �eld theory of rank A , where
the cohomological �eld theory is given explicitly in terms of Givental graphs [DSS13], and some other
auxiliary di�erentials. More precisely, for 26 − 2 + = > 0 the di�erentials l6,= are represented as

(1.24) l6,= =
∑
81,...,8=
01,...,0=

∫
M6,=

U6,= (481, . . . , 48= )
=∏
9=1
k
0 9
9
3

((
3

3-

)0 9
b8 9 (I 9 )

)
,

where

(1.25) b8 (I) B
∫ I l0,2(|8 , ·)

3|8

����
|8=0

for a local coordinate |8 near ?8 , and U6,= : + ⊗= → � ∗(M6,=,C) form a cohomological �eld theory,
where + is an A -dimensional vector space with basis 〈41, . . . , 4A 〉.
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1.3.2. Particular spectral curves. We consider the spectral curve data

(1.26) Σ = CP1, - (I) = −I@A + log I, H (I) = I@, �(I1, I2) = 3I13I2/(I1 − I2)2.
It is more convenient to work with this curve using the function G = 4- = I4−I

@A . For this curve all the
ingredients of the formula in equation (1.24) can be computed explicitly, and it is proved in [LPSZ17]
that the expansions of l6,= in the variables G1, . . . , G= near G1 = · · · = G= = 0 are given by

l6,= ∼ 31 ⊗ · · · ⊗ 3=
∞∑

`1,...,`==1

∫
M6,=

C6,= (A@, @;@A − 〈`1〉 , . . . , @A − 〈`=〉)∏=
9=1(1 −

`8
@A
k8)

(1.27)

· A 26−2+= (@A )
(26−2+=)@+∑=

9=1 `9
@A

=∏
9=1

( ` 9
@A

) [` 9 ]
[` 9 ]!

G
` 9
9
.

Thus we have the following proposition.

Proposition 1.21 ([LPSZ17, SSZ15]). Zvonkine’s @A -ELSV formula holds if and only if the expansion of
the CEO-di�erentials l6,= for the curve (1.26) in the variables G1, . . . , G= near G1 = · · · = G= = 0 is given by

(1.28) l6,= − X6,0X=,2
3G13G2

(G1 − G2)2
∼ 31 ⊗ · · · ⊗ 3=

∞∑
`1,...,`==1

ℎ
◦,@,A
6;`

=∏
8=1

G
`8
8
.

Thus, an equivalent way to reformulate theorem 1.19 is

Theorem 1.22. The expansion of the CEO-di�erentialsl6,= for the curve (1.26) in the variables G1, . . . , G=
near G1 = · · · = G= = 0 is given by equation (1.28).

Remark 1.23. The spectral curve for the @-orbifold A -spin Hurwitz numbers in full generality was pre-
dicted in [MSS13] via the analysis of the so-called quantum curve.

Remark 1.24. Historically, this theorem was �rst formulated for @ = A = 1 as the Bouchard-Mariño
conjecture [BMn08], and this case was �rst proved in [EMS11] using the ELSV formula for Hurwitz
numbers, see also [Eyn11]. In a similar way, this theorem was proved for any @, A = 1 in [BHSLM14,
DLN16] using the Johnson-Pandharipande-Tseng formula. These proofs are not exactly what we want,
since we want to use the inverse of their arguments, namely, we want to use this theorem in order to
prove Zvonkine’s @A -ELSV formula.

Remark 1.25. Proofs independent of Zvonkine’s @A -ELSV formula are known in special cases. First of
all, there are non-rigorous physics arguments in [BEMS11] for @ = A = 1 and in [SSZ15] for @ = 1,
any A . Then there are rigorous proofs in [DBKO+15] for @ = A = 1, in [DBLPS15] for any @, A = 1 (see
also [KLS19] for an alternative argument for a part of that proof, and a discussion in [Lew18]), and
in [BKL+21] for any @, A = 2. This theorem is also already known for any @, A ≥ 1 in genus 6 = 0,
see [KLPS19] for the unstable cases = = 1, 2 and [BKL+21] for = ≥ 3.

1.3.3. Loop equations. We use a reformulation of the CEO topological recursion proved in [BEO15,
BS17]. We say that a system of meromorphic di�erentialsl6,= with possible poles at ?1, . . . , ?@A satis�es
the projection property if %1 · · · %=l6,= = l6,= for 26− 2 += > 0, where for any meromorphic di�erential
_ we de�ne

(1.29) (%_) (I) =
@A∑
9=1

Res
|→?8

_(|)
∫ |

?8

l0,2(·, I),

and by writing %8 we mean that we apply this operation to the 8-th variable.
Denote

(1.30) ,6,= (I {1,...,=}) := l6,= (I {1,...,=})/
=∏
9=1

3- (I 9 ).

We say that a system of meromorphic di�erentials l6,= with possible poles at ?1, . . . , ?@A satis�es the
linear loop equations if for any 6 ≥ 0, = ≥ 1 the expression
(1.31) ,6,= (I, I {2,...,=}) +,6,= (f8 (I), I {2,...,=})
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is holomorphic in I for I → ?8 , for 8 = 1, . . . , @A .
We say that a system of meromorphic di�erentials l6,= with possible poles at ?1, . . . , ?@A satis�es the

quadratic loop equations if for any 6 ≥ 0, = ≥ 0 the expression

(1.32) ,6−1,=+2(I, f8 (I), I {1,...,=}) +
∑

61+62=6
�1t�2={1,...,=}

,61,1+|�1 | (I, I�1),62,1+|�2 | (f8 (I), I�2)

is holomorphic in I for I → ?8 , for 8 = 1, . . . , @A .

Proposition 1.26 ([BEO15, BS17]). A system ofmeromorphic di�erentialsl6,= withl0,1 = H3- ,l0,2 = �,
satis�es the CEO topological recursion for the data (Σ, -, H, �) if and only if it satis�es the projection
property, the linear loop equation, and the quadratic loop equation, where point ?8 are the cricial points of
map - .

1.3.4. Quasi-polynomiality. There is one property that is crucial for our proof scheme of the@-Zvonkine
conjecture: the so-called quasi-polynomiality. For @-orbifold A -spin Hurwitz numbers this quasi-poly-
nomiality is given in theorem 1.16, proved in [KLPS19]. Using [SSZ15, lemma 4.6], theorem 1.16 is
equivalent to the following statement:

Proposition 1.27. For 26 − 2 + = > 0 the free energies of equation (1.12) are expansions of �nite linear
combinations of functions of the shape

(1.33)
=∏
9=1

( 3
3-

)0 9
b8 9 (I 9 )

with the b8 de�ned by equation (1.25) for the spectral curve data given by equation (1.26).

Remark 1.28. Under the change - → G , we get

(1.34) �
@,A
6,= (G1, . . . , G=) =

∞∑
`1,...,`==1

ℎ
◦,@,A
6; ®̀

=∏
8=1

G
`8
8
.

We will often omit the superscripts @ and A .

For more background on the importance of quasi-polynomiality, we refer the interested reader
to [Lew18].

Relating this proposition to equations (1.24) and (1.28), we see that the free energies have the ‘right
shape’ to satisfy topological recursion. In particular, proposition 1.27 implies the free energies can be
interpreted as functions de�ned globally on the curve (1.26) rather than formal power series. We will
use this viewpoint from now on.

The operator of the derivative 3
3-

= G 3
3G

is denoted by �G .
Note that the functions 3 (�G )0b8 , 8 = 1, . . . , A , 0 = 0, 1, 2, . . . , satisfy the projection property, that is,

%3 (�G )0b8 = 3 (�G )0b8 , and the linear loop equation, that is, 3 (�G )0b8 (I) +3 (�G )0b8 (f 9 (I)) is holomor-
phic for I → ? 9 , for 9 = 1, . . . , @A . As a direct consequence of these two facts and proposition 1.27, we
have:

Proposition 1.29. The system of meromorphic di�erentials 31 ⊗ · · · ⊗ 3=�6,= satis�es the projection
property and the linear loop equations.

Remark 1.30. Note that proposition 1.27 also implies that for 26 − 2 + = > 0 the =-point functions �6,=
themselves, once one puts them onto the spectral curve, satisfy a property similar to the linear loop
equations. Namely, the sum�6,= (I, I {2,...,=})+�6,= (f8 (I), I {2,...,=}) is holomorphic at the 8-th rami�cation
point. This also follows from the fact that (�G )0b8 (I) + (�G )0b8 (f 9 (I)) is holomorphic for I → ? 9 ,
9 = 1, . . . , @A .

Thus theorem 1.22 is a corollary of proposition 1.26 and the following statement, whose proof is the
technical core of this paper:

Theorem 1.31. The system of meromorphic di�erentials 31 ⊗ · · · ⊗3=�6,= on the curve (1.26) satis�es the
quadratic loop equations.
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The rest of this paper is a proof of this theorem (reformulated as theorem 3.6 below), which is derived
from the analysis of implications of the quadratic loop equations and their comparison with the so-
called cut-and-join equation for the A -spin Hurwitz numbers. The cut-and-join equation for the A -spin
Hurwitz numbers was proved in [SSZ12], see also [Ros08, Ale11], and converted in the form that we
use in this paper in [BKL+21].

1.4. Further remarks. Though we tried to make this paper as self-contained as possible, the full proof
of Zvonkine’s conjecture from scratch includes several big steps performed in [SSZ12], [SSZ15], [LPSZ17],
[KLPS19], and [BKL+21], and they are absolutely necessary for our proof. In particular, some familiarity
with [BKL+21] may be very helpful to follow the technical steps of the proof below.

Our proof is de�nitely not of the kind that closes the whole area of research. For instance, neither the
geometric interpretation of spin Hurwitz numbers in terms of relative Gromov-Witten invariants ofCP1

(recalled in theorem 1.17 above), nor the geometric de�nition of the Chiodo classes and/or geometry of
the moduli space of A -th roots (see section 1.2.1 above) played any role in the argument. We hope that
a geometric proof of Zvonkine’s conjecture (in the form of corollary 1.20) will be found (for instance,
some ideas are discussed in a recent preprint [Lei18]).

Finally, we would like to mention that a quite general framework for topological recursion for Hur-
witz numbers was recently proposed by Alexandrov, Chapuy, Eynard, and Harnad in [ACEH18]. The
spectral curve data (1.26) is a special case of their proposal, while the A -spin Hurwitz numbers seem
not to �t into their formalism (cf. the discussion of quantum curves in [ALS16]). It does not lead to any
immediate contradiction, since the proof in [ACEH20] does not cover the cases we are interested here,
but it would be extremely interesting to unify the point of view of [ACEH18] with the results of the
present paper.

1.5. Acknowledgements. We would like to thank G. Borot, B. Bychkov, M. Kazarian, D. Lewański,
L. Spitz, and D. Zvonkine for stimulating discussions and the anonymous referees for useful remarks.
We also thank Maxim Kazarian for pointing out several gaps in a previous version of the paper, and
Zekun Ji and Johannes Schmitt for pointing out a numerical error. P. D.-B. and A. P. also would like
to acknowledge the warm hospitality of Korteweg-de Vries Institute for Mathematics. P. D.-B. was
supported by the Russian Science Foundation (project 16-11-10316). R. K. and S. S. were supported by
the Netherlands Organization for Scienti�c Research. A. P. was supported in part by Vetenskapsrådet
under grant #2014-5517, by the STINT grant, by the grant “Geometry and Physics" from the Knut and
Alice Wallenberg foundation, and by the RFBR grants 18-31-20046 mol_a_ved and 19-01-00680 A.

2. The cut-and-join eqation and qadratic loop eqations

In studies of simple Hurwitz numbers the respective well-known cut-and-join equation plays a cru-
cial role. For the A -spin Hurwitz numbers it is also possible to write an analog of the cut-and-join-
equation, which we now recall. For us this spin cut-and-join equation is instrumental, as the main
technical result of the present paper is the derivation of the quadratic loop equation from it.

Let È=É B {1, . . . , =}. The spin cut-and-join equation, [BKL+21, equation (17)], is

(2.1)
�6,=

A !
�̃6,= (GÈ=É) =

∑
<≥1,3≥0
<+23=A+1

1
<!

<∑
;=1

∑
{: }t⊔ℓ

9=1  9=È=É⊔ℓ
9=1 "9=È<É
∀9 "9≠∅

1
; !

∑
61,...,6ℓ ≥0

6=
∑
9 69+<−ℓ+3

&
(:)
3,∅,<

[ ℓ∏
9=1

�̃69 , |"9 |+ | 9 | (b"9
, G 9 )

]
.

Here, �6,= B 1
A

(
26 − 2 + = + 1

@

∑=
8=1 �G8

)
and

(2.2)
∑
3≥0

&
(:)
3 ;∅,< C

23 =
C

Z (C)
Z (C�G: )
C�G:

◦
<∏
9=1

Z (C�b 9 )
C

����
b 9=G:

,
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where Z (C) B 4C/2 − 4−C/2. Furthermore,

�̃0,1 B �0,1(2.3)

�̃0,2(b1, b2) B �0,2(b1, b2)

�̃0,2(b1, G2) B �0,2(b1, G2) + � sing
0,2 (b1, G2) �

sing
0,2 (b1, G2) B log

(b1 − G2

b1G2

)
�̃6,= B �6,= − X26−2+=,AA !

(21−26 − 1)�26

26!
, 26 − 2 + = > 0.

Remark 2.1. Note that we have abused the notation above, de�ning �̃0,2(b1, b2) di�erently from �̃0,2(b1, G2),
such that these two objects are di�erent depending on whether they have two b-variables or one b- and
one G-variable as arguments. This is a necessary evil, as otherwise the formulas would become very
bulky.

This formula may seem rather daunting, so let us give some examples for small A . First, we calculate

&
(:)
0;∅,< =

<∏
9=1

�b 9

����
b 9=G:

;(2.4)

&
(:)
1;∅,< =

1
24

((
�2
G:
− 1

)
◦

( <∏
9=1

�b 9

����
b 9=G:

)
+

<∑
;=1

<∏
9=1

�
1+2X 9,;
b 9

����
b 9=:

)
.

In the ’non-spin’ case, A = 1, the �rst sum only includes the summand for< = 2, 3 = 0, so the formula
reduces to
(2.5)

�6,=�̃6,= (GÈ=É) =
1
2

=∑
:=1

�b1�b2

[
�̃6−1,=+1(b1, b2, GÈ=É\{: }) +

∑
61+62=6

 1t 2=È=É\{: }

�̃61, | 1 |+1(b1, G 1)�̃62, | 2 |+1(b2, G 2)
] ����
b1=b2=G:

.

A full derivation of this formula from the standard cut-and-join equation is available in [DBKO+15,
section 3.3]. This equation should be interpreted as describing the removal of a transposition (completed
2-cycle) from a 2-factorization. Geometrically, this means removing a rami�cation point with simple
rami�cation (partition (2, 13−2)). After removing this, the two sheets which were glued together before
either still belong to one connected curve, of genus one less (the linear term on the right-hand side)
or now belong to two di�erent curves (the quadratic term). Notice that in this equation the factor
1
; ! cancels the overcounting coming from the decompositions of È=É and È<É, which always give ; !
identical terms.

In the case A = 2, we get either< = 3 and 3 = 0 or< = 1 and 3 = 1. Hence (cf. [BKL+21, equation
(23)]),

�6,=�̃6,= (GÈ=É) =
1
3

=∑
:=1

(
�b1�b2�b3�̃6−2,=+2(b1, b2, b3, GÈ=É\{: })

)����
b1=b2=b3=G:

(2.6)

+
∑

61+62=6−1
{: }t 1t 2=È=É

(
�G: �̃61, | 1 +1(G: , G 1)

) (
�b1�b2�̃62, | 2 |+2(b1, b2, G 2)

)����
b1=b2=G:

+ 1
3

∑
61+62+63=6

{: }t 1t 2t 3=È=É

3∏
9=1

�G: �̃69 , | 9 |+1(G: , G 9 )

+ 1
12
(2�3

G:
− �G: )�̃6−1,= (GÈ=É) .

As in the case before, the terms are related to removing a cycle from the 3-factorization, and considering
the number of connected components of the resulting curve. A detailed exposition of the resulting
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combinatorics is available in [SSZ12, section 5.2]. Because the completed 3-cycle is not equal to the non-
completed 3-cycle, we get terms for each of the possible cycles to be removed, with extra coe�cients.
This is also what occurs for general A .

Our next goal is to express equation (2.1) in terms of I variables (global rational coordinates on the
curve) applying the change of variables G8 = G (I8) and b8 = G (|8). This change of variables extends
equation (2.1) originally written for formal power series to an equation for globally de�ned functions.
With this extension in hand, we choose one of the critical points of G (I), say ?8 , an we take the sum
of this extended equation and its local conjugate in I1. In other words, we symmetrize this equation
near any of the rami�cation points of G . For notational simplicity, let us actually take the (6, = + 1) case
of this equation, with added variable G0 = G (I0), in which we symmetrize, and let us write |̄ = f8 (|).
Let us also apply the operator �G1 · · ·�G= (converted to the variables I1, . . . , I=) to both sides of the
equation.

De�nition 2.2. The end result of these transformations is called the symmetrized cut-and-join equation.

The left hand side of the symmetrized cut-and-join equation is holomorphic by the linear loop equa-
tions and remark 1.30, and the right hand side becomes (up to terms, again holomorphic due to the
linear loop equations and remark 1.30) equal to∑

<≥1,3≥0
<+23=A+1

1
<!

<∑
;=1

∑
⊔ℓ
9=1  9=È=É⊔ℓ
9=1 "9=È<É
∀9 "9≠∅

1
; !

∑
61,...,6ℓ ≥0

6=
∑
9 69+<−ℓ+3

&̄3,< (I0)
[ ℓ∏
9=1
,̃69 , |"9 |+ | 9 | (|"9

, I 9 )
]
+

∑
<≥1,3≥0
<+23=A+1

1
<!

<∑
;=1

∑
⊔ℓ
9=1  9=È=É⊔ℓ
9=1 "9=È<É
∀9 "9≠∅

1
; !

∑
61,...,6ℓ ≥0

6=
∑
9 69+<−ℓ+3

&̄3,< (I0)
[ ℓ∏
9=1
,̃69 , |"9 |+ | 9 | (|̄"9

, I 9 )
]
.

(2.7)

Here, we use the notation

,̃6,<+= (|È<É, IÈ=É) B
<∏
9=1

�b (|9 )

=∏
8=1

�G (I8 ) �̃6,<+= (b (|È<É), G (IÈ=É)),(2.8)

∑
3≥0

&̄3,< (I0)C23 B
C

Z (C)
Z (C�G (I0) )
C�G (I0)

◦
<∏
9=1

( ⌋
|9=I0

◦
Z (C�G (|9 ) )
C�G (|9 )

)
,(2.9)

where ⌋
|=I

� (|) B Res
|=I

� (|) 3- (|)
- (|) − - (I) .(2.10)

We treat (2.10) as the de�nition of the operator
⌋

of “setting two variables equal”. Although it was not
stated explicitly in [BKL+21], this operator should be accurately de�ned by this residue formula, as it is
the analytic continuation of the corresponding operator in coordinates G in the cut-and-join equation.
Note that it might be more natural to de�ne the operator

⌋
|=I

as Res|=I � (|) 3G (|)
G (|)−G (I) . The di�erence

between this operator and (2.10) is not important when we apply it to a function that has no pole on
the diagonal (which is the case in all statements in the rest of the paper), but in particular computations
(2.10) appears to be more convenient, cf. the proof of proposition 3.3.

In order to simplify this a bit more, de�ne the<-disconnected,=-connected correlatorsW̃6,<,= (|È<É |
IÈ=É) (cf. [BE13]) by keeping only those terms in the inclusion-exclusion formula where each factor
contains at least one |:

(2.11) W̃6,<,= (|È<É | IÈ=É) B
<∑
;=1

∑
⊔ℓ
9=1  9=È=É⊔ℓ
9=1 "9=È<É
∀9 "9≠∅

1
; !

∑
61,...,6ℓ ≥0

6=
∑
9 69+<−ℓ

ℓ∏
9=1
,̃69 , | 9 |+ |"9 | (I 9 , |"9

) .
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(The factor 1
; ! is just a symmetry factor.) This is de�ned in such a way that W̃6,1,= (I | IÈ=É) =

,̃6,=+1(I, IÈ=É) and W̃6,=,0(IÈ=É | ∅) is the disconnected correlator. The genus 6 here stands for the
genus of all terms after all < | 9 -points are glued to an (< + 1)-pointed sphere. Then we get for the
right-hand side of the symmetrized cut-and-join equation

(2.12)
∑

<≥1,3≥0
<+23=A+1

1
<!

&̄3,< (I0)
(
W̃6−3,<,= (|È<É | IÈ=É) + W̃6−3,<,= (|̄È<É | IÈ=É)

)
.

To give an example, let us specify this expression in the cases of A = 1 and A = 2 discussed above.
In the case A = 1 we necessarily have < = 2, 3 = 0. Note that &̄0,2(I0) =

⌋
|1=I0

⌋
|2=I0

. Thus the
symmetrized cut-and-join equation for A = 1 implies that the following expression is holomorphic in
I0 near the chosen rami�cation point of G :⌋

|1=I0

⌋
|2=I0

(
W̃6,2,= (|1, |2 | IÈ=É) + W̃6,2,= (|̄1, |̄2 | IÈ=É)

)
.(2.13)

For A = 2 we either have< = 3, 3 = 0, and &̄0,3(I0) =
⌋
|1=I0

⌋
|2=I0

⌋
|3=I0

, or< = 1, 3 = 1, and

&̄1,1(I0) =
1
24
(�2

G (I0) − 1)
⌋
|1=I0

+
⌋
|1=I0

◦ 1
24
�2
G (|1) .(2.14)

Thus the symmetrized cut-and-join equation for A = 2 implies that the following expression is holo-
morphic in I0 near the chosen rami�cation point of G :⌋

|1=I0

⌋
|2=I0

⌋
|3=I0

(
W̃6,2,= (|1, |2, |3 | IÈ=É) + W̃6,2,= (|̄1, |̄2, |̄3 | IÈ=É)

)
(2.15)

+
( 1
24
(�2

G (I0) − 1)
⌋
|1=I0

+
⌋
|1=I0

◦ 1
24
�2
G (|1)

) (
W̃6−1,1,= (|1 | IÈ=É) + W̃6−1,1,= (|̄1 | IÈ=É)

)
.

3. Proof of the qadratic loop eqations via the symmetrized cut-and-join eqation

For the rest of the paper, we �x a rami�cation point ? of G and let I ↦→ Ī be the local deck transfor-
mation.

De�nition 3.1. De�ne the symmetrizing operator SI and the anti-symmetrizing operator ΔI by

SI 5 (I) B 5 (I) + 5 (Ī) ;(3.1)
ΔI 5 (I) B 5 (I) − 5 (Ī) .

We use the identity

(3.2) SI 5 (I, . . . , I︸  ︷︷  ︸
A times

) = 21−A
∑

�t� =ÈAÉ
| � | even

(∏
8∈�
SI8

) (∏
9 ∈�

ΔI 9

)
5 (I1, . . . , IA )

���
I8=I

,

which was also used in [BKL+21].

3.1. Symmetrization and anti-symmetrization of the regularized,0,2. The main di�culty of the
proof comes from the diagonal poles of ,̃0,2, so it is useful to give explicit formulae for it. In the global
coordinate I we have [KLPS19, theorem 5.2]:

,̃0,2(I,|) =
1

- ′(I)- ′(|) (I −|)2 ;(3.3)

,̃0,2(|1, |2) =
1

- ′(|1)- ′(|2) (|1 −|2)2
− G (|1) G (|2)
(G (|1) − G (|2))2

.

Recall that in the cut-and-join equation, we need to use di�erent formulas for ,̃0,2 if it has one | and
one I as arguments (then it is the usual,0,2) and if it has two|’s as arguments (in this case we use the
regularized,0,2). The latter is the one that can cause problems with diagonal poles. Hence, we should
consider the action of S and Δ on ,̃0,2(|1, |2), to simplify many of the terms. As our spectral curve



LOOP EQUATIONS AND A PROOF OF ZVONKINE’S @A -ELSV FORMULA 14

(1.26) only has simple rami�cations (rami�cation points are solutions of 3- = 0), we can work in the
local coordinate I de�ned by - − - (?) = I2/2, so the involution is Ī = −I.

,̃0,2(|1, |2) =
1

|1|2 (|1 +|2)2
+ holom ;(3.4)

S|1S|2,̃0,2(|1, |2) =
2

|1|2 (|1 +|2)2
− 2
|1|2 (|1 −|2)2

+ holom = − 2
(- (|1) − - (|2))2

+ holom ;

S|1Δ|2,̃0,2(|1, |2) = holom ;

Δ|1Δ|2,̃0,2(|1, |2) =
2

|1|2 (|1 +|2)2
+ 2
|1|2 (|1 −|2)2

+ holom .

From this, it follows that any combination containingS|1Δ|2,̃0,2(|1, |2) is holomorphic. Note also that
a simple residue argument implies that once Δ|1Δ|2,̃0,2(|1, |2) is used in an expression holomorphic
in |1 and |2 near |1 = |2 = 0 and symmetric under the involution in both variables, the application
of the operator to the whole expression

⌋
|1=|2

retains holomorphicity despite its poles on the diagonal
|1 −|2 = 0 and on the antidiagonal |1 +|2 = 0.

In fact, in order to simplify the calculation a bit, we will rede�ne�S|1S|2,̃0,2(|1, |2) B S|1S|2,̃0,2(|1, |2) +
2

(- (|1) − - (|2))2
;(3.5)

�Δ|1Δ|2,̃0,2(|1, |2) B Δ|1Δ|2,̃0,2(|1, |2) −
2

(- (|1) − - (|2))2
,(3.6)

i.e., during analysis of the RHS of (2.12), after we have written the expression in terms of S and Δ
symbolically, we do the said rede�nition. It is clear that it does not change the expression — it just
regroups some terms.

Then the �S|1S|2,̃0,2(|1, |2) is holomorphic, and we need only concern ourselves with ,̃0,2(|1, |2)
with two Δ’s acting on them. From now on, we will use these modi�ed de�nitions of SS and ΔΔ, and
omit the tildes from notation.

3.2. Formal corollaries of the quadratic loop equations. From (1.32), the (6, =) quadratic loop
equation states that

(3.7)
⌋
|=|0
W̃6,2,= (|0, |̄ | IÈ=É) is holomorphic in |0 near rami�cation points.

Let us call 26 − 2 + = =: −j the negative Euler characteristic of a given quadratic loop equation.
Note that due to the symmetry of ,̃6,2,= in its �rst two arguments, the expression above can be

rewritten as follows:

(3.8)
⌋
|=|0
W̃6,2,= (|0, |̄ | IÈ=É) = −

1
4

⌋
|=|0

(
Δ|0Δ| − S|0S|

)
W̃6,2,= (|0, | | IÈ=É) .

Note that

(3.9)
⌋
|=|0
S|0S|W̃6,2,= (|0, | | IÈ=É)

is holomorphic due to the linear loop equation, see (1.31), and thus the quadratic loop equation can be
reformulated as the statement that

(3.10)
⌋
|=|0

Δ|0Δ|W̃6,2,= (|0, | | IÈ=É) is holomorphic in |0 near rami�cation points.

Now let us extend the quadratic loop equation ontoW̃6,<,= for< > 2. Namely, we have the following:

Proposition 3.2. Suppose that a set of functions (,̃6,=)6,= satis�es the quadratic loop equations up to
negative Euler characteristic −j . Then, we get for any B, 6, = ≥ 0 such that 26 − 2 + = ≤ −j , that

(3.11)
⌋
|=|0

Δ|0Δ|W̃6,2+B,= (|0, |,|ÈBÉ | IÈ=É) is holomorphic in |0 near rami�cation points.
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Proof. With the help of the de�nition (2.11), it is easy to see that

W̃6,2+B,= (|0, |,|ÈBÉ | IÈ=É) = W̃6−B,2,=+B (|0, | | |ÈBÉ, IÈ=É)(3.12)

+
∑

 1
⊔
 2=È=É

"1
⊔
"2=ÈBÉ

"2≠∅

∑
61, 62≥0

61+62=6−|"1 |

W̃61,2, |"1 |+ | 1 | (|0, | | |"1, I 1) W̃62, |"2 |, | 2 | (|"2 | I 2) .

Note that after one applies
⌋
|=|0

Δ|0Δ| to (3.12), the �rst term in the RHS, as well as the �rst factors in
the terms in the sum in the second line of the equation, are holomorphic in |0, due to our assumption
that quadratic loop equations are satis�ed up to negative Euler characteristic −j . And the second
factors in the terms in the sum in the second line are constant in |0. Thus, the whole expression is
holomorphic in |0 near rami�cation points. �

Now we are ready to prove the following proposition, which is the main technical result of the
present paper:

Proposition 3.3. Suppose that a set of functions (,̃6,=)6,= satis�es the quadratic loop equations up to
negative Euler characteristic −j . Then, we get for any #,6, = ≥ 0 such that 26 − 2 + = ≤ −j , that

(3.13)
#∑
:=0

1
(2:)!

∑
U1+···U2:+:=#

2:∏
9=1

( ⌋
|9=I

�
2U 9
9

(2U 9 + 1)!

)
Δ1 · · ·Δ2:W̃6−U1−···−U2: ,2:,= (|1, . . . , |2: | IÈ=É) ,

where � 9 B 3
3- (|9 ) , is holomorphic in I near branch points of the spectral curve.

Proof. We use induction on # and 6. First note that : = 0 can only occur if # = 0, and in this case, the
statement is trivial, as the expression is constant in I.

For # = 1, the statement is just the quadratic loop equation, which holds by assumption, and fur-
thermore, for 6 = −1 it is clearly zero.

Let us de�ne, for B ≥ 0,

Hol6,# ,=,B (I, |̃ÈBÉ) B(3.14)
#∑
:=0

1
(2:)!

∑
U1+···U2:+:=#

2:∏
9=1

( ⌋
|9=I

�
2U 9
9

(2U 9 + 1)!

)
Δ1 · · ·Δ2:W̃6−U1−···−U2: ,2:+B,= (|È2:É, |̃ÈBÉ | IÈ=É) .

(we omit the dependence on IÈ=É in the LHS for brevity).
Now let us �x some #0 and 60 and suppose that the statement of the proposition, which can now be

rephrased as

(3.15) Hol6,# ,=,0(I) is holomorphic in I near rami�cation points,

holds for all (6, # , =) such that

6 ≤ 60 + 1,(3.16)
# ≤ #0,

= ≤ −j + 2 − 26.

If we, under these assumptions, manage to prove the statement for # = #0 + 1, 6 = 60 + 1 (and for all
= ≤ −j − 260), we will, by induction, achieve our goal (since, as explained above, the statement holds
at the boundaries # = 1 and 6 = −1).

Note that under these assumptions we have the following statement:

(3.17) Hol6,# ,=,B (I, |̃ÈBÉ) is holomorphic in I near rami�cation points,

for the same (6, # , =) as in (3.16) and all B ≥ 0. The proof of this statement is completely analogous to
the proof of proposition 3.2.
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For brevity from now on we write (6, # ) in place of (60, #0). We will express Hol6+1,#+1,=,0(I) in
terms of previous cases. First of all, we take

�2
G (I)Hol6,# ,=,0(I)

=

#∑
:=1

1
(2:)!

∑
U1+···+U2:+:=#

2:∑
8=1

2:∏
9=1

( ⌋
|9=I

�
2U 9+2X8 9
9

(2U 9 + 1)!

) 2:∏
8=1

Δ|8W̃6−#+:,2:,= (|È2:É)

+
#∑
:=0

1
(2:)!

(
2:
2

) ∑
U1+···+U2:−2
+V1+V2+:=#

2:−2∏
9=1

( ⌋
|9=I

�
2U 9
9

(2U 9 + 1)!

)

×
⌋
|2:−1=I

�
2V1+1
2:−1

(2V1 + 1)!

⌋
|2:=I

�
2V2+1
2:

(2V2 + 1)!

2:∏
8=1

Δ|8W̃6−#+:,2:,= (|È2:É)

=

#∑
:=1

1
(2:)!

∑
U1+···+U2:+:=#

2:∑
8=1

2:∏
9=1

( ⌋
|9=I

�
2U 9+2X8 9
9

(2U 9 + 1)!

) 2:∏
8=1

Δ|8W̃6−#+:,2:,= (|È2:É)

+
∑

#U+#V=#
#U ≥0, #V ≥1

∑
V1+V2+1=#V

⌋
|1′=I

�
2V1+1
1′

(2V1 + 1)!

⌋
|2′=I

�
2V2+1
2′

(2V2 + 1)!

#U∑
:=0

1
(2:)!

×
∑

U1+···+U2:+:=#U

2:∏
9=1

( ⌋
|9=I

�
2U 9
9

(2U 9 + 1)!

)
Δ|1′Δ|2′

2:∏
8=1

Δ|8W̃6−#+:+1,2:+2,= (|1′, |2′, |È2:É),

(3.18)

where we have omitted the IÈ=É arguments of W̃ for brevity (and we will keep omitting them for the
rest of this proof). � 9 here and from now on stands for �G (|9 ) .

This whole expression is holomorphic in I, being the result of the application of 32

3- 2 (I) to an expres-
sion holomorphic in I. We also see that the terms in the third-to-last line in this equation are already
of the form which we see in Hol6+1,#+1,=,0 However, the terms corresponding to the second-to-last and
the last lines contain odd derivatives in the second term, which are certainly absent from Hol6+1,#+1,=,0.
To counteract these odd-derivative terms, we would like to subtract∑

#U+#V=#
#U ,#V ≥0

⌋
Ĩ=I

�
2#V
G (Ĩ)
(2#V )!

⌋
|1′ ,|2′=Ĩ

Δ|1′Δ|2′Hol6+1−#V ,#U ,=,2(I,|1′, |2′)

=
∑

#U+#V=#
#U ,#V ≥0

⌋
Ĩ=I

�
2#V
G (Ĩ)
(2#V )!

⌋
|1′ ,|2′=Ĩ

#U∑
:=0

1
(2:)!

×
∑

U1+···U2:+:=#U

2:∏
9=1

( ⌋
|9=I

�
2U 9
9

(2U 9 + 1)!

)
Δ|1′Δ|2′

2:∏
8=1

Δ|8W̃6+1−#+:,2:+2,= (|1′, |2′, |È2:É).

(3.19)

Note that we include the #V = 0 terms.
Proposition 3.2 and statement (3.17), under our induction assumption, imply that each expression

(3.20)
�

2#V
G (Ĩ)
(2#V )!

⌋
|1′ ,|2′=Ĩ

Δ|1′Δ|2′Hol6+1−#V ,#U ,=,2(I,|1′, |2′)

is holomorphic in both I and Ĩ separately (at the rami�cation points), once we do not apply the convention
(3.6) to Δ|8′Δ|9,̃0,2(|8′, | 9 ), 8 ′ = 1′, 2′, 9 = 1, . . . , 2: . Note that in order to claim this, as per the
conditions of proposition 3.2 and statement (3.17), we have to restrict=. Namely, for the holomorphicity
in I we need the condition = ≤ −j + 2 − 2(6 + 1 − #V ) to hold for all 0 ≤ #V ≤ # , and for the
holomorphicity in Ĩ we need the condition = ≤ −j + 2− 2(6+ 1−# +:) to hold for all 0 ≤ : ≤ # . Both
of these conditions are equivalent to = ≤ −j − 26, which is precisely what want for our induction step.
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Remarkably, after the application of
⌋
Ĩ=I

expression (3.20) remains holomorphic in I. In order to see
this, let us prove that

Res
Ĩ→I

3- (Ĩ)
- (Ĩ) − - (I)

�
2#V
G (Ĩ)
(2#V )!

⌋
|1′ ,|2′=Ĩ

Δ|1′Δ|2′Hol6+1−#V ,#U ,=,2(I,|1′, |2′)(3.21)

=
1
2

∫
|Ĩ |=n

3- (Ĩ)
- (Ĩ) − - (I)

�
2#V
G (Ĩ)
(2#V )!

⌋
|1′ ,|2′=Ĩ

Δ|1′Δ|2′Hol6+1−#V ,#U ,=,2(I,|1′, |2′),

for |I | < n , where we assume that n is a �xed number. Note two properties of the expression under the
sign of the integral on the right hand side of equation (3.21):

(1) its only poles in Ĩ are at Ĩ = I and Ĩ = −I, and the residues at these two poles are equal to each
other by the symmetry of this expression under the sign change;

(2) it is holomorphic in I for |Ĩ | = n and |I | < n .
The �rst property implies that equation (3.21) holds, the second property implies that the whole ex-
pression is holomorphic in I.

However, we want to use expression (3.19) assuming the convention (3.6) for the possible factors
Δ|8′Δ|9,̃0,2(|8′, | 9 ), 8 ′ = 1′, 2′, 9 = 1, . . . , 2: , for each : . In this way, it is not holomorphic, but by the
previous paragraph it becomes holomorphic if we add the following terms:

2:∑
9=1

1
(2#V )!

⌋
|1′=|9

�
2#V
1′

�
2U 9
9

(2U 9 + 1)!
2

(- (|1′) − - (| 9 ))2
⌋
|2′=|1′

Δ|2′

∏
8≠9

Δ|8W̃6−#+:,2:,= (|2′, |È2:É\{ 9 })

(3.22)

+
2:∑
9=1

1
(2#V )!

⌋
|2′=|9

�
2#V
1′

�
2U 9
9

(2U 9 + 1)!
2

(- (|2′) − - (| 9 ))2
⌋
|1′=|2′

Δ|2′

∏
8≠9

Δ|8W̃6−#+:,2:,= (|1′, |È2:É\{ 9 })

+
∑
;≠9

1
(2#V )!

⌋
|1′=|9

�
2#V
1′

⌋
|;=|9

�
2U;
;

(2U; + 1)!
2

(- (|1′) − - (|; ))2
×

�
2U 9
9

(2U 9 + 1)!
2

(- (|1′) − - (| 9 ))2
∏
8≠;, 9

Δ|8W̃6−#+:−1,2:−2,= (|È2:É\{;, 9 })

(we write these terms omitting the�-operators acting on the|’s which didn’t appear in the,̃0,2(|8′, | 9 )
factors and the sum over :). The sum of the �rst two summands in this expression is equal to

2
(2#V )!

⌋
|1′=|9

�
2#V
1′

�
2U 9
9

(2U 9 + 1)!
2

(- (|1′) − - (| 9 ))2
Δ|1′

∏
8≠9

Δ|8W̃6−#+:,2:,= (|1′, |È2:É\{ 9 }))

=
4

(2#V )!(2U 9 + 1)! Res
|1′→|9

3- (|1′)
- (|1′) − - (| 9 )

×

�
2#V
1′ �

2U 9
9

1
(- (|1′) − - (| 9 ))2

Δ|1′

∏
8≠9

Δ|8W̃6−#+:,2:,= (|1′, |È2:É\{ 9 }))

=
4

(2#V )!
Res

|1′→|9
�

2#V
1′

(
1

- (|1′) − - (| 9 )

)
3- (|1′)

(- (|1′) − - (| 9 ))2+2U 9
Δ|1′

∏
8≠9

Δ|8W̃6−#+:,2:,= (|1′, |È2:É\{ 9 }))

= 4 Res
|1′→|9

3- (|1′)
(- (|1′) − - (| 9 ))3+2#V+2U 9

Δ|1′

∏
8≠9

Δ|8W̃6−#+:,2:,= (|1′, |È2:É\{ 9 }))

= 4
�

2U 9+2#V+2
9

(2U 9 + 2#V + 2)!

2:∏
8=1

Δ|8W̃6−#+:,2:,= (|È2:É) .

(3.23)

By the same computation, the last summand in (3.22) is equal to zero.
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Thus, if we add all the terms corresponding to (3.23) to (3.19), we get a holomorphic expression,
which is then equal to

∑
#U+#V=#
#U ,#V ≥0

( ⌋
Ĩ=I

�
2#V
G (Ĩ)
(2#V )!

⌋
|̃1′ ,|2′=Ĩ

#U∑
:=0

1
(2:)!

×
∑

U1+···U2:+:=#U

2:∏
9=1

( ⌋
|9=I

�
2U 9
9

(2U 9 + 1)!

)
Δ|1′ · · ·Δ|2:W̃6+1−#+:,2:+2,= (|1′, |2′, |È2:É)

+ 4
#U∑
:=1

1
(2:)!

∑
U1+···U2:+:=#U

2:∑
8=1

⌋
|8=I

�
2U8+2#V+2
8

(2U8 + 2#V + 2)!

2:∏
9=1
9≠8

( ⌋
|9=I

�
2U 9
9

(2U 9 + 1)!

) 2:∏
8=1

Δ|8W̃6−#+:,2:,= (|È2:É)
)
.

(3.24)

Subtracting expression (3.18) (which itself is holomorphic) from this, we get (note that the index #V
has been shifted here)

∑
#U+#V=#+1

#V ≥1

( ∑
V1+V2+1=#V

⌋
|1′=I

⌋
|2′=I

�
2V1
1′

(2V1)!
�

2V2
2′

(2V2)!

#U∑
:=0

1
(2:)!

∑
U1+···+U2:
+:=#U

2:∏
9=1

( ⌋
|9=I

�
2U 9
9

(2U 9 + 1)!

)
2:∏
8=1

Δ|8W̃6+1−#+:,2:+2,= (|1′, |2′, |È2:É)
)

+ 4
∑

#U+#V=#+1
#V ≥1

(
#U∑
:=1

1
(2:)!

∑
U1+···U2:+:=#U

2:∑
8=1

⌋
|8=I

�
2U8+2#V
8

(2U8 + 2#V )!

2:∏
9=1
9≠8

( ⌋
|9=I

�
2U 9
9

(2U 9 + 1)!

)
2:∏
8=1

Δ|8W̃6−#+:,2:,= (|È2:É)
)

−
#∑
:=1

1
(2:)!

∑
U1+···+U2:+:=#

2:∑
8=1

2:∏
9=1

( ⌋
|9=I

�
2U 9+2X8 9
9

(2U 9 + 1)!

) 2:∏
8=1

Δ|8W̃6−#+:,2:,= (|È2:É) ,

(3.25)

which is holomorphic.
We claim that, up to a factor, this equals Hol6+1,#+1,=,0(I). Indeed, let us extract the coe�cient of a

term

(3.26)
1
(2:)!

2:∏
9=1

⌋
|9=I

�
2U 9
9

(2U 9 + 1)!

2:∏
8=1

Δ|8W̃6+1−∑U8 ,2:,= (|È2:É),

where U1 + · · · +U2: +: = # + 1 (note that all terms in (3.25) are of this form and satisfy this condition).
From the �rst, second, and third summands of expression (3.25) we get, respectively

2
∑

1≤8< 9≤2:
(2U8 + 1) (2U 9 + 1) ;(3.27)

4
2:∑
8=1
(2U8 + 1) · U8 ;

−
2:∑
8=1
(2U8) (2U8 + 1) ;
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where the U8 on the second line comes from the number of di�erent ways of choosing #V . Adding up
these terms, we get

2
∑

1≤8< 9≤2:
(2U8 + 1) (2U 9 + 1) + 4

2:∑
8=1
(2U8 + 1) · U8 −

2:∑
8=1
(2U8) (2U8 + 1)

=
∑

1≤8≠9≤2:
(2U8 + 1) (2U 9 + 1) +

2:∑
8=1

2U8 (2U8 + 1)

=

( 2:∑
8=1

2U8 + 1
)2
−

2:∑
8=1
(2U8 + 1)

= (2# + 2)2 − (2# + 2) = (2# + 2) (2# + 1) .

(3.28)

As this factor is independent of : and the U 9 , this shows that expression (3.25) is equal to this factor
times Hol6+1,#+1,=,0. Since expression (3.25) is holomorphic, and this whole reasoning works for any
= ≤ −j − 26, this proves the induction step and thus the proposition. �

Remark 3.4. In the induction step in the proof of proposition 3.3 for Hol6+1,#+1,=,0 we used Hol6+1,8,=,0,
8 = 1, . . . , # for the same 6 + 1 case. It is easy to trace through the proof all instances where these
terms occur: they always come from expression 3.19 for #V = 0, #U = : . Applying the same induction
argument, we obtain the following re�nement of the statement of proposition 3.3: if the quadratic loop
equations are satis�ed up to the negative Euler characterteristic strictly less than 26 − 2 + =, then for any
# ≥ 1 the following expression

#∑
:=0

1
(2:)!

∑
U1+···U2:+:=#

2:∏
9=1

( ⌋
|9=I

�
2U 9
9

(2U 9 + 1)!

)
Δ1 · · ·Δ2:W̃6−U1−···−U2: ,2:,= (|1, . . . , |2: | IÈ=É)(3.29)

− 1
(2# )!

(
#

1

) ⌋
|1=I

⌋
|2=I

Δ1Δ2W̃6,2,= (|1, |2 | IÈ=É)
(
ΔI,0,1(I)

)2#−2

is holomorphic.

3.3. Quadratic loop equations from the cut-and-join equation. We prove the quadratic loop equa-
tions (in the form (3.10)) by induction from the cut-and-join equation (2.12). We distribute S’s and Δ’s
in cut-and-join equation according to equation (3.2) and express the result in terms of the form (3.13)
with added S’s. Then, we use inductive arguments both on the negative Euler characteristic 26 − 2 +=
and on the number of Δ’s involved. In fact, we prove that any particular instance of the cut-and-join
equation, so for any choice of A, 6, =, is a combination of derivatives of linear and quadratic loop equa-
tions (for the same A ), whose negative Euler characteristic is bounded from above by 26 − 2 + =, and
where the 26 − 2 + = quadratic loop equation occurs without derivatives and with a non-trivial coef-
�cient. As the symmetrized cut-and-join equation is holomorphic and all the previous quadratic loop
equations hold by induction, just as all linear loop equations, this will then prove the (6, =) quadratic
loop equation holds.

By distributing the S’s and Δ’s, we will always get an even number of Δ’s. Hence, up to diagonal
poles, we can always write such a distribution as a product of linear and quadratic loop equations. By
the discussion above, there are no possible diagonal poles between two S’s or between an S and a Δ,
so we should focus our attention on the Δ factors.

Recall, from (2.12), that the symmetrized cut-and-join equation implies that

(3.30) SI0

∑
<≥1,3≥0
<+23=A+1

1
<!

&̄3,< (I0)W̃6−3,<,= (|È<É | IÈ=É)
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is holomorphic. Here (we recall the de�nitions for the reader’s convenience)∑
3≥0

&̄3,< (I0)C23 =
C

Z (C)
Z (C�G (I0) )
C�G (I0)

◦
<∏
9=1

( ⌋
|9=I0

◦
Z (C�G (|9 ) )
C�G (|9 )

)
;(3.31)

Z (C)
C

=
4C/2 − 4−C/2

C
=

∞∑
:=0

1
(2: + 1)!22: C

2: ;⌋
|=I

� (|) ≔ Res
|=I

� (|) 3G (|)
G (|) − G (I) .

By our induction argument, we can omit any non-trivial contribution from C 3G (I0)
Z (C )

Z (C�G (I0 ) )
C�G (I0 )

, as it gives
only a number of derivatives acting on symmetric terms that have inductively already been proved to
be holomorphic.

Recall also proposition 3.3. In that proposition, the 2: and 2# are reminiscent of, respectively,< and
A + 1 in the cut-and-join equation, and they are written this way as we always have an even number of
Δ’s (2:) and an even number of �’s (2# − 2:), the genus defect also being # −: =

∑
U8 . However, this

proposition is only about the Δ part of any term, and it should still be multiplied with an S part.
Furthermore, note that in proposition 3.3 we have omitted the factors 1

2 coming from equations (3.2)
and (3.31). As these give one factor for each Δ and � , respectively, and the sum of their exponents is
constantly equal to # in equation (3.13), we may as well omit them.

Proposition 3.3 implies the following corollary.

Corollary 3.5. Suppose that a set of functions (,6,=)6,= satis�es the quadratic loop equations up to neg-
ative Euler characteristic −j . Then, we get for any A > 0 and any 6, ;, = ≥ 0 such that A + 1 − ; is even and
26 − 2 + = ≤ −j , that
(3.32)

A+1∑
<=;

<−; even

1
<!

∑
2U1+···2U<+<=A+1

<∏
9=1

( ⌋
I 9=I

�
2U 9
9

(2U 9 + 1)!

) ∑
� ⊂È<É
|� |=;

∏
8∈È<É\�

Δ 9
∏
8∈�
S8 W̃6−U1−...−U<,<,= (|È<É | IÈ=É)

is holomorphic in I near branch points of the spectral curve.

Proof. For ; = 0, this is a reformulation of proposition 3.3, with 2: =< and 2# = A + 1.
In general we can rewrite it, by reshu�ing, as

A+1∑
#=0
# even

#∑
:=0

[
1
; !

∑
2V1+···+2V;+;

=A+1−#

;∏
9=1

( ⌋
|′
9
=I

�
2V 9
9 ′

(2V 9 + 1)!

) ;∏
8′=1
S8′

]
[

1
(2:)!

∑
U1+···U2:+:=#

2:∏
9=1

( ⌋
|9=I

�
2U 9
9

(2U 9 + 1)!

) 2:∏
8=1

Δ8

]
W̃6−V1−...V;−U1−...−U2: ,2:+;,= (| ′È;É, |È2:É | IÈ=É)

(3.33)

(in order to shorten the notation we use � 9 ′ B �G (|′
9
) and � 9 B �G (|9 ) )). In this formula, for a �xed

choice of # , the :- and U-sums give something holomorphic by proposition 3.3, the extra S’s do not
change holomorphicity by the linear loop equations and the fact that S8′S9 ′,̃0,2(| ′8 , | ′9 ) respectively
S8′Δ 9,̃0,2(| ′8 , | 9 ) are holomorphic at the diagonal, and the operator �2V8

8′ �
2V 9
9 ′ respectively �2V8

8′ do not
change that. �

Theorem3.6. The quadratic loop equations (3.10) hold for (,6,=)6,= in the case of A -spin Hurwitz numbers,
i.e. for

(3.34) ,6,= − X6,0X=,2
1

(-1 − -2)2
∼

=∏
8=1

( 3

3-8

) ∞∑
`1,...,`==1

ℎ
◦,@,A
6;`

=∏
8=1

4-8`8 .

Proof. As stated before, we use induction on the negative Euler characteristic.
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So assume the quadratic loop equation has been proved up to −j , and consider the symmetrized
cut-and-join equation for 26 − 2 + = = −j + 1. All the sub-leading terms in the cut-and-join equation,
i.e., those where &̄3,< (I0) gives a non-trivial contribution from C

Z (C )
Z (C�G (I0 ) )
C�G (I0 )

, are already holomorphic
by the induction hypothesis, equation (3.2), and corollary 3.5. In the leading term, by the same corollary
(cf. also remark 3.4), everything is holomorphic, except possibly for the terms involving

(3.35)
⌋
|1=I0

⌋
|2=I0

Δ|1Δ|2W̃(|1, |2 | IÈ=É) · SI0

(
H (I0)A−1)

(as,0,1(I0) = H (I0)).
Hence, this term must be holomorphic as well, and because H (I) (and hence SIH (I)) is non-zero at

branchpoints of G , this shows

(3.36)
⌋
|1=I0

⌋
|2=I0

Δ|1Δ|2W̃(|1, |2 | IÈ=É) is holomorphic,

which is exactly the quadratic loop equation. �

Remark 3.7. Note that this proof generalizes the proofs of [BKL+21, theorems 14 & 15]. In particular,
proposition 3.3 subsumes [BKL+21, lemma 16], although the proof is di�erent.
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