
Talanta 275 (2024) 126104

Available online 17 April 2024
0039-9140/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Vibrational spectroscopy coupled with machine learning sheds light on the 
cellular effects induced by rationally designed TLR4 agonists 

Diletta Ami a,1, Ana Rita Franco a,1, Valentina Artusa a, Alessio Romerio a, 
Mohammed Monsoor Shaik a, Alice Italia a, Juan Anguita b,c, Samuel Pasco b, Paolo Mereghetti d, 
Francesco Peri a,**, Antonino Natalello a,* 

a Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy 
b Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain 
c Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Bizkaia, Spain 
d Bioinformatics Consultant, 15061, Arquata Scrivia, Italy   

A R T I C L E  I N F O   

Handling Editor: Prof. J. Wang  

Keywords: 
FTIR microspectroscopy 
Lipopolysaccharide 
Multivariate analysis 
Spectroscopic fingerprint 
TLR4 agonists 

A B S T R A C T   

In this work, we present the potential of Fourier transform infrared (FTIR) microspectroscopy to compare on 
whole cells, in an unbiased and untargeted way, the capacity of bacterial lipopolysaccharide (LPS) and two 
rationally designed molecules (FP20 and FP20Rha) to activate molecular circuits of innate immunity. These 
compounds are important drug hits in the development of vaccine adjuvants and tumor immunotherapeutics. 
The biological assays indicated that FP20Rha was more potent than FP20 in inducing cytokine production in cells 
and in stimulating IgG antibody production post-vaccination in mice. Accordingly, the overall significant IR 
spectral changes induced by the treatment with LPS and FP20Rha were similar, lipids and glycans signals being 
the most diagnostic, while the effect of the less potent molecule FP20 on cells resulted to be closer to control 
untreated cells. We propose here the use of FTIR spectroscopy supported by artificial intelligence (AI) to achieve 
a more holistic understanding of the cell response to new drug candidates while screening them in cells.   

1. Introduction 

Modulating the molecular circuits of innate and adaptive immunity 
is a key target of innovative immunotherapeutics and vaccines [1]. 
Developing molecules capable of this modulation, with defined mech-
anisms of action, is of high relevance to develop effective immune-based 
therapies. An important class of molecules in preclinical and clinical 
development phase as vaccine adjuvants and tumor immunotherapeu-
tics are compounds that stimulate the human innate immunity receptor 
TLR4 (Toll-Like Receptor 4) thus mimicking the action of lipid A, the 
natural TLR4 agonist [2,3]. Lipid A, the lipid portion of bacterial lipo-
polysaccharide (LPS), binds to the receptor dimer TLR4/MD-2 on the 
cell surface with the intervention of CD14 coreceptor thus initiating 
MyD88 and TRIF signalling, leading respectively to the production of 

inflammatory cytokines and type I interferon [4]. These intracellular 
activations cause a switch in macrophage phenotype and metabolism. 
Macrophages that have been activated by LPS possess an M1 phenotype, 
are called classically activated and secrete several proinflammatory 
cytokines and chemokines [5]. 

We have recently applied Fourier transform infrared (FTIR) micro-
spectroscopy - obtained by the coupling of an infrared microscope to a 
FTIR spectrometer - to the study of the LPS-induced inflammation in 
intact human macrophage-like cells [6]. Although FTIR analyses of 
other inflammation models have been published [7,8], our study is the 
first in which FTIR has been applied to investigate the complex molec-
ular effects caused by LPS stimulation in human macrophages derived 
from THP-1 monocytes. 

FTIR spectroscopy is a powerful tool to monitor, in a non-destructive 
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and label-free way, the global biochemical composition of whole cells 
through the absorption of electromagnetic radiation in the mid-infrared 
range. This vibrational spectroscopy technique probes a large number of 
molecules simultaneously and its sensitivity to structural and composi-
tional changes makes it complementary to other biochemical methods. 
For these reasons, FTIR spectroscopy has become an attractive tool in 
molecular and cellular biophysics with important applications also in 
biomedical research [9–12]. Given the complexity of IR spectra resulting 
from the overlapping absorptions of the main cell biomolecules (i.e. 
lipids, proteins, nucleic acids and carbohydrates), their interpretation 
requires a sophisticated multivariate analysis able to point out signifi-
cant and non-redundant information [13–15]. 

The main findings of our previous work [6] are represented by the 
identification of different classes of intracellular molecules that stand 
out as the most affected by LPS stimulation. Our previously published 
study can be considered a first step in the direction to associate a 
well-defined and reproducible spectroscopic IR pattern to a complex 
biological effect produced by a bioactive molecule in cells [6]. 

The goal in our current research was to investigate the potential of 
FTIR spectroscopy, supported by machine learning approaches, to 
compare the biological effects of natural and two synthetic TLR4 ago-
nists. This was achieved by comparatively assessing the degree to which 
each of the agonists affected the molecular pathways in whole cells. 

In particular, our group developed synthetic TLR4 agonists deriving 
from the molecular simplification of monophosphoryl lipid A (MPLA), a 
chemically modified, non-toxic lipid A variant (Fig. 1). These molecules, 
called FP compounds, have a glucosamine monosaccharide core instead 
of the disaccharide of MPLA, with a simplified synthesis [16]. FP com-
pounds, similarly to MPLA, activate TLR4 , in vitro and in vivo [2,16,17] 
(Fig. 1). The recently developed FP20 and FP20Rha are active in stim-
ulating TLR4. FP20Rha (Fig. 1) contains a rhamnose monosaccharide 
unit linked to FP20 C-6 that mimics the first Kdo unit of the LPS core 
oligosaccharide [18]. The presence of the additional monosaccharide 
unit gives an increase of activity in FP20Rha, compared to FP20, in 
stimulating the TLR4-dependent cytokine production. Here, we inves-
tigated by cell biology techniques and FTIR microspectroscopy the 
response of whole THP-1 derived human macrophages (TDMs) after 
treatment with FP20Rha and we compared the molecular effects 
induced in cells by this compound with that of FP20 and LPS as a 
reference compound. The FTIR spectroscopy supported by the multi-
variate analysis, validated by in vitro and in vivo characterizations, 

allowed to assess, in a non-biased way, the similarity of the effect of 
FP20Rha and natural LPS in triggering inflammation and early innate 
immune response in cells. 

In principle, this comparative FTIR assessment allows the identifi-
cation of drug hit candidates while simultaneously gathering mecha-
nistic insights in an easier, faster, and less expensive way. The proof of 
concept presented here could be extended to the screening of bioactive 
hit compounds with the aim to assess their capacity to affect in a 
reproducible way complex phenomena associated with multiple mo-
lecular pathways. 

2. Methods 

2.1. TLR4 vs TLR2 selectivity and TLR4 activity in macrophages 

The selective activity of LPS, FP20, and FP20Rha towards the human 
TLR4 (hTLR4) receptor was assessed using HEK Blue hTLR4 and hTLR2 
reporter cell lines, as previously reported [16,17,19]. Briefly, these cells 
have been transfected with genes encoding either for the hTLR4 or 
hTLR2 receptors as well as a reporter gene encoding for secreted em-
bryonic alkaline phosphatase (SEAP). Cells were treated with increasing 
concentrations of FP20 and FP20Rha. Smooth (S)-form LPS (S-LPS) and 
MPLA from Salmonella minnesota were used as positive controls for 
hTLR4 activation, while Pam2CysSerLys4 (PAM2CSK4) was used as a 
positive control for hTLR2 activation. HEK Blue hTLR2 cells were also 
exposed to S-LPS, as it is reported by the manufacturer that LPS results in 
mild activation of these cells. Results were normalized to the positive 
control by attributing 100 % activation to it. TLR4 activity in macro-
phages was studied using THP-1 X Blue derived macrophages (TDMs) 
[16,17,19]. Activation of these macrophage-like cells was assessed by 
measuring SEAP secretion. THP-1 X-Blue cells were transfected with an 
NF-кB/AP-1-inducible SEAP gene construct. When TLR4 is activated, the 
downstream signalling cascade is initiated leading to NF-кB and AP-1 
transcription and consequent SEAP release. Results were normalized 
to the positive control by attributing 100 % activation to it. TDM cyto-
kine profile was determined using Enzyme-Linked Immunosorbent 
Assay (ELISA). Briefly, TDM were treated for 3, 6 and 18 h with 10 μM of 
FP20 or FP20Rha and with positive control 100 ng/mL of S-LPS. Su-
pernatant was collected at the mentioned time points and TNF, IL-6 and 
IL-1β levels were measured. Experimental details on cell cultures, on 
treatments for cell reporter assays, and cytokine detection are reported 

Fig. 1. Structure of LPS and FP derivatives. Molecular simplification of gram-negative bacterial LPS into synthetic molecules FP20 and FP20Rha. Compared to 
FP20, FP20Rha mimics a more extended part of LPS, including the Kdo unit of the core oligosaccharide. 
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in the Supplementary Methods. 

2.2. In vivo adjuvant activity 

In vivo adjuvant activity was studied as previously reported [16,17, 
19]. Briefly, C57BL/6 mice were injected subcutaneously on day 0 with 
10 μg of Ovalbumin (OVA) formulated with 10 μg of commercially 
available MPLA or FP20Rha or no adjuvant. A boost immunization was 
performed on day 22. Total anti-OVA IgG levels were assessed on day 21 
and on day 42 using Enzyme-Linked Immunosorbent Assay (ELISA). See 
Supplementary Methods for details. 

2.3. FTIR microspectroscopy analysis of intact TDM cells 

Cell samples for FTIR analysis have been prepared following a pro-
cedure previously optimised [6,20]. Briefly, after differentiation of 
THP-1 X-Blue to TDMs by exposure to 100 ng/mL of PMA for 72 h [6], 
cells were treated with 10 μM of FP20 or FP20Rha for 15 min, 3 h and 24 
h. Untreated and LPS-treated cells have been also analysed as negative 
and positive controls, respectively [6]. After exposure to the com-
pounds, cells were washed with PBS (Euroclone), scraped using a cell 
scraper and collected into centrifuge tubes. After centrifugation at 4 ◦C 
for 10 min at approximately 125×g, PBS was discarded and cell pellets 
were resuspended in physiological solution (NaCl 0.9 %) for further 
centrifugation at 4 ◦C, 5 min at 125×g. This washing step was repeated 3 
times to ensure no medium contamination. Afterwards live cells were 
resuspended in ~10 μL of physiological solution immediately prior to 
FTIR measurements. About 3 μL of cell suspension were deposited onto a 
IR-transparent BaF2 window and dried at room temperature, in a 
laminar flow hood, for at least 30 min to eliminate the excess of water. 
FTIR absorption spectra were acquired in transmission mode, between 
4000 and 700 cm− 1, by a Varian 610-IR infrared microscope coupled to 
the Varian 670-IR FTIR spectrometer (both from Varian Australia Pty 
Ltd., Mulgrave VIC, Australia), equipped with a mercury cadmium 
telluride, nitrogen-cooled detector. The variable microscope aperture 
was adjusted to 100 μm × 100 μm (spatial resolution). Measurements 
were performed at 2.0 cm− 1 spectral resolution, 25 KHz scan speed, 
triangular apodization, and by the accumulation of 512 scan 
co-additions. For comparison, after water vapor correction [20] when 
necessary, absorption spectra were normalized at the Amide I band area 
(Figure S1) and the second derivative analysis was performed, after a 
13-point smoothing of the measured spectra, by the Savitzky–Golay 
method (3rd polynomial, 9 smoothing points), using the GRAMS/32 
software (Galactic Ind. Corp., Salem, NH, USA). To investigate spectral 
heterogeneity different areas on the same sample have been measured 
and to evaluate the reproducibility of the results at least three inde-
pendent experiments have been performed. 

2.4. Multivariate data analysis 

Multivariate analysis has been performed using R version 3.6.3 [21]. 

2.4.1. Neural networks classification 
The second derivatives of the FTIR absorption spectra have been split 

into four spectral ranges (3050-2800, 1800-1500, 1500-1200, 1200-800 
cm− 1) and neural networks (nnet) have been applied on each region. In 
particular, the nnet method implemented in the Caret package version 
6.0–93 has been used [22]. In order to assess the predictive discrimi-
nation and avoid over-fitting, for each method a 3-time repeated 5-fold 
cross-validation was applied. In this way, for each method 15 models 
were trained. Since for each sample multiple spectra have been 
collected, folds have been created at the sample level, ensuring that all 
spectra for a given sample are either in the training or in the test set. 
More specifically, having N samples each with m_N spectra, on every 
round of cross-validation, the samples have been partitioned into 5 
folds. Four folds (containing N*4/5 samples) have been used to train the 

model and the remaining fold (containing N*1/5 samples) was used to 
test the model. Folds are complementary (i.e. no repeated samples in 
different folds) and the samples are randomly chosen. The training of the 
model is repeated five times, each time varying the test partition. The 
5-fold cross-validation is then repeated 3-times in order to lower the risk 
of partition-dependent artefacts. The best model has been selected using 
the “one standard error rule”. In this case, the model with the best 
performance value is identified and, using resampling, we can estimate 
the standard error of performance. The final model used was the 
simplest model within one standard error of the (empirically) best model 
[23]. 

As a performance measure, the accuracy, e.g. the proportion of true 
results (true positive + true negative) over the total number of samples, 
was used. All spectra have been center-scaled (normalized in order to 
have 0 mean and variance 1) to allow faster convergence of the training 
algorithm and improve the numerical stability. 

The number of hidden layers in the neural network was kept fixed to 
2, while the decay parameter was varied (0.4, 0.6, 0.8) during training. 
Network with the highest accuracy was selected. The maximum number 
of iterations was set to the value of 5000. For the best model, the 
normalized (0–1) confusion matrix was computed. 

Variable importance has been computed using the Garson/Goh al-
gorithm [24,25]. 

2.4.2. PLS-DA on selected wavenumbers 
Partial least squares discriminant analysis (PLS-DA) is a widely used 

multidimensional linear regression method, which is a variant of the 
classical partial least square method when the dependent variable is 
categorical [26]. The PLS-DA model includes the following 13 classes: 
not treated (NT), LPS, FP20Rha, FP20 each at 15 min, 3h, 24h, plus the 
NT at time 0. A set of intensities at selected wavenumbers has been used 
as independent variables. 

The discrimination accuracy among the classes was evaluated using 
the classification accuracy, e.g. the proportion of true results (true 
positive + true negative) over the total number of samples. The distri-
bution of distances between treated and untreated cells has been ob-
tained by computing the Euclidean distance between all pairs of spectra 
(in the low dimensional PLS score space), using the NT at time 0 as 
reference, that is: 

DK,i,j =
1
L

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑L

c=1

(
xK,j,c-ri,c

)2

√
√
√
√

where r_i is the i-th spectra belonging to the reference group (NT at 
0h), while x_j(K) is the j-th spectra belonging to the treated groups (and 
the NT) at each time point, e.g K = [NT 15 min, NT 3h, NT 24h, FP2Rha 
15 min, LPS 15 min, LPS 3h, LPS 24h, FP2Rha 15 min, FP2Rha 3h, 
FP2Rha 24h, FP20 15 min, FP20 3h, FP20 24h]. L is the number of PLS 
scores and c is the c-th PLS component. 

2.4.3. Multivariate analysis of variance (MANOVA) 
MANOVA was applied to selected wavenumbers. MANOVA tests 

whether mean differences among groups on a combination of dependent 
variables are likely to have occurred by chance [27]. In this case, a 
two-ways mixed-model MANOVA (within-between subjects MANOVA) 
was applied, where treatment (NT, LPS, FP20Rha, FP20) is the 
between-subjects independent variable, time (0h, 15 min, 3h, 24h) is the 
within-subject independent variable and the intensities at the selected 
wavenumbers are the dependent variables. The Pillai’s Trace was used 
as a statistical test because it is robust and better for unbalanced design. 
The analysis is carried on considering also the interactions between 
treatment and time (full MANOVA results are reported in Table S1). 
Preliminary tests for the MANOVA validity have been performed: 
absence of multicollinearity (the dependent variables cannot be too 
correlated, correlation must be lower than 0.90 [27], multivariate 
normality, homogeneity of variance-covariance matrices). 
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2.4.4. Post-hoc analysis 
Pairwise comparisons have been performed using t-tests with pooled 

standard deviation and p-values were computed using Holm’s correction 
[27]. For each selected variable, pairwise t-tests were computed be-
tween the NT at a given time (15 min, 3h, 24h) and the treated group 
(LPS, FP20Rha, FP20) at the same time. See Table S1 for detailed results. 

3. Results and discussion 

3.1. TLR4 vs TLR2 selectivity and TLR4 activity in macrophages 

The selective activity of FP20Rha towards the hTLR4 receptor was 
assessed using HEK Blue hTLR4 (Fig. 2a) and hTLR2 (Fig. 2b) reporter 
cell lines. As expected, FP20Rha, as well as FP20, activated the hTLR4 
receptor and not hTLR2 (Fig. 2a-b). Following this initial screening, 
THP-1 X-Blue derived macrophages (TDMs) were used to compare 
immunostimulating properties of FP20, FP20Rha and S-LPS. As shown 
in Fig. 2c, FP20Rha activates TDMs in a dose-dependent manner and at 
the 10 μM concentration shows the same level of activity as S-LPS. 
Fig. 2d–f shows the proinflammatory cytokine profile of S-LPS, FP20 and 
FP20Rha at 3, 6 and 18h measured using Enzyme-Linked Immunosor-
bent Assay (ELISA). Very similar trends are observed between S-LPS and 

FP20Rha in the induction of TNF and IL-1β production along the 
different time points (Figs. 2d and 2f). While lower than S-LPS, also IL-6 
production induced by FP20Rha follows the same pattern of increase 
over time (Fig. 2e). 

3.2. In vivo adjuvant activity 

To further understand the immunostimulatory properties of 
FP20Rha, we performed a vaccine study in C57BL/6 mice, using oval-
bumin (OVA) as antigen without adjuvant or with FP20Rha or MPLA as 
adjuvant. A boost immunization was performed on day 22. Total anti- 
OVA IgG levels were assessed on day 21 (Fig. 3a) and on day 42 
(Fig. 3b). Pre-boost results show that FP20Rha is able to induce half of 
the anti-OVA antibodies in respect to MPLA. However, looking at final 
total anti-OVA IgG values, it is possible to observe that FP20Rha per-
forms slightly better than MPLA. As previously reported [17], FP20, in 
the same experimental conditions, was able to induce specific anti-OVA 
IgG at 1 AUC while FP20Rha induced at a magnitude of 6 AUC. These 
results further confirm that FP20Rha is active as a vaccine adjuvant with 
a potency similar to MPLA. 

Fig. 2. In vitro activity of LPS and FP derivatives. a-c) Selectivity towards hTLR4 in HEK cells and activity in TDMs. HEK-Blue hTLR4 cells (a) and HEK-Blue TLR2 
(b) were treated with the shown concentrations of FP20, FP20Rha, MPLA (1 μg/mL), S-LPS (100 ng/mL), and Pam2CSK4 (10 ng/mL), and incubated for 16–18 h. (c) 
TDM cells were treated with the shown concentrations of FP20, FP20Rha and incubated for 16–18 h. S-LPS (100 ng/mL) was used as control. 100 % stimulation has 
been assigned to the positive control S-LPS (a and c) or Pam2CSK4 (b). d-f) Cytokine profile on TDMs at 3, 6 and 18 h. TDMs were treated with 10 μM of FP20 and 
FP20Rha or with 100 ng/mL of S-LPS for the shown time points. Supernatant was collected and TNF, IL-6 and IL-1β levels were measured by ELISA. Data are 
expressed as mean ± SEM of at least three independent experiments (treated vs not treated: *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). 
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3.3. FTIR microspectroscopy characterization coupled to multivariate 
analysis of TDM cells treated with LPS, FP20Rha and FP20 

After the validation of the model system by biological assays, TDM 
intact cells treated with LPS, FP20Rha and FP20 were subjected to FTIR 
microspectroscopy analysis. For simplicity sake, the mean second de-
rivative of the absorption spectra (Figure S1) of cells treated with 
FP20Rha are shown in figures, compared with untreated (0h) ones. The 
spectral components that display a significant spectral variation evalu-
ated by t-test analysis for each time-point compared to the untreated 
cells at the same time will be discussed. Moreover, the significance of the 
temporal evolution of the observed spectral changes was evaluated by 
the MANOVA analysis (Table S1). 

In Fig. 4a, the second derivative analysis of the FTIR spectra of cells 
untreated (NT) and treated with FP20Rha is displayed in the spectral 
range between 3050 and 2800 cm− 1, where cell lipids mainly absorb. 
Particularly, the spectrum of NT cells (0h) is characterised by the 
methylene (at ~2922 and 2851 cm− 1) and methyl (at ~2958 and 2872 

cm− 1) stretching vibrations of lipid hydrocarbon chains [28,29] (see 
Table S2 for a detailed assignment). A decrease in intensity of the CH2 
bands was detected at 15 min of treatment, followed by an increase at 
3h, up to 24h, as shown in the box plot of Fig. S2, where the ratio be-
tween CH2 and CH3 intensities is reported. This spectral behavior is 
evident for LPS, as previously reported [6], and for FP20Rha, while it 
was less evident in the case of treatment with FP20 (Fig. S2). To get 
further information on possible lipid modifications induced by the 
treatment with the different molecules, we extended the IR analysis to 
the 1500-1200 cm− 1 range (Fig. 4b), where significant changes were 
found at ~1467 cm− 1, mainly due to the overlapping CH2 bending and 
CH3 deformation vibrations [28,29]. The temporal behavior of its in-
tensity variation resembles that observed for the CH2/CH3 ratio detected 
between 3050 and 2800 cm− 1 (Fig. S2). Overall, the observed differ-
ences in the above spectral ranges, that point to modifications of the 
physico-chemical properties of cell lipids, impacting also membrane 
fluidity [6], indicate that the three molecules affect at a different extent 
the cell lipids (Fig. 4 and Fig. S2). Indeed, although not extensively 

Fig. 3. - FP20Rha adjuvant activity in OVA vaccination experiments. C57BL/6 mice were immunized subcutaneously on days 1 and 21 with OVA formulated 
with or without MPLA, and FP20Rha as adjuvants. a) Total antibody response to prime OVA immunization 21 days post-prime immunization. b) Total antibody 
response to boost immunization 42 days post immunization. Values represent mean ± SEM. Brown–Forsythe and Welch one-way ANOVA tests (with an alpha of 
0.05) were utilized to compare the areas under each curve. *p < 0.05; **p < 0.01; ***p < 0.001. n = 8 per group. 
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studied, lipids have been described as key players in LPS-induced 
response. It is known that TLR4 activation leads to synthesis of eicosa-
noids, sphingolipids and sterols and to an overall remodelling of the 
lipid profile in macrophages. Thus, the results reported here are possibly 
due to changes in lipid constituents involved in regulating 
pathogen-associated molecular pattern recognition, in this case LPS and 
FP compounds, and early proinflammatory response [30]. Furthermore, 
a particular subclass of lipids, phospholipids, are involved in regulating 
the synthesis of proinflammatory cytokines [31,32]. These FTIR data 
concerning lipids indicate clearly that the most active molecule 
FP20Rha behaves similarly to LPS while the less active FP20 affects 
macrophages more weakly, thus paralleling what it has been found in in 
vitro cytokine induction analysis in TDM cells. 

Moreover, in particular for LPS, the spectral changes at ~3012 cm− 1, 
due to the stretching vibrations of the olefinic group (=CH) [28], - 
providing information on lipid hydrocarbon chain unsaturation degree - 
resulted to be significant (Fig. S2). This finding can be also related to 
lipid peroxidation and oxidative stress. Indeed, stimulation of macro-
phages with LPS has been linked to both events, due to the release of 
nitric oxide and reactive oxygen species [33,34]. This oxidative state is 
achieved after classic activation of macrophages and polarization to-
wards a M1 phenotype, which leads to metabolic reprogramming of the 
cell with enhancement of glycolysis and fatty acid synthesis [30,32,35, 
36]. Furthermore, the production of proinflammatory cytokines, such as 
TNF, is linked to the formation of unsaturated lipid droplets [37]. These 
cellular changes triggered by LPS can be the driving force for changes in 
lipid content and unsaturation observed in FTIR analysis. Although to a 
lesser extent, as observed in Fig. S2, FP20Rha also induces such changes, 
suggesting that, as LPS, this new TLR4 agonist is able to induce M1 
polarization, which is congruent with the presented cytokine profile. 

To explore the possibility to discriminate among cells subjected to 

the treatment with the different molecules at different time points, we 
applied the neural network (nnet) multivariate analysis, whose confu-
sion matrices and overall classification accuracies are reported in 
Fig. 4c,d and Fig. S3, respectively. The accuracy obtained in the two 
spectral ranges is satisfactory, being between 0.68 and 0.85 (Fig. S3). 
The confusion matrices indicate that a good classification of LPS and 
FP20Rha is obtained at all the analysed time points, while a relatively 
important misclassification was found for FP20 (see, for instance, 24h). 

In Fig. 5a, we reported the second derivative analysis of the FTIR 
spectra of cells untreated (NT) and treated with FP20Rha between 1760 
and 1600 cm− 1, mainly due to the C––O stretching vibrations of esters 
and of the peptide bond (Amide I band) [29,38]. Moreover, we also 
displayed the tyrosine band at ~1515 cm− 1. The second derivative 
spectrum of untreated cells (0h) is characterized by a band at ~ 1742 
cm− 1, assigned mainly to ester carbonyl groups of lipids [28] (Table S2), 
whose intensity decreased at 15 min of treatment and then increased 
again up to the end of our observation (24h). The Amide I band, 
providing information on the whole cell protein secondary structures, is 
dominated by two peaks, at ~1655 cm− 1, mainly due to α-helices and 
random coils, and ~1639 cm− 1, assigned to β-sheet structures [29,38]. 
The Amide I spectral features are very similar at the different time 
points, strongly suggesting that the treatment with FP20Rha does not 
significantly affect the overall protein secondary structure content. As 
shown by the ratio between the 1655 cm− 1 and the 1639 cm− 1 in-
tensities, also in the case of FP20 we did not observe any significant 
spectral changes, in contrast to what we have seen for LPS [6] (see box 
plots of Fig. S2 and Table S1a for the MANOVA analysis). Overall, a 
similar trend is visible in the increase of the 1655 cm− 1/1639 cm− 1 ratio 
(Fig. S2), more evident in FP20Rha compared with FP20, suggesting that 
the former could induce increased overall changes in protein structure, 
but lower intensity than LPS (Fig. S2, Table S1a). This observation 

Fig. 4. FTIR analysis in the lipid absorption ranges of TDM cells treated with different TLR4 agonists. a,b) Mean second derivative spectra between 3050 and 
2800 cm− 1 (a) and 1500-1200 cm− 1 (b) of TDM cells before and at different time points of treatment with FP20Rha. In the figures, the most relevant peak positions 
are indicated. c, d) Confusion matrices of the nnet analysis of TDM cells, untreated and at different time points of treatment with the different molecules, in the 
spectral ranges 3050-2800 cm− 1 (c) and 1500-1200 cm− 1 (d). 
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suggests that FP20Rha is able to induce a more potent response than 
FP20 in treated cells, thus reflecting in vitro and in vivo data. 

Interestingly, the temporal behavior of the ratio between the lipid 
ester (1742 cm− 1) and the tyrosine (1515 cm− 1) band intensities re-
sembles that observed for the lipid analysis (Fig. 4 and Fig. S2). Taken 
together, these results indicate that the cell response induced by the 
treatment in particular with LPS and FP20Rha involves mainly lipid 
components. 

Nnet analysis in this spectral region shows a satisfactory discrimi-
nation accuracy (between 0.77 and 0.82), with a better classification in 
the case of LPS and FP20Rha (Fig. S3). 

Fig. 6a displays the second derivative analysis of the FTIR spectra of 
cells untreated (NT) and treated with FP20Rha in the fingerprint region, 
dominated by the absorption of complex carbohydrate modes that 
overlap vibrations also from nucleic acids, lipids and phosphates 
(Table S2). The untreated cell derivative spectrum (0h) shows a 
component at ~ 1172 cm− 1 which can be assigned to different 
biomolecule moieties [28,29,39–44] (Table S2). Since its intensity 
variation induced by the treatment with the three molecules is syn-
chronous with that of the other bands mainly ascribable to lipids (Fig. 4 
and Fig. S2), this peak can be tentatively mainly assigned to lipid moi-
eties [28,29,39] (box plots in Fig. S2, Table S2 [6] and references 
therein). Moreover, this absorption falls in a spectral region associated 
with different vibrational modes from carbohydrates and glycosamino-
glycans (GAGs), both sulfated and non-sulfated [40–42] (Table S2). 
Furthermore, the ~1172 cm− 1 peak has also been associated to 
non-hydrogen bonded C–O of the C–OH groups of serine, threonine and 
tyrosine residues [43,44]. Then, the ~1152 cm− 1 peak, which is mainly 
due to vibrations of carbohydrates, including GAGs, has been also 
assigned to hydrogen-bonded C–O groups of serine, threonine, and 
tyrosine [40–44]. Therefore, considering the simultaneous and opposite 
direction of the intensity changes of the 1172 cm− 1 and 1152 cm− 1 

peaks, their relative variation could also provide evidence of phos-
phorylation events [43,44] induced by the different cell treatments 
(Table S2). As reported in the box plot of Fig. S2, these two bands are 
significant in particular for LPS and FP20Rha. Phosphorylations of 
serine, threonine and tyrosine are involved in cell signalling and lead to 
different cellular events such as degradation, aggregation and trans-
location [45,46]. Particularly in TLR4 agonism, such as the one induced 
by LPS, this post-translational modification is involved in the activation 
of different proteins throughout the downstream TLR4-dependent sig-
nalling and during the whole studied time points [47,48]. In addition, 
the ~1055 cm− 1, ~1022 cm− 1 and the ~914 cm− 1 components are 
mainly ascribable to vibrations of carbohydrates, including GAGs 
[40–42]. The 1055 and 1022 cm− 1 peaks are associated also to glyco-
sylated lipids and proteins [49,50] (Table S2). 

Moreover, the intense 967 cm− 1 band can be mainly associated with 
the stretching of the N(CH3)3 group, typical of phosphatidylcholine (PC) 
and sphingomyelin [28,29]. Then, we cannot exclude a contribution of 
DNA/RNA vibrations to this absorption [51] (Table S2). 

Finally, as already discussed previously for the LPS treatment [6], a 
large absorption between ~838 and ~805 cm− 1 is observed that be-
comes more resolved after treatment (peak at ~824 cm− 1), which could 
be assigned to differences in the configuration of polysaccharide 
glycosidic linkages and to sulfated GAG vibrations [40,52–54] 
(Table S2). 

Overall, the FTIR and multivariate analysis findings in the finger-
print region highlight the resemblance between LPS and FP20Rha- 
induced responses and the difference between FP20Rha and FP20- 
induced responses. Indeed, both LPS and FP20Rha lead to changes in 
GAGs composition within the cell and, once again, lipid contribution is 
highlighted. GAGs are linear polysaccharides involved in different bio-
logical functions due to their interactions with different targets such as 
proteins, cytokines, chemokines and others [55]. Changes in structure 

Fig. 5. FTIR analysis in the carbonyl absorption range of TDM cells 
treated with different TLR4 agonists. a) Mean second derivative spectra 
between 1760 and 1500 cm− 1 of TDM cells before and at different time points 
of treatment with FP20Rha. In the figures, the most relevant peak positions are 
indicated. b) Confusion matrices of the nnet analysis of TDM cells, untreated 
and at different time points of treatment with the different molecules. 

Fig. 6. FTIR analysis in the fingerprint region of TDM cells treated with 
different TLR4 agonists. a) Mean second derivative spectra between 1200 and 
800 cm− 1 of TDM cells before and at different time points of treatment with 
FP20Rha. In the figures, the most relevant peak positions are indicated. b) 
Confusion matrices of the nnet analysis of TDM cells, untreated and at different 
time points of treatment with the different molecules. 
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and sulfation of GAGs, mediated by sulfotransferases, occur during 
macrophage polarization towards a M1 proinflammatory phenotype 
[56]. Due to its similarity to LPS in FTIR analysis, we can speculate that 
FP20Rha is able to induce similar phosphorylations as LPS in the pre-
sented time points, indicating that this compound might trigger the 
same activations in TLR4-signaling. 

Consistently with what found for the other analysed spectral ranges, 
the nnet analysis in the fingerprint region (Fig. S3) led to a high 
discrimination accuracy (0.82–0.85), with confusion matrices (Fig. 6b) 
indicating a clear classification of cells treated with FP20Rha and LPS on 
one hand, and a misclassification of FP20 particularly at 24h. 

Considering the overall significant spectral changes induced by the 
different cell treatments, involving different biomolecule classes, in 
Fig. 7 we have calculated the relative spectral distances between un-
treated and treated cells, for each molecule and time point of treatment, 
by PLS-DA analysis. As shown, the treatment with LPS and FP20Rha led 
to higher distances compared to the untreated cells, at each time. FP20 
resulted to be closer to control cells, particularly at 24h, in agreement 
with nnet confusion matrices. 

Therefore, the nnet and PLS-DA analyses of the FTIR data show that 
FP20Rha and LPS have a higher level of activity on TDM cells compared 
to FP20, which is consistent with the presented in vitro and in vivo data. 

A closer inspection of the significant spectral changes highlighted 
peculiar molecular cellular signatures triggered by the different treat-
ments. In particular, the cell response to LPS and FP20Rha involved the 
vibrational fingerprint related to physico-chemical variations in lipids. 
These findings suggest that FP20Rha has a similar effect on cellular 
lipids as LPS, while FP20 differs from both molecules. Moreover, the 
perturbation of the Amide I band in the LPS treated cell spectrum in-
dicates that this molecule also impacts the overall protein secondary 
structures, which might reflect the synthesis of new proteins. The 
observed trend (see box plot of Fig. S2 and Table S1a for the MANOVA 
analysis where the P-value of the interaction treatment-time is much 
lower than the 0.01 threshold) suggests that the impact on protein 

structure is higher in FP20Rha-treated TDM than in FP20-treated ones. 
The investigation of the complex fingerprint region, providing 

mainly information on glycan modifications (GAGs, glycoproteins, gly-
colipids, etc.) and protein phosphorylation (Table S2), sheds light on a 
peculiar spectroscopic pattern for each treatment that points to signifi-
cant differences in the biochemical profile induced by the investigated 
molecules. Significant changes in these biomolecules can be related to 
the inflammation process, since they are essential for inflammatory 
signalling. 

4. Conclusions 

FTIR spectroscopy is currently emerging as a valuable tool to obtain a 
comprehensive molecular fingerprint of intact cells, without requiring 
sample labeling and/or pre-processing steps that could induce artefacts. 
This vibrational tool provides, within a single measurement, informa-
tion on the content and structure of the main biomolecules, a feature 
that is hardly obtainable with other techniques. In the present manu-
script, we compared the human TDM cell response to LPS with those of 
two rationally designed TLR4 agonists, FP20 and FP20Rha, using cell 
biology techniques and by their molecular spectroscopic fingerprint. 
Noteworthy, the spectroscopic fingerprint of the treated cells allowed 
the identification of IR bands (and, therefore, of the main biomolecules 
responsible for), which showed similar or dissimilar variations among 
the different treatments. In particular, lipids and glycans were found to 
be involved in the LPS and FP20Rha response to a comparable extent. In 
this proof-of-concept study, the application of machine learning ap-
proaches made it possible to evaluate in an unbiased way the distances 
in the molecular signatures of the cells treated with the different mol-
ecules, disclosing the similarity between LPS and FP20Rha and the 
differences between FP20Rha and its parent compound FP20. This is in 
very good agreement with the higher activity of FP20Rha over FP20 in 
stimulating TLR4-dependent cytokine production in TDM and in the 
immune response to OVA antigen in vivo. 

The use of FTIR analysis for the in situ screening of bioactive com-
pounds and pharmacological hit selection is still pioneristic [57]. 
Compared to other biochemical and cellular methods used for com-
pound screening and preclinical hit selection, FTIR analysis presents 
several peculiar advantages and strengths. Its high sensitivity allows 
detection of changes in cellular molecular signatures in response to the 
treatment with drug candidates on intact cells, without requiring la-
beling or extraction procedures. The possibility to have a wide snapshot 
of the cellular processes affected and triggered by the molecule provides 
untargeted preliminary information on a drug’s (or drug hit) mechanism 
of action. 

In the drug discovery process, the identification of a hit candidate 
and the study of its mechanism of action are normally two distinct 
phases, the first being based on a high-throughput test and the latter 
requiring more extensive and time-consuming biochemical and cellular 
characterization. We propose here the use of FTIR spectroscopy sup-
ported by AI and multivariate analysis approaches [14,58] to achieve a 
more holistic understanding of the cell response to new drug candidates 
while screening them in cells, gathering preliminary mechanistic in-
sights in an easier, faster and less expensive way than traditional 
methods. 

While the proposed approach is straightforward, label free, untar-
geted, and does not require extensive sample preparation, the 
throughput is, however, limited. Potentially, our proof-of-concept study 
can be further developed by incorporating recent high-throughput 
technologies for IR spectra collection and analysis [59–61]. This could 
mean in the very near future, an emerging technique in the field of 
screening of new proinflammatory drug candidates. 
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[51] M. Banyay, M. Sarkar, A. Gräslund, A library of IR bands of nucleic acids in 
solution, Biophys. Chem. 104 (2003) 477–488, https://doi.org/10.1016/s0301- 
4622(03)00035-8. 
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