
ARTICLE

Minimal unlinking pathways as geodesics in knot
polynomial space
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Physical knots observed in various contexts – from DNA biology to vortex dynamics and

condensed matter physics – are found to undergo topological simplification through iterated

recombination of knot strands following a common, qualitative pattern that bears remarkable

similarities across fields. Here, by interpreting evolutionary processes as geodesic flows in a

suitably defined knot polynomial space, we show that a new measure of topological com-

plexity allows accurate quantification of the probability of decay pathways by selecting the

optimal unlinking pathways. We also show that these optimal pathways are captured by a

logarithmic best-fit curve related to the distribution of minimum energy states of tight knots.

This preliminary approach shows great potential for establishing new relations between

topological simplification pathways and energy cascade processes in nature.
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Physical knots observed in various contexts, such as DNA
biology1,2, vortex dynamics3, and condensed matter phy-
sics4,5 are found to undergo topological simplification by

following a common, qualitative pattern that brings complex
structures to gradually degenerate to form simpler configurations
till final production of small, unlinked, unknotted loops (see the
trefoil knot evolution of Fig. 1a and the Hopf link cascade of
Fig. 1b). The generic feature that characterizes the cascade process
originates in the iterated recombination of knot strands through
reconnection events that bear remarkable similarities across
fields. The process of topological simplification that brings
complex knots to simpler ones in a step-wise manner was first
observed1 in the analysis of site-specific recombination action on
DNA catenanes (see Fig. 2a). Surprisingly, similar unlinking
patterns were then observed also in classical vortex dynamics,
superfluids, and condensates6,7.

The universality of this process is rooted in the identical geo-
metric mechanism that governs the change of topology of phy-
sical filaments8–12, that through an iterated sequence of single,
anti-parallel reconnection events13 (schematically represented in
Fig. 2b) governs the topological cascade pattern of Fig. 2a.
Topological changes were quantified by adapted HOMFLYPT
polynomials derived from helicity by Liu and Ricca14 analyzing a
family of torus knots and links (denoted by {T(p,q)}) given by
knots/links wrapped on a mathematical torus p times in the
longitudinal direction and q times in the meridian direction. It
was found that the unlinking sequence of Fig. 2a can be described
by a monotonic decreasing sequence of numerical values that
matches the observed decrease in topological complexity. The
untying sequence of Fig. 2a, however, is not unique. A given knot
type, for instance the torus link with six minimum number of
crossings denoted by T(2,6) in that sequence, can gradually
unlink to the same final end-state, say the unknot T(2,1) (with
topological crossing number zero), following pathways different
from the one shown in Fig. 2a. So, what makes a given pathway a
privileged route towards topological decay has yet to be under-
stood, and even though this may well depend on the particular
physical process, a general guiding principle is still lacking.

In order to make progress an extensive search on all possible
routes that reduce topologically a given knot to the unknot under

certain assumptions has been carried out by Stolz et al.2 by
analyzing hundreds of cases. A summary of the last, most prob-
able stages starting from the torus link T(2,6) is shown in the
diagram of Fig. 3, where knot types are pictorially represented by
standard minimal presentations15,16. In terms of possible transi-
tions the diagram is by no means exhaustive, but it gives an idea
of the most probable, alternative routes that T(2,6) can follow by
a sequence of single reconnection events towards the unknot
T(2,1). Note that the lowest branch of this diagram corresponds
to the sequence of Fig. 2a, but what makes this very sequence
special is not quite clear. The values computed by Liu and Ricca’s
adapted polynomial are not so helpful either, since all the
numerical sequences obtained from the other alternative routes
are equally monotonic decreasing. Some sort of selective principle
has been devised by Stolz et al. by computing a probability value
for each topological transition given by a single reconnection
event represented in Fig. 3 by a long, black arrow. Computation
of these values, however, relies on a rather sophisticated
machinery based on various assumptions and a combined use of
topological analysis and simulations data.

This has prompted us to propose a far simpler, and intriguingly
new scenario based on the interpretation of the sequences of
Fig. 3 as geodesic flows in a knot polynomial space. By relying on
Arnold’s original idea17 of interpreting evolutionary processes as
geodesic flows in appropriate metric spaces we propose to identify
decaying patterns of topological simplification with geodesic
flows in a knot polynomial space. In general this knot space can
be viewed as a manifold defined by knot types, whose points are
determined by the relative knot polynomials. Since we refer to
physical knots, we make use of the adapted polynomials intro-
duced by Liu and Ricca18,19 to quantify the topology of fluid
knots.This is done by taking standard Legendre polynomials to
construct a basis and an appropriate metric to compute distance
using knot polynomials. This allows to measure and
compare geodesic distances between knot types, define and
compute relative probabilities, and relate minimal pathways to
lower bounds given by minimum energy states20–22.

In the next section we introduce this space, define an appro-
priate metric by means of Legendre polynomials, identify the
knots by adapted Jones polynomials, compute relative deviation

Fig. 1 Topological decay of fluid knots. a Time evolution of reconnecting trefoil vortex in water (snapshots taken, with permission, from Supplementary
movies 5 and 6 in ref. 3). b Time frame simulations of Hopf link defects in condensate5. Each stage is characterized by the topology of a torus knot or link
represented pictorially by the corresponding minimal diagram presentation shown aside. Each torus knot/link T(p,q) is identified by the numbers p and q,
denoting, respectively, the number of longitudinal and meridian wraps of the knot/link type on the mathematical torus. Red arrows denote vector field
orientation (in this case vorticity), long black arrows topological transitions due to a single reconnection event.
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and probability, and provide a comparative analysis between our
results and the results obtained by Stolz et al.2. We find that the
data obtained by our approach match very well the data obtained
by the other method, suggesting that the alternative method based
on use of geodesics in knot polynomial space has great potential
for probability computation of decaying processes of physical
systems, even far more complex than the one considered here. By
using a new measure of topological complexity based on distances
in the knot space we also show that the decaying patterns observed
are captured by a logarithmic best-fit curve that is functionally
related, and bounded from below, by the logarithmic distribution
of minimum energy states of tight physical knots21,22.

Results
Knot polynomial space. Since all prime knots with nine or fewer
crossings have distinct Jones polynomials, for the purpose we
have in mind the Jones polynomial VK(x) (x polynomial variable)
provides a sufficiently robust knot identifier. So let us consider the
Liu and Ricca adapted Jones polynomial for fluid knots18, and
restrict ourselves to the single variable polynomial with positive
exponents of highest degree n. Let us introduce the knot poly-
nomial space Vþ

n according to the following

Definition 1 (Knot polynomial space). The knot polynomial space
Vþ
n is an n-dimensional, discrete, Euclidean space endowed by

Euclidean metric (to be defined below), whose isolated points
(singletons) are the Jones polynomial of knot and link types.

Each singleton in Vþ
n represents a specific knot or link K

through its Jones polynomial VK(x). Let us take the unknot T(2,1)
as the origin of Vþ

n given by VT(2,1)= 1 (the Jones polynomial
value of the unknot). Topological complexity is thus graded by the
discrete topology given by iso-complexity level sets χcmin

given by
the topological crossing number cmin, so that knots/links of same
cmin lie on the same χcmin

-set. Optimal unlinking paths, such as that
represented by Fig. 2 (top row), can be interpreted by piece-wise
linear geodesic flows in Vþ

n through the level sets χcmin
¼ constant.

Metric by Legendre polynomials. In order to determine optimal
pathways we must make use of an appropriate orthonormal
metric. Since the discrete set of points in Vþ

n are given by knot

polynomials, for such a metric we must consider the inner pro-
duct of polynomials Pn= Pn(x) and Pm= Pm(x) in the real vari-
able x. In general this is given by

hPn; Pmi ¼
Z b

a
PnðxÞPmðxÞρðxÞ dx; ð1Þ

where a and b are finite, real values, with ρ(x) density function.
Orthogonality (together with other mathematical properties) is
ensured by a class of standard hyper-geometric polynomials
(Jacobi polynomials), widely used in mathematical physics to
construct solutions to second-order linear, ordinary differential
equations23. These, defined through the hyper-geometric func-
tion, are given by

Pðα;βÞ
n ðxÞ ¼ Γðαþ nþ 1Þ

n!Γðαþ βþ nþ 1Þ
Xn
m¼0

n
m

� �
Γðαþ βþ nþmþ 1Þ

Γðαþmþ 1Þ
x � 1
2

� �m

;

ð2Þ

where Γ(n)= (n− 1)! for any positive integer n. Orthogonality
condition of Jacobi polynomials is given by

hPn; PmiJ ¼
Z 1

�1
1� xð Þα 1þ xð ÞβPðα;βÞ

n ðxÞPðα;βÞ
m ðxÞ dx

¼ 2αþβþ1

2nþ αþ βþ 1
Γðαþ nþ 1ÞΓðβþ nþ 1Þ

Γðαþ βþ nþ 1Þn! δnm;

ðα> �1; β> �1Þ;
ð3Þ

where δnm denotes the standard Kronecker delta. The simplest
case is given by taking the density function ρ(x)= 1, so that one

Fig. 3 Alternative unlinking pathways. Paths from torus link T(2,6) to the
unknot T(2,1) (diagram adapted from ref. 2). Each torus knot/link is
denoted by T(p,q), where the numbers p and q denote, respectively, the
number of longitudinal and meridian wraps of the knot/link type on the
mathematical torus. Knot/link representatives denoted by A–D correspond
to the Thistlethwaite link notation L6a1 (mirror), 52, L4a1 (anti-parallel), and
T(2,3)#L2a1 in the Rolfsen table; Lcmina1 stands for link with topological
crossing number cmin in table position 1, 52 denotes knot with topological
crossing number cmin= 5 in table position 2, and T(2,3)#L2a1 the
connected sum of trefoil knot (the first torus knot) T(2,3) and Hopf link (the
first torus link) L2a1, also denoted by T(2,2); 31#31 denotes the composite
knot made of two trefoil knots T(2,3) (see ref. 28 for standard knot table
and notations). The bottom branch of the diagram represents the minimal
unlinking sequence representing iterated site-specific recombination action
on DNA catenanes. Green arrows denote strand orientation, long black
arrows topological transitions due to single recombination event.

Fig. 2 Topological transition by reconnection event. a Minimal unlinking
sequence representing iterated site-specific recombination action on DNA
catenanes (taken from ref. 1). Each torus knot/link T(p,q) is identified by the
numbers p and q, denoting, respectively, the number of longitudinal and
meridian wraps of the knot/link type on the mathematical torus; RH stands
for right-hand knot/link and c-cat denotes catenanes with topological
crossing number cmin. Long black arrows denote topological transitions due
to a single recombination event. b Schematic representation of topological
transition due to a single, anti-parallel reconnection of knot strands. Red
arrows denote strand orientation and long arrow topological transition.
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recovers the special family of Legendre polynomials, with

Pn; Pmh iL ¼
Z 1

�1
PnðxÞPmðxÞ dx ¼ 2

2nþ 1
δnm; ð4Þ

which determines a complete set of polynomials up to a scale
factor. In order to have a unit norm, we must then set

LnðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

2

r
PnðxÞ; ð5Þ

so that Z 1

�1
LnðxÞLmðxÞ dx ¼ δnm : ð6Þ

From linear algebra24, we have

Theorem 1 (Legendre basis). A polynomial given by

VnðxÞ ¼ c0 þ c1x þ c2x
2 þ ¼ þ cnx

n

can be expanded into the first n+ 1 Legendre polynomials
L0(x), …, Ln(x), which provide a complete basis for the knot
polynomial space Vþ

n .

Let us identify the adapted Jones polynomial VK(x) with Vn(x),
and apply Theorem 1; we have

VKðxÞ ¼ VnðxÞ ¼ c0L0ðxÞ þ c1L1ðxÞ þ c2L2ðxÞ þ ¼ þ cnLnðxÞ;
ð7Þ

with

ci ¼
Z 1

�1
VnðxÞLiðxÞ dx ði ¼ 0; 1; 2; ¼ ; nÞ; ð8Þ

and ci= 0 for all i > n. The coordinates of a point in Vþ
n are thus

given by VK(x)= (c0, c1, c2, …, cn). Since from ref. 18 we have that
x∈ [1, e], we must perform a change of variable to transform the
interval [1, e]→ [ − 1, 1]; this is done by taking

x ! x0 ¼ 2
e� 1

x � 1þ e
e� 1

; ð9Þ

that gives Z e

1
f ½VnðxÞ� dx ¼ 2

e� 1

Z 1

�1
f ½Vnðx0Þ� dx0 : ð10Þ

Definition 2 (Metric). The distance dijðVKi
;VKj

Þ in Vþ
n between

two points VKi
and VKj

determined by Eq. (7), is given by the

Euclidean distance

dij ¼ k VKi
� VKj

k ¼
ffiffiffiffiffiffiffiffiffiffiffi
2

e� 1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

�1
VKi

ðx0Þ � VKj
ðx0Þ

h i2
dx0

s
:

ð11Þ

Application to unlinking pathways. Let us apply Eq. (11) to the
knot types of Fig. 3 to compute data for all possible unlinking
pathways. For this we must compute the Legendre coordinates of
all knots and links of Fig. 3 using Eq. (8). Numerical values are
shown in Table 1, where actual values are computed with five
precision digits. We identify 17 possible pathways shown in Fig. 4,
including pathways through topological transitions A→ T(2,5)
and B→ T(2,4) (denoted by long, dashed arrows in Fig. 4) that are
not reported in the diagram of Fig. 3. The 17 possible pathways
from T(2,6) to the unknot T(2,1) are described in Table 2.

The distance between the farthest knot T(2,6) and the unknot
T(2,1) is measured by the length d0= d(Π0) that determines theT
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direct path Π0 from T(2,6) to T(2,1), i.e.

d0 ¼ dðVTð2;6Þ � VTð2;1ÞÞ ¼ dðVTð2;6Þ � 1Þ : ð12Þ
From Table 1, we have d0= 6.35193 × 106. The length di= d(Πi)
of each route Πi (i= 1, … ,17) is given by the sum of the direct
distances between knot pairs present in each route Πi. In order to
compare pathway lengths it is useful to introduce a non-
dimensional measure given by the relative deviation σi of each Πi

from the direct route Π0. This is given by σi= (di − d0)/d0.
We want to compute the probability associated with each route

and compare the results with those of Stolz et al.2. Keeping in
mind the cascade scenarios discussed in the Introduction, we may
simply relate pathway length to probability by identifying shortest
paths with most probable routes. An elementary definition of
probability pi= p(Πi) is thus given by taking pi inversely
proportional to σi; we have

pi ¼
σ�1
iP17

k¼1 σ
�1
k

;
X17
i¼1

pi ¼ 1: ð13Þ

Numerical values of total length di, deviation σi and relative
probability pi are given in Table 3.

For the sake of example let’s compute the probability
associated with the transition T(2,6)→ T(2,5): this is part of five
routes, Π1, Π2, Π3, Π4, and Π5 (see Fig. 4). Taking data from
Table 3, we have

PTð2;6Þ!Tð2;5Þ ¼ PðΠ1 ∪Π2 ∪Π3 ∪Π4 ∪Π5ÞjTð2;6Þ!Tð2;5Þ
¼ 97:6203%þ 0:622067%þ 0:454444%

þ 0:45440%þ 0:454399%

� 99:6%:

Similarly for the computation of other probabilities associated
with each transition. The results, shown in red in Fig. 5, are
juxtaposed with those (in black) obtained by Stolz et al. As we
see the comparison is very satisfactory, especially if we take
into account the rate of change of each single transition (not
shown).

It is interesting to compare deviations, relative probabilities,
and topological complexity of the routes examined. In Fig. 6
we show (panel a) the plot of deviations and (panel b)
the relative probabilities against Πi. As we see, deviations
cluster into four, well separated sets identified by encircled

Fig. 4 Comparison between different decaying pathways. Possible routes of decaying pathways from T(2,6) to T(2,1), color coded according to the
legends. Each torus knot/link is denoted by T(p,q), where the numbers p and q denote, respectively, the number of longitudinal and meridian wraps of the
knot/link type on the mathematical torus. Knot/link representatives denoted by A–D correspond to the Thistlethwaite link notation L6a1 (mirror), 52, L4a1
(anti-parallel), and T(2,3)#L2a1 in the Rolfsen table; Lcmina1 stands for link with topological crossing number cmin in table position 1, 52 denotes knot with
topological crossing number cmin ¼ 5 in table position 2, and T(2,3)#L2a1 the connected sum of trefoil knot (the first torus knot) T(2,3) and Hopf link (the
first torus link) L2a1, also denoted by T(2,2); 31#31 denotes the composite knot made of two trefoil knots T(2,3) (see ref. 28 for standard knot table and
notations). Green arrows denote strand orientation, long black arrows topological transitions due to single reconnection events. Long, dashed arrows
indicate topological transitions due to single reconnection events not reported in ref. 2.
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regions. This clustering reflects the group of pathways shown
in the diagrams of Fig. 4. Note that the deviation of Π1

from Π0 is as small as 0.0268%, two orders of magnitude
smaller than σ2; the probability of Π1 is p1 = 97.6% (Fig. 6b),
proving to be by far the most probable route among all
possible routes.

As far as topological complexity is concerned, we introduce a
new complexity measure in terms of distance between points in
Vþ
n and the unknot making use of Eq. (11). Since the unknot has

VT(2,1)= 1 and knot complexity tends to increase exponentially
with the topological crossing number cmin, it is useful to provide a
new definition of topological complexity in terms of natural
logarithm.

Definition 3 (Complexity degree). The topological complexity of a
knot K is defined by the complexity degree χ(K) given by

χðKÞ ¼ ln ½1þ dðVK;VTð2;1ÞÞ� : ð14Þ

The plot χ= χ(K) for data extracted from Table 1 is shown in
Fig. 7. The superposed dashed line is a best-fit curve given by
χ ¼ 6:3 lnK � 0:13, where K denotes the knot/link present in
Fig. 3. Since for increasing complexity we have a logarithmic growth
in terms of cmin, this is consistent with the usual assumption that the
number of knot/link types must increase exponentially with cmin.

Table 2 Possible routes to decaying pathways in the decay from T(2,6) to T(2,1).

Route Pathway

Π1 : T(2,6)→ T(2,5)→ T(2,4)→ T(2,3)→ T(2,2)→ T(2,1)
Π2 : T(2,6)→ T(2,5)→ D→ T(2,3)→ T(2,2)→ T(2,1)
Π3 : T(2,6)→ T(2,5)→ D→ B→ T(2,2)→ T(2,1)
Π4 : T(2,6)→ T(2,5)→ D→ B→ C→ T(2,1)
Π5 : T(2,6)→ T(2,5)→ D→ B→ T(2,4)→ T(2,3)→ T(2,2)→ T(2,1)
Π6 : T(2,6)→ 31#31→ D→ T(2,3)→ T(2,2)→ T(2,1)
Π7 : T(2,6)→ 31#31→ D→ B→ T(2,2)→ T(2,1)
Π8 : T(2,6)→ 31#31→ D→ B→ C→ T(2,1)
Π9 : T(2,6)→ 31#31→ D→ B→ T(2,4)→ T(2,3)→ T(2,2)→ T(2,1)
Π10 : T(2,6)→ 31#31→ A→ B→ T(2,2)→ T(2,1)
Π11 : T(2,6)→ 31#31→ A→ B→ C→ T(2,1)
Π12 : T(2,6)→ 31#31→ A→ B→ T(2,4)→ T(2,3)→ T(2,2)→ T(2,1)
Π13 : T(2,6)→ 31#31→ A→ T(2,5)→ T(2,4)→ T(2,3)→ T(2,2)→ T(2,1)
Π14 : T(2,6)→ 31#31→ A→ T(2,5)→ D→ T(2,3)→ T(2,2)→ T(2,1)
Π15 : T(2,6)→ 31#31→ A→ T(2,5)→ D→ B→ T(2,2)→ T(2,1)
Π16 : T(2,6)→ 31#31→ A→ T(2,5)→ D→ B→ C→ T(2,1)
Π17 : T(2,6)→ 31#31→ A→ T(2,5)→ D→ B→ T(2,4)→ T(2,3)→ T(2,2)→ T(2,1)

Πi indicates the ith decaying route associated with the ith pathway (i = 1, … ,17, where i denotes the path number). Each torus knot/link is denoted by T(p,q), where the numbers p and q denote
respectively the number of longitudinal and meridian wraps of the knot/link type on the mathematical torus. Knot/link representatives denoted by A–D correspond to the Thistlethwaite link notation L6a1
(mirror), 52, L4a1 (anti-parallel) and T(2,3)#L2a1 in the Rolfsen table; Lcmina1 stands for link with topological crossing number cmin in table position 1, 52 denotes knot with topological crossing number
cmin ¼ 5 in table position 2, and T(2,3)#L2a1 the connected sum of trefoil knot (the first torus knot) T(2,3) and Hopf link (the first torus link) L2a1, also denoted by T(2,2); 31#31 denotes the composite
knot made of two trefoil knots T(2,3) (see ref. 28 for standard knot table and notations).

Table 3 Length, deviation and probability of the 17 routes considered in the decay from T(2,6) to T(2,1).

Route di di−d0 σi pi [%]

Π0 6.35193 × 106 – – –
Π1 6.3536331 × 106 1.70041 × 103 2.67699 × 10−4 97.6203
Π2 6.6187759 × 106 2.66843 × 105 4.20098 × 10−2 0.622067
Π3 6.7172016 × 106 3.65269 × 105 5.75052 × 10−2 0.454444
Π4 6.7172366 × 106 3.65304 × 105 5.75107 × 10−2 0.45440
Π5 6.7172370 × 106 3.65305 × 105 5.75108 × 10−2 0.454399
Π6 1.0359563 × 107 4.00763 × 106 6.30931 × 10−1 0.0414196
Π7 1.0457989 × 107 4.10606 × 106 6.46426 × 10−1 0.0404267
Π8 1.0458024 × 107 4.106092 × 106 6.46432 × 10−1 0.04042634
Π9 1.0458025 × 107 4.106093 × 106 6.46432 × 10−1 0.04042633
Π10 1.1918964 × 107 5.56703 × 106 8.76431 × 10−1 0.0298174
Π11 1.1918999 × 107 5.567066 × 106 8.764366 × 10−1 0.029817188
Π12 1.1919000 × 107 5.567067 × 106 8.764368 × 10−1 0.029817184
Π13 1.1919344 × 107 5.56741 × 106 8.76491 × 10−1 0.0298153
Π14 1.2184486 × 107 5.83255 × 106 9.18233 × 10−1 0.02846
Π15 1.2282912 × 107 5.93098 × 106 9.33728 × 10−1 0.0279877
Π16 1.2282947 × 107 5.93101 × 106 9.337338 × 10−1 0.02798750
Π17 1.2282948 × 107 5.93102 × 106 9.337340 × 10−1 0.02798749

Π0 indicates the route associated with the direct path between T(2,6) and T(2,1) of length d0; Πi (i = 1, … ,17, where i denotes the path number) indicates the ith decaying route associated with the ith
pathway; di indicates the length of the route Πi, di−d0 the difference between di and the length d0 of the direct path between T(2,6) and T(2,1), σi = (di−d0)/d0 the relative deviation, pi the relative
probability.
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Discussion
It is natural to ask whether the topological simplification analyzed
here can be put in any relation with typical energy cascade pro-
cesses observed in nature. The logarithmic best-fit curve of Fig. 7
is extrapolated from purely topological data, without any refer-
ence to physical or biological processes. A physical justification of
this logarithmic growth, however, can be given by comparing
these results with data obtained from the analysis of minimum
energy states of magnetic knots and links21 and, to some extent,
of elastic systems22. By examining the numerical values of the
groundstate spectra determined there we can see that energy
minima grow with topological complexity as a ln #K þ b, with a
and b constants (and independent of knot types), and #K denoting
knot tabulation according to increasing ropelength λ. Note
that λð#KÞ / c3=4min

(ref. 21, Eq. (19)). This comparison shows a

remarkable similarity between logarithmic growths. Since mag-
netic minima are magneto-hydrodynamic configurations that
represent also steady states of Euler flows25–27, one can interpret
those minima as energy lower bound representatives of any
pathway cascade associated with energy reduction, be it due to
elastic relaxation, viscous dissipation, or quantum effects. Hence,
it is not so surprising to observe that any of the 17 routes con-
sidered above fits into the logarithmic decay of Fig. 7. It is also
worth noticing that the best-fit curve of the optimal geodesic
given by the most probable sequence Π1 is arguably the closest
match to the best-fit behavior obtained in ref. 21.

In summary, a new way to analyze and interpret optimal
pathways attained through topological simplification of physical
knots and links by step-wise sequence of unlinking events, such as
those studied by Stolz et al.2, is introduced and tested. This is

Fig. 5 Comparative analysis of transition probability values. Probability values obtained by Stolz et al.2 (in black) juxtaposed with the ones in red obtained
by the present method. Each torus knot/link is denoted by T(p,q), where the numbers p and q denote, respectively, the number of longitudinal and meridian
wraps of the knot/link type on the mathematical torus. Knot/link representatives denoted by A–D correspond to the Thistlethwaite link notation L6a1
(mirror), 52, L4a1 (anti-parallel), and T(2,3)#L2a1 in the Rolfsen table; Lcmina1 stands for link with topological crossing number cmin in table position 1, 52
denotes knot with topological crossing number cmin ¼ 5 in table position 2, and T(2,3)#L2a1 the connected sum of trefoil knot (the first torus knot) T(2,3)
and Hopf link (the first torus link) L2a1, also denoted by T(2,2); 31#31 denotes the composite knot made of two trefoil knots T(2,3) (see ref. 28 for standard
knot table and notations). Green arrows denote strand orientation, long black arrows topological transitions due to single reconnection event. The
additional transitions A→ T(2,5) and B→ T(2,4) denoted by dashed arrows represent also topological transitions due single reconnection events and are
not reported by Stolz et al. 2; these additional transitions determine some small corrections in the overall assessment of transition probabilities.

Fig. 6 Deviation and relative probability of the 17 routes examined. a Relative deviation σi (i= 1, … ,17 denotes pathway number); σi values cluster into
four, well separate sets identified by the encircled regions. b Probability pi of each route Πi. The first route Π1 has probability p1= 97%, which is several
orders of magnitude larger than the probability of all other pathways.
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done by relying on Arnold’s original idea of interpreting an
evolutionary process as geodesic in an appropriate metric space.
For this we introduce a discrete knot polynomial space whose
points are defined by knot polynomials. Here we consider the
adapted Jones polynomials introduced by Liu and Ricca18,
identifying knot coordinates by Legendre polynomials. By
defining an appropriate orthonormal metric, we apply this
method to analyze the last stages of the unlinking pathways
studied by Stolz et al.2 in terms of discrete geodesic flows, and for
each topological transition we compute the relative probability.
The results obtained match very well the data obtained in ref. 2

without using any extra assumption other than complexity
reduction by stepwise unlinking. Moreover, by introducing a new
measure of topological complexity based on distances in the knot
space, we show that optimal decaying pathways observed in
various physical systems in nature are well captured by a loga-
rithmic best-fit curve that is functionally related, and bounded
from below, by the logarithmic distribution of minimum energy
states of tight physical knots21,22.

All in all this new approach proves to be rather powerful and
flexible. The use of a knot polynomial space through the com-
putation of point coordinates by direct application of Eq. (8)
allows one to explore topological unlinking pathways more
complex than the ones analyzed here. Moreover, the new measure
of complexity degree (a scalar quantity) defined by Eq. (14) can
be straightforwardly applied to sample and predict admissible
pathways before any detailed evaluation of probability routes
using this measure as an exclusion principle, by exploiting the fact
that any admissible pathway generates a monotonically decreas-
ing sequence of χ-values. Finally, a conjecture about energy-
complexity relations: since the considerations above are inde-
pendent from any specific physical process, it would seem plau-
sible to assume that any minimal simplification process could
yield structural simplification governed by a logarithmic decrease
proportional to topological complexity. If so, this would suggest
an intriguing connection between topological simplification and

energy cascade and entropy production. In this regard the novel
approach proposed here seem to have great potential for future
investigations.

Data availability
All data generated or analyzed during this study are included in this published article and
all relevant data are available from the authors.
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with topological crossing number cmin in table position 1, 52 denotes knot
with topological crossing number cmin ¼ 5 in table position 2, and T(2,3)
#L2a1 the connected sum of trefoil knot (the first torus knot) T(2,3) and
Hopf link (the first torus link) L2a1, also denoted by T(2,2); 31#31 denotes
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standard knot table and notations). Best-fit curve (dashed) is given by
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