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Nonparametric Bayesian Modeling and
Estimation of Spatial Correlation Functions for

Global Data

Emilio Porcu∗,†, Pier Giovanni Bissiri‡, Felipe Tagle§, Rubén Soza¶,‖,
and Fernando A. Quintana∗∗,††

Abstract. We provide a nonparametric spectral approach to the modeling of
correlation functions on spheres. The sequence of Schoenberg coefficients and their
associated covariance functions are treated as random rather than assuming a
parametric form. We propose a stick-breaking representation for the spectrum, and
show that such a choice spans the support of the class of geodesically isotropic
covariance functions under uniform convergence. Further, we examine the first
order properties of such representation, from which geometric properties can be
inferred, in terms of Hölder continuity, of the associated Gaussian random field.
The properties of the posterior, in terms of existence, uniqueness, and Lipschitz
continuity, are then inspected. Our findings are validated with MCMC simulations
and illustrated using a global data set on surface temperatures.

Keywords: correlation function, great-circle distance, mean square
differentiability, nonparametric Bayes, spheres.

1 Introduction

There has been an increasing interest in the modeling, inference and prediction of ran-
dom processes defined continuously over a large portion or the entire planet Earth.
Global data sets have become ubiquitous, and along with their increasing complex-
ity, new scientific questions and challenges have emerged involving several branches of
applied mathematics, statistics, computer sciences and machine learning.

1.1 Context and State of the Art

This paper deals with nonparametric Bayesian modeling, inference and prediction, for
Gaussian random fields defined continuously over the two-dimensional sphere embed-
ded in the three dimensional Euclidean space. Although more sophisticated settings
may be considered (see, e.g., Lindgren et al., 2011, with their approach on manifolds),
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¶Pontificia Universidad Católica de Chile, rsozac@mat.uc.cl
‖Millennium Nucleus Center for the Discovery of Structures in Complex Data
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we choose the sphere as the reference domain for the stochastic processes of interest as
it is a reasonable approximation to the true geometry of the Earth (Diggle and Ribeiro,
2007). We take explicit advantage of the assumption of Gaussianity, which implies that
the underlying process is uniquely characterized by its second order properties: the
mean, and the covariance function (Stein, 1999). More formally, let the unit sphere S2

be defined as the set of points in R3 with unit Euclidean distance. We consider Gaus-
sian random fields {Z(x),x ∈ S2}, with constant mean, and with covariance function
C(x1,x2) = σ2corr{Z(x1), Z(x2)}, for x1,x2 ∈ S2. Here, σ2 is the variance and corr
denotes correlation function. In this paper, estimation of the variance plays a minor
role, and most attention will be given to the correlation function.

In particular, we focus on covariance functions that are geodesically isotropic (Porcu
et al., 2018a): the function C above depends exclusively on the geodesic distance, that
is, the shortest arc joining two points on the spherical shell. Mathematical details will
be given subsequently. The nonparametric Bayesian approach to the function C has
three basic ingredients: (a) the function C does not belong to any parametric family
and is instead treated as an unknown function, to be estimated from data; (b) since C
must be positive definite (details are given below) it is convenient to resort to spectral
techniques, for which the mathematical restrictions are less severe; (c) a prior needs to
be specified for the corresponding spectral density.

To the knowledge of the authors, random fields on spheres have not been considered
so far in the Bayesian nonparametric literature, unlike random fields on planar surfaces:
see, among others, Schmidt and O’Hagan (2003); Gelfand et al. (2005); Duan et al.
(2007); Zheng et al. (2010); Reich and Fuentes (2012); Chopin et al. (2013); Holbrook
et al. (2018); Müller et al. (2018).

1.2 Random Fields on Spheres: Literature Review

The literature on random fields on spheres, manifolds, or product spaces involving
spheres with locally compact groups, has become quite extensive, prompting several
recent reviews. Gneiting (2013) provides a comprehensive treatment of covariance func-
tions on spheres, Jeong et al. (2017) offers a review of geostatistical approaches to
spheres, and Porcu et al. (2018a) surveys the state-of-the-art of covariance functions on
spheres and spheres cross time. Further, the essays in Gneiting (2013) and Porcu et al.
(2018a) report collections of open problems pertaining to the mathematical, statistical
and computer science communities.

A common assumption in spatial statistics is that the covariance function has the
property of being isotropic, that is, the covariance between any pair of random variables
observed at two different points of the spatial domain depends exclusively on the dis-
tance between the points. A particularly relevant issue when modeling Gaussian fields
on spheres is that their covariance function should depend on the appropriate metric,
in this case, the great circle (or geodesic) distance. As an alternative, one can build
covariance functions based on chordal distance, and we refer the reader to Banerjee
(2005), Gneiting (2013), Porcu et al. (2016) and Porcu et al. (2018b) for constructive
criticism about the use of such a metric on the sphere.
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Covariance functions are positive definite and there is a well-established theory about
positive definite functions on d-dimensional spheres of Rd+1. The reader is referred to
Schoenberg (1942) and Gneiting (2013); and to the generalizations obtained by Berg
and Porcu (2017) and Porcu et al. (2016).

Spectral representations of covariance functions on spheres allow for the understand-
ing of the properties of a Gaussian field with a geodesically isotropic covariance. For
instance, Lang and Schwab (2013) show that the rate of decay of the spectrum related
to the function C determines the regularity properties of the associated Gaussian field
in terms of interpolation spaces and Hölder continuity of sample paths. Spectral analysis
on spheres became recently useful in contexts as diverse as spatial statistics (Guinness
and Fuentes, 2016), equivalence of Gaussian measures and infill asymptotics (Arafat
et al., 2018), approximation theory (Menegatto et al., 2006; Beatson et al., 2014; Ziegel,
2014; Massa et al., 2017) and spatial point processes (Møller et al., 2018).

Statistical methods based on spectral techniques have been explored from the more
practical perspective of overcoming the computational burden associated with classical
methods based on covariance functions. Most of these techniques are based on spectral
representations for processes defined on a lattice and we refer again to Porcu et al.
(2018a), and references therein, for a comprehensive review.

1.3 Our contribution

For a clearer exposition, our contribution can be categorized as follows:

(a) Spectral analysis and priors on d-dimensional spheres. For the sake of com-
pleteness, we work on d-dimensional spheres (including the Hilbert sphere, for
which details are given below). We choose a stick-breaking representation for the
spectral expansion related to geodesically isotropic covariance functions.

(b) Provide the topological support for the prior. The spectral expansion of the
function C becomes, under our setting, a random sequence. Thus, the function C
inherits this fact and becomes a random object for which a topological support
must be provided. We do so under the topology of uniform convergence.

(c) First order properties and Hölder continuity. We choose a special case of a
stick-breaking representation, called GEM (Pitman and Yor, 1997, details below)
that allows for the inspection of the first order properties of the random spectral
sequence. As a corollary, we deduce the geometric properties of a Gaussian field
with covariance function of this nature, in terms of Hölder continuity.

(d) Posterior inspection. We show that the posterior for the above random spectral
sequence exists, it is absolutely continuous, and admits a closed form. Finally, we
show that such a posterior is Lipschitz continuous with respect to the Hellinger
distance.

Our findings are validated through both a simulation study as well as through data anal-
ysis. Specifically, the outline of the paper is as follows: Section 2 contains the mathemat-
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ical background needed to understand our proposed methodology. Section 3 describes
our spectral nonparametric approach together with the prior specification. Section 4
presents the posterior analysis for a single realization of the Gaussian process under
the proposed prior. This is later extended to the case of multiple samples in Section 5.
Section 6 provides a simulation study that illustrates some practical aspects of our ap-
proach. Section 7 reports on the application of our method to a dataset of global temper-
atures provided by the National Center for Atmospheric Research (NCAR). A discussion
finishes the paper in Section 8. Mathematical proofs and other details are given in a
Supplementary Materials file (Porcu et al., 2020).

2 Mathematical Background

2.1 Random Fields and Correlation Functions on d-Dimensional
Spheres

We start with some notation. For a positive integer d, Sd = {x ∈ Rd+1, ‖x‖ = 1}
denotes the d-dimensional unit sphere embedded in Rd+1, with ‖ ·‖ being the Euclidean
distance. We shall also refer to the Hilbert sphere S∞ = {x ∈ RN, ‖x‖ = 1}. The great
circle distance θ : Sd × Sd → [0, π] is the continuous mapping defined as

θ(x1,x2) = arccos(x�
1 x2) ∈ [0, π],

for x1,x2 ∈ Sd, where � is the transpose operator. Throughout, we equivalently use θ
or θ(x1,x2) to denote this distance, provided no ambiguity arises.

We consider stationary Gaussian random fields {Z(x),x ∈ Sd}, with constant mean,
and with covariance function C(x1,x2) = cov{Z(x1), Z(x2)}, for x1,x2 ∈ Sd. Since
the variance of any linear combination of a finite realization must be non-negative, the
covariance function cannot be an arbitrary mapping. In other words, for any positive
integer n, {x1, . . . ,xn} ⊂ Sd and {c1, . . . , cn} ⊂ R, we have the condition

var

(
n∑

i=1

ciZ(xi)

)
=

n∑
i,j=1

cicjC(xi,xj) ≥ 0. (1)

The mappings C that satisfy (1) are called positive definite, or strictly positive definite
if the inequality is strict for any non zero vector (c1, . . . , cn)

�. A discussion of these
and related topics can be found in Menegatto et al. (2006) and references therein. If, in
addition,

C(x1,x2) = σ2ψ(θ(x1,x2)), xi ∈ S
d, i = 1, 2, (2)

for some mapping ψ : [0, π] → R such that ψ(0) = 1 and σ2 > 0 denoting the variance
of Z(x), then C is called a geodesically isotropic covariance function by Porcu et al.
(2018a), with ψ(θ) a correlation function.

Gneiting (2013) calls Ψd the class of continuous functions ψ : [0, π] → R with ψ(0) =
1 such that the positive definite function C defined on Sd × Sd given by (2) is positive
definite. For the remainder of the paper, we do not distinguish between positive and
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strict positive definiteness, unless otherwise specified. We also define Ψ∞ =
⋂∞

d=1 Ψd,
with the inclusion relation

Ψ1 ⊃ Ψ2 ⊃ · · · ⊃ Ψd ⊃ · · · ⊃ Ψ∞ (3)

being strict.

2.2 Spectral Representations on Spheres

Spectral representations for positive definite functions on spheres, being the equivalent
of Bochner and Schoenberg’s theorems in Euclidean spaces (see Daley and Porcu, 2013,
and references therein) are available thanks to Schoenberg (1942), who shows that a
mapping ψ : [0, π] → R belongs to the class Ψd if and only if it can be uniquely written
as

ψ(θ) =

∞∑
n=0

bn,dc
(d−1)/2
n (cos θ), θ ∈ [0, π], (4)

where cλn denotes the normalized λ-Gegenbauer polynomial of degree n (Abramowitz
and Stegun, 1964), and {bn,d}∞n=0 is a probability mass sequence. Note that in the cases
d = 1 (the unit circle) and d = 2 (the unit sphere of R3) the Gegenbauer polynomials
simplify to Tchebytcheff and Legendre polynomials (Abramowitz and Stegun, 1964),
respectively.

Characterization of the class Ψ∞ is also available thanks to Schoenberg (1942): ψ
belongs to the class Ψ∞ if and only if

ψ(θ) =

∞∑
n=0

bn(cos θ)
n, θ ∈ [0, π], (5)

with {bn}∞n=0 again a probability mass sequence. We follow Daley and Porcu (2013) and
denote the d-Schoenberg sequences of coefficients in (4) by {bn,d}∞n=0, to emphasize the
dependence on the index d in the class Ψd. Analogously, {bn}∞n=0 are called Schoenberg
coefficients throughout. Fourier inversion allows for an explicit representation of the
sequences {bn,d}. Specifically, for a fixed positive integer d and any n = 0, 1, . . .,

bn,d = κ(n, d)

∫ π

0

ψ(θ)c(d−1)/2
n (cos θ) (sin θ)

d−1
dθ, ψ ∈ Ψd, (6)

where κ(n, d) is a positive constant (see Berg and Porcu, 2017). Moreover, arguments
in Corollary 2 of Gneiting (2013) show that, for any d ≥ 2 and n = 0, 1, . . .,

b0,3 = b0,1 −
1

2
b2,1,

bn,3 =
1

2
(n+ 1)(bn,1 − bn+2,1), n ≥ 1,

bn,d+2 =
(n+ d− 1)(n+ d)

d(2n+ d− 1)
bn,d −

(n+ 1)(n+ 2)

d(2n+ d+ 3)
bn+2,d.

(7)
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Family Analytic expression Parameters range

Negative Binomial ψ(θ) =
(

1−δ
1−δ cos θ

)τ
δ ∈ (0, 1), τ > 0

Multiquadric ψ(θ) =
( (1−p)2

1+p2−2p cos θ

)τ
p ∈ (0, 1), τ > 0

Sine Series ψ(θ) = 1
2e

cos θ−1
(
1 + cos θ

)
Sine Power ψ(θ) = 1− 2−γ

(
1− cos θ

)γ/2
γ ∈ (0, 2]

Poisson ψ(θ) = exp
(
λ(cos θ − 1)

)
λ > 0

Table 1: Parametric families of members of the classes Ψ∞, with Schoenberg coefficients
available in closed form.

Parametric families of some members of the classes Ψ∞ are listed in Table 1. They are
all obtained by evaluating the probability generating function associated to a probability
mass sequence. The Schoenberg sequences of the third and fifth entries are provided in
Porcu et al. (2016). For the Sine Power family, the Schoenberg coefficients have been
obtained by Soubeyrand et al. (2008). Other parametric families whose Schoenberg
coefficients are not available in closed-form are listed in Gneiting (2013).

The first entry in Table 1 is the Negative Binomial family. Its Schoenberg sequence
is given by

bn(δ, τ) =

(
n+ τ − 1

n

)
δn(1− δ)τ , δ ∈ (0, 1), τ > 0, (8)

for n = 0, 1, . . ., and corresponds to the probability mass function of the Negative
Binomial distribution. The Multiquadric family – the second entry in Table 1 – is
obtained through the same Schoenberg sequence but with the change of variable δ =
2p/(1 + p2), for p ∈ (0, 1). Note that an explicit form of the d-Schoenberg coefficients
can be calculated using Theorem 4.2(b) in Møller et al. (2018).

3 Nonparametric Spectral Modeling of Covariance
Functions on Spheres

Although applications usually involve cases with d = 1 and d = 2, the following exposi-
tion applies to the general case of the d-dimensional spheres Sd, where d can be either
finite or infinite.

Equations (4) and (6) establish a one-to-one mapping between the class Ψd and the
infinite-dimensional simplex

Δ∞ =

{
{tn}n≥0 : tn ≥ 0,

∞∑
n=0

tn = 1

}
, (9)
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to which the d-Schoenberg coefficients necessarily belong to. Therefore, defining a (prior)
probability measure on the space Ψd (for a given dimension d) is equivalent to defining
a probability measure on Δ∞.

It might be worth stressing that, for any d ∈ N and any element ψ ∈ Ψd\Ψd+1, there
exist {bn,1}∞n=0, {bn,2}∞n=0, . . . , {bn,d−1}∞n=0, {bn,d}∞n=0 Schoenberg sequences associated
to ψ by a series representation of the type (4), all of which belong to Δ∞. These d-
Schoenberg sequences are mutually related by recursive relations (Gneiting, 2013) and
projection operators (Møller et al., 2018).

For any element ψ ∈ Ψd, we assume that a spatial covariance is of the form C(θ) =
σ2ψ(θ), with σ2 denoting the variance. Setting aside the case of σ2 for now, we focus on
the construction and study of properties of a prior distribution for the class of covariance
functions on a sphere. Let us consider a random sequence Bd = {Bn,d}∞n=0, where
Bn,d ≥ 0, for every n, and

∑∞
n=0 Bn,d = 1, almost surely. We call Bd a d-Schoenberg

random sequence, and, accordingly, B∞ = {Bn,∞}∞n=0 a Schoenberg random sequence.

Without loss of generality, we assume throughout that every random variable under
consideration is defined on the same probability space (Ω,F , P ). The fact that the d-
Schoenberg sequence is now treated as a random element {Bn,d}∞n=0 makes it possible
to define a Ψd-valued random object ψ(Bd) through the usual relation

ψ(Bd)(θ) =

∞∑
n=0

Bn,dcn,d(cos θ). (10)

We now equip the class Ψd with an appropriate sigma-algebra, Ad, so that ψ(Bd) is
properly defined as a random element (namely a measurable function) from (Ω,F , P )
into (Ψd,Ad). To complete this step, it becomes critical to equip the class Ψd with the
topology induced by the uniform (or sup) norm, that is, the norm given by

‖ψ‖∞ = sup
θ∈[0,π]

ψ(θ),

or equivalently, by uniform convergence. Also, we let Ad be the corresponding Borel
sigma-field, namely the sigma-algebra generated by the open sets in the topology of
uniform convergence. To justify that such a choice is appropriate we argue as follows.
The simplex Δ∞ is naturally equipped with the product topology and the corresponding
Borel sigma-field. Let T : Δ∞ → Ψd be the function that maps each element bd (b) of
Δ∞ into the function in Ψd (Ψ∞) whose d-Schoenberg sequence is bd (b). So, by (10),
ψ(Bd) = T (Bd) and by Lemma 2 in Part C of the Supplementary Materials File, T
is continuous and therefore measurable. Hence, measurability of {Bn,d}∞n=0 : Ω → Δ∞
implies that ψ(Bd) is in turn measurable as a function from Ω into Ψd. Analogous
remarks can be made about ψB as a function from Ω into Ψ∞.

3.1 Defining a Prior for d-Schoenberg Sequences

We can now take advantage of the above considerations, together with the fact that
Fourier pairs are unique, to assign a prior distribution to the random element ψ(Bd).
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We do this by defining a prior for the sequence Bd = {Bn,d}∞n=0. A natural choice is to
consider a discrete parametric distribution on the natural numbers, and place a prior
on its parameters, but this would imply making strong assumptions on the behavior of
the sequence of the d-Schoenberg coefficients that would be difficult to justify. For this
reason it is worth considering a Bayesian nonparametric approach. Several options are
available for this task. For instance, any element of the class of proper species sampling
priors (Pitman, 1996) provides a sequence supported in Δ∞. However, this is far too
general to be of practical use. Therefore, we opt for adopting a prior distribution for the
sequence Bd using a stick-breaking representation (see e.g. Ishwaran and James, 2001):

B0,d = W0,d,

Bj,d = Wj,d

j−1∏
n=0

(1−Wn,d), j ≥ 1,
(11)

where {Wj,d}∞j=0 is a sequence of independent random variables with values in the unit
interval [0, 1] such that the support of Wj,d is the whole unit interval and

∞∑
j=0

log(E(1−Wj,d)) = −∞. (12)

It is not difficult to verify that under (11) and (12),
∑∞

n=0 Bn,d = 1 almost surely (see
subsequent Lemma 1). Ishwaran and James (2001) show that such a convergence is
guaranteed even if condition (12) is replaced with a weaker condition.

The representation in (11) combined with condition (12) are central to providing
the topological support of the (prior) distribution of ψ(Bd) given by (11) with respect
to the topology of uniform convergence. Recall that the support of the random variable
ψ(Bd) is the set of all elements ψ within the class Ψd such that the (prior) probability
that ψ(Bd) belongs to U(ψ) is positive for every open ball U(ψ) of ψ in the topology of
the uniform convergence. For clarity, we henceforth denote by supp(X) the support of
a random variable X. The following theorem shows that under minimal conditions the
support of ψ(Bd) is full, that is, it coincides with the whole class Ψd, in the sup norm.

Theorem 1. Let d be a positive integer or d = ∞. Let ψ(Bd) be a random element
with values in Ψd and defined according to (10). Let the sequence {Bn,d}∞n=0 admit
the stick-breaking representation depicted through (11), with {Wn,d}∞n=0 a sequence of
independent random variables such that supp(Wn,d) = [0, 1] for every n = 0, 1, . . . and
(12) is satisfied.

Then, supp(ψ(Bd)) = Ψd in the sup norm.

Theorem 1 shows clearly why the approach proposed in this paper falls within the
framework of Bayesian nonparametric approaches.

The following result illustrates a useful property of the proposed construction.

Proposition 2. Let the hypotheses of Theorem 1 hold true. Additionally, if for every
j = 0, 1, 2, . . ., P (Wj,d ∈ {0, 1}) = 0, then for every positive integer N , and every finite
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collection of pairwise distinct points x1, . . . ,xN ∈ Sd and constants c1, . . . , cN ∈ R,
where cj 
= 0, for some j, the following holds almost surely:

N∑
i=1

N∑
j=1

cicjψ
(Bd)(θ(xi,xi)) > 0.

That is, ψ(Bd) is almost surely strictly positive definite.

3.2 First Order Properties and Hölder Continuity Under GEM
specifications

So far we have provided a completely general construction for random elements ψ(B)

having the whole class Ψd as support. A deeper study of these objects needs a para-
metric specification for the marginal distributions of the independent random variables
W0,d,W1,d, . . . appearing in the stick-breaking representation (11) that would induce a
parametric specification on the d-Schoenberg random sequence Bd. By Theorem 1, it is
only necessary that the support of eachWn,d be the unit interval. A well known probabil-
ity distribution for Bd is obtained through the stick-breaking representation (11) that
arises when Wj,d follows a Beta distribution with parameters (1 − α, ϑ + (j + 1)α),
with 0 ≤ α < 1 and ϑ > −α. Such distribution is known in the probability lit-
erature as the Griffiths-Engen-McCloskey (GEM) distribution and is related to the
Pitman–Yor process (Pitman, 1996; Pitman and Yor, 1997), also known as two param-
eter Poisson Dirichlet process. This particular specification implies increased flexibility
than, e.g. the well known Ferguson–Dirichlet process (Freedman, 1963; Ferguson, 1973,
1974), while still retaining some tractability. For further reference, we use the nota-
tion Bd ∼ GEM(α, ϑ). In particular, when α = 0 the Ferguson–Dirichlet process is
obtained. For a detailed account about these distributions, the reader is referred to
Pitman (2006).

Theorem 1 together with the GEM specification shows that the support of any ran-
dom object ψ(B) defined according to (10) is the whole class Ψd. The next result provides
the first order properties of the d-Schoenberg random sequence Bd when coupled with
the stick-breaking representation under the GEM specification. Denote by x(m) the ris-
ing factorial, that is, x(m) = Γ(x+m)/Γ(x) = x(x+1) . . . (x+m− 1), for every integer
m ≥ 1 and x(0) = 1, for every x > 0.

Proposition 3. Assume the prior distribution of the d-Schoenberg random sequence
Bd = {Bn,d}∞n=0 to be specified as GEM(α, ϑ). For a fixed n ∈ N0, denote by μd(α, ϑ, n)
the corresponding expectation of Bn,d. Then,

μd(0, ϑ, n) =
1

1 + ϑ

(
ϑ

1 + ϑ

)n

,

and

μd(α, ϑ, n) =
1− α

1 + ϑ

(1 + ϑ/α)
(n)

(1 + (1 + ϑ)/α)
(n)

, if α > 0.
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Some comments are in order. Proposition 3 shows that the mapping n → μd(α, ϑ, n)
is the probability mass function of the beta geometric distribution with parameters
(1 − α)/α and (1 + ϑ)/α. In other words, using the notation introduced in Section 2,
and denoting by gu,v the beta density with parameters u and v,

μd(α, ϑ, n) =

∫
[0,1]

bn(δ, 1)g(1−α)/α,(1+ϑ)/α(δ) dδ, (13)

where bn(δ, τ) is the d-Schoenberg sequence associated with the negative binomial fam-
ily, as reported in (8). Thus, it becomes apparent that μd does not depend on the integer
d that indexes the class Ψd.

Proposition 3 shows even more: the prior distribution of the random element ψ(Bd)

is centered at the (deterministic) element of Ψd whose d-Schoenberg coefficient are given
by (13), namely:

E(ψ(Bd)(θ)) =
∞∑

n=0

μd(α, ϑ, n)c
(d−1)/2
n (cos θ), θ ∈ [0, π].

In particular, if d = ∞, then arguments in Proposition 3.4 in Berg and Porcu (2017)
and the application of bounded convergence show that the prior of the random element
ψ(B)(θ) has expected value

E(ψ(Bd)(θ)) =

∫
[0,1]

Nδ,1(θ)g(1−α)/α,(1+ϑ)/α(δ) dδ, θ ∈ [0, π],

where Nδ,τ (θ) =
(

1−δ
1−δ cos θ

)τ
is the negative binomial family as reported in the first

entry of Table 1 and belonging to the class Ψ∞.

The behavior of the correlation function at the origin is fundamental in determining
the geometric properties of the associated Gaussian random field (Diggle and Ribeiro,
2007). The framework proposed in this section allows to provide results along these lines.
Since this paper deals with correlation functions ψ(θ), for ψ : [0, π] → R, derivatives at

the origin of ψ can be seen as derivatives of the even extension ψ̃ of ψ to the interval
[−π, π].

For the remainder of the paper, for any pair of real-valued sequences {an} and {dn},
we write an ∼ dn (an is asymptotically equivalent to dn) when an/dn → 1 as n → ∞.
Also, we define the Digamma function � (Abramowitz and Stegun, 1964) through

�(x) =
d

dx
log Γ(x), x > 0.

Proposition 4. Assume that the d-Schoenberg random sequence Bd = {Bn,d}∞n=0 has
prior specified as GEM(α, ϑ). Then, P -almost surely,

1. If 0 < α < 1, then there exists a random variable Z, with 0 < Z < ∞, such that

Bj ∼ Z(1− α)Γ(1− α)1−αj−1/α, j → ∞.
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2. If α = 0, then
Bj ∼ e−(�(1+ϑ)−�(ϑ))j , j → ∞.

Proposition 4 implies actually much more. For convenience, we recall a recent result
relating Hölder continuity and d-Schoenberg sequences.

Proposition 5 (Lang and Schwab, 2013). Let d be a positive integer and let ψ be a
member of the class Ψd with d-Schoenberg sequence bd = {bn,d}∞n=0 uniquely determined
according to (6). If

∞∑
n=0

bn,dn
β < ∞,

for some β > 0, then there exists a constant kβ such that for all θ ∈ [0, π],

|ψ(θ)− 1| ≤ kβθ
β .

We can now combine Propositions 4 and 5 to assert the following:

Proposition 6. For d ∈ N, assume that the d-Schoenberg random sequence Bd =
{Bn,d}∞n=0 has GEM(α, ϑ) distribution.

1. If 0 < α < 1, then for any β ∈ (0, α/(1− α)) there exists a constant kβ such that
for all θ ∈ [0, π],

|ψ(B)(θ)− 1| ≤ kβθ
β , (14)

almost surely.

2. If α = 0, then (14) holds true, almost surely, for any β > 0.

Proposition 6 has precise consequences in terms of sample path properties of Gaus-
sian random fields. In fact, the Hölder continuity of the covariance function is directly
related to the P-almost sure continuity of the associated Gaussian field. This is a direct
consequence of the Kolmogorov-Chentsov theorem, which analogue on the sphere has
been provided by Lang and Schwab (2015).

4 Existence of the Posterior and Lipschitz Continuity

The specification of the prior in Section 3.1 allows us to obtain further results. In par-
ticular, let d be a positive integer. Suppose the Gaussian process Z on Sd is sampled at
locations (x1, . . . ,xN )�. Call Z the n-dimensional random vector (Z(x1), . . . , Z(xN ))�

and let z := (z(x1), . . . , z(xN ))� be one such realization. Let Z have unknown correla-
tion ψ(Bd), being uniquely determined through the d-Schoenberg random sequence Bd.
For simplicity we assume that the variance of the marginal distributions of the process
is known and fixed. Then, conditionally on the event {Bd = bd}, Z is a Gaussian process
with correlation function ψ(bd)(θ), θ ∈ [0, π]. We note that joint distribution of Bd and
Z can be specified through the prior distribution of Bd together with the conditional
distribution of Z given Bd.
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For any set A, let IA denote its corresponding indicator function, namely IA(x) = 1
if x belongs to A and IA(x) = 0 otherwise. It is worth noting that the joint distribution
of Z and Bd can be obtained by setting:

Z(x) = μ+ σ2
∞∑

n=0

I{M=n}Zn(x), x ∈ S
d, (15)

where μ = E(Z(x)), i.e., μ is the (constant) mean of the process and σ2 is the variance.
Here, the discrete random variable M and the processes {Zn(x) : x ∈ Sd, n = 0, 1, . . .}
are conditionally independent given Bd. Also, we let P (M = n | Bd) = Bn,d and for
n = 0, 1, . . ., {Zn(x) : x ∈ Sd} are zero mean Gaussian processes independent of Bd

with

E(Zn(x)Zm(y)) = c(d−1)/2
n (cos θ(x,y))δn=m, x,y ∈ S

d, n,m = 0, 1, . . . ,

with δ denoting the Kronecker delta. The assumption above on the covariance between
Zn and Zm is certainly correct because, for every n ∈ N0 and for any positive integer
d, the n-th normalized Gegenbauer polynomial of order (d− 1)/2 is positive definite on
Sd × Sd; see Berg and Porcu (2017) for technical details.

We now have the ingredients to establish the posterior distribution of Bd, namely
the conditional distribution of Bd given Z = z, provided such a distribution exists. We
denote the posterior of Bd by Pz and the prior by P.

Proposition 7. Let ψ(Bd) be a random element with values in Ψd, defined according
to (10). Let the sequence {Bn,d}∞n=0 admit the stick-breaking representation depicted
through (11), with {Wn,d}∞n=0 being a sequence of independent random variables such
that P (Wn,d ∈ (0, 1)) = 1 for every n = 0, 1, . . . and (12) is satisfied.

Then, the posterior Pz of Bd exists, is unique and absolutely continuous with respect
to P, with uniquely determined density evaluated at bd = {bn,d}∞n=0 ∈ Δ∞:

f(z; bd)

M(z)
, (16)

where f(z; bd) is the N -dimensional centered multivariate Gaussian density evaluated
at z with covariance matrix

ΣN (bd) := σ2
∞∑

n=0

bn,dΣ
(N)
n , (17)

where

Σ(N)
n =

(
c(d−1)/2
n (cos θ(xj ,xk))

)N

j,k=1

,

and where

M(z) = E(f(z;Bd)).



E. Porcu, P. G. Bissiri, F. Tagle, R. Soza, and F. A. Quintana 13

It is also useful to examine whether the posterior Pz varies smoothly as a function
of z, as it relates to the robustness of the posterior to small changes in the observed
data. Using continuity in the Hellinger metrics as a criterion, if it is established then we
say that the estimation task is well-posed (see Stuart, 2010; Dashti and Stuart, 2017).

In order to address the well-posedness of the posterior, recall the definition of the
Hellinger distance between two probability measures, ν1 and ν2, dominated by the same
measure ν with Radon–Nikodym derivatives f1 and f2, respectively:

dH(ν1, ν2) =

{∫ (√
f1 −

√
f2

)2

dν

}1/2

. (18)

We are now able to state our next finding.

Theorem 8. Under the same conditions as in Proposition 7, it is true that the posterior
Pz is Lipschitz continuous with respect to the Hellinger distance in the data z: for any
r > 0, there exists a strictly positive constant m(r) such that for all z1, z2 ∈ RN with
max{‖z1‖, ‖z2‖} ≤ r,

dH(Pz1 ,Pz2) ≤ m(r)‖z1 − z2‖. (19)

5 Statistical Model

For the remainder of this article, we will assume a statistical model based on a real-
ization (possibly with replicates) of a Gaussian process Z on Sd, sampled at locations
(x1, . . . ,xN )�. We work under the setting outlined in Proposition 7, i.e., Z is assumed
to be a Gaussian process with unit variance and correlation function ψ(Bd), a random el-
ement with values in Ψd, as previously defined in (10). For the upcoming developments,
we consider the case where m replicates of this process is available. We denote these by
Z1, . . . ,Zm. Write Z(m) = (Z1, . . . ,Zm). The model then states that Z1, . . . ,Zm are
conditionally iid given Bd = bd with multivariate Gaussian distribution with covariance
matrix ΣN (bd), as defined in (17). In turn, the sequence Bd is modeled as generated
from a GEM(α, ϑ) sequence, i.e., as in (11), with Wj,d ∼ Beta(1 − α, ϑ + (j + 1)α),
where 0 ≤ α < 1 and ϑ > −α. Finally, we assume a prior distribution on α and ϑ. In
summary, we work with the following model:

Z1, . . . ,Zm | Bd = bd
iid∼ NN (0N ,ΣN (bd)), (20)

Bd | α, ϑ ∼ GEM(α, ϑ), (21)

ϑ | α ∼ LT N (−α, 0, A2), (22)

α ∼ Beta(α0, β0), (23)

where 0N denotes the zero-vector in RN , LT N (θ1, θ2, θ
2
3) denotes the univariate normal

distribution with mean θ2 and variance θ23, but truncated to the interval (θ1,∞), that
is, with probability density function given by

p(x; θ1, θ2, θ
2
3) =

1[
1− Φ

(
θ1−θ2
θ3

)]√
2πθ23

exp

{
− (x− θ2)

2

2θ23

}
, x ≥ θ1,
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and α0, β0 and A2 are user-supplied positive constants. Note that the prior on GEM
parameters, p(α, ϑ) is specified by means of a conditional and a marginal distribution.
This same strategy was employed in Jara et al. (2010). In all simulation experiments
and data analyses described below we assume σ = 1 by which we simply imply that the
data are assumed to be standardized so that the correlation function and the Schoenberg
sequence bd are our main inferential targets. We note also that extending the previous
model to the case of unknown variance is straightforward, only requiring an extra prior
distribution on σ2 (or σ). We omit the corresponding details.

It is also straightforward to show that the theoretical results developed earlier
in Section 4 for the case of a single realization of the Gaussian process (i.e., m =
1) remain valid in the more general case (i.e., m > 1), with some obvious adjust-
ments, e.g. as in the case of Proposition 7 and Theorem 8, which we use here without
proof.

6 Simulation Study

We have so far studied properties of the proposed class of nonparametric priors for
a correlation function over the sphere. We also discussed in Section 4 the case of the
posterior distribution corresponding to a sample from a Gaussian process having a
correlation function in Ψd, which can then be represented by means of (11). We now
study through simulation the performance of various aspects of the model, in particular,
estimation of correlation functions in Sd and prediction.

Despite the generality of the results and model stated above, and for the sake of
simplicity, the simulation experiments we present next are performed over the two di-
mensional sphere S2 embedded in R3. We focus on two aspects: on the one hand, we
explore the efficiency of Markov Chain Monte Carlo (MCMC) techniques from simula-
tions drawn from a GEM(α, ϑ) distribution. We consider the case of a varying number
of points on the sphere. On the other, we examine the flexibility of the proposed model
in reproducing the second-order structure of common parametric forms. In particular,
we consider two parametric classes of geodesically isotropic correlation functions. First,
the exponential correlation function ψE, given by

ψE(θ;φ) = exp

(
− θ

φ

)
, θ ∈ [0, π], (24)

where φ > 0 is a positive scaling parameter. Arguments in Gneiting (2013) show that ψE

belongs to the class Ψ∞ for all φ > 0. Secondly is the multiquadric correlation ψM(·; p, τ),
corresponding to the second entry in Table 1, where the parameter restriction is reported
in the same table.

In all the simulation scenarios discussed below, we adopt the model defined as (20)
through (23) with α0 = 1, β0 = 5 and A2 = 105, reflecting a prior that assigns higher
mass to values of α closer to 0 (i.e., the Dirichlet process) and a vague specification for
ϑ.
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6.1 Simulation I

In this first simulation experiment, we explore some inferential aspects of the Schoen-
berg sequence b2 for data drawn from the GEM(α, ϑ) prior. In particular, we consider
estimation of the Schoenberg coefficients, and most importantly, of the corresponding
correlation function ψ(b2)(θ), θ ∈ [0, π]. We assess the efficiency of MCMC estimation
technique, varying the number of points on the sphere from which synthetic realizations
are drawn.

Figure 1: Posterior distribution of the 30 terms of the truncated Schoenberg sequences.
The red dots correspond to the true simulation value, while the bars represent the poste-
rior 95% credibility intervals. The rows indicate the different values ofm ∈ {1, 100, 1000}
while the columns the different values of N ∈ {100, 250, 400}.

The spatial design mimics an infill asymptotics setting on the sphere, where an
increasing number of points is considered over a compact set. For a recent account of
infill asymptotics on d-dimensional spheres, the reader is referred to Arafat et al. (2018).
Specifically, we generate 3 increasing sets consisting of N randomly chosen points over
the unit sphere, with N = 100, 250, 400. For each N , we fix and assume that the true
GEM distribution has a fixed value of ϑ = 3 and α = 0.3, from which a random
realization is drawn. Although a realization of GEM distribution entails a countably
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infinite sequence in (0,∞), conducting inference necessarily calls for a truncation of the
sequence, details of which are provided in Ishwaran and James (2001). Here we consider

a truncation up to and including the 30-th term. The obtained covariance matrix Σ̃N (bd)
is the analogue of the matrix ΣN (bd) as defined in (17), and obtained by replacing the
series with the corresponding partial sum. Inference is performed on m ∈ {1, 100, 1000}
independent spatial replicates of the Gaussian random field Z.

In particular, inference is based on Hamiltonian Monte Carlo, implemented in the
Stan modeling language (Carpenter et al., 2017) within the R package rstan. A single
chain was considered for each of the experiments, of length 2000, the first 1000 iterations
of which were discarded as warm-up. For each of the noted values ofN , we fit model (20)–
(23).

Figure 1 compares the posterior samples for each of the 30 Schoenberg coefficients in
the truncated representation for each of the N values (columns) and each of the number
m of realizations (rows). Note how the posterior distributions of the coefficients pro-
gressively tend to become more concentrated, with the exception of the last one, a side
effect of the truncation. In all cases, the posterior distributions follow the true values,
with levels of posterior concentration that generally increase with N and particularly
with m. Indeed, ranging from m = 1 to m = 1000 produces a substantial reduction in
the posterior variability for each of these coefficients.

Of fundamental importance for this work is the correlation function. Figure 2 shows
the (truncated) correlation functions corresponding to each of the simulation scenarios,
evaluated at a grid of 60 equally spaced values over [0, π]. The true values are in black
and 95% posterior credibility bands are in red. All dots are joined to facilitate graphical
display. As expected, the true collection of correlation points are contained in the cor-
responding credibility bands, and increasing m has the effect of reducing the width of
these bands so that for m = 1000 they are barely distinguishable from the true values.

In closing this first simulation study we mention that we carried out a number of
alternative computational experiments with different combinations of GEM parameter
values as data generating distribution (including α = 0 and several values for ϑ). We
also tried different specifications of the prior, including the case when both α and ϑ are
known. We found a general agreement in the results in the sense that the inference for
b2 and ψ(b2)(θ) for θ ∈ [0, π] produced results of similar quality to those shown here
(data not shown).

6.2 Simulation II

In this second simulation experiment we compare our model with that corresponding
to the exponential correlation function. Specifically, we simulate data from a zero mean
Gaussian random field, Z, defined over the two dimensional sphere S2, assumed to
be continuous in the mean-square sense (thus, no nugget effect is considered in the
covariance function), with unit variance, and with exponential correlation function ψE

as defined in (24). Thus, Z is continuous but not mean-square differentiable because
ψE is not differentiable (under an even extension) at the origin. We consider two cases
for the scaling parameter, φ = 100, 1000 km (see Figure 3). For each value of φ, we
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Figure 2: Posterior distribution of the estimated correlation function for each of the
simulation scenarios. The black curve corresponds to the true correlation function eval-
uated at a grid (dots are joined for display). The red curves correspond to point-wise
95% credibility bands (also joined for display).

randomly generate 100 points, simulate 50 independent realization of the associated
random field, and then fit both exponential correlation functions ψE, using a vague
uniform prior for the scaling parameter as φ ∼ U(0, 108), and the nonparametric model

ψBNP(θ;K) =

K∑
n=0

bn,2c
(d−1)/2
n,d (cos(θ)), θ ∈ [0, π], (25)

with coefficients bn,2 based on the GEM specification. Specifically, we consider 3 levels of
truncation, K = 30, 40, 50. We repeat this 50 times and compute the average predictive
scores, shown in Table 2. Such prediction scores are the root mean square error and the
continuous ranked probability score. Letting Ẑ−i(xi) denote the drop one prediction,
namely the best prediction based on all data Z(xj) for j 
= i, the root mean square
error (RMSE) is: {

1

N

N∑
i=1

(Z(xi)− Ẑ−i(xi))
2

}1/2

.
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Letting Fi(y) = P (Z(xi) ≤ y | Z(xj), j 
= i) be the predictive cumulative density
function, the continuous ranked probability score (CRPS) is

{
1

N

N∑
i=1

∫ ∞

−∞
(F̂i(y)− I{Z(xi)≤y})

2

}1/2

.

Both RMSE and CRPS thus correspond to measures of predictive accuracy.

Figure 3: Variograms for selected models.

In both cases we observe that the level of agreement between the Bayesian Nonpara-
metric (BNP) and parametric models increases with the level of truncation, specially for
the case where the scaling parameter equals 1000. Nevertheless, the lack-of-smoothness
at the origin, a well-known feature of the exponential correlation function, complicates
the approximation. This explains why the model used to generate the data provides
better predictions than the BNP, although by a modest margin that decreases with K.

Analogously, we repeat the experiment but now with data generated from a multi-
quadric correlation function ψM(·; p, τ), with τ = 0.5 and p = 0.8, 0.9 (see Figure 3),
and using independent priors for p and ν given by p ∼ U(0, 1) and τ ∼ U(0, 108). The
average predictive scores are presented in Table 3.

For both values of p, we find that even the more parsimonious ψBNP(·; 30) per-
forms comparably to what is obtained using the true data generating model. Indeed,
for p = 0.8, increasing the number of coefficients yields no meaningful improvement in
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φ = 100 φ = 1000
Model RMSE CRPS RMSE CRPS
ψBNP(·;30) 1.365 0.874 1.005 0.751

(0.961, 2.462) (0.727, 1.166) (0.843, 1.248) (0.690, 0.851)
ψBNP(·;40) 1.205 0.822 0.969 0.738

(0.917, 1.795) (0.716, 0.953) (0.836, 1.119) (0.683, 0.802)
ψBNP(·;50) 1.154 0.808 0.934 0.725

(0.945, 1.561) (0.726, 0.907) (0.807, 1.097) (0.674, 0.791)
ψE 1.021 0.760 0.898 0.709

(0.874, 1.162) (0.705, 0.809) (0.773, 1.054) (0.655, 0.771)

Table 2: Prediction scores for each model (50 cases), with the true model having an
exponential correlation function with φ = 100, 1000. Here, ψBNP(·; ·) is defined in (25)
and ψE in (24).

p = 0.8 p = 0.9
Model RMSE CRPS RMSE CRPS
ψBNP(·; 30) 0.471 0.477 0.703 0.620

(0.400, 0.560) (0.440, 0.522) (0.620, 0.835) (0.580, 0.691)
ψBNP(·; 40) 0.471 0.477 0.694 0.613

(0.400, 0.559) (0.436, 0.521) (0.586, 0.805) (0.561, 0.678)
ψBNP(·; 50) 0.471 0.477 0.692 0.611

(0.400, 0.559) (0.436, 0.521) (0.588, 0.803) (0.560, 0.669)
ψM 0.471 0.477 0.692 0.612

(0.396, 0.554) (0.433, 0.52) (0.598, 0.798) (0.565, 0.670)

Table 3: Average prediction scores for each model (50 cases), with data being generated
from a multiquadric correlation function ψM with τ = 0.5 and p = 0.8, 0.9.

the predictive performance. This is to be expected because unlike the exponential fam-
ily case illustrated earlier, the multiquadratic correlation function is a better-behaved
element of Ψ∞ (recall Table 1).

7 Data Illustration: Surface Temperature

Lastly, we provide an illustration of the proposed nonparametric device to surface tem-
perature data provided by the publicly available Large Ensemble Project (LENS) (Kay
et al., 2015), developed at NCAR. The dataset consists of over 30 simulations from
the Community Earth System Model (CESM) version 1, covering the years 1920 to
2100. Historical forcing is used from 1920 to 2005, and the representative concentration
pathway 8.5 (RCP8.5) onwards until 2100. The horizontal resolution is approximately
1◦, with 288 longitude points, and 192 latitude points, for a total of 55,296 points at
each time-step. The chaotic nature of the climate system ensures that each simulation
resembles an independent realization from a common data generating mechanism, by
introducing small round-off level differences in the initial atmospheric conditions. We
use Boreal summer averages – averages for the months of June, July and August (JJA)
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Figure 4: Surface temperature in degrees Celsius for the mean over the months of June,
July and August (JJA), for the first member of the LENS ensemble, for the year 2003.
The random set of points used for the fitting are denoted by crosses.

– for the years 2003 to 2005, for the first 30 ensemble members. As an example, Figure 4
shows the 2003 JJA mean of the first ensemble member. This gives us a set of 30 means
for each of the three JJA months and we assume the total of m = 90 JJA means to be
i.i.d. spatial replicates. Given the different surface temperature characteristics between
land and ocean, we focus only on land regions, and only within the latitude band 57◦S–
70◦N to avoid potential distortions near the poles, thus reducing the number of points
to 12,037. For this study, N = 100 points were chosen from these at random, whose
locations are depicted in Figure 4. Our main goal in this analysis is to illustrate the
application of our model compared to other parametric alternatives, and to estimate
the spatial correlation function.

A preliminary step to the modeling of the correlation structure is the removal of the
mean structure from the JJA averages. Previous studies, such as Stein (2007) and Jun
et al. (2008) for ozone concentration, and Jeong and Jun (2015) for sea-level pressure,
have used spherical harmonics for this purpose. We initially considered their use, but
found that they had difficulty in capturing localized features, for instance, over the
Qinghai-Tibetan plateau and its surroundings, despite considering degrees � = 0, . . . , 12,
and orders 0 ≤ m ≤ �. Instead, standardizing the residuals across the 90 realizations
worked well in achieving a mean close to zero. Figure 5 shows the mean surface and the
residual surface of the realization in Figure 4.

To examine the sensitivity of the predictive performance of the BNP model to the
degree of truncation, we consider K = 30, 40, 50 as in the simulation study in Section 6.
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Figure 5: (top) Mean JJA surface temperature for the 30 ensembles, over the years
2003−2005; (bottom) JJA surface temperature residuals from the first ensemble member
for the year 2003.

To further test the model’s performance, we added this time the case K = 100. The

analysis is again based on model (20) through (23) with the same prior choices as in

Section 6, i.e., α0 = 1, β0 = 5 and A2 = 105.

In order to assess the performance relative to parametric alternatives, we fit the ex-

ponential correlation function ψE as in (24), the multiquadric correlation function ψM
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Model E(φ | Z) E(p | Z) E(τ | Z) E(ν | Z)
ψE 1672 – – –

(1615.9, 1738.8) – – –
ψM – 0.928 0.443 –

– (0.925, 0.932) (0.415, 0.471) –
ψLM 5.283 – – 0.197

(4.785, 5.869) – – (0.191, 0.202)

E(α | Z) E(ϑ | Z)
ψBNP(·;30) 0.049 11.147

(0.001, 0.160) (6.505, 16.412)
ψBNP(·;40) 0.051 11.744

(0.001, 0.174) (6.774, 16.601)
ψBNP(·;50) 0.113 11.760

(0.006, 0.289) (4.858, 18.316)
ψBNP(·;100) 0.320 6.321

(0.189, 0.437) (1.81, 12.584)

Table 4: Posterior means and credibility intervals in parentheses, for the exponential,
multiquadric and Legendre-Matérn correlation functions fit to LENS JJA surface tem-
perature means. The parameter φ corresponds to the scale parameter of the exponen-
tial and Legendre-Matérn, the parameters p and τ are those denoted in Table 1 for
the multiquadric, and ν refers to the smoothness parameter of the Legendre-Matérn.
The table also includes posterior means and credibility intervals for GEM parame-
ters.

defined in second entry in Table 1, and the Legendre-Matérn correlation function (Guin-
ness and Fuentes, 2016) with truncation after the first 50 terms. Finally, we consider two
elements of the class Ψ∞ that do not admit a d-Schoenberg expansion in closed form: the
power exponential model (see Gneiting, 2013, for details) and the generalized Cauchy
class (Gneiting and Schlather, 2004). Table 4 shows the parameter estimates (posterior
means) and their associated 95% credibility intervals. Note that only the results for the
exponential correlation, ψE, the multiquadratic, ψM, and the Legendre-Matérn, ψLM

are shown, as these were the best performing.

Table 5 reports the average predictive scores RMSE and CRPS, across the 90 spatial
replicates, for the three versions of the nonparametric model ψBNP together with the
other parametric models.

As expected, the additional flexibility of ψBNP(·; 100), afforded by the larger num-
ber of Schoenberg coefficients, allows it to outperform the other ψBNP(·;K) models,
K = 30, 40, 50. The posterior means and 95% credibility intervals for α on the one
hand clearly suggest a departure from the simplistic case of the Dirichlet process (i.e.,
when α = 0), especially when K = 100, as seen from the last two rows in Table 4.
In fact, when K = 100 this posterior distribution is clearly shifted to the right com-
pared to the other cases. On the other hand, the posterior of ϑ is concentrated on
fairly large values, suggesting that all the terms in the truncated mixture are impor-
tant to achieve the approximation required by the data. When K = 100, this pos-
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Model RMSE CRPS
ψBNP(·; 30) 0.709 (0.580, 0.913) 0.620 (0.562, 0.702)
ψBNP(·; 40) 0.659 (0.522, 0.786) 0.597 (0.540, 0.655)
ψBNP(·; 50) 0.647 (0.515, 0.813) 0.590 (0.538, 0.651)
ψBNP(·; 100) 0.640 (0.503, 0.788) 0.585 (0.527, 0.659)
ψE 0.650 (0.532, 0.806) 0.591 (0.542, 0.656)
ψM 0.654 (0.535, 0.805) 0.594 (0.542, 0.651)
ψLM 0.659 (0.539, 0.810) 0.597 (0.546, 0.652)

Table 5: Average predictive scores over the 90 spatial replicates, for the nonparametric
model ψBNP(·;K) with truncation levels K = 30, 40, 50, 100, and the chosen parametric
models. 95% central range of values indicated in parentheses.

terior is somewhat shifted to the left compared to K = 30, 40, 50. It is also inter-
esting to note that the model performs better than the parametric counterparts in
terms of both RMSE and CRPS. With respect to the parametric models, the Legendre-
Matérn has E(ν | Z) = 0.197 suggesting that the process is not mean-square differen-
tiable, and thus explaining the better fit of the exponential and the Legendre-Matérn;
whereas the multiquadric, which is twice differentiable at the origin, underperforms.
In terms of predictive performance, we find that the exponential model slightly out-
performs the other two. We point out that the lack of smoothness exhibited by the
data, and empirically corroborated by the posterior summaries in Table 4, makes it
generally harder for a mixture of smooth functions to produce good approximations
as required by the available data. In practice, this is reflected in the need to employ
an increased number of mixture terms compared to other datasets that do not exhibit
this problem. For most problems, a truncation at 50 mixture terms would be more
than adequate (Ishwaran and James, 2001), but interestingly, the results exhibited in
Table 5 show that for these data we actually need to “get to the limit” and use more
than K = 50 terms to obtain a clearly better performance with respect to competi-
tors.

Finally, we consider estimation of the spatial correlation function using the pro-
posed model and also the parametric alternatives mentioned earlier. Figure 6 shows
the empirical spatial correlation function obtained from package ncf available for the
R software. All the curves are joined to help graphical display. The posterior mean
of the spatial correlation functions for several of the methods considered earlier (ex-
ponential, Legendre-Matérn, multiquadratic) are also included for comparison. Recall
that the exponential correlation model (dotted line) gave the best parametric esti-
mate according to Table 5. Even though the exponential correlation estimate gen-
erally follows the empirical curve, it cannot reproduce the ups and downs observed
in the solid curve. Considering now the BNP estimate, the dashed line corresponds
to the posterior mean of the correlation function obtained from ψBNP(·; 100) (esti-
mates are virtually identical to the case of ψBNP(·; 50), not shown here). Observe
how the BNP estimate closely follows the empirically computed function, thus de-
noting the flexibility of the nonparametric construction and model we have studied
here.
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Figure 6: Estimated correlation functions under the various models considered in this
analysis. The solid curve represents the empirical spatial correlation function, estimated
using package ncf from R.

8 Conclusion and Discussion

This paper provides a novel perspective on covariance functions on spheres. We have
shown that a nonparametric Bayesian approach offers a valid alternative to parametric
forms from the point of view of statistical accuracy and optimal linear prediction. Our
theoretical findings have been supported by a satisfactory simulation study and by a
data analysis on global surface temperatures.

This work poses a series of challenges that may be of interest to pursue in the
future. One of them is the nonparametric Bayesian modeling of space-time covariance
functions, for which the spectral representation becomes quite involved. Surely, it would
be worthwhile to extend the proposed approach to multivariate random fields, for which
modeling marginal and cross spectra will become necessary.

The approach proposed in this paper has an interesting connection with integration
methods that have been recently proposed in the machine learning community, and
a good contribution would be to show the advantages of our approach within that
community.
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Porcu, E., Alegŕıa, A., and Furrer, R. (2018a). “Modeling Temporally Evolving and

http://www.ams.org/mathscinet-getitem?mr=3404631
https://doi.org/10.1214/14-AAP1067
https://doi.org/10.1214/14-AAP1067
http://www.ams.org/mathscinet-getitem?mr=3404631
https://doi.org/10.1214/14-AAP1067
https://doi.org/10.1214/14-AAP1067
http://www.ams.org/mathscinet-getitem?mr=2853727
https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://doi.org/10.1111/j.1467-9868.2011.00777.x
http://www.ams.org/mathscinet-getitem?mr=3720944
https://doi.org/10.3842/SIGMA.2017.088
http://www.ams.org/mathscinet-getitem?mr=2235825
https://doi.org/10.1016/j.camwa.2006.04.006
https://doi.org/10.1016/j.camwa.2006.04.006
http://arxiv.org/abs/1607.03675
http://www.ams.org/mathscinet-getitem?mr=3706791
https://doi.org/10.3150/16-BEJ896
http://www.ams.org/mathscinet-getitem?mr=3807363
https://doi.org/10.1007/s10260-017-0405-z
http://www.ams.org/mathscinet-getitem?mr=1481784
https://doi.org/10.1214/lnms/1215453576
https://doi.org/10.1214/lnms/1215453576
http://www.ams.org/mathscinet-getitem?mr=1434129
https://doi.org/10.1214/aop/1024404422


28 Nonparametric Modeling of Correlation Functions for Global Data

Spatially Globally Dependent Data.” International Statistical Review , 86(2): 344–
377. MR3852415. doi: https://doi.org/10.1111/insr.12266. 2, 3, 4

Porcu, E., Bevilacqua, M., and Genton, M. G. (2016). “Spatio-Temporal Covariance and
Cross-Covariance Functions of the Great Circle Distance on a Sphere.” Journal of the
American Statistical Association, 111(514): 888–898. MR3538713. doi: https://doi.
org/10.1080/01621459.2015.1072541. 2, 3, 6

Porcu, E. Bissiri, P. G., Tagle, F., Soza, R., and Quintana, F. A. (2020). “Supplemen-
tary Materials File to “Nonparametric Bayesian Modeling and Estimation of Spatial
Covariance Functions for Global Data”.” Bayesian Analysis. doi: https://doi.org/
10.1214/20-BA1228SUPP. 4

Porcu, E., Castruccio, S., Alegria, A., and Crippa, P. (2018b). “Axially Symmetric
Models for Global Data: a Journey between Geostatistics and Stochastic Generators.”
Technical Report, Newcastle University. 2

Reich, B. J. and Fuentes, M. (2012). “Nonparametric Bayesian models for a spatial
covariance.” Statistical Methodology, 9(1): 265–274. Special Issue on Astrostatistics +
Special Issue on Spatial Statistics. URL http://www.sciencedirect.com/science/

article/pii/S1572312711000104 2

Schmidt, A. M. and O’Hagan, A. (2003). “Bayesian inference for non-stationary spatial
covariance structure via spatial deformations.” Journal of the Royal Statistical Soci-
ety: Series B (Statistical Methodology), 65(3): 743–758. MR1998632. doi: https://
doi.org/10.1111/1467-9868.00413. 2

Schoenberg, I. J. (1942). “Positive definite functions on spheres.” Duke Math-
ematical Journal, 9(1): 96–108. MR0005922. doi: https://doi.org/10.1215/

S0012-7094-42-00908-6. 3, 5

Soubeyrand, S., Enjalbert, J., and Sache, I. (2008). “Accounting for roughness of cir-
cular processes: Using Gaussian random processes to model the anisotropic spread of
airborne plant disease.” Theoretical Population Biology, 73: 92–103. 6

Stein, M. L. (1999). Statistical Interpolation of Spatial Data: Some Theory
for Kriging. Springer, New York. MR1697409. doi: https://doi.org/10.1007/

978-1-4612-1494-6. 2

Stein, M. L. (2007). “Spatial variation of total column ozone on a global scale.” The
Annals of Applied Statistics, 1(1): 191–210. MR2393847. doi: https://doi.org/10.
1214/07-AOAS106. 20

Stuart, A. M. (2010). “Inverse problems: a Bayesian perspective.” Acta Numerica, 19:
451–559. MR2652785. doi: https://doi.org/10.1017/S0962492910000061. 13

Zheng, Y., Zhu, J., and Roy, A. (2010). “Nonparametric Bayesian inference for the
spectral density function of a random field.” Biometrika, 97(8): 238–245. MR2594432.
doi: https://doi.org/10.1093/biomet/asp066. 2

Ziegel, J. (2014). “Convolution Roots and Differentiability of Isotropic Positive Definite

http://www.ams.org/mathscinet-getitem?mr=3852415
https://doi.org/10.1111/insr.12266
http://www.ams.org/mathscinet-getitem?mr=3538713
https://doi.org/10.1080/01621459.2015.1072541
https://doi.org/10.1080/01621459.2015.1072541
https://doi.org/10.1214/20-BA1228SUPP
https://doi.org/10.1214/20-BA1228SUPP
http://www.sciencedirect.com/science/article/pii/S1572312711000104
http://www.sciencedirect.com/science/article/pii/S1572312711000104
http://www.ams.org/mathscinet-getitem?mr=1998632
https://doi.org/10.1111/1467-9868.00413
https://doi.org/10.1111/1467-9868.00413
http://www.ams.org/mathscinet-getitem?mr=0005922
https://doi.org/10.1215/S0012-7094-42-00908-6
https://doi.org/10.1215/S0012-7094-42-00908-6
http://www.ams.org/mathscinet-getitem?mr=1697409
https://doi.org/10.1007/978-1-4612-1494-6
https://doi.org/10.1007/978-1-4612-1494-6
http://www.ams.org/mathscinet-getitem?mr=2393847
https://doi.org/10.1214/07-AOAS106
https://doi.org/10.1214/07-AOAS106
http://www.ams.org/mathscinet-getitem?mr=2652785
https://doi.org/10.1017/S0962492910000061
http://www.ams.org/mathscinet-getitem?mr=2594432
https://doi.org/10.1093/biomet/asp066


E. Porcu, P. G. Bissiri, F. Tagle, R. Soza, and F. A. Quintana 29

Functions on Spheres.” Proceedings of the American Mathematical Society, 142: 2053–
2077. MR3182025. doi: https://doi.org/10.1090/S0002-9939-2014-11989-7. 3

Acknowledgments

We thank all the reviewers and Editors for comments that greatly improved the current version

of this manuscript. Emilio Porcu is partially supported by Proyecto Fondecyt number 1170290

from the Chilean Commission for Scientific and Technological Research. Fernando A. Quintana

is partially supported by Proyecto Fondecyt number 1180034 from the Chilean Commission for

Scientific and Technological Research. Fernando A. Quintana, Rubén Soza and Emilio Porcu

are supported by Iniciativa Cient́ıfica Milenio – Minecon Núcleo Milenio MIDAS.
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