
ar
X

iv
:2

40
1.

04
56

7v
1

 [
cs

.N
E

]
 9

 J
an

 2
02

4

A Discrete Particle Swarm Optimizer for the

Design of Cryptographic Boolean Functions*

Luca Mariot1, Alberto Leporati2, and Luca Manzoni3

1Semantics, Cybersecurity and Services Group, University of Twente, 7522 NB

Enschede, The Netherlands ,

l.mariot@utwente.nl

3Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di

Milano-Bicocca, Viale Sarca 336/14, 20126, Milano, Italy ,

lmanzoni@units.it

3Dipartimento di Matematica, Informatica e Geoscienze, Università degli Studi di

Trieste, Via Alfonso Valerio 12/1, Trieste, 34127, Italy ,

lmanzoni@units.it

January 10, 2024

Abstract

A Particle Swarm Optimizer for the search of balanced Boolean functions with

good cryptographic properties is proposed in this paper. The algorithm is a mod-

ified version of the permutation PSO by Hu, Eberhart and Shi which preserves

the Hamming weight of the particles positions, coupled with the Hill Climbing

method devised by Millan, Clark and Dawson to improve the nonlinearity and

deviation from correlation immunity of Boolean functions. The parameters for

the PSO velocity equation are tuned by means of two meta-optimization tech-

niques, namely Local Unimodal Sampling (LUS) and Continuous Genetic Algo-

rithms (CGA), finding that CGA produces better results. Using the CGA-evolved

parameters, the PSO algorithm is then run on the spaces of Boolean functions from

n = 7 to n = 12 variables. The results of the experiments are reported, observing

that this new PSO algorithm generates Boolean functions featuring similar or bet-

ter combinations of nonlinearity, correlation immunity and propagation criterion

with respect to the ones obtained by other optimization methods.

Keywords particle swarm optimization, Boolean functions, cryptography, hill climb-

ing, local unimodal sampling, continuous genetic algorithms

1 Introduction

Boolean functions are fundamental in several symmetric cryptography applications.

They are widely used to design Substitution Boxes (S-Boxes) for block ciphers, and in

*This manuscript is an extended version of a poster paper published in GECCO 2015 [17]

1

http://arxiv.org/abs/2401.04567v1

certain types of stream ciphers such as the combiner model and the filter model [3]. To

withstand cryptanalytic attacks, the Boolean functions adopted in these ciphers have

to satisfy a number of cryptographic properties, some of which include balancedness,

high nonlinearity and algebraic degree, low absolute indicator, correlation immunity

and propagation criterion.

Most of these properties cannot be satisfied simultaneously, since they induce sev-

eral theoretical bounds and constraints among them. On the other hand, an exhaustive

exploration to find the Boolean functions of n variables achieving the best trade-off

concerning a specific set of properties is not feasible in general, since the cardinality of

the corresponding search space is 22n
. As a consequence, the optimization of the cryp-

tographic properties of Boolean functions is an important open problem in the design

of symmetric ciphers.

Several heuristic techniques have been developed in the literature to discover Boolean

functions satisfying good combinations of cryptographic properties, including Genetic

Algorithms (GA) [24, 15], Simulated Annealing (SA) [8] and Genetic Programming [29,

30].

The aim of this paper is to investigate the application of Particle Swarm Optimiza-

tion (PSO) to the search of balanced Boolean functions with good cryptographic prop-

erties. Our starting point is the discrete variant of the PSO algorithm proposed by Hu

et al. in [11]. There, the authors considered combinatorial optimization problems over

the Hamming cube, where the position of a particle in the swarm is represented by

a n-dimensional binary vector. The velocity vector encodes for each coordinate the

probability through which a particle flips its corresponding binary value.

Since a Boolean function is uniquely identified by the binary vector of its truth ta-

ble, one could directly apply Hu et al. discrete PSO to search for Boolean functions

with good cryptographic properties. However, a basic requirement for Boolean func-

tions in cryptographic designs is their balancedness, i.e. the property that their truth

table vectors are composed of an equal number of zeros and ones. We thus modify

the discrete PSO algorithm of [11] and constrain it to search only over the space of

balanced Boolean functions, thus removing this criterion from the optimization of the

fitness function.

The main contributions of this paper are summarized as follows:

• We implement a new update method for the positions of the particles in a dis-

crete PSO algorithms, which preserves the Hamming weights of the truth tables.

This operator uses the velocity (i.e., the probability) of a particle over a specific

coordinate to determine whether to swap the corresponding bit with another one

randomly chosen in the truth table.

• We integrate the Hill Climbing procedure described in [24], to enhance the non-

linearity and the deviation from correlation immunity of the Boolean functions

searched by our modified discrete PSO.

• We perform parameter tuning for the social and cognitive constants, inertia, and

maximum velocity parameters in the PSO velocity equation by employing two

meta-optimization techniques: Local Unimodal Sampling (LUS) and Continu-

ous Genetic Algorithms (CGA). While LUS has been used in previous research

to fine-tune PSO parameters [27], to the best of our knowledge, CGA has not

been applied to this meta-optimization task. Our results show that CGA achieves

better results.

2

• We finally employ the parameters optimized through CGA to run the PSO algo-

rithm on the spaces of Boolean functions n variables with 7 ≤ n ≤ 12. The re-

sults of the experiments are reported and compared with those achieved by other

heuristic methods published in the literature, focusing only on the best solutions

found. We observe that our PSO algorithm is able to find Boolean functions with

similar or better combinations of nonlinearity, correlation immunity and propa-

gation criterion than the ones produced by other methods, especially when the

number of variables is less than 10. It is also found that the properties (especially

the nonlinearity) get worse as the number of variables increases, suggesting that

further parameters tuning is required.

This paper is an extended version of our previous poster published in GECCO

2015 [17]. In this sense, the present manuscript gives a full account of our discrete

PSO algorithms and provides a complete overview of the performed experiments.

The rest of this paper is organized as follows. Section 2 recalls the background

definitions and results about Boolean functions and their cryptographic properties. Sec-

tion 3 gives an overview of the works in the literature pertaining the use of metaheuris-

tics to optimize the cryptographic properties of Boolean functions. Section 4 describes

our discrete PSO algorithm, introducing the weight-preserving operator for the position

of the particles and defining the fitness functions used in our experimental evaluation.

Section 5 addresses the tuning of the PSO parameters using the LUS and CGA meta-

optimizers. Section 6 describes the experimental campaign used to assess our discrete

PSO algorithm, and compare the obtained results with those of other other optimiza-

tion methods. Section 7 summarizes the main contributions of the paper, and discusses

several directions for future research.

2 Basics of Boolean Functions

This section provides an overview of the essential concepts related to Boolean func-

tions that will be referenced throughout this paper. While our discussion here focuses

solely on cryptographic properties relevant to our optimization problem, for a more ex-

tensive exploration of this subject, readers are referred to Carlet’s recent book [3]. As

a standard notation, we denote F2 as the finite field comprising two elements and F
n
2 as

the F2-vector space consisting of binary n-tuples. In this context, vector addition rep-

resents the bitwise XOR, and scalar multiplication involves the logical AND operation

between a single bit a ∈ F2 and each coordinate of a vector x ∈ F
n
2. When referencing

a binary vector x, wH(x) denotes its Hamming weight, that is, the number of non-zero

coordinates within x.

2.1 Representations of Boolean Functions

A Boolean function of n variables is a mapping f : Fn
2 → F2. When the elements of

F
n
2 are arranged in lexicographical order, the truth table of f , denoted as a f , is a binary

vector of length 2n. This truth table defines, for all inputs x = (x1, · · · ,xn) ∈ F
n
2, the

respective output value f (x).
Another common representation of Boolean functions is the Algebraic Normal

Form (ANF). Given f : Fn
2 → F2 and x ∈ F

n
2, the ANF associated to f is a multivariate

polynomial Pf (x) in the quotient ring Fq[x1, · · · ,xn]/(x
2
1 ⊕ x1, · · · ,x

2
n ⊕ xn) defined as

3

follows:

Pf (x) =
⊕

I⊆[n]

aI ·

(

∏
i∈I

xi

)

, (1)

where ⊕ and · respectively denote sum and product over F2, and [n] = {1, · · · ,n}. For

all I ⊆ [n], the coefficient aI is uniquely determined by the Möbius transform:

aI =
⊕

x∈Fn
2:S (x)⊆I

f (x) ,

where S(x) = {i ∈ [n] : xi 6= 0} is the support of x.

Another representation of Boolean functions is the Walsh transform, which is useful

to characterize several cryptographic properties. Given a n-variable Boolean function

f : Fn
2 → F2, the Walsh transform Wf : Fn

2 → Z of f is defined for all a ∈ Fn
2 as

Wf (a) = ∑
x∈Fn

2

(−1) f (x) · (−1)a·a , (2)

where a · x = a1 · x1 ⊕·· ·⊕ an · xn is the scalar product between a and x.

Finally, the autocorrelation function A : Fn
2 → Z of a Boolean function f : Fn

2 → F2

is defined for all s ∈ F
n
2 as:

A(s) = ∑
x∈Fn

2

Wf (x) ·Wf (x⊕ s) (3)

2.2 Cryptographic Properties of Boolean Functions

The first important cryptographic property which can be defined using the truth table

representation is balancedness:

Definition 1. A Boolean function f : Fn
2 → F2 is balanced if wH(a f) = 2n−1, i.e. the

truth table of f is composed of an equal number of zeros and ones.

Balancedness is an essential cryptographic criterion, since biases in the output dis-

tribution of a Boolean functions can be exploited for distinguishing attacks. Using the

Walsh transform representation, remark that A Boolean function is balanced if and only

if Wf (0) = 0, where 0 is the null vector of Fn
2.

A second essential criterion is the algebraic degree of a Boolean function, which is

defined in terms of its ANF as follows:

Definition 2. The algebraic degree of a Boolean function f : Fn
2 → F2 is the degree of

the largest nonzero monomial in its ANF Pf (x). Formally, deg(f) is defined as

deg(f) = max{|I| : I ⊆ [n],aI 6= 0} . (4)

Boolean functions having degree 1 are called affine functions. The algebraic degree

of Boolean functions should be as high as possible in order to resist attacks based on the

Berlekamp-Massey algorithm in stream ciphers [19, 33] and higher order differential

attacks in block ciphers [14].

The distance from the set of all affine functions is an important indicator of the

strength of a Boolean function against attacks based on linear approximations of a

cipher. This distance is aptly named the nonlinearity of the function, and it can be

defined through the Walsh transform as follows:

4

Definition 3. The nonlinearity Nl(f) of a Boolean function f :Fn
2 →F2 is the minimum

Hamming distance of f from the set of affine functions, and it is computed as follows:

Nl(f) = 2n−1 −
1

2
Wmax(f) , (5)

where Wmax(f) = maxa∈Fn
2
{|Wf (a)|}.

Boolean functions having high nonlinearity provide better confusion. In particular,

highly nonlinear Boolean functions should be used to resist fast correlation attacks in

stream ciphers [21] and linear cryptanalysis in block ciphers [20].

It is known that, if the number of variables n is even, the class of bent functions

reaches the maximum value of nonlinearity 2n−1 − 2
n−2

2 . However, such functions are

not balanced, thus they cannot be used directly in the design of symmetric cryptosys-

tems. Determining the maximum nonlinearity for non-bent Boolean functions when n

is even, or for generic Boolean functions when n is odd, is still an open problem for all

n > 7 [3].

A second important cryptographic criterion that can be defined with the Walsh trans-

form is correlation immunity:

Definition 4. Given k ∈ {1, · · · ,n}, a Boolean function f : Fn
2 → F2 is k-th order corre-

lation immune (denoted by CI(k)) if, by fixing the values of at most k input coordinates,

the truth tables of the corresponding restrictions of f all have the same Hamming

weight. This condition is verified if and only if Wf (a) = 0 for all a ∈ F
n
2 such that

1 ≤ wH(a)≤ k (see [39]).

A balanced Boolean function which is also k-th order correlation immune is called

k-resilient. Boolean functions used in stream ciphers based on the combiner model

should be resilient of high order to resist correlation attacks [36].

The maximum absolute value ACmax for s ∈ F
n
2\{0} of the autocorrelation function

A f of a Boolean function f : F→
2 F2 is called the absolute indicator of f . This quantity

should be as low as possible to withstand cube attacks in block ciphers [9]. Another

cryptographic property related to the autocorrelation function is the propagation crite-

rion:

Definition 5. Given l ∈ {1, · · · ,n}, a Boolean function f : Fn
2 → F2 satisfies the propa-

gation criterion PC(l) if, for all nonzero vectors s∈ F
n
2 such that wH(s)≤ l, the function

f (x) · f (x⊕ s) is balanced. This condition is met if and only if A(s) = 0 for all s ∈ F
n
2

such that 1 ≤ wH(s)≤ l.

The propagation criterion PC(1) corresponds to the Strict Avalanche Criterion

(SAC) introduced in [38], which states that by complementing a single input coordi-

nate xi the probability that the output of f will change is 1/2. Boolean functions in

block ciphers should satisfy this property with a high order l to differential cryptanaly-

sis attacks [2].

Remark that most of the above criteria cannot be satisfied simultaneously. In par-

ticular, given a k-resilient, PC(l) Boolean function of n variables f : Fn
2 → F2 having

algebraic degree deg(f) and nonlinearity Nl(f), the following bounds hold:

• Siegenthaler’s bound [36]: deg(f)≤ n− 1− k.

• Sarkar-Maitra’s bound [34]: Nl(f) ≤ 2n−1 − 2k+1.

• CI-PC bound: [6]: k+ l ≤ n− 1.

5

3 Related Work

In this section, we give a brief overview of the literature related to the optimization of

Boolean functions for cryptographic use through metaheuristics. For a more thorough

review of the subject, we refer the reader to the recent survey paper by Djurasevic et

al. [10].

Millan et al. [24] proposed a Genetic Algorithm (GA) coupled with Hill Climbing

(HC) to evolve the truth tables of highly nonlinear balanced Boolean functions having

low deviations from correlation immunity and propagation criterion. Later, Clark et

al. [8] devised a Simulated Annealing (SA) procedure to optimize the nonlinearity and

the absolute indicator of Boolean functions as well as their correlation immunity and

propagation criteria, which achieved better performances than GA. Aguirre et al. de-

signed in [1] a multi-objective Random Bit Climber which was able to generate more

efficiently Boolean functions having good nonlinearity and absolute indicator. More

recently, Genetic Programming (GP) has also been used by Picek et al. [29] to evolve

strong cryptographic Boolean functions of 8 variables. The work has later been ex-

panded in [30], where the authors compared four different evolutionary algorithms

(namely GA, Evolutionary Strategies, GP and Cartesian GP) against three objective

functions, each targeting a different subset of cryptographic properties. The results on

Boolean functions of n = 8 variables showed that GP (both in its basic and Cartesian

variant) achieved the best results. More recently, Manzoni et al. [15] performed a sys-

tematic investigation of balanced crossover operators in GA for the evolution of cryp-

tographic Boolean functions. In particular, they compared Millan et al.’s counter-based

crossover proposed in [24] with other two balanced operators based on the map-of-ones

and zero-length encodings. The idea is to restrict the search space explored by the GA

by generating only balanced bitstrings during crossover and mutation, which then cor-

respond to balanced Boolean functions. The experimental evaluation pointed out that

the map-of-ones crossover was the best performing one.

The works above directly search the space of Boolean functions, using different

representations (e.g. bitstrings encoding the truth table in GA or Boolean trees in GP).

A different approach is to start from Walsh spectra that already encodes good proper-

ties (such as balancedness, correlation immunity and high nonlinearity) and then work

backward by applying the inverse Walsh transform. The problem is that in general the

resulting function will not be Boolean, but rather pseudo-Boolean. The optimization

objective thus becomes find a proper permutation of a suitable Walsh spectra that cor-

responds to an actual Boolean function. Clark et al. [7] were the first to pioneer this

spectral inversion method, designing a simulated annealing algorithm to optimize the

Walsh spectra of pseudo-Boolean functions with good cryptographic properties. Build-

ing upon this approach, Mariot and Leporati [16] later devised a genetic algorithm to

evolve the spectra of pseudo-Boolean plateaued functions, remarking that it achieved

better performances than simulated annealing for functions of n = 6 variables.

A third approach is to evolve algebraic constructions of Boolean functions instead

of directly optimizing single solutions, be that in the direct search setting or the spec-

tral inversion method. An algebraic construction takes in input some parameter (such

as the number of variables and some existing Boolean functions with good crypto-

graphic properties) and outputs new Boolean functions with similar good properties.

Along this research line, Picek and Jakobovic [28] explored the use of GP to evolve

algebraic constructions for bent functions. Similarly, Carlet et al. [5] utilized GP to

enhance Boolean functions derived from algebraic constructions. This lead to con-

structions for the so-called Hidden-Weight Boolean functions with an improved non-

6

linearity. Further, Mariot et al. [18] investigated an alternative algebraic construction

based on cellular automata (CA), and designed an evolutionary strategies algorithm to

find CA local rules that induce bent and semi-bent functions under such construction.

Finally, more recently Carlet et al. [4] applied GP to evolve algebraic constructions for

balanced functions with high nonlinearity. Interestingly, their results showed that most

of the constructions obtained by GP actually corresponds to the well-known direct sum

construction, which was already discovered by mathematicians several decades earlier.

4 PSO Algorithm

In this section, we first recall the basic concepts of Particle Swarm Optimization and

then introduce its discrete variant proposed by Kennedy and Eberhart. Next, we de-

scribe our method to update the position of a particle while retaining its balancedness

(therefore restricting the search space explored by the discrete PSO). Further, we define

the fitness functions that target specific cryptographic properties of Boolean functions,

and finally we describe the overall procedure of our discrete Particle Swarm Optimizer.

4.1 Overview of Discrete PSO

Particle Swarm Optimization (PSO) is a metaheuristic optimization method initially

introduced by Kennedy and Eberhart [12]. PSO fundamentally operates by encoding

a collection of potential solutions of an optimization problem as a swarm of particles.

These particles move collectively within a specified search space, typically a subset

of Rm. At each iteration t ∈ N, the present position of the i-th particle x
(t)
i ∈ R

m gets

updated through the following equation:

x
(t+1)
i = x

(t)
i + v

(t)
i ,

where v
(t)
i ∈ R

m denotes the velocity vector of the i-th particle at time t. The solution

encoded in the new position of the particle is then evaluated against a fitness function,

which is usually the objective function to be optimized. Each coordinate j ∈ {1, · · · ,m}
of the i-th particle velocity is in turn stochastically updated as follows:

v
(t+1)
i j = w · v

(t)
i j +Ri j ·ϕ · (g j − x

(t)
i j)+Ri j ·ψ · (bi j − x

(t)
i j) ,

in which v
(t)
i j , the velocity of the i-th particle along dimension j during the current time

step t, is weighted by the inertia parameter w ∈ R. On the other hand, the random

value Ri j ∈ [0,1] is a parameter sampled with uniform probability, while ϕ and ψ are

constants respectively used to weight the influence of the global best solution g ∈ R
m

found so far in the neighborhood of the particle, and of the local best solution bi ∈ R
m

found so far by the i-th particle itself. To keep the velocity of the particle in check, the

parameter vmax is also used to clip the value of each coordinate v
(t+1)
i j of the velocity

vector. Concerning the neighborhood of a particle, one can consider different shapes,

such as the Von Neumann topology and the ring topology. For the remainder of this

work, we will consider only on the fully informed particle strategy [22], where the

global best simply amounts to the best solution found by the entire swarm of particles.

The PSO metaheuristic was successfully employed in addressing numerous con-

tinuous optimization problems, as extensively discussed in surveys like Poli et al.’s

work [31]. However, its application to discrete search spaces is not straightforward. To

7

this end, Kennedy and Eberhart introduced a modification to their original PSO algo-

rithm in [13], aiming to tackle binary optimization problems. In this variant, solutions

are represented as m-bit vectors, mapped onto the m-dimensional hypercube Fm
2 . Con-

sequently, particles traverse the vertices of this hypercube, where the velocity vector

transforms into a probability vector. For each coordinate j ∈ 1, · · · ,m and the i-th par-

ticle in the swarm, the position xi concerning dimension j gets updated by sampling

a Bernoulli random variable using parameter pi j. Specifically, if a randomly sampled

number r ∈ [0,1] is smaller than pi j, the j-th coordinate of xi updates to 1; otherwise,

it updates to 0.

The main advantage of this discrete PSO version lies is that the same velocity

equation of the basic PSO heuristic can be used for updating the particles’ probabil-

ity vectors, granted that their components are normalized within the interval [0,1] to

get meaningful probability values. To achieve this, Kennedy and Eberhart adopted the

logistic function in [13], defined for all x ∈R as:

S(x) =
1

1+ exp(−x)
.

4.2 Position Update for Balanced Functions

The PSO heuristic, detailed in the preceding section, can be directly applied to the op-

timization challenge of identifying Boolean functions of n variables with robust cryp-

tographic properties, utilizing the truth table representation. In this scenario, particles

navigate within a space comprising m = 2n binary vectors. However, the approach pro-

posed by Kennedy and Eberhart in [13] for updating the positions of the particles lacks

control over their Hamming weights. Due to the independent sampling of each com-

ponent in the probability vector, there is no assurance that the generated truth tables

will maintain balance, a critical criterion for cryptographic Boolean functions. One po-

tential solution, as explored in [29] for Genetic Algorithms and Genetic Programming,

involves incorporating an unbalancedness penalty within the fitness function. Yet, our

initial experiments revealed this method is inadequate with PSO, resulting in a notably

low proportion of generated balanced functions. Therefore, it becomes necessary to

employ an update operator that confines the search space to the realm of balanced

Boolean functions.

Hu, Eberhart, and Shi [11] adapted the discrete PSO algorithm to tackle permu-

tation problems. Their approach involves stochastic swapping of values within the

permutation vector, denoting the particle’s position. Specifically, the i-th particle’s

xi j component undergoes a change, with a probability of pi j, by swapping it with xik,

where k corresponds to xik = g j. This adjustment aims to align the permutation repre-

sented by the vector xi with the global best solution g.

From a combinatorial standpoint, the collection of balanced Boolean functions with

n variables is isomorphic to the set of
(

2n

2n−1

)

combinations. A subset of 2n−1 out of 2n

objects can be defined through its characteristic function, essentially a balanced bi-

nary vector x ∈ F
m
2 , where m = 2n. Building on this observation, we extended the

update operator proposed by Hu, Eberhart, and Shi to the domain of balanced combi-

nations. Given the balanced binary vector xi ∈ F
m
2 and its corresponding probability

vector pi ∈ [0,1]m, for each coordinate j ∈ 1, · · · ,m, a random number r ∈ [0,1] is uni-

formly sampled. If r is less than pi j, a swap occurs as follows. Initially, the values of

xi j and the global best at the same index, g j, are compared. If these values match, no ac-

tion is taken. Otherwise, a bit swap between xi j and another bit xik occurs, where k 6= j

8

0.3

1

v = 0.1

2

· · ·

· · ·

0.8

i

sample r ≃U(0,1)

· · ·

· · ·

0.5

j

· · ·

· · ·

0.3

2n

0gb = 1 · · · 1

if xi 6= gbi ⇒ apply swap

· · · 0 · · · 1

0x = 1 · · · 0 · · · 1

swap xi,x j s.t. xi 6= x j AND x j 6= gb j

· · · 0

Figure 1: Example of application of swap-based position update.

satisfies the conditions that xik 6= gk and xik 6= xi j. This ensures the Hamming weight

preservation and a decrease in Hamming distance from the global best solution by 2.

As multiple indices k may meet these conditions, our update operator randomly selects

one. Figure 1 shows how the position update operator works on a specific example.

This entire update process is reiterated utilizing the local best bi instead of the

global best g. Consequently, xi undergoes modifications considering both the social

attraction of the entire swarm and the cognitive attraction of the particle. Furthermore,

if the particle’s current position equals g, a random pair of bits in xi is swapped to

prevent premature convergence, mirroring a solution proposed in [11].

The general pseudocode depicted in Algorithm 1 implements our position update

operator. The input parameters xi and y represent balanced binary vectors, signifying

the i-th particle’s position within the swarm and either the global best g or local best

bi, respectively. The length of xi, denoted as m = 2n, is assumed to be unequal to y.

The vector pi corresponds to the probability vector associated with the i-th particle.

The subroutine RAND-UNIF() generates a random number r ∈ [0,1] with a uniform

distribution, essential for determining whether a swap is necessary by comparing it

to pi j. Additionally, the omitted subroutine FIND-CAND-SWAP() is responsible for

searching a suitable index for the swap, returning 0 if no index is found.

Algorithm 1 UPDATE-BAL-POS(xi, y, pi, m)

for j := 1 to m do

r := RAND-UNIF()

if (r < pi j AND xi j 6= y j) then

k := FIND-CAND-SWAP(xi, j)

if (k 6= 0) then

Swap xi j with xik

end if

end if

end for

4.3 Fitness Functions

To lay the groundwork for appropriate fitness functions, we first define the concept of

deviation from correlation immunity, originally introduced in [24]:

Definition 6. The deviation from k-th order correlation immunity of a Boolean function

9

f : Fn
2 → F2 is defined as

cidevk(f) = max{|Wf (a)| : a ∈ F
n
2, 1 ≤ wh(a)≤ k} .

Likewise, we also employ the following deviation from propagation criterion:

Definition 7. Given f : Fn
2 → F2, the deviation from propagation criterion PC(l) of f

is defined as

pcdevl(f) = max{|A(s)| : s ∈ F
n
2, 1 ≤ wh(s)≤ l} .

We experimented with our Particle Swarm Optimizer using three fitness functions,

all to be maximized. The initial function, f it1, encompasses the three criteria of non-

linearity, deviation from first-order correlation immunity, and deviation from the Strict

Avalanche Criterion, and it is defined as:

f it1(f) = Nl(f)−
cidev1(f)

4
−

pcdev1(f)

8
.

As the Walsh and autocorrelation spectra of a balanced Boolean function are multiples

of 4 and 8 respectively, the deviations in f it1 are scaled by these factors. This fitness

function bears resemblance to those outlined in [24] for Genetic Algorithms. The refer-

enced methods propose minimizing the normalized deviation of the Boolean function,

computed as the maximum value between cidevk(f)/4 and pcdevl(f)/8, or maximiz-

ing the difference between nonlinearity and cidevk(f). We adopted the latter approach

as our second fitness function, setting k = 2:

f it2(f) = Nl(f)− cidev2(f) .

Finally, the third fitness function focuses on the nonlinearity and the absolute indicator

of Boolean functions, two criteria that numerous heuristic methods presented in the

literature [8, 1, 29] have concurrently optimized together.

f it3(f) = Nl(f)−ACmax(f) .

Remark that none of the aforementioned fitness functions considers the algebraic de-

gree, in contrast to those utilized in [29]. This decision stems from two key reasons.

First, the algebraic degree proves simpler to optimize compared to nonlinearity or cor-

relation immunity. As n tends toward infinity, a random Boolean function with n vari-

ables tends to have an algebraic degree almost surely at n− 1 [3]. Hence, heuristic

methods integrating algebraic degree in their fitness functions are likely to identify

Boolean functions with maximum degree, although they might not fulfill CI(k) or

PC(l). Second, as demonstrated in Section 5, our PSO algorithm uncovers Boolean

functions achieving Siegenthaler’s bound, even without considering algebraic degree

within our fitness functions.

4.4 Overall PSO Algorithm

To enhance the efficiency of our Particle Swarm Optimizer, we integrated it with the

Hill Climbing (HC) algorithm devised by Millan, Clark, and Dawson [24]. This tech-

nique operates by exchanging a pair of bits in the truth table of a balanced Boolean

function, aiming to elevate its nonlinearity and diminish its deviation from CI(k). Here-

after, NL-CI(K)-HC denotes the HC procedure that elevates nonlinearity while decreas-

ing cidevk(f), while NL-HC refers to HC aimed solely at increasing nonlinearity. For

an in-depth understanding of the general HC method, readers are directed to [24].

10

The type of Hill Climbing executed by our PSO algorithm hinges on the applied fit-

ness function: for f it1 and f it2, we respectively employ NL-CI(1)-HC and NL-CI(2)-

HC, whereas for f it3, we utilize NL-HC.

Here’s an overview of the discrete Particle Swarm Optimizer’s complete procedure:

1. Initialize a swarm of size N. For each i ∈ 1, · · · ,N, randomly generate a balanced

binary vector xi ∈ F
m
2 and a probability vector pi ∈ [0,1]m, where m = 2n and n

represents the Boolean functions’ variable count.

2. Compute the fitness value f itk of solution xi for each k ∈ 1,2,3 and i ∈ N.

3. Update the global best solution g and the local best solutions bi for all i ∈
1, · · · ,N.

4. Utilize the PSO velocity recurrence to update the probability vector vi for each

i ∈ 1, · · · ,N, followed by normalizing each coordinate using the logistic function.

5. Update the position vector xi for each i ∈ 1, · · · ,N. If xi = g or xi = bi, swap a

random pair of bits in xi. Otherwise, execute UPDATE-BAL-POS(xi, g, pi, m)

and then UPDATE-BAL-POS(xi, bi, pi, m).

6. Apply the hill climbing optimization step NL-CI(K)-HC or NL-HC as described

in [24] to all swarm particles based on the fitness function.

7. If the maximum iteration count has been reached, output the global best solution

g; otherwise, return to step 2.

5 Parameters Tuning

Extensive literature highlights the significant impact of the velocity parameters on

PSO’s performance [35, 37]. To this end, we adopted a systematic strategy using a

meta-optimization approach.

Meta-optimization treats the selection of the governing parameters of an optimizer

O as an optimization problem in itself. An overarching meta-optimizer M is applied to

explore the parameter space, employing a meta-fitness function to evaluate O’s perfor-

mance based on specific parameter combinations.

A feasible solution for the meta-optimization problem within our discrete PSO con-

sists of a four-dimensional vector (w,ϕ,ψ,vmax) ∈ R
4, defining the parameters in the

velocity equation. To align with findings from [13], we constrained each parameter’s

value to the interval [0,10]. As for the overarching meta-optimizer selection, we opted

to trial both Local Unimodal Sampling (LUS) and Continuous Genetic Algorithms

(CGA, also known as Real-coded Genetic Algorithms).

5.1 Local Unimodal Sampling

LUS functions as a method of local exploration that continously tweaks the current

solution x by uniformly selecting a point y within its defined neighborhood N(x). In

scenarios where maximization is the goal, if the fitness score of y exceeds that of x,

the solution transitions to y. Conversely, the size of N(x) shrinks through a discount

factor β if y does not outperform x. This mechanism aims to prevent premature conver-

gence to a local optimal solution by consistently exploring within a neighborhood of a

11

fixed size. The sampling process persists until it meets a termination condition, often

indicated by a minimum threshold τ that sets the neighborhood size limit. Pedersen

and Chipperfield [27] utilized LUS to refine velocity parameters in a Particle Swarm

Optimizer designed for training artificial neural network weights.

5.2 Continuous Genetic Algorithms

CGA extends Genetic Algorithms to continuous optimization problems, representing

a candidate solution’s chromosome through a vector of real numbers instead of a bi-

nary string. As far as we know, CGA has not been previously utilized to fine-tune

PSO parameters. Within our meta-optimization framework, we incorporated the flat

operator, introduced by Radcliffe [32], as the crossover method for our CGA. For

the mutation process, we relied on the straightforward random operator proposed by

Michalewicz [23]. The reproduction operator implements the roulette wheel method,

selecting individuals stochastically based on their fitness. Specifically, within a pop-

ulation of P chromosomes, the next generation formation involves creating P/2 chro-

mosome pairs using the roulette wheel method. Each pair (x,y) generates an offspring

of two chromosomes (c1,c2) by applying the flat crossover operator with a probability

of pc (if not applied, the chromosome pair (x,y) remains unaltered). The random mu-

tation operator is then applied with a probability of pm to each locus of the offspring

chromosomes. Additionally, an elitist strategy is used to retain the best individual in

the succeeding generation.

5.3 Meta-Fitness Function

The meta-fitness function used to drive the exploration for an optimal mix of PSO

parameters constitutes the most computationally intensive phase. To gauge its perfor-

mance under a specific set of parameters denoted by x ∈ R
4, numerous iterations of

our discrete PSO algorithm are necessary. In our examination, we focused on balanced

Boolean functions defined on n = 7 variables, employing a swarm comprising N = 50

particles evolved across I = 100 iterations. This algorithm underwent R = 30 indepen-

dent runs, each recording the fitness of the globally best solution g at the final iteration.

Pedersen and Chipperfield [27] suggest using the average fitness value µg, represen-

tative of the global best across all R optimization runs, as the meta-fitness function. In

our search for Boolean functions with suitable cryptographic criteria, we also consid-

ered the maximum fitness value maxg achieved by the global best across these runs.

For Boolean functions of 7 variables, the maximum attainable nonlinearity value

is Nlmax = 56 [26]. Consequently, the highest value achievable by maxg concerning

fitness functions f it1 and f it2 is capped at 56. Within the literature, no instance of

a 7-variable function has been reported with an absolute indicator ACmax < 16, with

conjectures proposing 16 as the lowest plausible bound [40]. Thus, the maximum value

that maxg can reach with respect to fitness function f it3 under existing knowledge is

56− 16= 40.

Therefore, our meta-fitness function can be defined for a parameter vector x ∈ R
4

as:

m f itk(x) = µg +maxg ,

where k ∈ {1,2,3} indicates the fitness function f itk which is being optimized by the

PSO algorithm.

12

5.4 Meta-Optimization Results

In line with the procedure outlined in [27], we conducted M = 6 individual runs to

evaluate the performance of both LUS and CGA, tallying up to a sum of 36 meta-

optimization experiments across various fitness functions, denoted as f itk . Within the

LUS domain, our approach involved setting the discount factor at β = 0.33 and es-

tablishing a minimum threshold of neighborhood size at τ = 0.001. Conversely, in

employing the CGA meta-optimizer, we structured a population size of P = 20 individ-

uals, evolving over G = 100 generations, with the crossover and mutation probabilities

configured at pc = 0.95 and pm = 0.05 correspondingly.

Table 1 compares the best parameters combinations found by LUS and CGA over

the 6 meta-optimization runs, for each fitness function f itk .

Table 1: Comparison of Best PSO Parameters

f itk Method µg maxg m f itk(f)

f it1
LUS 52.7 56 108.7

CGA 53 56 109

f it2
LUS 46 52 98

CGA 46.27 56 102.27

f it3
LUS 30.87 40 70.86

CGA 38.4 40 78.4

It is evident that Continuous Genetic Algorithms (CGA) outperform Local Uni-

modal Sampling (LUS) across all three fitness functions. While there is only a slight

difference in average fitness values µg for f it1, the parameter configuration discovered

by LUS for f it2 did not enable the Particle Swarm Optimizer to attain the maximum

fitness value of 56. Additionally, for f it3, the mean fitness µg achieved by LUS is

significantly lower than that obtained by CGA. However, the better performance of

CGA corresponds to a greater computational cost because Genetic Algorithms rely

on a population-based heuristic. Specifically, in our experiments, a single CGA meta-

optimization run demanded a considerable number of fitness evaluations, totaling close

to 3.0 x 108. This process took nearly 17 hours to complete on a 64-bit Linux machine

with a Core i5 architecture, operating at 2.8 GHz. Conversely, with the selected β
and τ parameters, LUS conducted an average of 4971 fitness evaluations per meta-

optimization run before reaching the minimum threshold. This approximately corre-

sponds to around 1.3 hours of CPU time on the same machine.

6 PSO Experiments

6.1 Experimental Setting

Now, we detail the experiments conducted using our Particle Swarm Optimizer. We

selected the most optimal combination of velocity parameters evolved by the CGA

meta-optimizer, as it achieved a higher meta-fitness value compared to those derived

from LUS. The specific parameter values chosen for each fitness function are presented

in Table 2.

Concerning the problem instances, we applied our PSO algorithm to search for

balanced Boolean functions from n = 7 to n = 12 input variables. The number of

13

Table 2: CGA-Evolved PSO Parameters

f itk w ϕ ψ vmax

f it1 0.5067 2.8751 1.3587 3.5008

f it2 0.7614 2.0073 2.0273 2.7183

f it3 0.2828 2.1824 0.8951 4.2639

particles and iterations were set respectively to P = 200 and I = 400. Finally, for each

value of n and fitness function f itk, we carried out R = 100 independent PSO runs.

6.2 Best Solutions Found

Tables 3 to 5 show for each fitness function the cryptographic properties of the best

balanced Boolean functions discovered by PSO, that is, the properties of the global best

solution g which scored the highest fitness value among all the R = 100 optimization

runs. We reported the algebraic degree as well, even if we did not adopt this criterion

in any of the three fitness functions.

Table 3: Best Boolean Functions Found, f it1

Property 7 8 9 10 11 12

Nl 56 112 236 480 972 1972

deg 5 6 7 8 9 10

cidev1 0 0 0 0 0 0

pcdev1 0 0 8 8 8 8

Table 4: Best Boolean Functions Found, f it2

Property 7 8 9 10 11 12

Nl 56 112 232 476 972 1972

deg 4 6 7 8 9 10

cidev1 0 8 8 8 8 16

cidev2 0 8 8 8 8 16

As a general observation, one can notice in Tables 3 and 4 that the Boolean func-

tions discovered by PSO satisfying CI(k) always have an algebraic degree of n−1− k,

which is the maximum allowed by Siegenthaler’s bound. Hence, these results empiri-

cally confirm that it is not necessary to consider the algebraic degree in the definition

of the PSO fitness functions, as we mentioned in Section 3.4.

Looking in particular at Table 3, we can see that our PSO algorithm scales fairly

well to higher numbers of variables with respect to the optimization of cidev1, even if

the CGA parameters were evolved only for the case n = 7. As a matter of fact, all the

best Boolean functions found by PSO with f it1 are first order correlation immune (and

thus 1-resilient, since they are also balanced). Moreover, for n = 7 and n = 8 they also

satisfy the Strict Avalanche Criterion PC(1), while for higher values of n they reach

the minimum deviation pcdev1 = 8. Nevertheless, our Particle Swarm Optimizer is

14

Table 5: Best Boolean Functions Found, f it3

Property 7 8 9 10 11 12

Nl 56 116 236 480 976 1972

deg 5 6 7 9 10 11

ACmax 16 32 48 80 128 208

able to find Boolean functions of up to n = 11 variables which satisfy both CI(1) and

PC(1), even if their nonlinearity is lower (for a detailed comparison with other heuristic

methods, see Section 5.3).

On the other hand, Table 4 shows that by using fitness function f it2 the Particle

Swarm Optimizer does not perform well when the number of variables is higher than

7. In fact, 2-resilient functions are found only for n = 7, while in all other cases the

deviation from CI(2) is at least 8. However, it worths noting that the best solution of 7

variables, besides satisfying with equality Siegenthaler’s bound, achieves Tarannikov’s

bound on nonlinearity as well, since 56 = 27−1 − 22+1.

Finally, another different behaviour of the PSO algorithm can be observed using

fitness function f it3. Indeed, one can see from Table 5 that as the number of variables

grows the absolute indicator of the best solution gets worse. Nonetheless, for n= 8 and

n = 11 the nonlinearity values achieved with f it3 are greater than those obtained using

f it1, while they are equal in all other cases.

6.3 Comparison with other Heuristics

We now compare the results of our Particle Swarm Optimizer with those obtained by

other heuristic methods. Due to the great heterogeneity in the experimental settings

and the parameters adopted in the relevant literature, a comprehensive comparison is

not possible. For this reason, in Tables 6 to 9 we summarise the results separately

for each class of cryptographically significant balanced Boolean functions discovered

by the PSO algorithm. A dash symbol in the tables indicates that the corresponding

data is not available, either because the heuristic failed to discover Boolean functions

with those cryptographic properties or because that specific case was not considered

for testing.

Table 6 reports the maximum nonlinearity achieved by CI(1) functions. In this

case, we used Genetic Algorithms (GA) [24], Directed Search Algorithm (DSA) [25]

and Simulated Annealing (SA) [8] for the comparison. It can be seen that for n = 7

variables our PSO algorithm manages to find 1-resilient functions having maximum

nonlinearity 56, while SA stops at 52. For 8 ≤ n ≤ 12, the results achieved by PSO are

globally similar to those of the other optimization methods, except in the case of n= 11

variables where it reaches a maximum nonlinearity of 972 instead of 976. In particular,

our PSO outperforms both Genetic Algorithms and Simulated Annealing for n = 9 and

n = 10 variables.

In Table 7 the maximum nonlinearity of balanced Boolean functions which satisfy

both CI(1) and PC(1) is considered. By comparing the results achieved by PSO and

SA, we can see that also in this case the former reaches a higher value of nonlinearity

for n = 7 variables, while for n = 8 it is equal to SA. To our knowledge, no heuristic

method has ever been applied to discover functions satisfying both CI(1) and PC(1) of

n> 8 variables. However, our PSO algorithm managed to find this kind of functions for

15

Table 6: Maximum Nonlinearity Achieved by CI(1) Functions

Method 7 8 9 10 11 12

GA [24] - 112 232 476 976 1972

DSA [25] - 112 236 480 976 -

SA [8] 52 112 232 476 - -

PSO 56 112 236 480 972 1972

up to n = 11 variables, even though for n > 8 they were not the best solutions among

all the optimization runs with respect to fitness function f it1. The nonlinearity of these

functions is reported in Table 7 as a reference for future research.

Table 7: Maximum Nonlinearity Achieved by Functions satisfying both CI(1) and

PC(1)

Method 7 8 9 10 11 12

SA [8] 52 112 - - - -

PSO 56 112 232 476 968 -

Table 8 reports the maximum nonlinearity achieved by Boolean functions with min-

imal deviation from second order correlation immunity. In particular, the performances

of PSO and GA are compared, since in this case we used the same fitness function de-

fined in [24]. As we already discussed in Section 5.2, we can observe that our PSO

algorithm does not generalise well to higher numbers of variables. As a matter of fact,

PSO manages to reach the same results achieved by GA only for n = 8 variables, while

in all other cases either the nonlinearity or the deviation from CI(2) is worse. We

remark however that for n = 7 the 2-resilient functions found by PSO have the same

value of nonlinearity as the ones discovered by SA in [8].

Table 8: Comparison of Nl and cidev2 Values

Method 7 8 9 10 11 12

GA [24]
Nl - 112 232 480 976 1972

cidev2 - 4 8 8 8 8

PSO
Nl 56 112 232 476 972 1972

cidev2 0 8 8 8 8 16

Similar considerations can be made for the comparisons in Table 9, which reports

the maximum nonlinearity reached by Boolean functions having minimal absolute indi-

cator. The benchmark heuristics in this case are Multi-Objective Random Bit Climber

(RBC) [1], Genetic Programming (GP) [29] and again SA. It can be observed that for

n = 7 variables PSO obtained the same results as RBC and SA, while for n = 8 it dis-

covered the same combination of Nl and ACmax featured by GP. However, for n > 8

our PSO scored worse values than SA with respect to both nonlinearity and absolute

indicator.

16

Table 9: Comparison of Nl and ACmax Values

Method 7 8 9 10 11 12

RBC [1]
Nl 56 116 - - - -

ACmax 16 24 - - - -

GP [29]
Nl - 116 - - - -

ACmax - 32 - - - -

SA [8]
Nl 56 116 238 484 982 1986

ACmax 16 24 40 56 88 128

PSO Nl 56 116 236 480 976 1972

ACmax 16 32 48 80 128 208

7 Conclusions

We presented a discrete PSO algorithm in our study to search for balanced Boolean

functions spanning from n = 7 to n = 12 variables, focusing on robust cryptographic

properties. Our experiments indicate that our PSO effectively generates Boolean func-

tions exhibiting equivalent or superior combinations of nonlinearity, first-order corre-

lation immunity, and the Strict Avalanche Criterion compared to other optimization

methods. However, it demonstrates suboptimal performance when minimizing devia-

tion from CI(2) or the absolute indicator. This limitation might stem from the velocity

parameters being evolved solely for n = 7 variables, suggesting a need for further pa-

rameter refinement for n ≥ 8. Given the considerable computational expense of our

meta-fitness function, employing the LUS meta-optimizer might be more preferable

than CGA for this task.

Exploring future advancements in this realm presents several possibilities. One

avenue is to examine the performance of our Particle Swarm Optimizer against other

fitness functions, such as the one employed in [8] for Simulated Annealing, which eval-

uates the flatness of a Boolean function’s Walsh spectrum. Another interesting research

direction involves refining the UPDATE-BAL-POS() procedure to perform only swaps

that enhance nonlinearity or reduce the deviation from k-th correlation immunity. This

property could be obtained, for instance, by integrating the Hill Climbing algorithm

within the update process, potentially offering new optimization capabilities.

References

[1] H. E. Aguirre, H. Okazaki, and Y. Fuwa. An evolutionary multiobjective approach

to design highly non-linear boolean functions. In H. Lipson, editor, Genetic

and Evolutionary Computation Conference, GECCO 2007, Proceedings, London,

England, UK, July 7-11, 2007, pages 749–756. ACM, 2007.

[2] E. Biham and A. Shamir. Differential cryptanalysis of des-like cryptosystems.

In A. Menezes and S. A. Vanstone, editors, Advances in Cryptology - CRYPTO

’90, 10th Annual International Cryptology Conference, Santa Barbara, Califor-

nia, USA, August 11-15, 1990, Proceedings, volume 537 of Lecture Notes in

Computer Science, pages 2–21. Springer, 1990.

[3] C. Carlet. Boolean functions for cryptography and coding theory. Cambridge

University Press, 2021.

17

[4] C. Carlet, M. Djurasevic, D. Jakobovic, L. Mariot, and S. Picek. Evolving con-

structions for balanced, highly nonlinear boolean functions. In J. E. Fieldsend

and M. Wagner, editors, GECCO ’22: Genetic and Evolutionary Computation

Conference, Boston, Massachusetts, USA, July 9 - 13, 2022, pages 1147–1155.

ACM, 2022.

[5] C. Carlet, D. Jakobovic, and S. Picek. Evolutionary algorithms-assisted construc-

tion of cryptographic boolean functions. In F. Chicano and K. Krawiec, editors,

GECCO ’21: Genetic and Evolutionary Computation Conference, Lille, France,

July 10-14, 2021, pages 565–573. ACM, 2021.

[6] P. Charpin and E. Pasalic. On propagation characteristics of resilient functions. In

K. Nyberg and H. M. Heys, editors, Selected Areas in Cryptography, 9th Annual

International Workshop, SAC 2002, St. John’s, Newfoundland, Canada, August

15-16, 2002. Revised Papers, volume 2595 of Lecture Notes in Computer Science,

pages 175–195. Springer, 2002.

[7] J. A. Clark, J. L. Jacob, S. Maitra, and P. Stanica. Almost boolean functions: The

design of boolean functions by spectral inversion. Comput. Intell., 20(3):450–462,

2004.

[8] J. A. Clark, J. L. Jacob, S. Stepney, S. Maitra, and W. Millan. Evolving boolean

functions satisfying multiple criteria. In A. Menezes and P. Sarkar, editors,

Progress in Cryptology - INDOCRYPT 2002, Third International Conference on

Cryptology in India, Hyderabad, India, December 16-18, 2002, volume 2551 of

Lecture Notes in Computer Science, pages 246–259. Springer, 2002.

[9] I. Dinur and A. Shamir. Breaking grain-128 with dynamic cube attacks. In

A. Joux, editor, Fast Software Encryption - 18th International Workshop, FSE

2011, Lyngby, Denmark, February 13-16, 2011, Revised Selected Papers, volume

6733 of Lecture Notes in Computer Science, pages 167–187. Springer, 2011.

[10] M. Djurasevic, D. Jakobovic, L. Mariot, and S. Picek. A survey of metaheuristic

algorithms for the design of cryptographic boolean functions. Cryptogr. Commun.,

15(6):1171–1197, 2023.

[11] X. Hu, R. C. Eberhart, and Y. Shi. Swarm intelligence for permutation opti-

mization: a case study of n-queens problem. In 2003 IEEE Swarm Intelligence

Symposium, SIS 2003, Indianapolis, IN, USA, April 24-26, 2003, pages 243–246.

IEEE, 2003.

[12] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of

International Conference on Neural Networks (ICNN’95), Perth, WA, Australia,

November 27 - December 1, 1995, pages 1942–1948. IEEE, 1995.

[13] J. Kennedy and R. C. Eberhart. A discrete binary version of the particle swarm

algorithm. In 1997 IEEE International conference on systems, man, and cyber-

netics. Computational cybernetics and simulation, volume 5, pages 4104–4108.

IEEE, 1997.

[14] L. R. Knudsen. Truncated and higher order differentials. In B. Preneel, editor,

Fast Software Encryption: Second International Workshop. Leuven, Belgium, 14-

16 December 1994, Proceedings, volume 1008 of Lecture Notes in Computer

Science, pages 196–211. Springer, 1994.

18

[15] L. Manzoni, L. Mariot, and E. Tuba. Balanced crossover operators in genetic

algorithms. Swarm Evol. Comput., 54:100646, 2020.

[16] L. Mariot and A. Leporati. A genetic algorithm for evolving plateaued cryp-

tographic boolean functions. In A. Dediu, L. Magdalena, and C. Martín-Vide,

editors, Theory and Practice of Natural Computing - Fourth International Con-

ference, TPNC 2015, Mieres, Spain, December 15-16, 2015. Proceedings, volume

9477 of Lecture Notes in Computer Science, pages 33–45. Springer, 2015.

[17] L. Mariot and A. Leporati. Heuristic search by particle swarm optimization of

boolean functions for cryptographic applications. In S. Silva and A. I. Esparcia-

Alcázar, editors, Genetic and Evolutionary Computation Conference, GECCO

2015, Madrid, Spain, July 11-15, 2015, Companion Material Proceedings, pages

1425–1426. ACM, 2015.

[18] L. Mariot, M. Saletta, A. Leporati, and L. Manzoni. Heuristic search of (semi-

)bent functions based on cellular automata. Nat. Comput., 21(3):377–391, 2022.

[19] J. L. Massey. Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory,

15(1):122–127, 1969.

[20] M. Matsui. Linear cryptanalysis method for DES cipher. In T. Helleseth, edi-

tor, Advances in Cryptology - EUROCRYPT ’93, Workshop on the Theory and

Application of of Cryptographic Techniques, Lofthus, Norway, May 23-27, 1993,

Proceedings, volume 765 of Lecture Notes in Computer Science, pages 386–397.

Springer, 1993.

[21] W. Meier and O. Staffelbach. Fast correlation attacks on certain stream ciphers.

J. Cryptol., 1(3):159–176, 1989.

[22] R. Mendes, J. Kennedy, and J. Neves. The fully informed particle swarm: Simpler,

maybe better. IEEE Trans. Evol. Comput., 8(3):204–210, 2004.

[23] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.

Artificial intelligence. Springer, 1992.

[24] W. Millan, A. J. Clark, and E. Dawson. Heuristic design of cryptographically

strong balanced boolean functions. In K. Nyberg, editor, Advances in Cryptology

- EUROCRYPT ’98, International Conference on the Theory and Application of

Cryptographic Techniques, Espoo, Finland, May 31 - June 4, 1998, Proceeding,

volume 1403 of Lecture Notes in Computer Science, pages 489–499. Springer,

1998.

[25] E. Pasalic and T. Johansson. Further results on the relation between nonlinearity

and resiliency for boolean functions. In M. Walker, editor, Cryptography and

Coding, 7th IMA International Conference, Cirencester, UK, December 20-22,

1999, Proceedings, volume 1746 of Lecture Notes in Computer Science, pages

35–44. Springer, 1999.

[26] N. J. Patterson and D. H. Wiedemann. The covering radius of the (215, 16) reed-

muller code is at least 16276. IEEE Trans. Inf. Theory, 29(3):354–355, 1983.

[27] M. E. H. Pedersen and A. J. Chipperfield. Simplifying particle swarm optimiza-

tion. Appl. Soft Comput., 10(2):618–628, 2010.

19

[28] S. Picek and D. Jakobovic. Evolving algebraic constructions for designing bent

boolean functions. In T. Friedrich, F. Neumann, and A. M. Sutton, editors, Pro-

ceedings of the 2016 on Genetic and Evolutionary Computation Conference, Den-

ver, CO, USA, July 20 - 24, 2016, pages 781–788. ACM, 2016.

[29] S. Picek, D. Jakobovic, and M. Golub. Evolving cryptographically sound boolean

functions. In C. Blum and E. Alba, editors, Genetic and Evolutionary Compu-

tation Conference, GECCO ’13, Amsterdam, The Netherlands, July 6-10, 2013,

Companion Material Proceedings, pages 191–192. ACM, 2013.

[30] S. Picek, D. Jakobovic, J. F. Miller, L. Batina, and M. Cupic. Cryptographic

boolean functions: One output, many design criteria. Appl. Soft Comput., 40:635–

653, 2016.

[31] R. Poli. Analysis of the publications on the applications of particle swarm opti-

misation. Journal of Artificial Evolution and Applications, 2008:1–10, 2008.

[32] N. J. Radcliffe. Equivalence class analysis of genetic algorithms. Complex Syst.,

5(2), 1991.

[33] R. A. Rueppel and O. Staffelbach. Products of linear recurring sequences with

maximum complexity. IEEE Trans. Inf. Theory, 33(1):124–131, 1987.

[34] P. Sarkar and S. Maitra. Nonlinearity bounds and constructions of resilient

boolean functions. In M. Bellare, editor, Advances in Cryptology - CRYPTO

2000, 20th Annual International Cryptology Conference, Santa Barbara, Califor-

nia, USA, August 20-24, 2000, Proceedings, volume 1880 of Lecture Notes in

Computer Science, pages 515–532. Springer, 2000.

[35] Y. Shi and R. C. Eberhart. Parameter selection in particle swarm optimization.

In V. W. Porto, N. Saravanan, D. E. Waagen, and A. E. Eiben, editors, Evolution-

ary Programming VII, 7th International Conference, EP98, San Diego, CA, USA,

March 25-27, 1998, Proceedings, volume 1447 of Lecture Notes in Computer

Science, pages 591–600. Springer, 1998.

[36] T. Siegenthaler. Correlation-immunity of nonlinear combining functions for cryp-

tographic applications. IEEE Trans. Inf. Theory, 30(5):776–780, 1984.

[37] I. C. Trelea. The particle swarm optimization algorithm: convergence analysis

and parameter selection. Inf. Process. Lett., 85(6):317–325, 2003.

[38] A. F. Webster and S. E. Tavares. On the design of s-boxes. In H. C. Williams,

editor, Advances in Cryptology - CRYPTO ’85, Santa Barbara, California, USA,

August 18-22, 1985, Proceedings, volume 218 of Lecture Notes in Computer Sci-

ence, pages 523–534. Springer, 1985.

[39] G. Xiao and J. L. Massey. A spectral characterization of correlation-immune

combining functions. IEEE Trans. Inf. Theory, 34(3):569–571, 1988.

[40] X.-M. Zhang and Y. Zheng. Gac—the criterion for global avalanche character-

istics of cryptographic functions. J. UCS The Journal of Universal Computer

Science: Annual Print and CD-ROM Archive Edition Volume 1 1995, pages 320–

337, 1996.

20

	Introduction
	Basics of Boolean Functions
	Representations of Boolean Functions
	Cryptographic Properties of Boolean Functions

	Related Work
	PSO Algorithm
	Overview of Discrete PSO
	Position Update for Balanced Functions
	Fitness Functions
	Overall PSO Algorithm

	Parameters Tuning
	Local Unimodal Sampling
	Continuous Genetic Algorithms
	Meta-Fitness Function
	Meta-Optimization Results

	PSO Experiments
	Experimental Setting
	Best Solutions Found
	Comparison with other Heuristics

	Conclusions

