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ABSTRACT
Cloud computing is an emerging paradigm which allows the
on-demand delivering of software, hardware, and data as
services. As cloud-based services are more numerous and
dynamic, the development of efficient service provisioning
policies become increasingly challenging. Game theoretic
approaches have shown to gain a thorough analytical under-
standing of the service provisioning problem.

In this paper we take the perspective of Software as a
Service (SaaS) providers which host their applications at
an Infrastructure as a Service (IaaS) provider. Each SaaS
needs to comply with quality of service requirements, spec-
ified in Service Level Agreement (SLA) contracts with the
end-users, which determine the revenues and penalties on
the basis of the achieved performance level. SaaS providers
want to maximize their revenues from SLAs, while minimiz-
ing the cost of use of resources supplied by the IaaS provider.
Moreover, SaaS providers compete and bid for the use of in-
frastructural resources. On the other hand, the IaaS wants
to maximize the revenues obtained providing virtualized re-
sources. In this paper we model the service provisioning
problem as a Generalized Nash game, and we propose an
efficient algorithm for the run time management and alloca-
tion of IaaS resources to competing SaaSs.

1. INTRODUCTION
Cloud Computing has been a dominant IT news topic over

the past few years. It is essentially a way for IT companies
to deliver software/hardware on-demand and for costumers
to store and access data over the Internet. Cloud computing
applications are generally priced on a subscription model, so
end-users may pay a yearly usage fee, for example, rather
than the more familiar model of purchasing software to run
on desktop. The Cloud-based services are not only restricted
to software applications (Software as a Service – SaaS), but
could also be the platform for the development and deploy-
ment of cloud applications (Platform as a Service – PaaS)
and the hardware infrastructure (Infrastructure as a Service
– IaaS). Many Companies, e.g. Google and Amazon, are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

offering Cloud computing services such as Google’s App En-
gine and Amazon’s Elastic Compute Cloud (EC2). Large
data centers provide the infrastructure behind the Cloud
and virtualization technology makes Cloud computing re-
sources more efficient and cost-effective both for providers
and customers. Indeed, end-users obtain the benefits of the
infrastructure without the need to implement and adminis-
ter it directly adding or removing capacity almost instan-
taneously on a “pay-as-you-use” basis. Cloud providers can,
on the other hand, maximize the utilization of their physical
resources also obtaining economies of scale.

The development of efficient service provisioning policies
is among the major issues in Cloud research. Indeed, mod-
ern Clouds live in an open world characterized by continu-
ous changes which occur autonomously and unpredictably.
In this context, game theoretic methods allow to gain a in-
depth analytical understanding of the service provisioning
problem. Game Theory has been successfully applied to di-
verse problems such as Internet pricing, flow and congestion
control, routing, and networking [5]. One of the most widely
used “solution concept” in Game Theory is the Nash Equi-
librium approach: A set of strategies for the players consti-
tute a Nash Equilibrium if no player can benefit by changing
his/her strategy while the other players keep their strategies
unchanged or, in other words, every player is playing a best
response to the strategy choices of his/her opponents.

In this paper we take the perspective of SaaS providers
which host their applications at an IaaS provider. Each
SaaS provider wants to maximize its profit while complying
with QoS requirements, specified in Service Level Agreement
(SLA) contracts with the end-users, which determine the
revenues and penalties on the basis of the achieved perfor-
mance level. The profit of the SaaS is given by the revenues
from SLAs minus the cost sustained for using the resources
supplied by the IaaS. However, each SaaS competes with
others SaaS and bids for the use of infrastructural resources.
The IaaS, in his turn, wants to maximize the revenues ob-
tained providing the resources. To capture the behavior of
SaaSs and IaaS in this conflicting situation in which the best
choice for one depends on the choices of the others, we recur
to the Generalized Nash equilibrium concept [12], which is
an extension of the classical Nash equilibrium. In this paper
the service provisioning problem will be modelled as a Gen-
eralized Nash game. We then use Game Theory results for
developing an efficient algorithm for the run time allocation
of IaaS resources to competing SaaSs.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the reference system under study. In Sec-



tion 3 we introduce our model based on the concept of Gen-
eralized Nash equilibrium and we prove its existence. In Sec-
tion 4 we provide analytical results for a simple case study,
while a general solution method is proposed in Section 5.
The experimental results discussed in Section 6 demonstrate
the efficiency of our method. Other approaches proposed in
the literature are discussed in Section 7. Conclusions are
finally drawn in Section 8.

2. PROBLEM STATEMENT AND
ASSUMPTIONS

We consider SaaS providers using Cloud computing facil-
ities to offer services, according to the IaaS paradigm. We
assume that a SaaS provider offers multiple transactional
Web services (WSs) and each service represents a different
application. The hosted WSs can be heterogeneous with
respect to resource demands, workload intensities and QoS
requirements. The set of WS applications offered by the p-th
SaaS provider are denoted with Ap.

An SLA contract, associated with each WS application,
is established between the SaaS provider and its end-users.
In particular, as in other approaches [8, 9, 30], for each WS
application k ∈ Ap, a linear utility function specifies the per
request revenue (or penalty) Vk = νk+mk Rk incurred when
the end-to-end response time Rk assumes a given value. The
slope of the utility function is mk = −νk/Rk < 0 and Rk
is the threshold that identifies the revenue/penalty region,
that is, if Rk > Rk the SLA is violated and the SaaS incurs
in penalties. Linear utility functions are a flexible mech-
anism to rank different applications (e.g., assigning higher
slopes to more important applications), and allow also to
implement soft constraints on response times since the SaaS
goal is to keep the infrastructure working in a profitability
region, i.e., to provide an average response time lower than
Rk looking for the trade-off between the SLA revenues and
infrastructural costs [8].

Applications are hosted in virtual machines (VMs) which
are dynamically instantiated by the IaaS provider. We make
the simplifying assumption that each VM hosts a single WS
application. Multiple VMs implementing the same WS ap-
plication can also run in parallel. In that case, we further
assume that the running VMs are homogeneous in terms of
RAM and CPU capacity C and evenly share the workload.

IaaS providers usually charge software providers on an
hourly basis [6]. Hence, the SaaS has to face the problem
of determining every hour the optimal number of VMs for
each WS class in order to maximize the net revenues.

The SaaS performs resource allocation on the basis of a
prediction of future WS workloads [9]. The SaaS needs also
an estimate of the future performance of each VM in order to
determine application average response time. In the follow-
ing we model each WS class hosted in a VM as an M/G/1
queue [10], as done in [25, 1] and we assume, as common
among Web service containers, that requests are served ac-
cording to the processor sharing scheduling discipline.

For the IaaS provider we consider a model similar to Ama-
zon EC2 [6] and we assume that the IaaS provider offers: (i)
flat VMs, for which SaaS providers applies for a one-time
payment (currently every one or three years) for each in-
stance they want to reserve, (ii) on demand VMs, which
allows SaaS to access computing capacity with no long-
term commitments, and (iii) on spot VMs, for which SaaS
providers bid and compete for unused IaaS resources.

The VM instances are charged with the on spot cost σk
for application k, which is set by the IaaS and fluctuates
periodically depending on the IaaS provider time of the day
energy costs and also on the supply and demand from SaaS
for on spot VMs [6, 19]. Indeed, SaaS providers compete
among them for the use of on spot VMs and specify the
maximum cost σUk for each application k they are willing to
pay per instance hour. The on spot cost σk is fixed by the
IaaS provider which can also decide to do not allocate any
on spot instance to a SaaS. On the other hand, each SaaS
provider is guaranteed to have access up to fUp flat VMs he
reserved by applying to the one-time payment. The number
of on spot VMs available at the IaaS cloud service center is
denoted by sU .

For example in the Amazon case on spot costs are avail-
able via the EC2 API [6] or by third party sites [28]. On spot
costs fluctuate according to the time of the day and on the
Cloud site region, and could be less or greater than the time
unit cost ϕ for flat VMs. Finally, we denote with δ the cost
for on demand instances. With the current pricing models,
δ is strictly greater than ϕ and we assume δ > σUk for all
k. Indeed, since the IaaS provider can arbitrarily terminate
on spot instances from a SaaS resource pool [6], no one is
willing to pay for a less reliable resource a time unit cost
higher than on demand instances, which provide a higher
availability level.

On spot instances have been traditionally adopted to sup-
port batch computing intensive workloads [6]. However,
since nowadays IaaS providers allow specifying autonomic
policies which can dynamically allocate VM instances in few
minutes as a reaction to failures, we advocate the use of on
spot instances also to support the execution of traditional
Web applications.

3. GENERALIZED NASH EQUILIBRIUM
APPROACH

Hereafter we introduce the Generalized Nash Equilibrium
Problem arising in the Cloud computing system under study
and we prove the existence of at least an equilibrium.

3.1 Problem Formulation
The goal of SaaS provider p is to determine every hour

the number of flat fk, on demand dk and on spot sk VMs to
be devoted for the execution of all WS applications k ∈ Ap,
in order to maximize its profits and, at the same time, so as
to to satisfy the prediction Λk for the arrival rate of the WS
application k. Let us denote with µk the maximum service
rate for the requests of application k on a VM of capacity
one. If the workload is evenly shared among the VMs, then
the average response time for the execution of application k
requests is given by:

E[Rk] =
1

Cµk − Λk
fk+dk+sk

, (1)

under the assumption that VMs are not saturated, i.e. guar-
anteeing the equilibrium conditions for the M/G/1 queues
C µk (fk + dk + sk)− Λk > 0.

The average per time unit revenues for application k re-
quests are given by Vk Λk = (νk +mk E[Rk]) Λk.

Considering the infrastructural costs to access flat, on de-
mand, and on spot VM instances the goal of a SaaS provider
is to maximize its profits given by:∑

k∈Ap

(
νk Λk +

mk Λk(fk + dk + sk)

C µk (fk + dk + sk)− Λk
+



−ϕfk − δ dk − σk sk) .

With this setting in mind, the problem of the generic SaaS
provider p becomes:

max Θp =
∑
k∈Ap

mk Λk(fk + dk + sk)

C µk (fk + dk + sk)− Λk
+

−
∑
k∈Ap

ϕfk −
∑
k∈Ap

δ dk −
∑
k∈Ap

σk sk

∑
k∈Ap

fk ≤ fUp (2)

fk + dk + sk >
Λk
C µk

∀ k ∈ Ap (3)∑
k∈A

sk ≤ sU (4)

fk, dk, sk ≥ 0 ∀ k ∈ Ap. (5)

Note that the terms
∑
k∈A

νk Λk can be dropped in the SaaS

objective function since they are independent of the decision
variables.

Constraint (2) entails that the flat VMs allocated to appli-
cations are less or equal to the one available, while constraint
(3) guarantees that resources are not saturated. Finally con-
straint (4) guarantees than the on spot VMs allocated to
competing SaaS providers are lower than the one available
at the IaaS cloud service center sU .

We would like to remark that, in the formulation of the
problem, we have not imposed variables fk, dk, sk to be in-
teger, as in reality they are. In fact, requiring variables to
be integer makes the solution much more difficult. How-
ever, preliminary experimental results have shown that if
the optimal values of the variables are fractional and they
are rounded to the closest integer solution, the gap between
the solution of the real integer problem and the relaxed one
is very small, justifying the use of a relaxed model. We
therefore decide to deal with continuous variables, actually
considering a relaxation of the real problem.

On the other side, the IaaS provider’s goal is to determine
the time unit cost σk for on spot VM instances for all ap-
plications k ∈ Ap and every SaaS provider p, in order to
maximize its total revenue:

max ΘI =
∑
k∈A

(ϕfk + δ dk + σk sk)

σLk ≤ σk ≤ σUk ∀ k ∈ A, (6)

where A denotes the set of indexes of all WS applications
(i.e., A = ∪pAp, Ap1 ∩Ap2 = � if p1 6= p2).

Note that the on spot instance cost lower bound σLk is fixed
according to the time of the day and includes the energy
costs for running a single VM instance for one hour and the
amortized cost of the hosting physical machine [19]. For
the sake of clarity, the notation adopted in this paper is
summarized in Table 1.

If the maximum time unit costs of an application is lower
than the minimum set by the IaaS, i.e. σUk < σLk , formally
the SaaSs and IaaS problems have no solution. In that case
we can set sk = 0 and consider a simplified problem where
the capacity allocation problem for application k is limited
to determine the number of flat and on demand instances.
Hence in the following we will always assume that σLk ≤ σUk

for all k. Note that, if the on spot instances are terminated
by the IaaS provider, then the SaaS can dynamically start
the execution of an equal number of on demand instances.

In this framework, SaaS providers and the IaaS provider
are making decisions at the same time, and the decisions of
a SaaS depend on those of the others SaaS and the IaaS.
Vice versa, the IaaS objective function depends on SaaS
decisions. In this setting, we can not analyze decision in
isolation, but we must ask what a SaaS would do, taking
into account the decision of the IaaS and other SaaSs. To
capture the behavior of SaaSs and IaaS in this conflicting sit-
uation (game) in which what a SaaS or the IaaS (the players
of the game) does directly affects what others do, we con-
sider the Generalized Nash equilibrium concept [12], which is
broadly used in Game Theory and other fields. We remind
the reader that the generalized Nash equilibrium problem
(GNEP) differs from the classical Nash equilibrium problem
(NEP) since, not only the objective functions of each player
(called payoff functions) depend upon the strategies chosen
by all the other players, but also each player’s strategy set
may depend on the rival players’ strategies. In our setting
the constraint of each problem involving other player’s vari-
ables (joint constraint) comes from (4).

Following the Nash equilibrium concept, SaaS and IaaS
providers adopt a strategy such that none of them can im-
prove its revenue by changing its strategy unilaterally (i.e.,
while the other players keep their strategies unchanged).
The service provisioning problem results therefore in a GNEP
where the players are the SaaS providers and the IaaS provid-
er, the strategy variables of SaaS provider p are fk, dk, and
sk, for k ∈ Ap, while the strategy variables of the IaaS are
the costs for on spot VMs, σk, for all k ∈ A. Within this
setting, the IaaS’s strategy is simple. In fact, if a SaaS
provider decides not to use on spot VMs for application k,
that is sk = 0, the value of the IaaS payoff does not de-
pend on the choice for σk, that can be any feasible value.
Whereas, if sk 6= 0, regardless its value, the best response of
the IaaS is to play σk = σUk . When one player has a strat-
egy that yields a higher revenue, no matter which choice the
other players makes, that player is said to have a dominant
strategy, and he will play that strategy in each of the Nash
equilibria. Therefore, whenever sk 6= 0, the IaaS will play its
dominant strategy σk = σUk . Another important feature of
the derived GNEP is that it satisfies the Convexity Assump-
tion: the payoff functions of both SaaS providers and IaaS,
are concave in its own variables (Θp is concave [7] being the
sum of linear and concave function, and ΘI is linear) and the
set of strategies are convex. Moreover, even if the decision
of a SaaS depends on the decisions of the other SaaSs and
the IaaS, the only constraint of each problem involving other
player’s variables (coming from (4) in each SaaS problem),
is the same for all players: we refer to this special class of
GNEP as jointly convex GNEP [14].

3.2 Existence of equilibria
Using the model introduced in the previous sections, we

now prove that there exists an equilibrium for service provi-
sioning on the Cloud. The proof is based on the equivalence
between generalized Nash equilibria and fixed points of the
best-response mapping, and on the Kakutani’s fixed point
theorem [20].

To simplify the discussion we introduce the following no-
tations. Let xp = (fk, dk, sk)k∈Ap denotes the strategies vec-



Decision Variables

fk Number of flat VMs used for application k
dk Number of on demand VMs used for application k
sk Number of on spot VMs used for application k
σk Time unit cost for on spot VMs used for application k

System Parameters

n number of SaaS providers
Ap Set of applications of the p SaaS provider
A Set of applications of all the SaaS providers
fUp Maximum number of flat computational resources IaaS can provide for provider p
sU Maximum number of on spot computational resources IaaS can provide for all the SaaS providers
C Capacity of computational resources
Λk Prediction of the arrival rate for application k
µk Maximum service rate of a capacity 1 server for executing class k application
mk Application k utility function slope
ϕ Time unit cost for flat VMs
δ Time unit cost for on demand VMs
σLk Minimum time unit cost for on spot VMs used for application k, set by the IaaS provider
σUk Maximum time unit cost for on spot VMs used for application k, set by the SaaS provider

Table 1: Parameters and decision variables.

tor of SaaS provider p, x = (xp)np=1, x
−p the vector formed

by the strategies of all SaaS providers different from p and
σ = (σk)k∈A. Moreover we indicate by Xp(x

−p) the set of
strategies for provider p, and XI the set of strategies of the
IaaS provider.

Theorem 1 There exists at least one generalized Nash
equilibrium for the game.

Proof Let consider any SaaS provider p. For any feasi-
ble strategy x−p of the other SaaS providers we have that
Xp(x

−p) contains the set:

XL
p := {xp ≥ 0 :

∑
k∈Ap

fk ≤ fUp , sk = 0 ∀ k ∈ Ap

fk + dk > Λk/(C µk) ∀ k ∈ Ap}.

Moreover, for any feasible strategy σ of IaaS provider we
have the following relations:

ΘL
p (xp) ≤ Θp(x

p, σ) ≤ ΘU
p (xp),

where ΘL
p (xp) is:∑

k∈Ap

[
mk Λk(fk + dk + sk)

C µk (fk + dk + sk)− Λk
− ϕfk − δ dk − σUk sk

]
and ΘU

p (xp) is:∑
k∈Ap

[
mk Λk(fk + dk + sk)

C µk (fk + dk + sk)− Λk
− ϕfk − δ dk − σLk sk

]
.

We remark that if fk + dk + sk → Λk
C µk

for some k ∈ Ap,

then ΘU
p (xp) → −∞ and if dk → +∞ then ΘU

p (xp) → −∞
as well.

If we denote by Mp := max
xp∈XL

p

ΘL
p (xp), then the set:

X̃p := {xp : ΘU
p (xp) ≥Mp}

is nonempty, convex and compact. Therefore, for any fea-
sible x−p and σ we obtain that:

max
xp∈Xp(x−p)

Θp(x
p, σ) ≥ max

xp∈XL
p

Θp(x
p, σ) ≥ max

xp∈XL
p

ΘL
p (xp) = Mp

thus:
arg max

xp∈Xp(x−p)
Θp(x

p, σ) ⊆ X̃p,

that is the sets of best responses of player p to the strategies

of the rivals are uniformly bounded by X̃p.
Finally, we consider the convex compact set

X̃ := X̃1 × . . . X̃n ×XI
and the best response set-valued mapping B defined as fol-

lows:

B(x, σ) :=

[
arg max

y1∈X1(x−1)
Θ1(y1, σ)

]
× . . .

×
[
arg max

yn∈Xn(x−n)
Θn(yn, σ)

]
× arg max

σ′∈XI

ΘI(x, σ
′).

From the above discussion it follows that the set valued
map B : X̃ ⇒ X̃ has nonempty and convex values, and its
graph is closed by continuity of payoff functions. Therefore,
by Kakutani’s theorem there exists a fixed point of B, that
is a strategy (x, σ) ∈ B(x, σ), which is a generalized Nash
equilibrium of the game.

4. A SINGLE APPLICATION CASE STUDY
In order to gain insight into the properties of the equilib-

ria in our setting, let us focus on the case of a single SaaS
provider with a single application class.

In the following we will also assume that the IaaS is over-
provisioned and there is no an upper bound sU on the num-
ber of on spot VM instances available and, hence, the con-
straint (4) is relaxed. Indeed, it is not reasonable that a
single SaaS will be able to saturate the on spot instances ca-
pacity available in a real system. In that case, each player’s
strategy (SaaS and IaaS) belong to a set which is fixed and
does not depend on the rival players’ strategies: hence the
GNEP reduces to a NEP which is much more simple to solve.

The aim of the SaaS provider, given the IaaS strategy σ,
is to choose f , d, and s that maximize the payoff:

ΘS =
mΛ (f + d+ s)

C µ (f + d+ s)− Λ
− ϕf − δ d− σ s,



over the set XS = {(f, d, s) ∈ R3
+ : f + d + s > Λ

C µ
, f ≤

fU}. The aim of the IaaS provider, given the SaaS strategies
(f, d, s), is to choose σ that maximize the payoff:

ΘI = ϕf + δ d+ σ s,

over the set XI = {σ ∈ R : σL ≤ σ ≤ σU}.
An analytic study can be obtained writing down the KKT

conditions for the SaaS and the IaaS optimization problems
and concatenating them and is omitted here for space limi-
tation. See [7] for further details. We can observe that the
Nash equilibria depend on the application workload condi-
tions and on the relation between the cost ϕ of the flat VMs
and the upper bound σU for on spot instances cost. The ob-
tained equilibria and the corresponding value of the payoff
functions ΘS and ΘI are reported in Table 2.

The first important remark we get is that, in general, there
is no a unique Nash equilibrium (e.g., when ϕ = σU ). How-
ever, if multiple equilibria exist they are equivalent, that is
they are characterized by the same values of the payoffs.
Furthermore, assuming δ > σUk for all k we always have
d = 0 (i.e., the SaaS provider always adopt flat or on spot
VMs which are always cheaper than on demand instances).

When ϕ ≥ σU (Table 2, first and second rows) then it is
more convenient for the SaaS provider to use only on spot
instances which number can be obtained by a closed formula
under any workload conditions. Remind that the value of
σL is set by the IaaS provider, and SaaS provider can not set
the value of σU too low otherwise the IaaS will not provide
on spot resources. Let us now examine the case ϕ < σU and
assume initially that fU ≤ Λ

C µ
. In these hypotheses, the

SaaS provider is under heavy load conditions and requests
cannot be executed by using only the flat VMs. The SaaS
provider will use all of its flat VMs and will buy on spot
VMs at the maximum cost. Again, the number of on spot
VMs can be determined by a closed formula (see Table 2,
third row). Since ϕ < σU , in these conditions the payoff
ΘS is greater than the value obtained when ϕ ≥ σU (Table
2 first and second rows). Hence these conditions are more
profitable for the SaaS provider which determines the opti-
mal trade-off between the cost of the flat and on spot VMs
and the revenues which can be achieved by the SLA con-
tract. With the same arguments we can derive that, vice
versa, the payoff ΘI is lower than the value obtained when
ϕ ≥ σU , hence these conditions are less profitable from the
IaaS point of view even if on spot instances are sold at the
maximum cost.

Let us now examine the case when ϕ < σU and fU > Λ
C µ

.
The SaaS provider is under light load conditions and, there-
fore, the incoming requests could be executed by using only
the flat VMs. Under these hypotheses, the equilibria are
set according to the marginal value of the payoff function
of the SaaS player evaluated in f = fU and s = 0, that is
−mΛ2

(C µ fU−Λ)2
. This marginal value represents the change in

the revenues of SaaS per unit change in s, i.e., the increase in
the SaaS provider revenues deriving from SLA contracts ob-
tained providing better performance to end-users by adopt-
ing an additional on spot VM. We identify two cases:
• if ϕ < σU < −mΛ2

(C µ fU−Λ)2
(see Table 2, fourth row), the

marginal value is greater than the cost of individual
on spot instance sold at the maximum cost (σ = σU ),
therefore it is convenient for the SaaS provider to buy
on spot instances. Note that under these conditions,
the payoff ΘS is greater than the value obtained when

ϕ ≥ σU as in the previous case. Vice versa, for the
IaaS provider these circumstances are less profitable.
• if ϕ < σU and −mΛ2

(C µ fU−Λ)2
≤ σU (see Table 2, fifth and

sixth row), then the marginal value is less or equal to
the cost of on spot VMs and hence the SaaS provider
has no incentives to buy additional on spot VMs. Also
in these cases, the equilibrium value of the payoff of
SaaS provider is greater than the one obtained when
ϕ ≥ σU , while this again does not happen for the
IaaS provider. Finally, it is worth noticing that if
−σΛ2

(C µ fU−Λ)2
< ϕ the SaaS provider adopts a number

of VMs lower than fU . Hence, in that case the costs
incurred by using a larger number of flat VMs can-
not be counterbalanced by the revenues which can be
obtained by improving application performance.

5. GENERAL SOLUTION METHOD
In the previous sections, we showed that the service pro-

visioning problem in a Cloud Computing environment rep-
resents a GNEP and more precisely a jointly convex GNEP.
Concerning solution algorithms for general GNEPs, the lit-
erature is still very limited. More interesting results have
been obtained for GNEPs with a jointly convex structure
as our model is. In fact, a jointly convex GNEP can be
solved introducing a variational inequality (VI) problem1 re-
formulation: given a jointly convex GNEP with N players,
whose payoffs Θi are continuously differentiable and con-
vex with respect to xi, then every solution of the VI, where
F = −(∇xiΘi(x))Ni=1 and X is the set of individual and joint
constraints, is also a solution of the jointly convex GNEP
(see, e.g., [14]). We remark that the GNEP has usually mul-
tiple or even infinitely many solutions and it is not true that
any solution of the jointly convex GNEP is also a solution
of the VI. A solution of the jointly convex GNEP which is
also a solution of the VI is called a variational equilibrium.
Our approach is to calculate, among all the equilibria, a
variational equilibrium which is more socially stable than
other equilibria (see [11]) and it is a valuable target for an
algorithm.

There are plenty of methods for solving VI problems. In
our setting we have:

F =



m1 Λ2
1

(C µ1 (f1 + d1 + s1)− Λ1)2
+ ϕ

m1 Λ2
1

(C µ1 (f1 + d1 + s1)− Λ1)2
+ δ

m1 Λ2
1

(C µ1 (f1 + d1 + s1)− Λ1)2
+ σ1

· · ·
· · ·
−s1

· · ·


whose Jacobian is:

JF =



[
a1 a1 a1

a1 a1 a1

a1 a1 a1

]
0

. . .

0

[
a|A| a|A| a|A|
a|A| a|A| a|A|
a|A| a|A| a|A|

] B

−BT 0


1Given X ⊆ Rn and F : Rn → Rn, the VI problem consists
in finding a vector x∗ ∈ X such that 〈F (x∗), x− x∗〉 ≥ 0,
for all x ∈ X.



Conditions SaaS Equilibrium and value IaaS Equilibrium and value

ϕ > σU
f = 0 d = 0 s = Λ

C µ

(
1 +

√
−m
σU

)
ΘS = − Λ

C µ
(
√
σU +

√
−m)2

σ = σU

ΘI = Λ
C µ

(
√
−mσU + σU )

ϕ = σU

0 ≤ f ≤ fU d = 0 s ≥ 0

f + s = Λ
C µ

(
1 +

√
−m
σU

)
ΘS = − Λ

C µ
(
√
σU +

√
−m)2

σ = σU

ΘI = Λ
C µ

(
√
−mσU + σU )

ϕ < σU

fU ≤ Λ
C µ

f = fU d = 0 s = Λ
C µ

(
1 +

√
−m
σU

)
− fU

ΘS = − Λ
C µ

(
√
σU +

√
−m)2 + fU (σU − ϕ)

σ = σU

ΘI = Λ
C µ

(
√
−mσU + σU ) + fU (ϕ− σU )

ϕ < σU

fU > Λ
C µ

σU < −mΛ2

(C µ fU−Λ)2

f = fU d = 0 s = Λ
C µ

(
1 +

√
−m
σU

)
− fU

ΘS = − Λ
C µ

(
√
σU +

√
−m)2 + fU (σU − ϕ)

σ = σU

ΘI = Λ
C µ

(
√
−mσU + σU ) + fU (ϕ− σU )

ϕ < σU

fU > Λ
C µ

−mΛ2

(C µ fU−Λ)2
< ϕ

f = Λ
C µ

(
1 +

√
−m
ϕ

)
d = 0 s = 0

ΘS = − Λ
C µ

(
√
ϕ+
√
−m)2

max{σL, ϕ} ≤ σ ≤ σU

ΘI = Λ
C µ

(
√
−mϕ+ ϕ)

ϕ < σU

fU > Λ
C µ

ϕ ≤ −mΛ2

(C µ fU−Λ)2
≤ σU

f = fU d = 0 s = 0

ΘS = mΛ fU

C µ fU−Λ
− ϕfU

max{σL, −mΛ2

(C µ fU−Λ)2
} ≤ σ ≤ σU

ΘI = ϕfU

Table 2: Single Application Single SaaS Equilibria.

where the generic term ai = − 2mi Λ2
i C µi

(C µi (fi+di+si)−Λi)3
> 0,

and B is a matrix of dimension 3 |A| × |A|.
Its symmetric part is:

[
a1 a1 a1

a1 a1 a1

a1 a1 a1

]
0

. . .

0

[
a|A| a|A| a|A|
a|A| a|A| a|A|
a|A| a|A| a|A|

] 0

0 0


Therefore, in the feasible set X, its non-zero eigenvalues

(i.e., 3 a1, · · · , 3 a|A|) are positive (being m < 0 and f +

d + s > Λ
C µ

), and hence F results to be monotone2 (not

strictly). Hence we can calculate a variational equilibrium
of the GNEP associated to the service provisioning problem
by solving a monotone VI. Concerning the solution methods
for monotone VI, the projection type methods are among
the simplest ones. These methods found on the well known
fixed point reformulation of a VI:

x∗ ∈ X solves V I(X,F ) iff

x∗ = ProjX(x∗ − αF (x∗)) for any α > 0,

where ProjX denotes the orthogonal projection onto X.3

2F is monotone on X if, for any x, y ∈ X, it holds that
〈F (x)− F (y), x− y〉 ≥ 0.
3ProjX(z) = argmin{‖w − z‖, w ∈ X} ∀ z ∈ Rn.

The important feature of these methods is that there is
not need of using derivative of F and they do not involve any
computation besides the function evaluation and the projec-
tion onto X. When the projection is easily computable, as
is our case, projection methods are extremely simple and
cheap. Among the projection type methods we consider the
hyperplane projection method [18], where two projections
per iteration are executed. The method is simple and ad-
mits a geometric interpretation. Given the current point
(xt, σt), first we compute ProjX((xt, σt)− βt F (xt, σt)) and
then we search on the line segment between those points, for
(yt, δt) such that the hyperplane

{(x, σ) : 〈F (yt, δt), (x, σ)− (yt, δt)〉 = 0}

strictly separates (xt, σt) from any solution of the prob-
lem. The next iterate (xt+1, σt+1) is computed by projecting
(xt, σt) onto the hyperplane and then onto X. The scheme
is formally stated in Figure 1. We set as initial solution of
the algorithm x0 the one obtained by the best reply among
SaaS according to the Gauss-Siedel scheme [14] and setting
σ0 = σUk for all k.

We emphasize that constructing the hyperplane requires
a single projection onto the feasible set and employs an
Armijo-type line search. During the line search, moreover,
no projection onto X are required, but only function eval-
uations. Regarding the choice of the parameters, following
[18] we take βt+1 = median(β̂, θ αt βt, β̃), where θ > 1 but
not too large, e.g. θ = 2.

The algorithm for the VI solution can be executed effi-
ciently by the IaaS, under the assumption that the SaaSs



STEP 0. Select parameters ξ ∈ (0, 1), β̂, β̃ s.t. 0 < β̂ ≤ β̃

and a sequence {βt} ⊂ [β̂, β̃]. Let (x0, σ0) ∈ X and set
t = 0.

STEP 1. Compute (xt, σt) = (xt, σt)− βt F (xt, σt)

STEP 2. If (xt, σt) = ProjX(xt, σt) then STOP

STEP 3. Set j(t) the minimum j ≥ 0 :

〈(xt, σt), F (2−jProjX(xt, σt) + (1− 2−j)(xt, σt))〉

≥ ξ

βt
‖(xt, σt)− ProjX(xt, σt)‖2.

Let αt = 2−j(t) and

(yt, δt) = αt ProjX(xt, σt) + (1− αt) (xt, σt),

γk =
〈F (yt, δt), (xt, σt)− (yt, δt)〉

‖F (yt, δt)‖2 ,

(xt+1, σt+1) = ProjX((xt, σt)− γt F (yt, δt))

STEP 4. Set t = t+ 1 and go to STEP 1.

Figure 1: Algorithm for VI.

provide to the IaaS also the the incoming workload predic-
tion Λk for the next hour. Indeed, for the problem under
analysis the SaaS utility function slopes are advertised to
the cloud end-users and hence are known also by the IaaS.

6. EXPERIMENTAL RESULTS
The resource management algorithm proposed has been

evaluated for a variety of system and workload configura-
tions. The application performance parameters have been
varied as considered in the literature (see e.g. [24, 1, 8]
and references therein). Cloud providers time unit costs
have been varied according to the commercial fees currently
adopted [6]. Section 6.1 is devoted to quantitatively anal-
yse the single application case study presented in Section
4. Section 6.2 illustrates the variational equilibria proper-
ties on a medium size system. Finally, the scalability of the
algorithm reported in Figure 1 is discussed in Section 6.3.

6.1 Single Application Analysis
For the numerical analysis reported in this Section we set

Λ = 10 req/sec, C = 1, µ = 1 req/sec, and m = −1. Figures
2 and 3 report the plots of the SaaS and IaaS payoff functions
ΘS an ΘI where we set σU = 0.09$, and we varied ϕ and
fU under the assumption that fU ≤ Λ/(C µ) (i.e., which
corresponds to rows 1-3 of Table 2). Under this hypothesis
the SaaS provider is under heavy load conditions since he
cannot serve the overall incoming workload by using only
his flat resources. The plots show that under the condition
ϕ > σU the payoff functions are constant, while when ϕ ≤
σU ΘS (ΘI) increases (decreases) linearly with fU .

Figures 4 and 5 plot ΘS and ΘI as function of σU (Table
2 rows 4-6) under light workload conditions for the SaaS
(Λ < C µfU ) where we set ϕ = 0.03$ and fU = 50. In this
case the behaviour of the payoff functions changes crossing
the marginal value −mΛ

(C µ fU−Λ)2
which with the considered

setting is equal to 0.0625$: When σU is greater than the
marginal value both ΘS and ΘI are constant, while increase
for lower values of σU . Indeed, the SaaS provider acquires
additional on spot instances to profitably serve incoming end

Figure 2: SaaS payoff function for fU ≤ Λ/(C µ).

Figure 3: IaaS payoff function for fU ≤ Λ/(C µ).

users requests, while the IaaS obtains higher revenues selling
on spot instances.

6.2 Equilibria Sharing Analysis
The aim of this Section is to analyse how the on spot

VMs are shared among competing SaaS changing the game
parameters. The analysis results have been obtained by the
algorithm described in Section 5. In particular we consid-
ered two SaaS offering five heterogeneous applications each.
If not differently stated we set sU = 40, C = 1, ϕ = 0.1$,
δ := 0.11$, fUp = 20 (p ∈ {1, 2}), Λk = 1 req/s, µk = k req/s,

mk = −1, σLk = 0.03$, and σUk = 0.09 for all k ∈ {1, 10}. In
the following we will vary one parameter at the time for the
first application k = 1, while the parameters of the remain-
ing ones will be held fixed. Figures 6-9 show how the number
of resources devoted to the first application (in terms of flat,
on demand, and on spot instances) and the overall capacity
allocated to the remaining classes change as a function of the
varying parameter. In particular, in Figure 6 the incoming
workload Λ1 varies between 1 and 14 req/s. As the Fig-
ure shows, all of the on spot instances (sU = 40) available
at the IaaS are always used but, as the workload increases,
they are migrated from the other applications to application
1. In order to profitably sustain the workload, the number of
flat instances used is also increased, but on demand VMs are
not used until Λ1 reaches 11 req/s. When Λ1 is further in-



Figure 4: SaaS payoff function for Λ < C µfU .

Figure 5: IaaS payoff function for Λ < C µfU .

creased the system starts allocating on demand VMs which
are more expensive but are needed to serve the incoming
requests. In general the resource allocation trends are linear
with Λ1, the discontinuities in the plots are due to the fact
that the equilibrium is not unique and hence the same per-
formance and revenues can be obtained with multiple values
of (fk, dk, sk).

Figure 7 shows the resource sharing at the equilibrium
changing the slope of application 1 utility function (which
has been varied in the range [−15,−1]). As in the previous
analysis, the on spot capacity is migrated to application 1
which becomes more sensible to response time variations and
hence requires additional capacity. However, in this case the
adoption of on demand instances is never profitable.

Figure 8 analyses how the variational equilibrium changes
by varying application 1 maximum service rate (the range
[0.05, 1] req/s has been considered). If the maximum service
rate increases the service time required to process each appli-
cation 1 request decreases and the overall capacity required
to process application 1 decreases accordingly. Hence, in
this case on spot instances are migrated from application
1 to the other classes and on demand instances are used
only when application 1 requests are very CPU intensive
(µ1 < 0.1 req/s).

Finally, Figure 9 shows how the equilibrium changes by
varying the maximum time unit cost for application 1 (σU1

has been varied in the range [0.1, 1]$; we set ϕ = 0.03$,
while for the remaining classes σLk = 0.01$ and σUk = 0.02$).
As σU1 increases the number of on spot VMs allocated to
application 1 decreases since the IaaS set σ1 = σU1 and the
SaaS provider can use in a more cost efficient way the on spot
VMs to serve his remaining applications, while application
1 is supported by flat instances. Also in this scenario on
demand VMs are never used and the trends are linear. This
is very unintuitive, since increasing the maximum time unit
cost one is willing to pay for a given application implies
that the number of on spot instances devoted to the same
application is reduced.

Figure 6: Resource allocation with varying applica-
tion 1 incoming workload.

Figure 7: Resource allocation with varying applica-
tion 1 utility function slope.

6.3 Scalability Analysis
To evaluate the scalability of our resource allocation algo-

rithm we have considered a very large set of randomly gener-
ated instances. All tests have been performed on VMWare
virtual machine based on Ubuntu 9.10 server running on
an Intel Nehalem dual socket quad-core system with 32 GB
of RAM. The virtual machine has a physical core dedicated
with guaranteed performance and 4 GB of memory reserved.
MINOS 5.51 has been use as non linear optimization solver.

The number of SaaS provider has been varied between 10
and 80, the number of applications (evenly shared among
SaaSs) between 100 and 800.

The performance parameters of Web applications and in-
frastructural resources costs have been randomly generated
uniformly in the ranges reported in Table 3 as in other lit-
erature approaches [24, 1, 8] and according to commercial
fees applied by IaaS cloud providers [6].

Table 4 reports, for problem instances of different sizes,
the average computational time in seconds as well as the



Figure 8: Resource allocation with varying applica-
tion 1 maximum service rate.

Figure 9: Resource allocation with varying applica-
tion 1 on spot maximum time unit cost.

average number of iterations performed by the algorithm
reported in Figure 1 from the initial best reply solution (the
means are computed on ten different runs). Since problems
with a size comparable with real systems [27] including thou-
sands of VM instances and hundreds of SaaS providers can
be solved in less than one hour, our approach can be used to
support the run time management of real cloud infrastruc-
tures.

7. RELATED WORK
The recent development of Cloud systems and the rapid

growth of the Internet have led to a remarkable development
in the use of the Game Theory tools. Problems arising in
the ICT industry, such as resource or quality of service al-
location problems, pricing, and load shedding, can not be
handled with classical optimization approaches. Interaction
across different players is non-negligible: Each player can be
affected by the actions of all players, not only her own ac-
tion. In this setting, a natural modelling framework involves
seeking an equilibrium, or stable operating point for the sys-
tem. A survey of different modelling and solution concepts
of networking games, as well as a number of different appli-
cations in telecommunications and wireless networks, based
on Game Theory, can be found in [5].

With respect to telecommunication applications, a rich
literature exists which includes solutions for flow and con-
gestion control [3], network routing [4], file allocation [23],
load balancing [21], resource allocation [16] and quality of

sU [100,1000] C [1,3]
Λk [1,100] req/s µk [1,10] req/s
mk [-10,-1] req/s
ϕ [0.03,0.24]$ δ [0.08,1.24]$
σLk [0.02,0.08]$ σUk [0.09,0.30]$

Table 3: Performance parameters and time unit cost
ranges.

N-SaaS,N-Appl. Exe. Time (s) N-It.
10,100 322 20
20,200 748 32
30,300 1051 47
40,400 1627 51
50,500 1922 37
60,600 2127 42
70,700 2966 53
80,800 3450 38

Table 4: VI algorithm average execution time and
number of iterations.

service provisioning [13].
In [17] a Markovian queueing network model is used to

derive decentralized flow control mechanisms in computer
communication networks with multiple controllers.

In the setting of optimal routing strategies, [22] investi-
gates the existence of Nash equilibria in noncooperative flow
control in a general product-form network shared by multi-
ple end-users introduced in [17]. The goal is to study the ex-
istence of Nash equilibria for decentralized control schemes.
This approach is based on directly proving the existence of
a fixed point of the best response correspondence of the un-
derlying game.

In [26] the authors examine the problem of communica-
tion delays for two main types of heterogeneous systems: (i)
systems where all the nodes have the same processing rates
and capabilities but the arrival rate of local jobs at nodes
may not be the same, and (ii) systems where different nodes
may process jobs at different rates.

In [15] the static load balancing problem in heterogeneous
distributed systems is formulated as a noncooperative game
among users. Based on the Nash equilibrium concept, the
authors derive a distributed load balancing algorithm, whose
performance are compared with that of other existing schem-
es. The main advantages of the proposed approach are the
distributed structure, low complexity and optimality of al-
location for each user.

Regarding Cloud computing, the use of Game Theory for
the resource allocation problem is investigated in [29]. Here,
the authors start from a bid proportional auction resource
allocation model and propose an incomplete common infor-
mation model where one bidder does not know how much
the others would like to pay for the computing resource. To
this end a Bayesian learning mechanism is introduced.

In [2], the authors consider centralized and decentralized
load balancing strategies in a system with multiple and het-
erogeneous processor sharing servers. Each server has an
associated service capacity and a holding cost per unit time.
The requests arrive as a Poisson process, and the service
time of incoming jobs is assumed to be know. For such sys-
tem, the load balancing problem is investigated.



In [31] the authors propose a pricing mechanism for alloca-
tion capacity in a utility computing system among compet-
ing end-users requests. The fixed available service capacity
is allocated among the different flows proportionally to their
monetary bids. The paper studies the resulting equilibrium
point, establishes convergence of a best-response algorithm,
and bounds the efficiency loss (price of anarchy) of this dis-
tributed mechanism.

Differently from our point of view, in [31] the problem of
the capacity allocation is considered for a single virtualized
server among competing user requests, while in this paper
we consider the infrastructure data center at a higher gran-
ularity (i.e., VMs).
8. CONCLUSIONS

We proposed a game theory based approach for the run
time management of a IaaS provider capacity among mul-
tiple competing SaaSs. The model includes infrastructural
costs and revenues deriving form cloud end-users which de-
pend on the achieved level of performance of individual re-
quests. Future work will validate of our solution by perform-
ing experiments in real cloud environments. Furthermore,
a comparison with the heuristic solutions adopted by SaaS
and IaaS providers for the run time cloud management will
be also performed.
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[25] D. A. Menascé and V. Dubey. Utility-based QoS
Brokering in Service Oriented Architectures. In IEEE
ICWS Proc., pages 422–430, 2007.

[26] R. Mirchandaney, D. Towsley, and J. Stankovic.
Adaptive load sharing in heterogeneous distributed
systems. J. Parallel Distrib. Comput., 9(4):331–346,
1990.

[27] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag,
and B. Maggs. Cutting the electric bill for
internet-scale systems. In SIGCOMM ’09 Proc., pages
123–134, New York, NY, USA, 2009. ACM.

[28] SpotHistory.com. Spot Instance Price History Graphs.
http://www.spothistory.com/.

[29] F. Teng and F. Magoules. A new game theoretical
resource allocation algorithm for cloud computing. In
Advances in Grid and Pervasive Computing, pages
321–330, 2010.

[30] B. Urgaonkar and P. Shenoy. Sharc: Managing CPU
and Network Bandwidth in Shared Clusters. IEEE
Trans. on Parallel and Distr. Systems, 15(1):2–17,
2004.

[31] B. Yolken and N. Bambos. Game based capacity
allocation for utility computing environments. In
ValueTools ’08 Proc., pages 1–8, ICST, Brussels,
Belgium, Belgium, 2008.


