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Abstract

We study here the effects of a time-dependent second order perturbation
to a degenerate Ornstein-Uhlenbeck type operator whose diffusive part can
be either local or non-local. More precisely, we establish that some estimates,
such as the Schauder and Sobolev ones, already known for the non-perturbed
operator still hold, and with the same constants, when we perturb the Ornstein-
Uhlenbeck operator with second order diffusions with coefficients only depend-
ing on time in a measurable way. The aim of the current work is two-fold: we
weaken the assumptions required on the perturbation in the local case which
has been considered already in [15] and we extend the approach presented
therein to a wider class of degenerate Kolmogorov operators with non-local
diffusive part of symmetric stable type.
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1 Introduction

1.1 General aims and scopes

In this work we are interested in establishing estimates, namely Schauder and Lp-type,
for some perturbation of degenerate Ornstein-Uhlenbeck operators, which satisfy a
Kalman type condition (see assumption [K] below). For non degenerate diffusion
operators it has been proved in [11] that for some suitable second order perturbations,
some well known estimates from the parabolic/elliptic theory remained true with the
very same constants. This also allowed the authors to prove therein that the Schauder
and Lp estimates for the heat equation actually did not depend on the dimension.
The strategy therein relies on a probabilistic technique which consists in introducing
a random source of Poisson type. Once averaged those discontinuities make appear
a finite difference operator in the associated PDE. The final estimates then follow by
some compactness arguments. The Poisson process actually allows very naturally to
perform those operations and up to now, to the best of our knowledge, this is the
only approach which consents to derive such result. The question to obtain a purely
analytic proof of the indicated stability results remains open.

In [15] we managed to prove that the strategy developed in [11] was sufficiently
robust to extend to degenerate Ornstein-Uhlenbeck operators satisfying a Kalman
condition provided the second order spatial perturbation has coefficients which are
continuous in time. We manage to get rid in the current work of this assumption
and establish the aforementioned stability under the mere time measurability and
boundedness for the perturbations. We also extend such approach to the non-local
degenerate context. Namely, we consider degenerate stable type Ornstein-Uhlenbeck
operators and perturb these with the same kind of second order diffusion considered
above.

1.2 The model

Let us describe the general framework we are going to consider here. Fixed N in
N, we denote by S(RN) the family of symmetric matrix in RN ⊗ RN . We can then
consider its subset S0(RN), which stands for the closed convex cone of non-negative
definite matrices, and its interior S+(RN) which corresponds to the open subset of
positive definite matrices.

Let us introduce two matrices A, B in RN ⊗ RN such that B belongs to S0(RN)
and satisfying the following Kalman rank condition:
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[K] There exists a non-negative integer k such that

Rank[B, AB, . . . , AkB] = N,

where [B, AB, ..., AkB] is the RN ⊗R
N(k+1) matrix whose blocks are B, AB, . . . , AkB.

It has been shown (cf. [12]) that, up to a possible change of variables, the space R
N

can be decomposed as Rd0 × Rd1 (with d0 ≥ 1) such that

B =

(
B0 0d0×d1

0d1×d0 0d1×d1

)
, (1.1)

for some matrix B0 in S+(Rd0). Moreover, if we denote by κ2 > 0 the smallest
eigenvalue of the matrix B0, it then follows that

B0ξ · ξ ≥ κ2|ξ|2, (1.2)

for any ξ in Rd0 . Above, “·” denotes the usual inner product in Rd0 . From the
non-degeneracy of B0, the above condition [K] amounts to say that the vectors

{e1, . . . , ed0 , Ae1, . . . , Aed0 , . . . , Ake1, . . . , Aked0} generate R
N ,

where {ei : i ∈ {1, · · · , d0}} are the first d0 vectors of the canonical basis for RN . For
simplicity, let us also denote by σ in RN ⊗ Rd0 the following matrix:

σ =

( √
B0

0d1×d0

)
,

so that σσ∗ = B.
Fixed α in (0, 2], we can now introduce an operator Lα on C∞

b (RN), the space
of all the bounded, smooth functions on RN with bounded derivatives of any order,
given by:

Lαφ(x) := 1{α=2}Tr(BD2
xφ(x))+

1{α6=2}

∫

Rd0

[
φ(x + σz) − φ(x) − 〈Dxφ(x), σz〉1B(0,1)(σz)

]
να(dz) (1.3)

where να is a symmetric, non-degenerate α-stable measure on Rd0 , i.e.

να(C) =
∫ ∞

0

∫

Sd0−1
1C(rθ)µ(dθ)

dr

r1+α
, C ∈ B(Rd0), (1.4)

for a symmetric, finite measure µ on S
d0−1 for which the following non-degeneracy

condition holds:
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[ND] there exists κα > 0 such that
∫

Sd0−1
|λ · θ|α µ(dθ) ≥ κα|λ|α, λ ∈ R

d0 .

In (1.3), 〈·, ·〉 denotes the usual inner product in R
N and D2

xφ represents the full
Hessian matrix in RN ⊗ RN with respect to x. From now on, we will say that
assumption [A] holds when the above conditions [K] and [ND] are in force.

We will use, as an underlying proxy operator, a degenerate Ornstein-Uhlenbeck
operator Lou

α of the form

L
ou
α φ(x) := Lαφ(x) + 〈Ax, Dxφ(x)〉, (1.5)

for x in RN . In the Gaussian case (i.e. when α = 2), assumption [K] (which also often
appears in control theory; see e.g. [18]) is equivalent to the Hörmander condition on
the commutators (c.f. [7]) ensuring the hypoellipticity of the operator ∂t − Lou

α . In
particular, it implies the existence and the smoothness of a distributional solution
to the following equation:





∂tu(t, x) = Lou
α u(t, x) + f(t, x) on RN

T ;

u(0, x) = 0 on R
N ,

(1.6)

where RN
T := (0, T ) × RN for some fixed final time T > 0 and f is a function in

C∞
c (RN

T ), the set of all the smooth functions on RN
T with compact support.

From this point further, we assume to have fixed a time dependent matrix
S : (0, T ) → S0(RN) which is bounded measurable in (0, T ). We are then interested
in the following perturbation of Lou

α :

L
pert
α,t φ(x) := L

ou
α φ(x) + Tr(S(t)D2

xφ(x)). (1.7)

Our main interest here is to understand how such a perturbation influences some
well-known estimates for the Ornstein-Uhlenbeck operator Lou

α . For example, when
considering the diffusive setting α = 2, Theorem 3 in [2] (but see also [15, Section
2.3]), showed that for any fixed p in (1, +∞), there exists cp := cp(T, A, B, d0, d1)
such that the solution u to Cauchy problem (1.6) satisfies

‖D2
x0

u‖Lp(RN
T ) ≤ cp‖f‖Lp(RN

T ), (1.8)

where for any (t, x) = (t, x0, x1) in R
N
T = (0, T ) × R

d0 × R
d1 , D2

x0
u(t, x) stands for

the Hessian matrix in Rd0 ⊗ Rd0 with respect to the variable x0 and Lp(RN
T ) is the
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standard Lp-space with respect to the Lebesgue measure. Under some additional
regularity assumptions, namely the continuity in time for S(t), we showed in [15]
that the above estimates are indeed stable under a diffusive perturbation Tr(S(t)D2

x).
The main objective of the present paper is to extend the previous results in [15] to
possibly fractional proxy operators and to diffusive perturbations where S(t) is only
bounded measurable. We will also show some applications of the previous arguments
to elliptic or more general parabolic equations.

The article is organised as follows. We introduce in Section 2 the notion of solu-
tion considered as well as some useful notations about the natural function spaces
associated with the specific degenerate operators described above. In that section,
we also establish a maximum principle for a large class of operators, see Theorem
2.2, which we think has independent interest. Section 3 is then devoted to the state-
ment of our main results, see Theorem 3.1, and some related extensions (parabolic
operators with potential and elliptic counterpart). Section 4 is eventually dedicated
to the proof of the main result. As we mentioned before, the approach therein is
based on the Poisson perturbative approach firstly considered in [11].

2 Useful notations

2.1 Definition of solution

Let us consider in this section a slightly more general framework. We are interested
in the following Cauchy problem:





∂tv(t, x) = Ltv(t, x) + f(t, x) on RN

T ;

v(0, x) = 0 on RN .
(2.1)

Above, the operator Lt on C∞
b (RN) is given by

Ltφ(x) := Tr
(
Q(t)D2

xφ(x)
)

+ 〈b(t, x), Dxφ(x)〉 − c(t)φ(x) + Ntφ(x),

Ntφ(x) :=
∫

Rd0

[
φ(x + γ(t)z) − φ(x) − 〈Dxφ(x), γ(t)z〉1B(0,1)(z)

]
να(dz),

(2.2)

where Q : (0, T ) → S0(RN), b : (0, T )×R
N → R

N , c : (0, T ) → [0, +∞) and γ : (0, T ) →
RN ⊗ Rd are Borel measurable and να is the α-stable Lévy measure given in (1.4).

We will denote by Bb

(
0, T ; C∞

c (RN)
)

the space of all Borel bounded functions
φ : RN

T → R such that φ(t, ·) is smooth and compactly supported for any t in (0, T ),
for any n in N the Cn(RN)-norms of φ(t, ·) are bounded in time and the supports
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of the functions φ(t, ·) are contained in the same ball. We remark that the choice of
such space, which turns out to be rather natural when considering sources that are
possibly discontinuous in time, is strictly related to the proof technique used in [11]
and based on the Poisson process (cf. proof of Lemma 4.3).

For a bounded, Borel measurable function f : RN
T → R, we are going to interpret

Cauchy Problem (2.1) in an integral in time form:

u(t, x) =
∫ t

0
[f(s, x) + Lsu(s, x)] ds. (2.3)

Definition 2.1 (Integral solution for the Cauchy problem). We say that a function
u : [0, T ] × RN → R is a solution to Equation (2.1) if Dζ

xu is bounded continuous
on [0, T ] × RN for any ζ in NN such that |ζ | ≤ 2 and (2.3) holds for any (t, x) in
[0, T ] × RN .

We recall that for a given multi-index ζ in NN , Dζ
xu denotes the iterated spatial

derivatives of u of order ζ , i.e.

Dζ
xu := Dζ1

x1
Dζ2

x2
. . . Dζn

xn
u.

Under some additional assumptions (see Theorem 2.2 below), it is indeed possible
to show that, when it exists, an integral in time solution u to Cauchy problem (2.1)
is unique and the following maximum principle holds:

sup
(t,x)∈[0,T ]×RN

|u(t, x)| ≤ T sup
(t,x)∈RN

T

|f(t, x)|. (2.4)

While such estimates are well-known in the diffusive setting (see e.g. [10, Theorem
4.1] or [15]), we could not find a precise proof in the fractional case. For this reason,
we now present it for future reference.

Theorem 2.2 (Maximum principle). Let α ∈ (0, 2). Assume in addition that
Q : (0, T ) → S0(RN) and γ : (0, T ) → RN ⊗ Rd are bounded. Let u be a solution
to Cauchy problem (2.1) in the sense of Definition 2.1, with c = 0 and b = 0. Then,
the maximum principle (2.4) holds for u.

Proof. By considering u and −u, it is clearly enough to show that

sup
(t,x)∈RN

T

u(t, x) ≤ T sup
(t,x)∈RN

T

|f(t, x)|.

In order to mimic the proof technique in [10] (see Theorem 4.1 therein in the diffusive
setting), we firstly notice that the function ũ : [−T, 0] × R

N → R given by

ũ(t, x) := et (u(−t, x) + t‖f‖∞) ,
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solves the following Cauchy problem:




∂tũ(t, x) + L̃tũ(t, x) = f̃(t, x) on (−T, 0) × R

N ;

ũ(0, x) = 0 on RN .
(2.5)

where f̃(t, x) := et(‖f‖∞ − f(−t, x)) ≥ 0 and L̃t is the operator given in (2.2) with
coefficients Q̃(t) = Q(−t), c̃(t) = 1 and γ̃(t) = γ(−t). For notational convenience,
let us also denote Ñt := N−t. In order to conclude the proof, it is then enough to
show that

sup
(t,x)∈[−T,0]×RN

ũ(t, x) ≤ 0.

Let us introduce now the following barrier function w(t, x) = exp(−Ct)ℓβ(x)
where ℓβ(x) = (1 + |x|2)β

2 for some β < α ∧ 1 and C > 0. One can observe that ℓβ is
smooth and that there exists C̄ ≥ 1 such that for any multi-index ζ in Nn such that
|ζ | ≤ 2,

|Dζ
xℓβ(x)| ≤ C̄(1 + |x|2)β

2
−

|ζ|
2 .

In particular, by our choice of β, Dxℓβ is bounded. Moreover, it is possible to choose
C > 0 large enough so that

(∂t + L̃t)w(t, x) ≤ 0. (2.6)

Indeed, one can notice that ∂tw(t, x) = −Ce−Ctℓβ(x) and

|Tr
(
Q̃(t)D2

xw(t, x)
)

| ≤ e−CtC̄.

Furthermore, one can infer from the β-Hölder regularity of ℓβ that

|Ñtw(t, x)| =
∣∣∣∣e

−Ctp.v.
∫

Rd
[ℓβ(x + γ(t)z) − ℓβ(x)] να(dz)

∣∣∣∣ ≤ C̄e−Ct.

Now, the point is to prove that for any fixed η > 0 and any (t, x) ∈ [−T, 0] × RN ,

v(t, x) := e−t/2(ũ(t, x) − ηw(t, x)) ≤ 0,

where w(t, x) is the previous barrier which satisfies (2.6). The statement indeed
follows for ũ letting η go to zero and using that u is bounded in RN

T .
Since ũ is bounded and w goes to infinity with |x|, we deduce that the supremum

of v in [−T, 0]×RN has to be attained at some point (t0, x0) ∈ [−T, 0]×RN . We can
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assume without loss of generality that t0 is in [−T, 0). Moreover, since v is smooth in
space, Dxv(t0, x0) = 0 and D2

xv(t0, x0) is non-positive definite. Then, by the space-
time continuity of v and its spatial derivatives, we notice that for any τ > 0, there
exists θ := θ(τ) such that for any (t, z) ∈ [−T, 0)×RN such that |t−t0|∨|z −x0| < θ,

v(t, x0) ≥ 0, |Dxv(t, z)| ≤ τ, [D2
xv(t, z)]i,j ≤ τδi,j . (2.7)

We can now write for any 0 ≤ t − t0 ≤ θ,

0 ≥ v(t, x0) − v(t0, x0) =
∫ t

t0

∂sv(s, x0)ds.

We then observe that for any (s, x) in [−T, 0] × RN , we have that

∂sv(s, x) = −1
2

v(s, x) + e−s/2(∂sũ(s, x) − η∂sw(s, x)) (2.8)

= −1
2

v(s, x) − L̃sv(s, x) + e−s/2f̃(s, x) − ηe−s/2
(
∂s + L̃s

)
w(s, x)

≥ −1
2

v(s, x) − L̃sv(s, x),

exploiting, in the last step, (2.6). Hence, by the definition of the operator L̃s in (2.2)
(with the choice of coefficients described after (2.5)), it holds that

∫ t

t0

v(s, x0) ds ≤ 2
∫ t

t0

[
Tr
(
Q̃(s)D2

xv(s, x0)
)

+ Ñsv(s, x0)
]

ds. (2.9)

Taking t − t0 < θ and s in [t, t0], one can easily conclude from (2.7) that

Tr
(
Q̃(s)D2

xv(s, x0)
)

≤ cτ. (2.10)

On the other hand, we can split Ñsv into I1
s v + I2

s v, where

I1
s v(s, x0) :=

∫

|z|≤t−t0

[v(s, x0 + γ̃(s)z) − v(s, x0) − 〈∇v(s, x0), γ(s)z〉] να(dz),

I2
s v(s, x0) :=

∫

|z|>t−t0

[v(s, x0 + z) − v(s, x0)] να(dz).

Using again (2.7), one can then derive that

I1
s v(s, x0) =

∫ 1

0

∫

|z|≤t−t0

〈D2
xv(s, x0 + λγ(s)z)γ(s)z, γ(s)z〉 να(dz)dλ

≤ cτ
∫

|z|≤1
|z|2 να(dz) ≤ cτ.

(2.11)
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On the other hand, since v(t0, x0) is a maximum, so that v(t0, x0 + z) − v(t0, x0) ≤ 0,
we also have that

I2
s v(s, x0)

=
∫

|z|>t−t0

[v(s, x0 + γ(s)z) ± v(t0, x0 + γ(s)z) ± v(t0, x0) − v(s, x0)] να(dz)

≤
∫

|z|>t−t0

[v(s, x0 + γ(s)z) − v(t0, x0 + γ(s)z) + v(t0, x0) − v(s, x0)] να(dz)

=
∫ s

t0

∫

|z|>t−t0

[∂rv(r, x0 + γ(s)z) − ∂rv(r, x0)] να(dz)dr.

Similarly to (2.8), we note that

∂sv(s, x) = e−s/2
[
ηC̃w(s, x) + f̃(s, x) − L̃sũ(s, x)) − 1

2
ũ(s, x)

]
,

where the constant C̃ := C + 1/2 and C defined in (2.6). Hence,

I2
s v(s, x0) ≤

∫ s

t0

∫

|z|>t−t0

∣∣∣∣
(

ηC̃w + f̃ − L̃rũ − 1
2

ũ
)

(r, x0 + γ(s)z)

−
(

ηC̃w + f̃ − L̃rũ − 1
2

ũ
)

(r, x0)
∣∣∣∣ να(dz)dr

When α is in (0, 1), we can use the boundedness of ũ and f̃ and the β-Hölder
continuity of ℓβ to infer that

I2
s v(s, x0) ≤ c(s − t0)

∫

|z|≥t−t0

(
1 + |z|β

)
να(dz) ≤ c(s − t0)

∫ +∞

t−t0

r−(1+α)(1 + rβ) dr

≤ c(s − t0)(t − t0)−α. (2.12)

If instead α ∈ (1, 2), we need to apply an additional Taylor expansion:

I2
s v(s, x0) ≤

∫ 1

0

∫ s

t0

∫

|z|≥t−t0

∣∣∣∣
〈(

ηC̃Dxw + Dxf̃
)

(r, x0 + λγ(s)z), γ(s)z
〉

−
〈(

Dx

(
L̃rũ

)
+

1
2

Dxũ
)

(r, x0 + λγ(s)z), γ(s)z
〉∣∣∣∣ να(dz)drdλ.

Using again the boundedness of the functions involved, i.e. Dxũ, Dxw and Dxf̃ , and
noting that Dx

(
L̃rũ

)
= L̃r (Dxũ), we can conclude in the same way as above that

I2
s v(s, x0) ≤ c(s − t0)(t − t0)1−α. (2.13)
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Applying estimates (2.10), (2.11) and (2.12) or (2.13) inside (2.9), we finally get that

∫ t

t0

v(s, x0) ds ≤ c [τ + (t − t0)ε] (t − t0),

for some ε > 0. Using the continuity of v, we can divide both sides by t − t0 and let
t go to t0 so that

v(t0, x0) ≤ cτ.

Since τ > 0 is arbitrary, we have concluded the proof.

2.2 Definition of the anisotropic norms

We firstly recall from [12] that the state space RN can be split into Rd0 ×Rd1 so that,
under such decomposition, the matrix B assumes the form in (1.1). More precisely,
in the aforementioned work, it was established that Assumption [K] is equivalent to
the fact that there exists k ∈ N and positive integers {di : i ∈ {1, · · · , k}} such that∑k

i=1 di = d1 and for all i ∈ {1, · · · , k}, setting d0 = d0 and
∑−1

m=0 = 0, the matrices

A
i := (Aj,ℓ)(j,ℓ)∈{

∑i−1

m=0
dm+1,··· ,

∑i

m=0
dm}×{

∑i−1

m=1
dm+1,··· ,

∑i

m=1
dm}

,

have rank di. Moreover, the matrix A writes:

A =




∗ ∗ . . . . . . ∗
A 1 ∗ . . . . . .

...

0d2,d0 A 2 ∗ . . .
...

...
. . . . . . . . . ∗

0dk,d0 . . . 0dk,dk−1
A

k ∗




. (2.14)

We can then write x ∈ RN as x = (x0, x1, · · · , xk) with xi ∈ Rdi , i ∈ {0, · · · , k}. In
order to properly introduce the anisotropic functional space we are going to consider,
we follow [8] by introducing the orthogonal projection pi : RN → Rdi such that pi(x) =
xi and denoting its adjoint by Ei : Rdi → RN , for any i in J0, kK. For notational
simplicity, let us denote

αi :=
α

2
1

1 + αi
. (2.15)

The threshold in (2.15) might seem awkward at first sight. While the first term
α/2 relates to the maximal regularity associated with the fractional Laplacian ∆α,
the second one actually corresponds to the index needed to get the invariance by
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dilations for the harmonic functions associated with the principal part of the Ornstein-
Uhlenbeck operator Lou

α . Namely, one considers the operator Lou
0,α given in (1.5) with

respect to the matrix

A0 =




0d0,d0 0d0,d1 . . . . . . 0d0,dk

A 1 0d1,d1

. . . . . .
...

0d2,d0 A 2 0d2,d2

. . .
...

...
. . . . . . . . .

...
0dk,d0 . . . 0dk,dk−1

A k 0dk,dk




. (2.16)

Note that A0, B again satisfy [K]. If (∂t − L
ou
0,α)u(t, x) = 0 then for all λ > 0

(∂t − Lou
0,α)u

(
δλ(t, x)

)
= 0 where the dilation operator

δλ(t, x) = (λ1/αt, λx0, λ1/(1+α)x1, · · · , λ1/(1+αk)xk),

precisely exhibits the exponents in (2.15) for the spacial components.
Since the main focus of the present work is on Schauder and Sobolev type esti-

mates for solutions to Cauchy problem (1.6), we now briefly recall the definition of
Sobolev and Hölder norms in our anisotropic context. Fixed β in (0, 1), let us denote
by ∆β

xi
the β-fractional Laplacian along the i-th direction, i.e.

∆β
xi

φ(x) := p.v.
∫

Rdi

[φ(x + Eiz) − φ(x)]
dz

|z|di+2β
, x ∈ R

N ,

for any smooth enough function φ : RN → R. Given p in [1, +∞), we can now
define the homogeneous Sobolev space Ẇ 2,p

d (RN
T ) as the family of all the functions

φ : RN
T → R in Lp(RN

T ) such that for any i in J0, kK, ∆αi
xi

φ(t, x) is well defined for
almost every (t, x) in RN

T and

∆αi
xi

φ(t, x) := ∆αi
xi

φ(t, ·)(x) belongs to Lp(RN
T ).

It is endowed with the natural semi-norm [·]Ẇ α,p
d

(RN
T ) given by:

[φ]p
Ẇ α,p

d
(RN

T
)

=
k∑

i=0

‖∆αi
xi

φ‖p
Lp(RN

T )
.

Following Krylov [9], for some fixed ℓ in N0 := N∪{0} and β in (0, 1], we introduce
for a function φ : RN → R the Zygmund-Hölder semi-norm as

[φ]Cℓ+β :=






sup|ϑ|=ℓ supx 6=y
|Dϑφ(x)−Dϑφ(y)|

|x−y|β
, if β 6= 1;

sup|ϑ|=ℓ supx 6=y

∣∣∣Dϑφ(x)+Dϑφ(y)−2Dϑφ( x+y
2

)

∣∣∣
|x−y|

, if β = 1,

11



(we are using usual multi-indices ϑ for the partial derivatives). Consequently, the
Zygmund-Hölder space Cℓ+β

b (RN) is the family of bounded functions φ : RN → R

such that φ and its derivatives up to order ℓ are continuous and the norm

‖φ‖Cℓ+β
b

:=
ℓ∑

i=0

sup
|ϑ|=i

‖Dϑφ‖∞ + [φ]Cℓ+β is finite.

We can now define the anisotropic Zygmund-Hölder spaces associated with the cur-
rent setting and which again reflect the various scales already introduced in (2.15).
Let γ ∈ (0, 3), the space Cγ

b,d(RN ) is the family of functions φ : RN → R such that
for any i in J0, kK and any x0 in RN , the real function

y ∈ R
di → φ(x0 + Ei(y)) belongs to C

γ/(1+αi)
b

(
R

di

)
,

with a norm bounded by a constant independent from x0.
We will also consider the corresponding natural semi-norm for the related homo-

geneous space

[φ]Cγ
d

:=
k∑

i=0

sup
x0∈RN

[φ (x0 + Ei(·))]Cγ/(1+αi)(Rdi ) .

We finally remark that we have denoted by Cγ
d and Ẇ 2,p

d the anisotropic functional
spaces because the regularity exponents reflect again the multi-scale features of the
system. In particular, the Hölder norm could equivalently be defined through the
corresponding spatial parabolic distance d defined as follows: For any x, x′ ∈ RN :

d(x, x′) :=
k∑

i=0

|xi − x′
i|

1
1+αi ,

where the exponents are again those who appeared in (2.15).

3 Main results

Let f be in Bb

(
0, T ; C∞

c (RN)
)

and u the unique solution to the corresponding Cauchy
problem (1.6).

In [8], see also [5] and [16] where time inhomogeneous coefficients are considered
as well, it has been proven that if A, B satisfy [K] and the diagonal and the strictly
upper diagonal elements of A in (2.14) are equal to zero (i.e., A = A0 in (2.16)) then
the following Sobolev estimates hold (with p ∈ (1, +∞)):

[u]Ẇ α,p
d

(RN
T ) ≤ Cp‖f‖Lp(RN

T
), (3.1)
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for some positive constant Cp := C(p, α, A, B, d0, d1). We remark that the specific
structure assumed on A is actually due to the fact that for such matrices there is an
underlying homogeneous space structure which makes easier to establish maximal
regularity estimates (see e.g. [6] in this general setting). If A, B satisfy [K] with a
general A as in (2.14), having non-zero strictly upper diagonal entries, we believe that
the approach in [2] could extend to show that (3.1) still holds in this general setting.
In particular, non-zero entries in the diagonal do not create additional difficulties but
they introduce a dependence in the final time T in the previous estimates. However,
the estimates in this more general framework have not been, up to our best knowledge,
proven yet.

Let us now fix β in (0, 1) such that β < α. Under Kalman condition [K], Lemmas
9 and 10 in [14] (but see also [3, 13]) show that the solution u also verifies the following
anisotropic Schauder estimates:

sup
t∈[0,T ]

[u(t, ·)]Cα+β
d

≤ Cβ sup
t∈(0,T )

[f(t, ·)]Cβ
d
, (3.2)

for some positive constant Cβ := C(β, α, A, B, d0, d1, T ). Moreover, it is possible
to show (see again [14] in a fractional setting) that, when considering a dilation
invariant matrix A, i.e. when A = A0 in (2.16), the constants cp, Cβ appearing in the
estimates (1.8)-(3.2) are indeed independent from the final time T (see also [4]).

Our main result shows that indeed the above estimates are invariant under time
dependent diffusive perturbations.

Theorem 3.1. Under [A], let f be in Bb(0, T ; C∞
c (RN)). Then, there exists a unique

solution u to the perturbed Cauchy problem




∂tu(t, x) = L
pert
α,t u(t, x) + f(t, x) on RN

T ;

u(0, x) = 0 on RN ,
(3.3)

where L
pert
α,t is defined in (1.7) for a bounded measurable perturbation S(t). Moreover,

for any p > 1 and any β in (0, α ∧ 1), it holds that

sup
t∈[0,T ]

[u(t, ·)]Cα+β
d

≤ Cβ sup
t∈(0,T )

[f(t, ·)]Cβ
d
;

if A = A0 in (2.16), [u]Ẇ α,p
d

(RN
T

) ≤ Cp ‖f‖Lp(RN
T ),

(3.4)

where Cβ, Cp are the same constants as in (3.2) and (3.1) respectively.

In the diffusive setting (i.e. when α = 2) the above result can be exploited to
show that the estimates do not depend on the intensity of the matrix B but only on

13



the ellipticity constant κ2 in (1.2). Indeed, under our hypothesis, it is possible to
rewrite B = κ2BI + B̃ where

BI :=

(
Id0 0d0,d1

0d1,d0 0d1,d1

)

and B̃ := B−κ2BI belongs to S0(RN). Then, Theorem 3.1 implies that the constants
appearing in (3.4) do not depend on ‖B‖ but only linearly on κ−1

2 .
Once we will obtain the above result, it is easy to generalize it to more general

operators. Indeed, let us consider the operator

Lα,tφ(x) := L
pert
α,t φ(x) + 〈a(t), Dxφ(x)〉 − c(t)φ(x),

where c : (0, T ) → [0, ∞), a : (0, T ) → RN are two integrable functions and, we
recall, Lpert

α,t is defined in (1.7) for a bounded measurable perturbation S(t). For any
sufficiently regular function φ : [0, T ] × RN → R, we are going to denote

Tφ(t, x) := e−
∫ t

0
c(s) dsφ

(
t, x +

∫ t

0
a(s) ds

)
.

It is not difficult to check that the “operator” T transforms solutions of the Cauchy
Problem (3.3) to solutions of the Cauchy Problem driven by Lα,t, even if for a
modified source Tf .

Corollary 3.2. Under [A], let f be in Bb(0, T ; C∞
c (RN)). Then, there exists a unique

solution v to the Cauchy Problem




∂tv(t, x) = Lα,tv(t, x) + f(t, x) on RN

T ;

v(0, x) = 0 on RN .
(3.5)

Moreover, for any p > 1 and any β in (0, 1 ∧ α), it holds that

sup
t∈[0,T ]

[v(t, ·)]Cα+β
d

(RN ) ≤ Cβ sup
t∈(0,T )

[f(t, ·)]Cβ
d

(RN );

if A = A0 in (2.16), [v]Ẇ α,p
d

(RN
T

) ≤ Cp e
∫ T

0
c(s) ds‖f‖Lp(RN

T ),
(3.6)

where Cβ, Cp are the same constants appearing in Theorem 3.1.

Proof. We will use the following notation:

c̃(t) :=
∫ t

0
c(s) ds, ã(t) :=

∫ t

0
a(s) ds.
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As explained before, it is not difficult to check that if v is a solution to Cauchy
Problem (3.5), then the function

u(t, x) := T
−1v(t, x) = ec̃(t)v(t, x − ã(t))

is the unique solution to (3.3) with f̃ instead of f , where

f̃(t, x) := ec̃(t)f(t, x − ã(t)), (t, x) ∈ R
N
T .

Moreover, we have that f̃ is in Bb

(
0, T ; C∞

c (RN)
)
.

Considering t ≤ T , we then notice from Theorem 3.1 (applied to [0, t] ×RN) that

[u(t, ·)]Cα+β
d

(RN ) ≤ Cβ sup
s∈(0,t)

[f̃(s, ·)]Cβ
d

(RN ).

Using now the invariance of the Hölder norm under translations, we can show that

[v(t, ·)]Cα+β
d

(RN ) ≤ Cβe−c̃(t) sup
s∈(0,t)

[ec̃(s)f(s, ·)]Cβ
d

(RN ) ≤ Cβ sup
s∈(0,t)

[f(s, ·)]Cβ
d

(RN ),

where in the last step we exploited that c̃(t) is non-decreasing. Taking the supremum
with respect to t on both sides of the above inequality, we obtain the first inequality
in (3.6). For the second one, notice from Theorem 3.1, that

k∑

i=0

∫ T

0
epc̃(t)‖∆αi

xi
v(t, ·)‖p

Lp(RN ) dt ≤ Cp

∫ T

0
epc̃(t)‖f(t, ·)‖p

Lp(RN ) dt

≤ Cp epc̃(T )
∫ T

0
‖f(t, ·)‖p

Lp(RN ) dt.

Using the fact that ec̃(t) ≥ 1 for all t ∈ [0, T ], we notice that

k∑

i=0

∫ T

0
‖∆αi

xi
v(t, ·)‖p

Lp(RN ) dt ≤ Cp epc̃(T )
∫ T

0
‖f(t, ·)‖p

Lp(RN ) dt,

and we have concluded.

We now show how the results in Theorem 3.1 in the parabolic framework can
be adapted to establish a-priori estimates for the elliptic one. More precisely, let us
introduce

Lαφ(x) := L
ou
α φ(x) + 〈a, Dxφ(x)〉 + Tr(SD2

xφ(x)), (3.7)

for a matrix S in S0(RN ) and a in R
N . Let us mention that the Schauder and

Lp estimates are known for the unperturbed operator in the diffusive case, i.e. the
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one obtained taking α = 2 and S = 0 in (3.7). We can e.g. refer to the works
[13], [2] respectively. We strongly believe that under the current assumptions, the
computations performed in [8] could be extended to derive such estimates when
α 6= 2 and the matrix A is invariant under dilations. Finally, we remark that when
the matrix A is invariant under dilations (i.e. A = A0 as in (2.16)), the constants Cβ,
Cp in the estimates do not depend on the final time T .

Corollary 3.3. Under [A], let g be in C∞
c (RN) and A = A0 as in (2.16). Assume

that there exists a bounded, continuous (classic) solution u : RN → R to the following
elliptic equation:

Lαu(x) = g(x), on R
N . (3.8)

Then, such solution u is unique and for any p > 1 and any β in (0, 1 ∧ α), it holds
that

[u]C2+β
d

(RN ) ≤ Cβ[g]Cβ
d

(RN );

[u]Ẇ 2,p
d

(RN ) ≤ Cp‖g‖Lp(RN ),

where Cβ and Cp are the same constants appearing in Theorem 3.1.

Proof. We start with the issue of uniqueness. Let us consider a solution u : RN → R

to the elliptic Equation (3.8). Fixed a final time T > 0, it is easy to check that the
function v : RN

T → R given by v(t, x) := u(x)t/T is then a solution of the following
Cauchy Problem:





∂tv(t, x) = Lαv(t, x) + f(t, x), on RN

T ;

v(0, x) = 0, on RN ,

where f(t, x) = u(x)/T − g(x)t/T . Thus, the uniqueness of u follows immediately
from the uniqueness of solutions in Theorem 3.1. Moreover, since A = A0, we know
that v satisfies Estimates (3.4) for constants Cp, Cβ independent from T . Hence, we
have that

[u]Cα+β
d

(RN ) = sup
t∈[0,T ]

[v(t, ·)]Cα+β
d

(RN ) ≤ Cβ sup
t∈(0,T )

[f(t, ·)]Cβ
d

(RN )

≤ Cβ




[u]Cβ

d
(RN )

T
+ [g]Cβ

d
(RN )



 .

We can now let T go to infinity in the equation above. Recalling that Cβ is indepen-
dent from T , we conclude that

[u]Cα+β
d

(RN ) ≤ Cβ[g]Cβ
d

(RN ).
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In order to prove the Sobolev estimates, we firstly notice that for any i ∈ J0, kK,

‖∆αi
xi

v‖p

Lp(RN
T )

=
∫ T

0

( t

T

)p
∫

RN
|∆αi

xi
u(z)|p dzdt =

T

p + 1
‖∆αi

xi
u‖p

Lp(RN ).

Using Estimates (3.4) for v, we then show that

d∑

i=0

‖∆αi
xi

u‖p
Lp(RN

T
)

=
p + 1

T

d∑

i=0

‖∆αi
xi

v‖p
Lp(RN

T
)

≤ Cp
p

p + 1
T

‖f‖p
Lp(RN

T
)

≤ Cp
p

p + 1
T

∫ T

0

∫

RN

∣∣∣∣∣
u(z)
T

− g(z)
t

T

∣∣∣∣∣

p

dzdt

= Cp
p(p + 1)

∫ 1

0

∫

RN

∣∣∣∣∣
u(z)
T

− sg(z)

∣∣∣∣∣

p

dzds,

where, in the last step, we applied the change of variables s = t/T . Letting T go to
infinity, we finally notice that

d∑

i=0

‖∆αi
xi

u‖p
Lp(RN ) ≤ Cp

p‖g‖p
Lp(RN )

∫ 1

0
(p + 1)sp ds = Cp

p‖g‖p
Lp(RN ).

We have thus concluded the proof of Corollary 3.3.

4 Proof of the main result

Let u : [0, T ] × R
N → R be the solution to the initial (i.e. non-perturbed) Cauchy

problem (1.6). We can then introduce a function v(t, x) := u(t, e−tAx). Since u is
Lipschitz continuous in t ∈ (0, T ), it is possible to differentiate the function u(t, x) =
v(t, etAx) with respect to t, for almost every t in [0, T ]. It then follows that v is the
solution to 




∂tv(t, x) = L̃α,tv(t, x) + f̃(t, x);

v(0, x) = 0,
(4.1)

where we denoted f̃(t, z) := f(t, e−tAz) and

L̃α,tφ(x) := 1{α=2}Tr
(
etABetA∗

D2
xv(t, x)

)

+ 1{α6=2}

∫

Rd

[
v(t, x + etAσz) − v(t, x) − 〈Dxv(t, x), etAσz〉1B(0,1)(σz)

]
να(dz).
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Noticing that det(eA0t) = 1 so that ‖f‖Lp(RN
T

) = ‖f̃‖Lp(RN
T

), the known estimates on
u in (2.4), (3.1) and (3.2) can be rewritten in terms of the function v as:

sup
(t,x)∈[0,T ]×RN

|v(t, x)| ≤ T sup
(t,x)∈RN

T

|f̃(t, x)|;

sup
t∈[0,T ]

[v(t, ·)]Cα+β
d,A

(RN ) ≤ Cβ sup
t∈(0,T )

[f̃(t, ·)]Cβ
d,A

(RN );

if A = A0 in (2.16), [v]Ẇ α,p
d,A

(RN
T

) ≤ Cp ‖f̃‖Lp(RN
T

),

(4.2)

where we have denoted

[v(t, ·)]Cα+β
d,A

(RN ) := [v(t, eAt·)]Cα+β
d

(RN ), [v]p
Ẇ α,p

d,A
(RN

T )
:=

k∑

i=0

‖∆αi,A
xi

v‖p
Lp(RN

T
)

and

∆αi,A
xi

v(t, x) := p.v.
∫

Rdi

[v(t, x + etAEiz)) − v(t, x)]
dz

|z|di+2αi
.

Clearly, it is possible to rewrite (4.1) in the form of Cauchy problem (2.1) with
Q(t) = 1{α=2}etABetA∗

and γ(t) = 1{α6=2}etAσ, exploiting the symmetry of the mea-
sure να. By the arguments before and the maximum principle (Theorem 2.2, we
already know that for any f̃ in Bb(0, T ; C∞

c (RN)), there exists a unique solution v
to Cauchy problem (4.1) and it satisfies the estimates in (4.2).

Let us consider again the bounded measurable perturbation S : (0, T ) → S0(RN).
We would like to show that there exists a unique solution w : [0, T ] × RN → R to





∂tw(t, x) = L̃α,tw(t, x) + Tr
(
etAS(t)etA∗

D2
xw(t, x)

)
+ f̃(t, x);

w(0, x) = 0,

and that the estimates in (4.2) hold for w as well, with the same constants Cβ, Cp

appearing before. Indeed, the backward change of variables argument explained at
the beginning of the section will then allow us to conclude the proof of Theorem 3.1.
More precisely, we will prove at the end of the current section the following, more
general, result:

Proposition 4.1. Let f̃ be in Bb(0, T ; C∞
c (RN)) and S̃ : (0, T ) → S0(RN) bounded

measurable. Then, there exists a unique solution w to:




∂tw(t, x) = L̃α,tw(t, x) + Tr
(
S̃(t)D2

xw(t, x)
)

+ f̃(t, x),

w(0, x) = 0.

Moreover, the estimates in (4.2) hold again with w instead of v and with the same
constants appearing before.
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It is clear that Theorem 3.1 will then follow from the previous result by choosing
S̃(t) := etAS(t)etA∗

. The crucial observation in the proof of the above result is that,
at least formally, we can approximate the diffusive perturbation S̃(t) as follows:

1
2

Tr
(
S̃(t)D2

xφ(x)
)

≈ 1
2

N∑

i=1

1
ε2

[
φ(x + ε

√
S̃(t)ei) − 2φ(x) + φ(x − ε

√
S̃(t)ei)

]

=
N∑

i=1

λi

(
δli(t) − δ−li(t)

)
φ(x) =: J S̃

t,εφ(x),

(4.3)

where λi = 1
2
ε−2, li(t) = ε

√
S̃(t)ei and δyφ(·) := φ(· + y) −φ(·) is the first order finite

difference operator.
In order to apply the above heuristic argument in our case, when S̃(t) is only Borel

measurable, we firstly need to show the existence of a Borel measurable principal
square root for S̃(t). While this fact is well-known if S̃(t) is positive-definite, a proof
of the following result could be found in [17, Result 5.4]i.

Lemma 4.2. Let Q : (0, T ) → S0(RN) be a measurable function. Then, there exists
a measurable function

√
Q : (0, T ) → S0(RN ) such that

√
Q(t) is a square root of Q(t)

for any fixed t in (0, T ).

As a first step in our method of proof, we will show that it is possible to add
a finite difference operator, like the one appearing in (4.3), to the Cauchy problem
without modifying the estimates. This is indeed the key point in the proof method
of [11] and it is performed through a probabilistic argument which relies on the use
of a suitable corresponding Poisson process. More precisely, we have the following
result:

Lemma 4.3. Let λ be a real number, l : (0, T ) → RN a bounded measurable function
and f̃ in Bb(0, T ; C∞

c (RN)). Then, there exists a unique solution w to




∂tw(t, x) = L̃α,tw(t, x) + λδl(t)w(t, x) + f̃(t, x);

w(0, x) = 0,
(4.4)

iFor the sake of completeness of the work, we also highlight that the measurability of the principal
square root of the matrix S̃(t) could be obtained from the following integral representation

√
S̃(t) = c

∫ +∞

0

θ−3/2(I − exp(−θS̃(t))) dθ,

where c > 0 is a normalising constant, noticing that the exponential of a measurable matrix is still
measurable.
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Moreover, the estimates in (4.2) hold for w as well, with the same constants appearing
therein.

Proof. Let us assume for the moment that λ > 0. We can define

Xt =
∫ t

0
l(r) dπr

where {πt}t≥0 is a scalar Poisson process of intensity λ defined on a probability
space (Ω,F,P). We notice that the random shifted source f̄(t, x) := f̃(t, x − Xt)
is again in Bb

(
0, T ; C∞

0 (RN)
)
. We have omitted to write the dependence on the

random parameter ω for notational simplicity. We again emphasise that, from the
very nature of the Poisson process involved, the modified (random) source f̄ has
jumps in time. Then, for (almost every) fixed ω in Ω, we already know that there
exists a unique solution v to (4.1), replacing therein f̃ with the random source f̄ ,
depending on ω as parameter. Moreover, thanks to the invariance for translations of
the involved norms, it follows from (4.2) that

sup
(t,x)∈[0,T ]×RN

|v(t, x)| ≤ T sup
(t,x)∈RN

T

|f̃(t, x)|;

sup
t∈[0,T ]

[v(t, ·)]Cα+β
d,A

(RN ) ≤ Cβ sup
t∈(0,T )

[f̃(t, ·)]Cβ
d,A

(RN );

if A = A0, [v]Ẇ α,p
d,A

(RN
T

) ≤ Cp‖f̃‖Lp(RN
T ).

(4.5)

It is not difficult to check (cf. [1]) that the solution v is given by

v(t, x) =
∫ t

0

∫

RN
f̃(s, x − Xs + y) µs,t(dy)ds,

where µs,t is the law of the stochastic integral

Is,t :=
∫ t

s
erAσ dZr,

with {Zt}t≥0 a Brownian motion if α = 2 or an α-stable process with Lévy measure
να, otherwise.

For each x ∈ RN , the stochastic process (v(t, x))t∈[0,T ] has continuous paths (P-
a.s.) and it is Ft-adapted where Ft is the completed σ-algebra generated by the
random variables πs, 0 ≤ s ≤ t. For fixed x ∈ R

N , let us introduce the process
(v(t, x + Xt))t∈[0,T ] which is given by

v(t, x + Xt) =
∫ t

0

∫

RN
[f̃(s, x + Xt − Xs + y)µs,t(dy)ds.
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It is not difficult to check that it is Ft-adapted and it has càdlàg paths.
Denoting by σn, n ∈ {0, . . . , πt} the jump times of the process (Xs)s∈[0,t] and

setting as well σ0 = 0, we have that Xs is constant for s ∈ [σn, σn+1 ∧ t). One then
derives that:

v(t, x + Xt) = v(t, x + Xt) − v(0, x)

=
πt−1∑

n=0

[
v(σ−

n+1, x + Xσ−
n+1

) − v(σn, x + Xσn) + v(t, x + Xt)

− v(σπt , x + Xσπt
) + v(σn+1, x + Xσn+1) − v(σ−

n+1, x + Xσ−
n+1

)
]

=
∫ t

0

[
L̃α,tv(s, x + Xs)) + f̃(s, x)

]
ds +

∫ t

0
g(s, x) dπs, (4.6)

where g(s, x) = v(s, x + l(s) + Xs−) − v(s, x + Xs−) is precisely the contribution
associated with the jump times. Here, Xs− = limt↑s Xt, s > 0. It is clear that
g(s, x) 6= 0 if and only if πs has a jump at time s. We then have:

E

[∫ t

0
g(s, x) dπs

]
= λ

∫ t

0
[w(s, x + l(s)) − w(s, x)] ds,

where w(s, x) = E[v(s, x + Xs)]. The above equality can be easily proven when g
is piece-wise constant and then extended to our more general context by standard
approximation arguments (cf. Lemma 2.1 in [11]). Taking the expectation on both
sides of Equation (4.6), we find out that w is an integral solution to (4.4). Moreover
by (4.5) we obtain (using also the Jensen inequality and the Fubini theorem)

[w]p
Ẇ α,p

d,A
(RN

T )
=

k∑

i=0

∫

RN
T

|∆αi,A
xi

w(t, x)|p dxdt =
k∑

i=0

∫

RN
T

∣∣∣E
[
∆αi,A

xi
v(t, x + Xt)

]∣∣∣
p

dxdt

≤
k∑

i=0

∫

RN
T

E

[∣∣∣∆αi,A
xi

v(t, x + Xt)
∣∣∣
p]

dxdt

=
k∑

i=0

E

[∫

RN
T

∣∣∣∆αi,A
xi

v(t, x + Xt)
∣∣∣
p

dxdt

]

=
k∑

i=0

E

[∫

RN
T

|∆αi,A
xi

v(t, x′)|p dx′dt

]
≤ (Cp)p‖f̃‖p

Lp(RN
T )

.

A similar argument works as well for the Schauder estimates and the maximum
principle. Uniqueness of solutions to (4.4) follows by Theorem 2.2. Indeed, if we
assume for the moment that λT ≤ 1/4, a solution w to (4.4) is also a solution to
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Cauchy problem (4.1) with source f̃(t, x)+λ[w(t, x+l(t))−w(t, x)]. Since f̃ is regular
enough, we can then apply Theorem 2.2 and, by a circular argument, conclude that

sup
(t,x)∈[0,T ]×RN

|w(t, x)| ≤ T
(

sup
(t,x)∈RN

T

|f̃(t, x)| + 2λ sup
(t,x)∈[0,T ]×RN

|w(t, x)|
)

≤ 2T sup
(t,x)∈RN

T

|f̃(t, x)|,

when precisely λT ≤ 1/4. The above estimates clearly imply the uniqueness of
solutions. By iteration of the above procedure by steps of size 1/(4λ), we can claim
the uniqueness of solutions over the full interval [0, T ].

By considering the opposite random shift f̄(t, x) := f̃(t, x + Xt), the same argu-
ments above allows to obtain the result when λ < 0.

Now, by an easy iterative argument using the above Lemmas 4.3 and 4.2, it is
not difficult to show that

Proposition 4.4. Fixed ε > 0, let f̃ be in Bb(0, T ; C∞
c (RN)). Then, there exists a

unique solution wε to





∂twε(t, x) = L̃α,twε(t, x) + J S̃

t,εwε(t, x) + f̃(t, x);

wε(0, x) = 0,
(4.7)

where, we recall, the operator J S̃
t,ε has been defined in (4.3). Moreover, the estimates

in (4.2) hold again with wε instead of v and with the same constants appearing before.

In order to conclude and show Proposition 4.1, we are interested now in under-
standing what happens when we let ε goes to zero in (4.7). In particular, we want
the corresponding second order term in (4.3) to appear at the limit.

Proof of Proposition 4.1. Let us recall from Proposition 4.4 that there exists a family
{wε}ε>0 such that wε : [0, T ] × RN → R is the unique solution to (4.7). Moreover, it
holds that

sup
(t,x)∈[0,T ]×RN

|wε(t, x)| ≤ T sup
(t,x)∈RN

T

|f(t, x)|. (4.8)

For a multi-index γ in N
N and h > 0, let us denote by ∆γ

h the iteration of the finite
difference operators

∆i
hφ(x) =

φ(x + hei) − φ(x)
h

, h > 0, i ∈ J1, NK.
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We then notice that ∆γ
hwε(t, x) solves again (4.7) with ∆γ

hf . Using that f is in
Bb(0, T ; C∞

c (RN)) and the maximum principle in (4.8), it then follows that wε is
smooth in space and Dγ

xwε is bounded in t, x, ε. Equation (4.7), to be understood in
its integral form, together with (4.8) then gives that those derivatives are themselves
Lipschitz continuous in time, uniformly in x, ε. This precisely gives that the family
{wε : ε > 0} is equi-Lipschitz continuous on any compact subset K of [0, T ] × R

N .
Similar arguments hold as well for the spatial derivatives of wε.

We can now apply the Arzelà-Ascoli theorem to wε showing the existence of a
sub-sequence {wεn}n∈N which converges uniformly on any compact set to a function
w : [0, T ] × RN → R. Moreover, w is smooth in space and all its space derivatives
are Lipschitz continuous on any compact set. Similarly, any derivative in space of
wεn tends to the respective derivative of w, uniformly on the compact sets. Passing
to the limit as n → ∞ along the sub-sequence {εn}n∈N in the estimates in (4.2), we
immediately find out that they hold again with w instead of v and with the same
constants appearing before. Letting εn goes to zero in Cauchy problem (4.7) (written
in the integral form), we can also conclude that w solves

∂tw(t, x) = L̃α,tw(t, x) + Tr
(
S̃(t)D2

xw(t, x)
)

+ f̃(t, x).

Indeed, the dominated convergence theorem immediately implies that

lim
n→+∞

∫ t

0
J S̃

t,εn
wεn(s, x) ds =

∫ t

0

[
Tr
(
S̃(s)D2

xw(s, x)
)]

ds.

Similarly, it also holds that

lim
n→+∞

∫ t

0

[
Tr
(
BD2

xwεn(s, x)
)]

ds =
∫ t

0

[
Tr
(
BD2

xw(s, x)
)]

ds,

when α = 2. On the other hand (i.e. α 6= 2), we have that
∫ t

0
L̃α,twεn(s, x) ds =

∫ t

0

∫

|σz|≥1

[
wε(s, x + esAσz) − wε(s, x)

]
να(dz)

+
∫ t

0

∫

|σz|<1

[
wε(s, x + esAσz) − wε(s, x) − 〈Dxwε(s, x), esAσz〉

]
να(dz).

While the first integral is clearly convergent by the bounded convergence theorem,
we notice that

|wε(s, x + esAσz) − wε(s, x) − 〈Dxwε(s, x), etAσz〉| ≤ |esAσz|2‖D2
xwε‖∞

and the dominated convergence theorem can thus be applied to the second integral,
thanks to a uniform estimate for D2

xwε (cf. (4.8)). Finally, the uniqueness of such
solution w follows immediately from the maximum principle (Theorem 2.2).
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