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Abstract: Zinc oxide (ZnO) is the most efficient curing activator employed in the industrial rubber
production. However, ZnO and Zn(II) ions are largely recognized as an environmental hazard being
toxic to aquatic organisms, especially considering Zn(II) release during tire lifecycle. In this context,
aiming at reducing the amount of microcrystalline ZnO, a novel activator was recently synthetized,
constituted by ZnO nanoparticles (NPs) anchored to silica NPs (ZnO-NP@SiO2-NP). The objective of
this work is to define the possible hazards deriving from the use of ZnO-NP@SiO2-NP compared
to ZnO and SiO2 NPs traditionally used in the tire industry. The safety of the novel activators was
assessed by in vitro testing, using human lung epithelial (A549) and immune (THP-1) cells, and by
the in vivo model zebrafish (Danio rerio). The novel manufactured nanomaterial was characterized
morphologically and structurally, and its effects evaluated in vitro by the measurement of the cell
viability and the release of inflammatory mediators, while in vivo by the Fish Embryo Acute Toxicity
(FET) test. Resulting data demonstrated that ZnO-NP@SiO2-NP, despite presenting some subtoxic
events, exhibits the lack of acute effects both in vitro and in vivo, supporting the safe-by-design
development of this novel material for the rubber industry.

Keywords: manufactured nanomaterials; nano-safety; in vitro and in vivo models; inflammatory
mediators; fish embryo acute toxicity test (FET)

1. Introduction

Nowadays, rubber is a material used worldwide for many purposes, as tires, gloves,
shoes, and many other goods [1], thanks to its unique properties, like hardness, elasticity,
and improved elongation at break [2–4].

From an industrial perspective, the mechanical properties of rubber are generally
improved by adding reinforcing fillers to the rubber matrix, such as SiO2, silicates, and
nanometric carbon black, which promote the formation of a percolative filler network inside
the rubber nanocomposites (NCs) [5–9]. In addition, a curing process, i.e., vulcanization,
is performed in order to convert the raw sticky polymer into an elastic material by cross-
linking the rubber chains, through poly- to mono-sulfide bridges [10].

Vulcanization rate and efficiency are industrially improved by using ZnO as a curing
activator, along with organic accelerators and co-activators (i.e., fatty acids) [11]. Nonethe-
less, ZnO entails non-negligible potential environmental risks, in particular to aquatic
organisms, although potential risk for humans cannot be excluded. Actually, tire wear
particles represent a potential hazard for humans and aquatic species [12,13], due to their
significant amount in the urban airborne particulate matter (PM) and their impact on
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aquatic environments as a consequence to leaching phenomena [14], or as micro and
nanoplastics species per se [15]. It is worth noting that the exceedance of safe environ-
mental Zn(II) concentration is detected in urban areas [16], thus supporting the need for
reducing all the possible sources of Zn ions.

Accordingly, the Environmental Protection Agency (EPA) defined the reduction of
ZnO level, a compelling matter in rubber and tire production in addition to in the end-of-
life tire recycling treatments [17]. In this context, several candidate materials have been
proposed to reduce the amount of the traditional microcrystalline ZnO activator and to
improve the efficiency of the curing process at the same time [18–21]. Recently, a novel
activator composed of ZnO nanoparticles (NPs, here after ZnO-NP@SiO2-NP) anchored to
silica filler NPs was recently proposed, which behave simultaneously as curing activator
and filler (i.e., double function filler), allowing a 50% reduction of the ZnO amount currently
used in the production of rubber composites for tires [22,23].

Since the new ZnO-NP@SiO2-NP is made by a core of SiO2-NP surface covered by
ZnO-NP, it is mandatory to characterize the possible hazards deriving from the use of these
novel NPs comparing them to commercial ZnO and SiO2 NPs, both alone or mixed together.

In fact, within the REACH (EC 1907/2006) perspective, every novel manufactured
nanomaterial (MNs) has to be tested for address health and safety concerns, also in com-
parison with traditional or alternative materials used in the process [24].

Moreover, the methods to evaluate the MNs potential toxicity following the recent
OECD (Organization for Economic Co-operation and Development) guidelines [25,26] and
literature approaches [27], which report the test regulations to investigate the human and
environmental toxicity of new MNs, involving in vitro and alternative in vivo models, were
used [28].

In this research paper, the NPs were characterized by transmission electron microscopy
(TEM) and dynamic light scattering (DLS) and then the toxicological aspects related to
both human and environmental health safety were covered. The in vitro and in vivo
investigations were performed using a monoculture of human lung epithelial (A549) and
immune (THP-1) cells [12,13] and the zebrafish (Danio rerio) model [29]. After NP exposure
in vitro, the cytotoxicity and the release of inflammatory mediators IL-8 (Interleukin 8)
and RANTES (Regulated on Activation, Normal T cell Expressed and Secreted) were
evaluated by ELISA (Enzyme-linked immunosorbent assay) [30,31], while the assessment
of nanotoxicity in vivo was performed by the Fish Embryo Acute Toxicity (FET) test [32,33].

The first evidence on the in vitro and in vivo hazard of this new hybrid nano-formulation
represents significant information to adopt and possibly develop newly safe-by-design
formulation of a curing agent for the rubber industry.

2. Materials and Methods
2.1. Synthesis of ZnO-NP@SiO2-NP

The synthesis of the novel ZnO-NP@SiO2-NP was performed according to the proce-
dure reported in [22].

Briefly, 0.3 g of Zn(CH3COO)*2H2O and 0.28 g of ≥98% purity NaOH, final concentra-
tion 0.1 M, (Merck KGaA, Darmstadt, Germany) were dissolved in 70 mL of 99.9% EtOH
(Exacta + Optech Labcenter, San Prospero, Italy) at 65 ◦C; later on, 1.0 g of SiO2 NPs (Rhodia
Zeosil MP1165 with a surface area of 160 m2 g−1, Solvay, Bruxelles, Belgium) was added
and kept under stirring at 65 ◦C for 20 min. The resulting ZnO-NP@SiO2-NP were filtrated,
washed several times with fresh ethanol, and finally dried in oven at 80 ◦C overnight. The
Atomic Emission Spectroscopy (ICP-AES) ZnO content of the novel NPs was 8.0 (±1) wt%,
while 92.0 (±1) wt% was of SiO2 [22].

2.2. Preparation of the Particle Suspensions

The following preparation protocols were used for ZnO-NP@SiO2-NPs, commercial
ZnO (CAS 1314-13-2) NPs, with a size < 50 nm, purchased from Sigma-Aldrich (Sigma-
Aldrich, Milan, Italy) and SiO2-NPs. NPs were weighed in a micro-balance (Sartorius,
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Goettingen, Germany) in sterile conditions, under a laminar flow hood, suspended in
sterile ultrapure water. The stock solutions for ZnO-NP@SiO2-NPs were 1 mg/mL, while
for ZnO and SiO2 NPs were 80 µg/mL and 920 µg/mL, respectively.

Successively, ZnO-NP@SiO2-NPs were sonicated with a probe-type sonicator until
it reached energy 3 kJ/s (Bandelin Sonopuls, Berlin, Germany), in order to obtain a well-
dispersed suspension of particles, while ZnO and SiO2 NPs were sonicated in an ultrasonic
bath (SONICA Soltec, Milano, Italy) for 20 min.

Suspensions were stored at 4 ◦C temperature, for a period no longer than 30 days.

2.3. Morphological and Surface Characterization

The morphology of ZnO-NP@SiO2-NP, ZnO (<50 nm particle size (TEM), Merck KGaA,
Darmstadt, Germany) and SiO2 NPs was first studied by transmission electron microscopy
(TEM). Briefly, 10 µL of NPs suspension (600 µg/mL) in EtOH were dropped on a carbon
coated 300-mesh copper grid. Grids were observed with a Jeol JEM 2100Plus (JEOL, Tokyo,
Japan) TEM, operating at an acceleration voltage of 200 kV and equipped with an 8 MPx
complementary metal oxide semiconductor (CMOS) Gatan Rio9 (Gatan, Pleasanton, CA,
USA) digital camera.

The hydrodynamic size distribution of ZnO-NP@SiO2-NP, ZnO and SiO2 NPs was
evaluated through dynamic light scattering (DLS) analysis by using a Malvern Zetasizer
(Malvern WR14 1XZ, UK). The NP hydrodynamic behavior was assessed by dispersing the
NPs (final concentration 100 µg/mL) in different media: (i) Milli-Q (mQ) water, (ii) DMEM
(Gibco, Life Technologies, Monza, Italy) medium with 1% fetal bovine serum (FBS, Gibco,
Life Technologies, Monza, Italy), (iii) Opti-MEM (Gibco, Life Technologies, Monza, Italy)
medium supplemented with 1% FBS, and (iv) FET solution (0.1 g NaHCO3 and 0.19 g
CaSO4*2H2O; from Sigma-Aldrich, St. Louis, Missouri, MO, USA; 0.1 g instant ocean from
Instant Ocean Spectrum Brands, Blacksburg, Virginia, VA, USA). The latter three media
(DMEM with 1% FBS, Opti-MEM with 1% FBS and FET solution) were used for A549 cells,
THP-1 cells, and for FET experiments, respectively. For the treatment with NPs, the cell
culture media were with 1% FBS to reduce, as much as possible, the protein corona [34,35].

2.4. Experimental Design

The hazard analyses have been performed on ZnO-NP@SiO2-NPs and on bare ZnO-
NP and SiO2-NP (as representative of the canonical nanoparticles used in tyre curing), alone
and mixed. The ZnO-NP@SiO2-NP is constituted by ZnO nanoparticles anchored to a silica
core particle, at concentrations of 8% and 92%, respectively. Thus, the experiments were
conducted comparing the ZnO-NP@SiO2-NPs at concentrations of 10, 50, and 100 µg/mL
to the corresponding concentrations of ZnO and SiO2 nanoparticles, alone or mixed, as
reported in Table 1.

In order to compare most precisely the effects of NPs administration in all the experi-
mental groups, which are adherent cell culture (A549), suspension cell culture (THP-1) and
zebrafish, the exposure concentrations were calculated as a mass of NPs per surface area.

2.5. In Vitro and In Vivo Hazard Assessment

Hazard assessment was conducted on monoculture of human lung epithelial (A549,
ATCC, Manassas, VA, USA) and immune (THP-1 (ATCC) cells, and on the zebrafish
(Danio rerio) model (Appendix A Table A1). The exposure concentrations of ZnO-NP@SiO2-
NPs, ZnO-NP, SiO2-NP, and ZnO-NP + SiO2-NP were tested as reported in Table 1.

A549 cells were seeded using DMEM with 10% of FBS (Gibco, Life Technologies,
Monza, Italy) in 6 multiwell plates and kept in an incubator at 37 ◦C and 5% CO2. Cells
were treated for 24 h with the different NP concentrations (Table 1) after reaching circa
70% of confluence, and a reference not exposed group (Control Not Treated—Ctrl N.T.)
was also considered. The THP-1 were seeded at 1.0 × 105 cells in 12 multiwell plates
with Opti-MEM Reduced Serum Medium with 10% FBS added (Gibco, Life Technologies,
Monza, Italy). After 24 h, the cells were treated with NPs resuspended in Opti-MEM with
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1% FBS (Table 1), and left at 37 ◦C and 5% of CO2 for additional 24 h. At the end of cell
exposure, A549 and THP-1 cells were centrifuged for 3′ at 300× g and the supernatant
tested for their viability. Exposure media were collected and kept at −20 ◦C until the
analyses of the selected inflammatory markers.

Table 1. Nanoparticles’ concentrations used in the experiments performed. The different con-
centrations of exposure are identified with capital letters with “A” referring always to the lowest
concentration used, whatever the particles, “C” representing the highest concentration and “B” (used
only for Zebrafish experiments) the concentration in between. In the following figures, these letters
will be used instead of the whole description of exposure concentration.

ZnO-NP@SiO2-NPs Concentrations Used

A 10 µg/mL of ZnO-NP@SiO2-NP (equivalent to 0.8 µg/mL of ZnO and 9.2 µg/mL of SiO2)

B 50 µg/mL of ZnO-NP@SiO2-NP—only in Zebrafish

C 100 µg/mL of ZnO-NP@SiO2-NP (equivalent to 8 µg/mL of ZnO and 92 µg/mL of SiO2)

ZnO-NP Concentrations Used

A 0.8 µg/mL of ZnO

B 4 µg/mL of ZnO—only in Zebrafish

C 8 µg/mL of ZnO

SiO2-NPs Concentrations Used

A 9.2 µg/mL of SiO2

B 46 µg/mL of SiO2—only in Zebrafish

C 92 µg/mL of SiO2

ZnO-NP + SiO2-NPs Concentrations Used

A 10 µg/mL of ZnO-NP + SiO2-NP (equivalent to 0.8 µg/mL of ZnO + 9.2 µg/mL of SiO2)

B 50 µg/mL of ZnO-NP + SiO2-NP—only in Zebrafish (equivalent to 4 µg/mL of
ZnO + 46 µg/mL of SiO2)

C 100 µg/mL of ZnO-NP + SiO2-NP (equivalent to 8 µg/mL of ZnO + 92 µg/mL of SiO2)

2.6. Cell Viability and Inflammatory Markers Release

The A549 cells viability was assessed by the MTT assay. Briefly, cell medium was
removed and collected for subsequent analysis, and replaced with a serum-free media and
MTT reagent. Cells were then incubated for 3 h at 37 ◦C. Later, dimethyl sulfoxide (DMSO)
was added to cells and, after 15 min of incubation, the plate was analyzed with a TECAN
(Infinite 200 PRO series) microplate reader (Tecan Trading AG, Männedorf, Switzerland).

The collected cell medium was used to evaluate IL-8 and RANTES levels by the
commercial Enzyme-linked immunosorbent assay (ELISA) kit (Invitrogen, Waltham, MA,
USA) according to the manufacturer’s instructions.

Briefly, cell culture supernatants ware added into 96-well plates coated with mon-
oclonal (anti-human IL-8) or polyclonal (anti-human RANTES antibody) after blocking
with 1% bovine serum albumin, followed by incubation with peroxidase-labeled anti-DNA
monoclonal or polyclonal antibody. The optical absorbance was measured at 450 nm in
an ELISA reader (Tecan Trading AG, Männedorf, Switzerland) and the content of released
pro-inflammatory protein, in pg/mL, determined according to the standard curves.

The AlamarBlue test was used to assess cell viability of THP-1 cells after exposure.
Briefly, cells were placed in a 1.5 mL vial and centrifuged for 5 min at 300× g. The exposure
media was recovered and successively used to evaluate the inflammatory response by
ELISA assay.

The pellet was resuspended with 900 µL (MW12) of medium with 10% FBS and 100 µL
of AlamarBlue. The cells were repositioned to each well and incubated at 37 ◦C for about
3 h. After incubation, the supernatant was transferred into 96 multiwell plates and then



Toxics 2022, 10, 781 5 of 18

analyzed with TECAN (Infinite 200 PRO series) microplate reader at a wavelength of 570
and 630 nm.

2.7. Animal Care

The adult AB wildtype are maintained and bred at the University of Milan-Bicocca
zebrafish facility (approved by ATS MetroMilano Prot. n. 0020984—12 February 2018),
in a recirculating ZebTec Active Blue aquatic system (Tecniplast, Buguggiate, Italy). All
experiments were performed on embryos within 5 days post fertilization (dpf), thus not
subject to animal experimentation rules according to European and Italian directives.

2.8. Fish Embryo Acute Toxicity Test (FET)

The eco-toxicity of NP suspensions was assessed by the Fish Embryo acute Toxicity
test (FET) according to the OECD guidelines. The FET test is a valid alternative animal test
for assessing the risk of environmental contaminants for animals and human health [36,37].

Briefly, freshly fertilized zebrafish embryos are exposed to contaminants for a total of
96 h.

The NPs are suspended in FET solution (0.1 g of NaHCO3; 0.1 g of Instant Ocean;
0.19 g of CaSO4*2H2O for 1 L of solution).

Every 24 h, embryos were screened for lethality, in particular checking coagulation of
fertilized eggs, lack of somite formation, lack of detachment of the tail bud from the yolk
sac and lack of heartbeat, according to the specific timepoints.

Moreover, sub-lethal endpoints, as reduced yolk resorption, blood congestion, forma-
tion of edemata and lack of hatch, were observed from 48 h post fertilization (hpf) to 96 hpf
developmental stage [38].

At the end of the exposure period, acute toxicity is determined based on a positive
result in one of the four observations, and the LC50 (lethal concentration 50) is calculated.

To assess the EC50 (effective concentration 50), which is the concentration of a toxicant
that produces a biological response, the sub-lethal endpoints were evaluated.

2.9. Statistical Analysis

Data are reported here as means and standard error of the means (SEM) using Graph-
Pad Prism 9.2.0.332 (GraphPad Software). To determine the statistical significance between
multiple groups, one-way/two-way ANOVA, followed by Bonferroni’s post hoc test anal-
ysis, was employed using GraphPad Prism. The level was considered of significance
at <0.05.

3. Results
3.1. ZnO-NP@SiO2-NP Characterization

The ZnO-NP@SiO2-NP morphological investigation (TEM images) shows the for-
mation of well distributed nano aggregates of ZnO on the SiO2 surface, visible as spots
with a size of 4 ± 1 nm (Figure 1b,e). SiO2 NPs exhibit an average size of 25 ± 5 nm,
with a typical tendency to aggregate forming micro pearls interconnected between each
other (Figure 1a,b,d). In addition, the commercial ZnO sample is characterized by almost
spherical NPs of 13 ± 2 nm (Figure 1c–f).

Data from DLS analyses confirm the lack of agglomeration of ZnO-NP@SiO2-NP in
different media (mQ water, FET solution, DMEM and Opti-MEM with 1% FBS) and at dif-
ferent time points (0 and 2 h) (Table 2). ZnO-NP showed a change in particle hydrodynamic
size (possible agglomeration) when suspended in FET solution (921.1 nm) compared to
other media (347,833 in mQ water, 395,733 in DMEM and 392.4 in Opti-MEM).

SiO2-NP are characterized by an increase in hydrodynamic diameter after being sus-
pended for 2 h in both cell exposure media, suggesting an ongoing agglomeration process.

The PdI measurement relative to ZnO-NP@SiO2-NP, ZnO-NP, and SiO2-NP showed
similar values in the different media used, suggesting that the NP suspensions were mid-
range monodispersed.
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Figure 1. TEM images of SiO2 Rhodia (a,d), ZnO-NP@SiO2-NP (b,e) and ZnO NPs (c,f). Arrows in
(e) point to the black dots covering SiO2 NPs corresponding to ZnO NPs.

The zeta-potentials, measured in mQ water, of ZnO-NP@SiO2-NP (equal to−22.70 mV)
and of SiO2 NP (equal to −17.50 mV), show that these NPs are negatively charged. On the
contrary, zeta-potential of ZnO-NP is +16.87 mV.

3.2. In Vitro Toxicity

The results showed that the cytotoxicity effects after 24 h of treatment with ZnO-
NP@SiO2-NPs are comparable to those induced by the reference NPs selected.

In fact, A549 cell viability was reduced only after treatment with the highest concen-
tration (C) of ZnO-NP@SiO2-NPs compared to Ctrl N.T. A similar result was obtained with
ZnO-NP (concentration C) (Figure 2a).

In THP-1 cells, viability was not significantly decreased after NP treatments at both
concentrations tested (Figure 2b).

The inflammatory mediator’s analysis (Figure A1) showed non-significant effects in
A549 cells (Figure A1 left panel) and THP-1 cells (Figure A1 right panel), although this
latter model showed a tendency to increased IL-8 after treatment with ZnO-NP@SiO2-NP,
SiO2-NP, and ZnO-NP + SiO2-NP at the highest concentration (C).

RANTES levels (Figure A2, left panel for A549 and right panel for THP-1) were not
statistically significant in the four exposure conditions and for both of the in vitro models.
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Table 2. Z-average (nm) and polydispersity index (PdI) of 100 µg/mL ZnO-NP@SiO2-NP, ZnO-
NP, and SiO2-NP measured by dynamic light scattering (DLS) and in different media (mQ water,
FET solution, DMEM with 1% FBS, and Opti-MEM with 1% FBS culture media). Means ± SD of
three replicates.

NPs (100 µg/mL) Medium Time (h) z-Average (nm) ± SD PdI ± SD

ZnO-NP@SiO2-NP

mQ 0 331 ± 8 0.51 ± 0.08

FET 0 330 ± 20 0.49 ± 0.04

DMEM 1% FBS 0 258 ± 1 0.48 ± 0.01

2 330 ± 30 0.54 ± 0.05

Opti-MEM 1% FBS 0 270 ± 10 0.47 ± 0.07

2 240 ± 6 0.42 ± 0.02

ZnO-NP

mQ 0 350 ± 30 0.58 ± 0.04

FET 0 920 ± 40 0.5 ± 0.2

DMEM 1% FBS 0 400 ± 40 0.57 ± 0.03

2 316 ± 4 0.41 ± 0.05

Opti-MEM 1% FBS 0 390 ± 10 0.56 ± 0.03

2 384 ± 6 0.56 ± 0.02

SiO2-NP

mQ 0 229 ± 4 0.214 ± 0.002

FET 0 225 ± 3 0.214 ± 0.002

DMEM 1% FBS 0 730 ± 20 0.54 ± 0.04

2 2030 ± 30 0.46 ± 0.04

Opti-MEM 1% FBS 0 420 ± 20 0.294 ± 0.006

2 1150 ± 30 0.63 ± 0.09

3.3. Aquatic Toxicity on Zebrafish Embryos—FET Test

After fertilization, zebrafish embryos were exposed to NPs at the concentrations A,
B, and C. For this project, the total embryos observed were N = 120 (ZnO-NP@SiO2-NP),
N = 120 (ZnO-NP), N = 120 (SiO2-NP), and N = 120 (ZnO-NP + SiO2-NP) pertaining to
5 different experiments.

Embryos mortality rate (Figure 3) observed after exposure with ZnO-NP@SiO2-NP,
ZnO-NP, SiO2-NP and ZnO-NP + SiO2-NP is below 20%, although the increases are statis-
tically significant when compared to the control group. Nonetheless, given the low rate
of mortality, the LC50 is to be considered much higher than the highest concentration (C)
tested for each NP (alone or in combination).

The total number of embryos with sublethal endpoints observed after exposure
(Figure 4) show minor, but significant increases with all the NPs. Interestingly, the av-
erage number of malformed embryos per concentration of exposure with the novel NPs is
lower than the outcomes observed with the combined exposure of SiO2 and ZnO NPs. In
addition, SiO2 NPs average malformation were not significant, but the co-exposure of ZnO
and SiO2 NPs seems to have higher effects than SiO2 or ZnO alone. Given the low numbers
of average malformed embryos, the EC50 of the ZnO-NP@SiO2-NP was not calculated,
and it has to be assumed higher than the highest concentration (C) of exposure used in
our experiments.
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Figure 2. The cell viability was assessed by (a) MTT test on A549 cells and (b) Alamar Blue on THP-1
cells. Data represent the mean ± SEM of at least three independent experiments. * Statistically
different from control sample; * p < 0.005. One-way ANOVA + Bonferroni’s test. IC50 is reported as
>higher concentration tested in both in vitro models. For exposure concentration legend, please refer
to Table 1.
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Figure 3. Mortality of zebrafish embryos after exposure to ZnO-NP@SiO2-NP, ZnO-NP, SiO2-NP,
and ZnO-NP + SiO2-NP NPs suspensions at 96 hpf. The NP concentrations administered are A,
B, and C. The results are presented as a mean ± SEM of five independent experiments. * p < 0.05,
** p < 0.01, *** p < 0.001, with respect to Ctrl N.T.; # p < 0.05 with respect to both ZnO-NP@SiO2-NP
concentration B and C. One-way ANOVA with post hoc Bonferroni’s test. For exposure concentration
legend, please refer to Table 1. Analyses were performed on a total of n = 120 embryos for each
experimental condition, collected during five independent experiments.
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Figure 4. Sublethal defects observed in zebrafish embryos after exposure to ZnO-NP@SiO2-NP,
ZnO-NP, SiO2-NP, and ZnO-NP + SiO2-NP NPs suspensions at 96 hpf. The NPs concentrations
administered are A, B, and C. The results are presented as mean ± SEM of five independent experi-
ments. * p < 0.05, ** p < 0.01, *** p < 0.001, with respect to Ctrl N.T.; # p < 0.05 with respect to both
ZnO-NP@SiO2-NP at concentrations B and C. One-way ANOVA with post hoc Bonferroni’s test. For
exposure concentration legend, please refer to Table 1. Analyses were performed on a total of n = 120
embryos for each experimental condition, collected during five independent experiments.

Among the sublethal endpoints, the lack of hatch is the more significant defect ob-
served after the administration of ZnO-NP@SiO2-NP, ZnO-NP, SiO2-NP, and
ZnO-NP + SiO2-NP (Figure 5).

In this case, the number of embryos that are unable to exit the chorion after exposure
to the NPs suspension is concentration-dependent, and more evident after ZnO-NP and
ZnO-NP + SiO2-NP treatments. Interestingly, comparing the highest concentration of
exposure among the different NPs, it is evident that bare ZnO-NPs have a higher effect
on the lack of hatch defect, while the same total amount of ZnO, but linked to the silica
core, is not inducing a similar increase of defects. This is confirmed by comparing the
hatching time curves (Figure 6). For the ZnO-NP@SiO2-NP, a recovery of hatching at all
the concentrations tested is evident after 72 h of exposure. Hatching time resulted in not
being affected by SiO2-NPs. In fact, the start of hatching time is retained at 48 h, even if
the number of hatched embryos is lower. The ZnO-NPs instead, alone or in combination
with SiO2, are able to perturb the hatching time more drastically, with the highest ZnO-NP
concentration that blocked the hatching until the end of the exposure period.
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Figure 5. Effects of ZnO-NP@SiO2-NP, ZnO-NP, SiO2-NP, and ZnO-NP + SiO2-NP NPs on embryos
hatching. The graphs show the embryos that were alive and almost inside the chorion at 96 hpf.
*** p < 0.001, with respect to Ctrl N.T. One-way ANOVA with post hoc Bonferroni’s test. For exposure
concentration legend, please refer to Table 1. Analyses were performed on a total of n = 120 embryos
for each experimental condition, collected during five independent experiments.
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Figure 6. Hatching time curves of 96 hpf embryo non exposed or exposed to ZnO-NP@SiO2-NP,
ZnO-NP, SiO2-NP, and ZnO-NP + SiO2-NP NPs. The delay is visible after NP administration, in
particular after exposure to ZnO-NP and ZnO-NP + SiO2-NP at the higher concentration. For
exposure concentration legend, please refer to Table 1. Analyses were performed on a total of
n = 120 embryos for each experimental condition, collected during five independent experiments.



Toxics 2022, 10, 781 11 of 18

4. Discussion

Object of this research is to evaluate the hazard to human beings and the environment
of ZnO-NP@SiO2-NP, a new nanomaterial synthetized and produced with the intent of
reducing the amount of microcrystalline ZnO activator used in rubber processes.

The results observed after the structural analyses of NPs used showed that ZnO-
NP@SiO2-NP did not exhibit relevant changes in the hydrodynamic diameter in water-
based suspensions. In fact, an ongoing agglomeration process was observed only in
SiO2-NPs suspended in both cell media used. The motivation could be related to the
“protein corona” effect, caused by the NP interaction with various biomolecules, present
in cells media, to form a corona. We hypothesize that this effect is visible only in the bare
amorphous SiO2-NPs, but not in ZnO-NP@SiO2-NP, because, in the latter, the presence
of ZnO nanoparticles, attached to the underlying silica core, actually modify the surface
characteristics of the silica particles. This is can be related also to the lower zeta-potential
of the novel NPs, compared to the naked silica NPs [36,37].

Regarding the different z-potential observed, which is negative for ZnO-NP@SiO2-NP
and SiO2-NPs, but not for ZnO-NP, we speculate that the reason could be justified consid-
ering that the structure of ZnO-NP@SiO2-NP is mainly constituted by silica (Figure 1e) and
that it is synthesized in a basic environment that leaves a predominant surface negative
charge. Similar results have been reported for silica nanoparticles doped with metal and
transition elements with positive charge [39,40].

In the framework of this study, the use of these novel NPs may lead to an actual
reduction in the total mass of ZnO used in the rubber tire production [22]. Therefore,
reducing the expected exposure for humans and the environment will determine an overall
reduction of the risk from tire wear related emissions.

In order to evaluate the hypothetical exposure effects of ZnO-NP@SiO2-NP on human
beings, we used A549 and THP1-1 cellular models. We tested the cell viability, as the first
acute toxic effect observation, and the IL-8 and RANTES levels. IL-8 and RANTES are
important pro-inflammatory chemokines characterized by an early involvement in the
inflammatory response. The first recruits neutrophils to the site of damage [30], while the
latter attracts and activates leukocytes [31].

The results obtained showed that the novel ZnO-NP@SiO2-NPs present a hazard
profile comparable, if not lower, than the ZnO-NP, SiO2-NP, and ZnO-NP + SiO2-NP.

In fact, in the cellular models, the ZnO-NP@SiO2-NP revealed low cytotoxic effects,
with only minor reduction at the higher concentration tested. Reduction of cytotoxic effects
has also been related to the zeta-potential of the NPs [40]. Shahabi and colleagues reported
that the positively charged NPs could be internalized into cells more easily than negative
ones. Thus, the specific zeta-potential of the novel nanoparticles may be related to the
negligible effects on cells, although more specific tests will be required.

Similarly, the inflammatory responses were low and non-significant after 24 h of
exposure. Low toxicity and low inflammatory profile of novel NMs are essential for their
safety. The concentrations of ZnO NPs generally used in the literature are within the range
of 25 to 100 µg/mL, and the effects reported in vitro almost suggest safety for this NP [41].
The same is reported for toxicity of SiO2 NPs that occurs to be dependent on dose, size,
time, and temperature in addition to on the tissue-specificity. Furthermore, concentrations
greater than 100 µg/mL are needed to achieve 24 h EC50 values in in vitro models [42,43].

The potential adverse effects that ZnO-NP@SiO2-NPs can have on the environment
were evaluated using the zebrafish model and the FET test.

Zebrafish share many gene functions with mammals, making this model a useful
system for studying toxic effects of different materials and predict what potentially could
happen to human beings [38]. Moreover, some biological endpoints derived from FET
could be helpful in understanding the NP toxicity, and the zebrafish embryos could be a
predictive model for the risk assessment of NP toxicity [39].

Ecotoxicity outcomes for the composite NPs, while showing a somewhat higher
embryotoxic effect (Figure 3), clearly show lower sublethal effects. The embryotoxicity
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outcomes here reported are in line ZnO NP effects previously investigated and mostly
associated with zinc ions release and with the interactions of particle/aggregates with the
embryos chorion [44], while, for SiO2, the hazard outcome is related mainly to the size of
NPs used for testing [45].

Additional analyses are, however, required to properly understand this higher embryo
toxic effect of the composite nanomaterial at the higher concentration used (100 µg/mL,
Figure 5).

In fact, we can hypothesize that some adverse effects observed (i.e., higher mortality
rate) may be due to the increased reactivity of core-shell ZnO-NP@SiO2-NP based on its
novel structure, more than to the relative quantity of ZnO and SiO2 elements. In fact, while
the ZnO used as comparison for our experiments has a nominal diameter of <50 nanometers
(nm), the novel NPs are composed by ZnO particles with a nominal diameter of only 4
to 10 nm. This extreme difference in the ZnO particle dimension might promote specific
and unexpected membrane–particles interaction. It is worth noting, in the research work
from Kim and colleagues [46], that the ZnO-NPs concentrations found in the surface water
environmental medium were in the range 1–60 µg/L (data for sediment, sewage, sludge,
soil, and wastewater are 0.49–56, 13.6–64.7, 0.026–0.66, and 0.22–1.42 µg/L, respectively).
Based on these results, the theoretical LC50 here reported is however hundreds of times
higher than the expected environmental concentration in freshwater, suggesting the absence
of an environmental hazard for the new hybrid NPs.

Interestingly for environmental safety, the embryos presenting a lack of hatch have a
lower rate after ZnO-NP@SiO2-NP administration, compared to the results obtained after
the exposure to ZnO-NP, SiO2-NP and ZnO-NP + SiO2-NP nanoparticles.

Even the sublethal defects observed are reduced after ZnO-NP@SiO2-NP exposure, if
compared to the other NPs examined.

It is of interest that here we report clear differences in the time of hatching curves
between the novel NPs and the reference ZnO-NP.

It is known that normally the hatching period occurs from 48 hpf to 72 hpf [47], but
whenever some perturbation arises, a delay in embryos exiting from chorion is detectable,
compared to control embryos. The chorion envelops the embryos and is considered a
barrier to the entry of NPs into the embryos. It is a semi-permeable structure, characterized
by pore canals with a size of approximately 0.6–0.7 µm. These pores are larger than the size
of NPs, and the effect of the chorion on NP transport and subsequent biological toxicity
may be analyzed in the future, in particular when NPs agglomerate or interact with chorion
surface proteins [48].

Many factors can be the cause of hatching delay in zebrafish embryos, as a change in
the surface mechanical properties of chorion induced by the direct adherence/adsorption
of NPs aggregates. The NPs that aggregate and adhere to chorion can interfere with the
digestive function of the chorionic hatching enzyme as well, or can cause a depletion of
oxygen exchange resulting in hypoxia, in addition to excessive production of reactive
oxygen species (ROS) [49].

5. Conclusions

In conclusion, the novel ZnO-NP@SiO2-NP can be considered a relatively safe nano-
material which combines the improved efficiency during the vulcanization process of ZnO
to a relative reduction of its hazard, above all when considering the aquatic environment.

Significantly, these new NPs require a lower amount to properly function as curing
agent and, therefore, if applied in substitution for the classical ZnO-NPs, will likely deter-
mine in the future a significant reduction of Zn ions release from tire wears and, in turn,
the adverse environmental effect related to these metal ions.

Moreover, some of the ZnO-NP@SiO2-NP characteristics, as the hydrodynamic di-
ameter stability in water-based suspensions, make this novel manufactured nanomaterial
attractive for a variety of applications.
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However, to improve the knowledge on the hazards for human and aquatic health,
future studies may gain advantages from investigating the chronic effects over prolonged
exposure periods, comparing the effects of NMs released from tires produced with tradi-
tional and new technologies.
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Table A1. List of selected papers reporting the use of biological material to analyze the effects of
nanoparticles (from 2019).

Nanoparticles Biological Material Reference

Organic and inorganic nanoparticles (NPs) Adult Stem Cells (ASCs) [50]

Iron oxide nanoparticles (IONPs) Primary cultures of brain cells [51]

Various types of nanoparticles Cardiac stem cells [52]

Gold nanoparticles breast cancer SK-BR-3 cells [53]

titanium dioxide (TiO2) nanoparticles A549 cells [54]

ZnO nanoparticles Caco-2 cells [41]

biosynthesized silver nanoparticles (ScAgNPs) THP-1 cells [55]

Cerium dioxide nanoparticles (CeO2 NPs) A549 cells and THP-1 cells (co-culture) [56]

Silver (Ag), titanium dioxide (TiO2), and zinc oxide
(ZnO) nanoparticles THP-1 cells [57]

Tantalum (Ta) and Titanium (TiO2) NPs THP-1 cells [58]

Silver nanoparticle (AgNP) THP-1 cells [59]

Polystyrene NP (PLNP) A549 cells and THP-1 cells [60]

Amino-functionalized silicon nanoparticle (NH2SiNP) MC3T3-E1 and PC12 cells and Danio rerio
(embryos) [61]

Iron nanoparticles Xenopus laevis (embryos) [62]

Titanium dioxide NPs (n-TiO(2)) Danio rerio (embryos) [63]

Silicon dioxide nanoparticles (nano-SiO(2)) Danio rerio (embryos) [64]

Ag nanoparticles (NPs), CuO NPs, silica NPs, polymeric NPs,
quantum dots Danio rerio (embryos) [65]

Zirconia oxide nanoparticles (ZrO2NPs) Danio rerio (embryos) [66]

Polyethylene glycol (PEG)-modified SiNPs Danio rerio (embryos) [67]

Silver (AgNPs), copper nanoparticles (CuNPs) Danio rerio (embryos) [68]

Silver nanoparticles (Ag NPs) of three different sizes (10, 40, and
100 nm) Danio rerio (embryos) [69]

Hollow selenium nanoparticles (hSeNPs) Danio rerio (embryos) [70]

Copper oxide nanoparticles (CuO NPs) Danio rerio (embryos) [71]

Synthetic silver nanoparticles (AgNPs) Danio rerio (embryos) [72]

Fluorescently-labeled SiO2 NPs of 25 and 115 nm Danio rerio (embryos) [73]

Citrate-functionalized IONPs (γ-Fe2O3) NPs Danio rerio (embryos) [74]

Silver nanoparticles (AgNPs) Danio rerio (embryos) [48]

Metal nanoparticles (Au, Ag, Cu), and metal oxide nanoparticles
(TiO2, Al2 O3, CuO, NiO, ZnO) Danio rerio (embryos) [75]

Zinc oxide nanoparticles (ZnONPs) Danio rerio (embryos) [76]

Sliver nanoparticles (AgNPs) Danio rerio (embryos) [77]

Zinc oxide nanoparticles (ZnONPs) Marine Crustaceans [78]
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