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Abstract: In the context of chameleon gravity, we present a semi-analytical solution of the chameleon
field profile in an accurately modelled galaxy cluster’s mass components, namely the stellar mass of
the Brightest Cluster Galaxy (BCG), the baryonic mass in galaxies other than the BCG, the mass of
the Intra-Cluster Medium (ICM) and the diffuse cold dark matter (CDM). The obtained semi-analytic
profile is validated against the numerical solution of the chameleon field equation and implemented
in the MG-MAMPOSST code for kinematic analyses of galaxy clusters in modified gravity scenarios.
By means of mock halos, simulated both in GR and in modified gravity, we show that the combination
of the velocities and positions of cluster member galaxies, along with the data of the stellar velocity
dispersion profile of the BCG, can impose constraints on the parameter space of the chameleon model;
for a cluster generated in GR, these constraints are at the same level as a joint lensing+kinematics
analysis of a cluster modelled with a single mass profile, without the BCG data.

Keywords: modified gravity; galaxy clusters; cosmology

1. Introduction

The discovery of the late-time accelerated expansion of the Universe [1,2] presented
one of the most formidable mysteries in modern physics. In order to explain the observed
acceleration, the cosmological constant [3,4], Λ, was incorporated into General Relativity
(GR), forming the foundation of the current framework of cosmological research: the
standard ΛCDM model [5].

Supported by a broad array of observations [6,7], the ΛCDM model is widely regarded
as the best descriptor of the observed Universe’s expansion history. Nonetheless, despite its
successes, the cosmological constant on which the model is based still lacks a fundamental
explanation within the framework of standard physics [8].

In pursuit of a physical motivation for the cosmological constant, several alterna-
tives have been proposed over the past decades. Of particular interest are models that
modify GR—the foundation of the Standard Cosmological model—at large scales [9,10]
by introducing an additional scalar field (scalar-tensor theories [11,12]) that is capable of
replicating the cosmological constant’s effect [13]. The introduction of this scalar field
adds a component to the gravitational force [14,15], leaving measurable signatures on the
formation and evolution of cosmic structures [16,17].

At the small-scale, high-density— when compared with the background density—Solar
System scale, GR’s precise validation [18] requires any Modified Gravity (MG) model
to contain a screening mechanism in order to reconcile it with the well-established GR
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measurements [19] at small scales while still impacting the dynamics at large, low-density,
cosmological scales.

While several scalar-tensor models have been ruled out by gravitational waves obser-
vations (see e.g., [20,21]) or highly constrained by observations (e.g., [22–26]), their relative
simplicity and rich phenomenology make them widely studied in different environments.
One particularly interesting class of scalar-tensor theories that is viable at cosmological
scales is the chameleon model [27]. In this framework, gravity’s effects vary with the
environment due to a coupling between the additional scalar field (chameleon field) and
matter. As a result, in the presence of a non-trivial scalar field, matter “feels” an additional
fifth force, changing the formation and evolution of structures in the Universe.

In turn, the coupling feedback causes the scalar field to depend on the local energy
density, leading to a very large field mass in high-density regions (suppressing the interaction)
while containing a small, non-zero mass in low-density regions. The modulation of the scalar
field by the environment results in a built-in screening mechanism where the fifth force is
suppressed at small scales (recovering GR) while impacting large-scale dynamics.

In chameleon gravity models, the scalar field is characterized by the coupling con-
stant (Q), which determines its interaction with matter, and the asymptotic value of the
field at infinity (ϕ∞). Both parameters have been strongly constrained by high-accuracy
observational data across the laboratory (e.g., [15,28–30]), astrophysical (e.g., [31–33]), and
cosmological scales (e.g., [34–37]).

Although the parameter space for viable chameleon theories is tightly constrained,
it is nevertheless interesting to study their phenomenology at cluster scales, where some
flexibility remains. Moreover, the peculiar screening mechanism provides an excellent
model for exploring the possible effects of the fifth force on the mass components of clusters.
For clusters, constraints are usually derived by modelling the total mass distribution of
the cluster (baryonic and dark matter) using the Navarro–Frenk–White (NFW) profile [38].
However, recent studies have shown that some clusters favour an Isothermal or a Hernquist
mass profile [39,40]. This preference for different mass models can have strong effects on
the chameleon field profile—and the resulting fifth force.

In a previous work [41], we proposed studying the chameleon mechanism by means
of a semi-analytical approximation of the chameleon field. This procedure allowed us to
investigate the effect of the chameleon mechanism when changing the parametrization of
the total cluster’s mass profile, showing how the efficiency of the screening—and, therefore,
the constraints obtainable at the cluster’s scales—strongly depend on the assumed mass
model. In this paper, instead of considering a single mass profile to describe the entire
cluster’s mass distribution, we extend the analysis performed in [41] by introducing a
semi-analytical approximation of the chameleon field profile in an explicitly decomposed
galaxy cluster’s key mass components: the stellar mass of the Brightest Cluster Galaxy (BCG),
the baryonic mass in galaxies, the Intra-Cluster Medium (ICM), and the diffuse, cold dark
matter (CDM) component.

The semi-analytical approximation, based on the method proposed in [42], offers
a straightforward and computationally efficient (when compared with a full numerical
computation) strategy for studying the screening mechanism. Furthermore, it serves as a
valuable tool for exploring the relationship between the parameters of the mass profiles
and the chameleon field, emphasizing the key physical aspects of the screening mechanism.
To ensure the validity of our semi-analytical approach, we compare it with a full numerical
solution and confirm that it accurately reproduces the behaviour of the fifth force, with a
maximum relative difference of 10−2.

The validated semi-analytical solution is then fed into MG-MAMPOSSt code for kine-
matic analyses of galaxy clusters in modified gravity frameworks. Using mock galaxy
cluster halos simulated in both GR and chameleon gravity, we demonstrate that combin-
ing the velocity and positional data of cluster member galaxies with the stellar velocity
dispersion profile of the BCG strongly constrains the chameleon model’s parameter space.
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The paper is structured as follows: Section 2 provides an overview of the funda-
mental theory of chameleon gravity and the screening mechanism. In Section 3, the
semi-analytical expressions of the chameleon field and its gradient are obtained, assuming
a four-component model for a cluster matter distribution; Section 4 further compares and
validates the semi-analytical approach with the full numerical solutions of the (spherical)
field equation.

2. Chameleon Gravity and Field Profile

The Lagrangian of a chameleon (real) scalar field [43], ϕ, conformally coupled with
the matter fields ψ(i) can be written as

L =
√
−g
[
−MPlR

2
+

(∂ϕ)2

2
+ V(ϕ)

]
+ Lm

(
ψ(i), g(i)µν

)
, (1)

where g(i)µν is the metric in the Jordan frame and g its determinant. The metric in the

Einstein frame is recovered through a conformal transformation g(i)µν = e
− 2 Qi ϕ

c2 MPl g̃µν, with Qi

representing the coupling of the chameleon field to each matter field, ψ(i). As in, e.g., [34,44],
in the following, a single coupling constant Q1 for all matter components—dark and
baryonic—will be assumed.2 MPl = 1/

√
8πG is the reduced Planck mass, and c is the

speed of light. Non-relativistic matter has an energy density ρ̃ = ρ e
Q ϕ

c2 MPl .
The potential V(ϕ) is a monotonic function of the scalar field, typically modelled as

an inverse power-law:
V(ϕ) = λ4+nϕ−n , (2)

with n ∈ N and λ represents an energy scale that can be set to the dark energy scale [37].
The scalar (chameleon) field equation resulting from the Euler–Lagrange equations of

Equation (1) in the quasi-static limit is

∇2ϕ = V′(ϕ) +
Q

MPlc2 ∑
j

ρje
Q ϕ

MPlc2 , (3)

where a prime denotes differentiation with respect to the scalar field, and the index j covers
all involved non-relativistic matter species. It is worth mentioning that ϕ/MPl has the
dimension of energy per unit mass, i.e., it plays the role of an additional gravitational
potential. On the right-hand side of Equation (3), one can notice that the dynamics of ϕ are
dictated by an effective potential Veff(ϕ) that encapsulates both the potential V(ϕ) and the
matter–interaction feedback:

Veff(ϕ) ≡ V(ϕ) + ∑
j

ρj e
Q ϕ

MPlc2 . (4)

Current constraints on chameleon gravity [33,40,47] limit the field background to ≪ 1
(in units of c2). Thus, one can assume Qϕ/(c2MPl) ≪ 1, and the effective potential can
be approximated by Veff(ϕ) ≃ V(ϕ) + ρj

(
1 + Qϕ/(c2MPl)

)
. The resulting equation of

motion is,

∇2ϕ =
Q

c2MPl
∑

j
ρj + V′(ϕ) . (5)

The profile of the chameleon field and the resulting fifth force is obtained by solving
Equation (5) with suitable boundary conditions once a model is chosen for the matter
density distribution. In the following, we employ a semi-analytical approach to reconstruct
the field profile [34,41,42]. This consists of dividing the space–time into two regions: deep
within the massive source, characterized by a field profile ϕint, and towards the low-density
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outskirts, where the field is described by ϕout. The semi-analytic solution is then established
by linking the interior with the exterior solution.

Deep inside the matter distribution, over-density region, the scalar field is suppressed
and stays at the minimum of the effective potential, ∇2ϕ ≈ 0, effectively screening the
fifth force. From Equation (5), the resulting scalar field inside the matter distribution is
as follows:

ϕint ≈
(

Q
ρtot

nλ4+n MPl

)− 1
(n+1)

, (6)

where the total mass distribution is defined as ρtot = ∑j ρj. On the other hand, the outer
solution is obtained when the contribution of the scalar field potential, the first term on the
right-hand side of Equation (5), is less dominant than the matter density and ∇2ϕ. This
describes the case where the chameleon field mediates a long-range fifth force, the matter
density is still large compared to the background, and the scalar field has not settled to
the minimum of the effective potential. The equation of motion for the exterior chameleon
field is thus given by

∇2ϕout ≈ Q
ρtot

MPl
. (7)

In the following, let us assume a spherically symmetric matter distribution, ρtot ≡ ρtot(r),
which is a valid assumption for galaxy clusters in dynamical equilibrium [48,49]; the effect
of triaxiality of halos in the chameleon mechanism is investigated in [37]. For spherically
symmetric matter distributions, Equation (7) simplifies to

1
r2

d
dr

(
r2 dϕout

dr

)
= Q

ρtot(r)
MPl

. (8)

A single integration provides the following:

dϕout

dr
r2 =

Q
MPl

∫
r2ρtot(r)dr + C , (9)

with C as an integration constant. Notably, this expression shows that the fifth force in the
outer region is proportional to the total mass profile given by the integral on the right-hand
side of Equation (9). The Poisson equation for the gravitational potential in this region can
now be written as follows:

dΦ
dr

=
GM(r)

r2 +
Q

MPl

dϕ

dr
, (10)

where the second term expresses the contribution of the fifth force generated by the coupling
between the chameleon field and the matter distribution. Equation (10) can be expressed in
a Newtonian-like fashion by defining an effective mass

Meff =
Q
G

r2

MPl

dϕ

dr
, (11)

from which the total dynamical mass can be derived:

Mdyn = MGR + Meff . (12)

Note that, due to the null geodesic’s invariance under conformal transformations, the
structure of the chameleon model produces lensing measurements that are only sensitive to
the Newtonian part of the gravitational interaction; that is, the first term in Equation (10) [50].
This means that lensing surveys can be used as a complementary probe for the prior of the
mass profile.

The scalar field can now be obtained as follows:

ϕout =
Q

MPl

∫
1
r2

[ ∫
(r′)2ρtot(r′)dr′ + Cs

]
dr . (13)
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The integration constant Cs can then be determined by imposing the continuity of ϕint
and ϕout and their derivatives at the matching screening radius r = S, which denotes the
transition scale between the two regimes. The term “screening radius” is used since, within
a distance S, the effects of modified gravity are negligible, while at distances greater than
S, the fifth force becomes significant. In the inner core of the halo, the field is significantly
suppressed compared to its ambient value, ϕs ≪ ϕ∞, making the interior solution negligible
in comparison: ϕint ≈ 0.

3. Multi-Component Chameleon Solution

As previously stated, in a galaxy cluster, the matter distribution, ρj, can be generally
modelled as the sum of four main components (see, e.g., [51,52]): the Brightest Cluster
Galaxy (BCG), ρBCG, which dominates the mass profile and the dynamics in the inner-
most region (r ≲ 0.05 Mpc); the hot Intra-Cluster Medium (ICM), ρICM; the mass density
associated with the baryonic mass in galaxies (other than the BCG), ρ∗; and the diffuse
dark matter component (CDM), ρCDM. If a cluster is dynamically relaxed, all the mass
distributions should be in equilibrium with the total gravitational potential and exhibit a
nearly spherical disposition.

The total mass density, ρtot, is then

ρtot(r) = ρBCG(r) + ρICM(r) + ρ∗(r) + ρCDM(r) , (14)

with each component modelled by the appropriate mass model. The BCG is, typically, a
giant elliptical galaxy located close to the centre of the cluster’s gravitational potential.
The associated surface brightness distribution is described by the de Vaucouleurs profile
(e.g., [49,51]). The de-projection of this profile can be approximated as a Jaffe profile [53],
which exhibits a simple analytical form, and thus will be used as a mass density model for
the stellar distribution of the BCG using the following equation [54]:

ρBCG(r) =
ρb(

r
rJ

)2(
1 + r

rJ

)2 , (15)

with the characteristic density written in terms of the total stellar mass, M∗, as

ρb =
M∗

4πr3
J

; (16)

In this way, the integral within a spherical volume of radius r reads

M(r) = M∗
r
rJ

(
1 +

r
rJ

)−1
.

For the baryonic mass in galaxies, the profile is modelled by an NFW mass density
profile, which was found to provide an adequate fit for the distribution of galaxies in
clusters (e.g., [55,56]),

ρ∗(r) =
ρ∗

r
r∗

(
1 + r

r∗

)2 . (17)

The hot intra-cluster gas of the ICM is modelled assuming an Isothermal β-profile [39,57]:

ρICM(r) =
ρg[(

r
rg

)2
+ 1
]3 α/2 , (18)

where we set α = 1 in order to guarantee the convergence of the chameleon field profile
with the background value at large radii (see [41]). Observe that, while other profiles
were shown to better describe the ICM distribution in clusters (e.g., [58,59]), the relative
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simplicity of the Isothermal ansatz makes it a widely used model distribution for the ICM
(e.g., [52,60]) .

Finally, for the diffuse dark matter distribution, a generalized NFW (gNFW hereafter)
is assumed

ρCDM(r) =
ρs(

r
rs

)γ(
1 + r

rs

)3−γ
, (19)

where the inner slope is controlled by the additional real exponent 0 < γ < 2.3 Note
that in the MG-MAMPOSST analysis that will be presented in Section 5, the parameter
r200 will be used instead of rg. This is the radius of a sphere enclosing an over-density
200 times the critical density of the universe at a given redshift, ρc(z) = 3H2(z)/(8πG).
The corresponding mass is M(CDM)

200 = 100 H2(z)(r200)
3/G.

The characteristic density of the gNFW model can now be obtained from r200, rs and
γ as follows:

ρs =

(
r200

rs

)γ−3 M(CDM)
200 (3 − γ)

4πr3
s 2F1

(
3 − γ, 3 − γ; 4 − γ;− r200

rs

) ,

where 2F1(a, b, c, z) is the ordinary hypergeometric function.
The solution of Equation (8), assuming the expression of the density Equation (14),

provides the expression for the gradient of the field:

d
dr

ϕ(r) =


∼ 0 if r < S ,
dϕout

dr
if r > S ,

(20)

where

dϕout

dr
=

Cs

r2 +
Q

MPlr2

ρsr3−γrγ
s 2F1

(
3 − γ, 3 − γ; 4 − γ;− r

rs

)
3 − γ

−
ρbr4

J

r + rJ

+

ρgr3
g

− r√
r2 + r2

g

− log
(√

r2 + r2
g − r

)+ ρ∗r3
∗

(
r∗

r + r∗
+ log(r + r∗)

) .

(21)

By integrating Equation (21), one can obtain the exterior field profile (r > S)

ϕ(r) =− Cs

MPlr
+

Q
MPlr

[
−

(−1)γρsr3
s

(
− r

rs

)3−γ

2F1

(
3 − γ, 3 − γ; 4 − γ;− r

rs

)
3 − γ

− ρgr3
g log

(√
r2 + r2

g − r
)
+ ρbrr2

J log
(

r + rJ

r

)
+ ρ∗r3

∗ log(r + r∗)

]

+
Q

MPlr

(
ρsr2

s r3−γ(r + rs)γ−2

γ − 2
− ρbr3

J + ρ∗r3
∗

)
+

Qρsr2
s

(γ − 2)MPl
+ ϕ∞ .

(22)

The matching conditions at the screening radius, ϕ(S) = 0, ϕ′(S) = 0, provide the
expression for the integration constant,

Cs =
Q

MPl


(−1)γρsr3

s

(
− S

rs

)3−γ

2F1

(
3 − γ, 3 − γ; 4 − γ;− S

rs

)
3 − γ

+
ρbr4

J

S + rJ

+ρgr3
g

 S√
S2 + r2

g

+ log
(√

S2 + r2
g − S

)− ρ∗r3
∗

(
r∗

S + r∗
+ log(S + r∗)

) ,

(23)
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with the screening radius S given as the (real) numerical root of a “screening function”:

fs(S) ≡
Q

MPl

{
−

ρgr3
g√

S2 + r2
g

+
ρbr3

J

S + rJ
+

ρsr2
s

γ − 2

(
1 −

(
S

S + rs

)2−γ
)

− ρ∗r3
∗

S + r∗
+ ρbr2

J log
(

S
S + rJ

)}
+ ϕ∞ = 0 .

(24)

Note that fs is a monotonically increasing function in S; this implies that if fs > 0 for
S → 0, then the cluster is unscreened. In Figure 1, the behaviour of the screening functions
for a typical galaxy cluster is shown, varying the chameleon parameters (solid lines) and
the gas and dark matter central densities (purple and red dashed lines, respectively). The
intersection with the x-axis (denoted as a black solid horizontal line) provides the value of
the screening radius S.

Figure 1. Solid lines: screening function fs(S) of Equation (24) for different values of the coupling and
the value of the field at infinity (given in units of c2. The density parameters are ρs = 1015 M⊙/Mpc3;
rs = 0.5 Mpc; γ = 0.5; ρ∗ = 1013 M⊙/Mpc3; r∗ = 0.3 Mpc; ρg = 1014 M⊙/Mpc3; rg = 0.3 Mpc;
ρb = 1015 M⊙/Mpc3; rJ = 0.03 Mpc. Red dashed line: setting ρs ≡ ρg = 5 × 1014 M⊙/Mpc3.

3.1. Comparison with a Single NFW Profile

Before further analysis, it is worth comparing the new multi-component modelling
of the chameleon field with the results obtained when a single NFW profile was used to
model the total cluster mass. For a reliable comparison, let us consider an NFW model
characterized by the same value of r(tot)

200 = 2.15 Mpc4 and r(tot)
−2 = 0.80 Mpc, where the latter

is the radius at which the logarithmic slope of the density profiles is equal to −2. For the
multi-component case ρs = 3.97 × 1014 M⊙/Mpc3, rs = 0.87 Mpc, γ = 0.7 for the dark
matter density, and ρb = 1015 M⊙/Mpc3, rJ = 0.03 Mpc for the BCG profile. These values
roughly correspond to the best fit found in the analysis of [49], where a kinematic analysis
of cluster member galaxies and stellar velocity dispersion profile (VDP) of the BCG was
applied to the data of the massive relaxed galaxy cluster MACS 1206 at z = 0.44. This
high-quality dataset, complemented by the lensing information and X-ray data of the hot
ICM, will be used to constrain the chameleon parameters in an upcoming work.

For the galaxies and gas profiles, assume ρ∗ = 3.55 × 1013 M⊙/Mpc3, r∗ = 0.36 Mpc,
ρg = 2.54 × 1014 M⊙/Mpc3 and rg = 0.37 Mpc, respectively. These values were obtained
by fitting the observed galaxies and gas mass profiles with Equations (17) and (18).5
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In the top panel of Figure 2, the total dynamical mass profiles, Equation (12), for the
multi-component case (blue) and the single NFW model (red) are shown. The respective
relative difference

[
M(multic)

dyn − M(NFW)
dyn

]
/M(NFW)

dyn is presented in the lower plots. On
average, the two profiles exhibit a discrepancy ∼10%, which becomes larger at r ≲ 0.1 Mpc
(e.g., ≲ 0.05 r(tot)

200 ), where the contribution of the BCG becomes relevant. The red dots
in the lower plots represent the region where the difference becomes negative (i.e., the
NFW model predicts a higher total mass with respect to the multi-component case). The
impact of the fifth force can clearly be observed as a bump—at r ∼ 10 Mpc on the left
and at r ∼ 2 Mpc on the right in the lower plots. This discontinuity occurs due to the
slightly smaller value of the screening radius in the NFW case compared to that of the
multi-component model.

Figure 2. Top: total dynamical mass Equation (12), for a NFW case (red) and the multi-component
profile (blue), for two values of the coupling parameter and background field (left and right). Bottom:
relative difference between the single and the multi-component profile. The parameters adopted
for the mass components are ρs = 3.97 × 1014; rs = 0.87 Mpc; γ = 0.7; ρ∗ = 3.55 × 1013 M⊙/Mpc3;
r∗ = 0.36 Mpc; ρg = 2.54 × 1014 M⊙/Mpc3; rg = 0.37 Mpc; ρb = 1015 M⊙/Mpc3; rJ = 0.03 Mpc.

4. Validation with Numerical Solutions

In order to validate the approach described in Section 3, let us compare the solutions
obtained through the semi-analytical approach with the ones obtained via numerically
solving Equation (5).

The numerical solution of Equation (5) was obtained through a 6th -order explicit
Runge–Kutta integrator with the appropriate boundary conditions6 imposed through a
Newton–Rapshon root-finding method. An inner cutoff radius was imposed to avoid the
divergence present at the centre of the mass density profiles of the BCG, baryonic mass
in galaxies, and CDM models. To obtain the best fit for the semi-analytic approach, the
value of the latter ranged between 1 and 10% of the screening radius, S. The appropriate
boundary condition at infinity was imposed by considering a numerically small value of
the scalar field derivative, ∼10−8, at a scaled radius x ≡ r/S, which is several times larger
than the size of the main mass distribution, xmax ≈ 103.

Comparative results between the semi-analytic (solid) and the full numerical solutions
(points) can be seen in Figure 3 for the multi-component mass density model, assuming the
mass configuration presented in Section 3.1 (Figure 2) and then varying the chameleon and
density parameters.
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Figure 3. Left: Semi-analytic approximation of the radial field profile φ(r) = ϕ/MPl (solid lines)
compared with the numerical solution (points) for different values of the mass profile parameters. The
bottom plot indicates the relative difference between the two. Right: The same approximation when
applied to the total dynamical mass Mtot = M + Meff. The parameters adopted are ρs = 3.97 × 1014;
rs = 0.87 Mpc; γ = 0.7; ρ∗ = 3.55 × 1013 M⊙/Mpc3; r∗ = 0.36 Mpc; ρg = 2.54 × 1014 M⊙/Mpc3;
rg = 0.37 Mpc; ρb = 1015 M⊙/Mpc3; and rJ = 0.03 Mpc.

In Figure 3, both the scalar field profile (top left) and the total mass (top right) are
represented, as well as the respective relative difference between the semi-analytically and
numerically obtained solutions (bottom).

To determine how well the semi-analytical solution describes the true behaviour of
the scalar field, let us analyse the relative difference in the scalar field profile (bottom
left). In the region inside the screening radius S, x ∈ [0, 1]—where the strongest assump-
tions/approximations were made —when the semi-analytical was set to zero, the numerical
solutions were small but non-zero. This leads to a large relative difference, which is accen-
tuated at the transitional scaled radius xS, where the numerics gain significant non-zero
values before the semi-analytical (smoother transition from a negligible value). This be-
haviour is, however, stopped as one moves away from the mass distribution (x > 1) to
the background configuration (no mass distribution; flat scalar field profile). At this point,
the semi-analytical and numerically obtained solutions coincide almost perfectly, with a
maximum relative error of 10−3.

Therefore, besides some slight differences in the screening radius transition and
asymptotic behaviour, the semi-analytic approximation describes the numerically obtained
results with a high degree of accuracy, providing confidence in their use in the more
complex calculations that will proceed from this.

5. Constraints on Chameleon Gravity with Kinematics and Lensing Analyses of
Galaxy Clusters

In what follows, we simulate the kinematic and lensing information of a galaxy
cluster, as provided by a realistic current and upcoming surveys. The aim is to forecast the
constraints on (ϕ∞, Q) obtained when considering a multi-component mass reconstruction
of the cluster. As was carried out in, e.g., [34,40], the analysis will be performed in terms of
the scaled chameleon parameters Q2 = Q/(1 + Q) and ϕ2 = 1 − exp

[
ϕ/(104 MPl)

]
, with

the range [0, 1].
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Following the procedure presented in [41], we generate a mock spherically symmetric,
dynamically relaxed distribution of particles resembling an isolated galaxy cluster by using
an updated version of the ClusterGEN code [61]. The features of this synthetic halo mimic
the structure of MACS 1206, which will be the future target of the analysis presented
here. We populated the halo with ∼ 7 r(tot)

200 —at which point we set r(tot)
200 = 2.15 Mpc, see

Section 3.1—considering 380 particles (aka galaxies) within a sphere of r(tot)
200 ; in this way,

we obtained 477 particles in a cylinder of (projected) radius R = r(tot)
200 , which is close to

the number of galaxies in the reference sample of [49]. The particles were distributed
according to their NFW number density profile ν(r) = νNFW(r, rν), where the scale radius
was rν = 0.46 Mpc, corresponding to the best fit quoted in [49] for the same sample. For
each component of the mass profile, we assumed the values of the parameters displayed in
Section 3.1.

Every galaxy (particle) at a three-dimensional distance r from the cluster centre was
assigned a velocity dispersion along the radial direction, σ2

r (r), provided by the solution of
the Jeans’ equation:

d(νσ2
r )

dr
+ 2β(r)

νσ2
r

r
= −ν(r)

dΦ
dr

. (25)

where Φ is the total gravitational potential and β(r) ≡ 1 − (σ2
θ + σ2

φ)/2σ2
r is the velocity

anisotropy profile; σ2
θ and σ2

φ are the velocity dispersion components along the tangential
and azimuthal directions, respectively. Under the assumption of spherical symmetry,
σ2

θ = σ2
φ, and the anisotropy profile simplifies to β(r) = 1 − σ2

θ /σ2
r . The mock halo

is simulated assuming a generalization of the Tiret model [62] for β(r) (βgT hereafter;
see [63]):

βgT(r) = β0 + (β∞ − β0)
r

r + rβ
, (26)

where rβ is a scale radius that is assumed to be equal to r−2 = (2− γ) rs of the CDM density
profile [49]; β0 = 0.5, β∞ = 0.9 are the values of the anisotropy at the centre and large radii,
respectively, again chosen to mimic the radial anisotropy reconstructed for MACS 1206.
Note that βgT can range from −∞, for purely tangential orbits to 1, for purely radial orbits.
In what follows, let us define A0,∞ = (1 − β0,∞)−1/2, which is strictly positive—(0, ∞)−
and > (<)1 for the radial (tangential) anisotropy, and = 1 for isotropic orbits.

From the anisotropy value of r, the tangential (and azimuthal) velocity dispersion is
given by

σ2
θ (r) ≡ σ2

φ(r) = [1 − β(r)] σ2
r (r) . (27)

Each component of the rest-frame velocities of particles can then be obtained via
sampling using a Gaussian distribution G(µ, σj), where µ = 0 and j = {r, θ, φ}.

Along with the spatial (and momentum) distribution of the member galaxies in the
synthetic cluster, a line-of-sight VDP of the stars in the BCG was simulated for six points in
the projected radius R from the centre of the galaxy, which are assumed to coincide with
the centre of the cluster. The line-of-sight VDP of the BCG will be denoted as σ2

BCG(R).
As shown in, e.g., [51], in Equations (10) and (11), the VDP of the BCG depends on the
gravitational potential sourced by all matter components.

In the left panels of Figure 4, the simulated VDP is shown for the two sets of mock data
considered in this analysis: Newtonian gravity, ϕ∞ = Q = 0 (hereafter, case I) and a strong
chameleon scenario ϕ∞/MPl = 10−4 c2 and Q = 1.0, as in [41] (hereafter, case II). These
values correspond to ϕ2 = 0.63, Q2 = 0.5. Note that the VDP of the BCG is identical in
both cases due to the large screening radius, S = 2.63 Mpc, which suppresses the dynamics
of the fifth force at the BCG scale (i.e., the galaxy is completely screened).

For the uncertainties, we consider a 5% error for each point, which is consistent with
the uncertainties in the observational data used in [49].

To constrain the chameleon parameters in the mock cluster data, an upgraded version
of the MG-MAMPOSST7 (accessed on 20 November 2024). code (see [61,64]) is employed.
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Figure 4. Mock data of the VDP along the line-of-sight for the BCG (left) and projected phase-space
of member galaxies (right) for a multi-component modelled cluster generated assuming Newtonian
gravity (top) and a chameleon universe with ϕ∞/MPl = 10−4 c2 and Q = 1.0 (bottom). The vertical
blue dashed lines indicate the values of r(tot)

200 = 2.15 Mpc.

Based on the MAMPOSST method of [65], MG-MAMPOSST performs a parametric
reconstruction of the gravitational potential, Φ(r), the anisotropy β(r), and the number
density ν(r) profiles of spherically symmetric systems by solving the Jeans’ equation in
Newtonian gravity or some general class of modified gravity. Specifically, the code performs
a Monte Carlo Markov Chain (MCMC) sampling of the parameter space, with the projected
phase-space (pps) of member galaxies as the input data. The set of couples is (R(i), v(i)z ),
where R(i) is the projected position of a galaxy with respect to the centre of the cluster and
v(i)z is the velocity measured along the line-of-sight (los).

In Figure 4 (right), the pps extracted from the synthetic clusters of case I (top) and case
II (bottom) are shown. Note that, in general, the modified gravity scenario predicts a larger
los velocity dispersion of member galaxies than in the Newtonian case.

The MG-MAMPOSST log-likelihood is given by

LMAM(Θ) = ∑
i

ln q(Ri, vz,i|Θ) , (28)

where q(R(i), v(i)z |Θ) is the probability of finding a galaxy at the point R(i), v(i)z . The sum
covers the particles in the pps, and Θ is the vector of the parameters describing the model;
in our case, Θ ∈ {r200, rs, XL, rJ , ϕ∞, Q}, with XL = M∗/L∗ the ratio between the stellar
mass and the total luminosity of the BCG in a given band. Following the method used
in [49], let us assume L∗ = 4.9 × 1011 L⊙ in the I-band. Note that ρg, rg, ρ∗ and r∗ are fixed
to the best fit values quoted in Section 3.1. It was further checked that variations in these
parameters within the range of uncertainties does not lead to considerable changes in the
results of our analysis.
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In addition to the pps, MG-MAMPOSST is equipped with a module to fit the observed
VDP of the BCG, such that the total kinematic log-likelihood is

Lkin(Θ) = LMAM(Θ)− χBCG(Θ)

2
, (29)

with χBCG(θ) the chi-square obtained by comparing the theoretical prediction of σ2
BCG(Rj)

with the observed data points σ2
obs,j at Rj.

As for the priors, we first considered broad, uninformative flat priors for all the free
parameters in the analysis of both case I and case II, with the upper and lower bounds
provided in the second and third columns of Table 1. Note that for the BCG stellar mass-
to-light ratio, we considered the bounds provided by the two-σ region from the analysis
of [49].

The marginalized probability distributions of the chameleon parameters, resulting
from a 110, 000 points-MCMC sampling of Lkin,8 are shown in the left (case I) and right
(case II) panels of Figure 5. For comparison, the dashed lines represent the results obtained
when the total mass of the cluster is modelled as a single NFW profile (in this case, no BCG
data are considered).

Figure 5. Solid lines: marginalized distributions of ϕ2 and Q2 from the MG-MAMPOSST analysis of
the cluster in Newtonian gravity (left) and chameleon gravity with Q2 = 0.5 and ϕ2 = 0.63 (right).
The white star and the vertical solid lines on the right plots indicate the true values of the chameleon
parameters. The inner and outer shaded regions represent the one-σ and two-σ contours in the
parameter space, respectively. Dashed line: distribution obtained when considering a single NFW
mass profile to model the total mass distribution in the MG-MAMPOSST fit.

As was shown in [41] for a single mass model, the constraints for case I agree with GR
expectation (ϕ2 = Q2 = 0) within one-σ. The contour of the single NFW slightly differs
from that of the correct multi-component model; the only relevant changes that occurred
due to the addition of the BCG data to the kinematic analysis were for the region in the top
right section of the parameter space (ϕ2, Q2). Indeed, while it is true that the BCG VDP
data are very powerful in constraining the central region of the cluster, including the slope
of the mass profile—as shown in the triangle plots in Appendix A—at a small r, the cluster
is supposed to be screened, except for very large values of ϕ2 and Q2 (i.e., the top right part
of the two-dimensional contour plots in Figure 5).

In case II, even if the true values of the chameleon parameters sit well inside the one-σ
region of the marginalized distribution, no evidence of departure from standard gravity
can be claimed from the MG-MAMPOSST analysis. This is not surprising; as was shown
in previous works (e.g., [40,41,61]), kinematic data in clusters cannot provide bounds in the
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chameleon space if no additional information is provided. The reason for this is the quite
strong degeneracy between the total cluster size (represented by the freedom in r200 of the
CDM profile), Q2 and ϕ2, as shown in Figure A1.

For this reason, we repeated the analysis by assuming a Gaussian prior on the CDM
profile parameters G(r200, rs) (note that the flat prior on the gNFW exponent γ is unaltered),
centred on the true values, which mimic the availability of a gravitational lensing survey.
Following the advice of [41], we considered reliable uncertainties, given the current lensing-
like mass reconstruction [66] σr200 = 0.1 r200 and σrs = 0.3 rs, since the photon path is
unaffected by the fifth force in chameleon gravity. The gravitational lensing determinations
of the total cluster’s mass are thus only sensitive to the Newtonian part of the effective
mass profile (e.g., [67]).

Table 1. Prior values for the free parameters in the MG-MAMPOSST analysis (kinematic only).

Parameter Lower Bound Upper Bound

r200 0.5 Mpc 5.0 Mpc
rs 0.05 Mpc 5.0 Mpc
γ 0 2
A∞ 0.5 5.5
A0 0.5 5.5
XL 4.20 4.74
ϕ2 0 1
Q2 0 1

Figure 6 shows the marginalized distributions for Q2 and ϕ2 when the “lensing” prior
is applied in the MCMC MG-MAMPOSST run. Again, the dashed lines refer to a cluster
with the same r(tot)

200 and r(tot)
−2 , modelled using a single NFW profile.9 Interestingly, for case

I, no relevant changes were obtained with the inclusion of additional information in the
multi-component model. This is mainly due to the large values of Q2 and ϕ2 that were
already excluded by the BCG VDP, as mentioned above. Note that the result of the NFW
model + lensing is now almost identical to that of the multi-component case, confirming
the effects of the Gaussian prior to cutting the top part of the parameter space.

Figure 6. The same setup as Figure 5, but including a Gaussian (lensing) prior on r200 and rs of the
CDM profile. Solid lines/filled areas: cluster where all the mass components are explicitly modelled.
Dashed lines/contours: single NFW-modeled cluster. The white star and the vertical solid lines on
the right plots indicate the true values of the chameleon parameters.
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However, the lensing information is required to distinguish the strongly modified
gravity scenario, where the combination of the MG-MAMPOSST analysis plus the prior
enhances the probability regarding the true values of the chameleon parameters (see
the right panel of Figure A2). For this specific case, we obtained Q2 = 0.47+0.34

−0.33 and
ϕ2 = 0.70+0.22

−0.34 for the multi-component profile.
Finally, as shown in Figure A4, in clusters with strong MG signatures, the chameleon

parameters exhibit a correlation with the anisotropy profile in the innermost regions of the
cluster, which is absent in the standard scenario.

6. Conclusions

This manuscript presents a semi-analytical approach for describing the chameleon field
in realistically modelled galaxy clusters. A particular focus was placed on the screening
mechanism and the behaviour of the chameleon fifth force when each matter component
of a cluster was modelled using its individual best descriptor instead of a single model
describing the total mass profile.

The total galaxy cluster’s mass density profile was first decomposed into four com-
ponents: the BCG, the baryonic mass in galaxies, the ICM, and the CDM component. The
BCG was described assuming a Jaffe profile and the ICM using an Isothermal beta model,
while NFW and gNFW profiles described the baryonic components in galaxies and the
diffuse CDM, respectively. The semi-analytic expressions for the effective mass profile
and the radial field profile were derived under spherical symmetry and tested against full
numerical solutions.

The semi-analytical approach was then implemented in the MG-MAMPOSST code
of [64], which constrains modified gravity models at cluster scales with kinematics analyses
of the member galaxies, assuming spherical symmetry and dynamical relaxation. As
discussed in [41], the advantage of the semi-analytic approximation relies on the reduced
computational time with respect to the numerical computation while still yielding the
same accuracy. This makes it suitable for statistical inference and a fast exploration of the
parameter space.

Using mock data—based on the real massive galaxy cluster MACS 1206 at z = 0.44—we
forecast the obtainable bounds via a combination of the pps data of galaxies, BCG (projected)
VDP, and additional lensing-like information on the CDM profile parameters r200, rs. While
for a GR cluster, the MG-MAMPOSST analysis including BCG data is sufficient to break the
degeneracy among mass profiles and chameleon parameters (excluding the large (Q2, ϕ2)
part of the parameter space, contrary to what occurs for a single mass model without the
BCG data), in a modified gravity cluster, a joint lensing+kinematic analysis is required to
provide constraints on Q2 and ϕ2.

The results from a multi-component-modelled cluster were further compared with
those obtained from a single NFW-modelled halo with the same total mass at r = r(tot)

200 .
Interestingly, the larger improvement in the constraints from the former derives from the
possibility of including the BCG VDP data—which can be only used on an explicit model
of the BCG stellar mass profile—in the kinematic analysis.

It is important to point out that the study performed here assumes clusters in dy-
namical equilibrium, and the mass components follow a spherical smooth distribution.
As pointed out in [37], large deviations from spherical symmetry may impact the effect
of the fifth force; moreover, in [68], the lack of dynamical relaxation was shown to be
a relevant source of systematic effects for kinematics mass reconstructions in modified
gravity. However, MACS 1206, which was the target of the analysis presented here, is a
well-studied relaxed cluster with a nearly concentric mass distribution, as pointed out in
several works (e.g., [49,69,70]).
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Along with kinematics and lensing, X-ray data can be used to further constrain a
cluster’s mass profiles assuming hydrostatic equilibrium in both GR ([71]) and in MG
(e.g., [34,40]). As discussed in [61], even if gas and galaxies “feel” the same gravitational
potential, their physics are different, and so is the degeneracy among the model parameters.
Thus, in an upcoming work, the analysis presented here will be extended to include X-ray
information. The constraining power of the joint kinematics, lensing and X-ray data will be
explored and tested on a real cluster.

Note that while the discussion here focused on the chameleon model, the method
can easily be extended to many alternative scenarios, such as other viable models in the
Horndeski sector (e.g., [72]) or the more general Degenerate-Higher-Order Scalar-Tensor
Theories (DHOST [73–75]), for which constraints at different scales have recently been de-
rived in the literature (e.g., [25,26,52,76]). The formalism developed here to simultaneously
assess the inner- and outermost regions of a galaxy cluster is crucial to test scenarios where
non-local interactions are present; for instance, the non-minimal coupling of dark matter
to gravity [77–79] or fractional gravity [80]. Understanding the characteristic signature of
different MG models on a cluster’s mass profile determinations is critical in the context of
current and upcoming imaging and spectroscopic surveys at several wavelengths, both
ground-based (e.g., Vera Rubin Observatory10) and in space (Euclid [81], JWST [82], Athena
X-ray survey [83]), in order to provide a robust independent probe of possible alternatives
to the ΛCDM scenario.
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Appendix A. Marginalized Distributions from the Analysis of the Mock Clusters

In the following, the marginalized distributions of all parameters in the MG-MAMPOSST

MCMC runs are displayed. In each plot, two-dimensional inner and outer shaded regions
correspond to one-σ and two-σ regions, respectively.

https://github.com/Pizzuti92/MG-MAMPOSSt
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Figure A1. GR cluster, MG-MAMPOSST, only pps of member galaxies.

Figure A2. GR cluster, MG-MAMPOSST, pps+BGC VDP.
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Figure A3. GR cluster, MG-MAMPOSST, pps+BGC VDP + lensing prior.

Figure A4. MG cluster, MG-MAMPOSST, pps+BGC VDP + lensing prior.
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Notes
1 Note that the value Q = 1/

√
6, corresponds to the f (R) models of gravity [45,46].

2 While it is possible to extend the analysis to distinct field couplings to the chameleon field, this is not the objective of the
manuscript and will be explored in future investigations.

3 The standard NFW case was recovered for γ = 1.
4 Note the superscript (tot) is being used here to distinguish from r200 of the dark matter mass density profile.
5 The mass profile of member galaxies was obtained from [55]. The gas mass was provided by A. Biviano from S. Ettori via private

communication.
6 Namely, ∇2ϕ ≈ 0 at the centre of the mass distribution and dϕ/dr = 0 at infinity.
7 A previous version of the code is publicly available at https://github.com/Pizzuti92/MG-MAMPOSSt.
8 The exploration of the parameter space was meticulously performed using a Metropolis–Hastings algorithm, with the first 10,

000 points considered as burn-in phase.
9 In this case, the Gaussian priors are centred on r(tot)

200 and r(tot)
−2 , with the same relative uncertainties.

10 https://www.lsst.org/about (accessed on 29 November 2024).
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