

Synthesis and physio-chemical properties of sulphated tamarind (Tamarindus indica L.) seed polysaccharide

<u>Sabrina Ziliani¹⁻²⁻³, Carlo Antonini², Sabrina Bertini¹, Emiliano Esposito¹, Marco Guerrini¹, Marco Sansò³</u>

¹Institute of Chemical and Biochemical Research G. Ronzoni, Via G. Colombo 81, 20133, Milan, Italy ²Department of Materials Science, University of Milano-Bicocca, 20125, Milan, Italy ³IFBS- Istituto Farmaco Biologico Sperimentale, via Carducci, 64/D, 56017, San Giuliano Terme (Pi), Italy

INTRODUCTION

Tamarind Seed Polysaccharide (TSP) is a neutral, water-soluble biopolymer with a ramified structure: a backbone of glucose is linked with xylose and disaccharide units of xylose-galactose. The three monomers are present in a molar ratio of 4:3:1. TSP is already applied in the industrial fields, due to its physical, chemical, and biological properties (1). A chemical modification of this biopolymer is carried out adding sulphated groups on the TSP chain. The presence of negatively charged groups may allow a better solubilization of polysaccharide and also specific binding to proteins or receptors, giving new biological properties to TSP (2).

Fig. 1 Ripetitive unit of TSP

CHEMICAL REACTION

The sulfation reaction of TSP was performed in one-step process, using dimethylformamide as a solvent, and sulfur trioxide pyridine complex as reagent at different mole/residue ratios of TSP/SO₃-py (1:1, 1:1.5 and 1:2). The reaction was carried out for 24 h at room temperature. The sulphated products (S-TSP) were precipitated with ethanol 70%, centrifugated and then dialyzed in water (c. o. = 6-8 KDa).

RESULTS

CHARACTERIZATION SULPHATED PRODUCTS

samples were Chemical and physical proprieties of S-TSP and TSP characterized.

Table 1 Comparison of different analytical results of TSP and S-TSP samples

Samples	Req= TSP:SO ₃ xPy	⁽¹⁾ DS (%)	⁽²⁾ Mw (KDa)	⁽³⁾ Zp (mV)	⁽²⁾ Size (nm)
TSP	-	-	650	0	45
S-TSP_1	1:1	8.4	911	-40	39
S-TSP_2	1:1.5	28.8	128	-63	9
S-TSP_3	1:2	33.6	247	-60	12

(1) Potenziometric titratation

(2) High Perfomace Size Exclusion Chromatography with Triple Detector Array (HP-SEC-TDA) (3) Dynamic Light Scattering (DLS)

ENZYMATIC DEGRADATION

The distribution of sulphated groups on TSP is studied by NMR (Fig.5). Due to signals broadening the interpretation is difficult ; so, sulphated products were hydrolyzed by cellulase and/or xyloglucanase and characterized by NMR and LC-MS (Fig. 6-7-8).

Fig. 4 SEM images of TSP and S-TSP 3

Fig. 8 IPRP-HPLC/ESI-MS of S-TSP hydrolyzed with Xyloglucanase and Cellulase

FUTURE PERSPECTIVE

- Sulphation with higher substitution degrees will be carried out again, to obtain products with higher molecular weight.
- More NMR studies will be performed on hydrolyzed products.
- Different analyzes of optics and optometry will be employed to verify the behavior of the polymers in a physiological environment and the positive effects that these may have once compared to base polymers.
- The tolerability, toxicity and efficacy will be evaluated by one-dimensional cell and three-dimensional cell culture.

REFERENCES

1. Shukla, A. K.; Bishnoi, R. S.; Kumar, M.; Fenin, V.; Jain, C. P. Asian Journal of Pharmacy and Pharmacology, 2018, 4(1), 23. 2. Wang, Z.; Xie, J.; Shen, M; Nie, S.; Xie, M. Trends in Food Science & Technology, 2018, 74, 147.

CONTACTS Email: <u>s.ziliani3@campus.unimib.it</u> Tel: 3496772486