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1 Introduction

It is generally believed that in quantum gravity, space-time locality is an emergent notion
which becomes accurate and useful in certain limits of the underlying theory. This perspective
is realized in the AdS/CFT correspondence [1]: bulk locality becomes precise in the large N ,
strong coupling limit and when probing the theory with simple enough operators. Moreover,
a large number of proposals aiming to resolve the black hole information paradox rely on a
certain amount of non-locality [2–13]. A natural question is to understand whether non-local
features of quantum gravity are visible only in the non-perturbative regime, or whether
remnants of non-locality are also visible at the perturbative level.

Even in classical general relativity it is not entirely straightforward to formulate the
concept of locality, as it is non-trivial to define local observables. Physical observables need
to be diff-invariant and, in order for them to also be local, they have to be associated to
points in space-time which have to be specified in a diff-invariant way. If the space-time has
a boundary, a standard approach is to define points relationally with respect to the boundary
or by completely fixing the gauge. We say that these observables are gravitationally dressed
with respect to the boundary. However, the resulting observables, while diff-invariant, are
not strictly localized and have non-vanishing Poisson brackets at space-like separation. A
particular aspect of this difficulty is related to the gravitational Gauss law: in gravitational
theories defined with asymptotically flat or AdS boundary conditions, the Hamiltonian, and
other asymptotic symmetry charges, are boundary terms. Acting with a candidate local,
diff-invariant observable in the interior of space will generally change the energy of the state,
which is immediately measurable at space-like separation due to Gauss’s law.

– 2 –
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Despite these difficulties, at the classical level, there are ways of defining local and
diff-invariant observables in the neighborhood of a state, provided that the state is sufficiently
complicated. A class of such observables introduced a long time ago [14–16] will be reviewed
in sub-section 2.3.3, see also [17–19] for more recent discussions. These observables respect the
causal structure of the underlying space-time, in the sense that their Poisson brackets at space-
like separation vanish. In particular, provided that the state we are considering is complicated
enough, the action of these observables is not visible by the boundary Hamiltonian, as these
observables only rearrange energy in the interior of space. The price we have to pay is
that these observables are not defined globally on the phase space of solutions. They have
desired properties only for certain states.

A natural question is to what extent can such local diff-invariant observables be defined
at the quantum level. As mentioned above, we do not expect to be able to find exactly
local diff-invariant observables at the non-perturbative level, however it may be possible to
do so in perturbation theory. This question is important in order to be able to quantify
departures from locality in quantum gravity and to understand if there is a way to generalize
the structure of algebras of observables of quantum field theory to situations where gravity
is included perturbatively.

It is useful to formulate these questions in the context of the AdS/CFT correspondence.
We consider a CFT state |Ψ0⟩ that is dual to a semi-classical asymptotically AdSd+1 geometry
in global coordinates and a short time-band near the boundary as shown in figure 1. We
consider the algebra A of observables in semi-classical gravity which are localized in this time
band. This algebra includes the Hamiltonian and other asymptotic charges. From the point
of view of the dual CFT, it is natural to identify the algebra A with the algebra generated by
single-trace operators localized in this time-band, we will call it the “single-trace algebra”.
The expectation is that the single-trace algebra A corresponds to the causal wedge of the
time-band [20].1 Notice that here we have causal-wedge reconstruction and not entanglement
wedge reconstruction, as we are looking only at the single-trace subalgebra. In the CFT
the notion of a time-band algebra only makes sense at large N , since large N generates a
natural hierarchy between operators that are small combinations of single-trace operators and
arbitrarily complicated operators. For finite N there is no such hierarchy and the time-slice
axiom would imply that A is the full CFT algebra.2 Algebras of single-trace operators in
holographic CFTs have been discussed in [6, 26, 27] and more recently in [28–32].

If the time-band is short enough, then there is a region in the bulk which is space-like
with respect to the time-band. We will refer to this region as the “diamond”.3 If we were able
to define diff-invariant observables localized in the diamond, they should commute with the
algebra A. As already mentioned, the question is non-trivial as these observables must be
gravitationally dressed and if we use the boundary to dress them, then they will not commute

1A different approach for studying time-bands based on gravitational entropy and minimal surfaces was
initiated in [21–24] and also [25]. It would be interesting to understand possible connections between those
ideas and the results presented in this paper.

2We do not include in the single-trace algebra elements like eiHtO(t = 0, x)e−iHt with t = O(N0) and large
enough to exit the time-band. Such “precursor” operators are complicated from the point of view of operators
in the time-band and go beyond the semi-classical description.

3For now we assume that the state has simple topology and there are no black hole horizons in the interior.
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Figure 1. The single-trace operators localized in the time band t ∈ (−ϵ, ϵ)× Sd−1 (dark blue region
on boundary) form an algebra A which is conjectured to be dual to the causal wedge of the region
(light blue). If the state |Ψ0⟩ of the system breaks all symmetries, then the causal diamond in the
middle (light red), which is spacelike separated from the time-band, corresponds to the commutant A′

of the algebra A when acting on the code subspace of the state |Ψ0⟩.

with A. For example, it appears that since the Hamiltonian H is an element of A it would
be able to detect any excitation added in the interior of the diamond using the gravitational
Gauss law. To summarize, the question we want to examine:

Does the algebra A, when acting on the state |Ψ0⟩ and small perturbations around
it, have a non-trivial commutant in the 1/N expansion?

As we will discuss later, we need to refine the question by demanding that the commutant acts
non-trivially within the code-subspace of the state, in order to avoid obvious but uninteresting
constructions.4 We emphasize that we do not expect the algebra to have a commutant
at finite N [20].

A closely related question is that of localization of information. According to AdS/CFT
the quantum state of the CFT at any moment in time contains the full information of the
bulk. In particular, if we had considered the full algebra of all operators in the time-band, as
opposed to the algebra generated by few (relative to N) single-trace operators, then we would
be able to reconstruct the interior of the diamond. Suppose however, that we only have access
to the algebra A of single-trace operators in the time band. Can we then reconstruct the
information of whatever is hidden inside the diamond? This can also be rephrased as follows:

Given a state |Ψ0⟩, can we find another state |Ψ0⟩′ such that the correlators of the
single-trace algebra A in the time-band, evaluated on these two states agree to all
orders in 1/N , but correlators of single-trace operators differ at O(N0) outside
the time-band?

The intuition here is that we want to find a state |Ψ0⟩′ which contains an additional excitation
relative to |Ψ0⟩ in the interior of the diamond which becomes visible by single-trace operators

4For example, for a complicated state with energy of O(N2), a unitary which rotates the phase of a single
energy eigenstate will have commutators of O(e−N2

) with all elements of A. However, this would not be an
interesting example, as this operator is generally “invisible” from the bulk point of view and does not create
excitations inside the diamond.
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only after a light-ray has reached the boundary i.e. in the future or past of the time-band.
If the algebra A had a commutant then we could take |Ψ0⟩′ = U(A′)|Ψ0⟩ for some unitary
U built out of operators A′ in the commutant.

We will provide evidence that the answer to the two aforementioned questions is positive,
provided that the state |Ψ0⟩ is complicated enough. The reasoning was first outlined in [33].
In this paper we extend the construction in a few ways and provide additional arguments
and examples.

Standard approaches to bulk reconstruction lead to observables which are relationally
defined with respect to the boundary. This is the case for approaches based on the HKLL
reconstruction [34–41], as well as approaches based on the Petz map [42, 43] or modular
reconstruction [44, 45], as they all require some sort of boundary dressing. For concreteness
we start with a standard HKLL operator given by

Φ(t, r,Ω) =
∫

bdry
dt′ dΩ′

d−1K(t, r,Ω; t′,Ω′)O(t′,Ω′) . (1.1)

Here K is a particular Green’s function which depends on the background metric. Implicit
in this expression is a gauge-fixing scheme in a particular coordinate system, which is
uniquely determined by making use of the boundary. If we pick the point (t, r,Ω) to be
in the diamond, the operator (1.1) commutes with all single-trace operators in the time
band at large N . At subleading orders multi-trace corrections need to be added to (1.1)
to ensure vanishing commutators. However the commutator with the Hamiltonian and
other asymptotic charges, which is nonzero at order 1/N , cannot generally be corrected
by multi-trace corrections. The physical reason is that the operator (1.1) is gravitationally
dressed with respect to the boundary. The non-vanishing commutator with H appears to be
an obstacle in identifying (1.1) as an element of the commutant of A [46, 47].

In this paper we present a way to find operators which commute with the asymptotic
charges to all orders in 1/N , while at the same time create excitations in the interior of the
diamond similar to those of the HKLL operator. These operators can be defined provided
the state |Ψ0⟩ that we are considering breaks all asymptotic symmetries. These operators
correspond to observables gravitationally dressed with respect to features of the state.

A crucial starting observation is that, if a state |Ψ0⟩ is dual to a bulk geometry which
breaks the asymptotic symmetries, then the overlap

⟨Ψ0|U(g)|Ψ0⟩ g ∈ SO(2, d) , (1.2)

is generally exponentially small, of order O(e−aN2) with Re(a) > 0 provided that the element g
is sufficiently far from the identity.5 Here SO(2, d) represents the asymptotic symmetry group
of AdSd+1. We will quantify this statement more precisely in the later sections. In fact, we
will provide evidence that if we introduce the code subspace around the state |Ψ0⟩, defined as

H0 = span{|Ψ0⟩,O(t,Ω)|Ψ0⟩, . . . ,O1(t1,Ω1) . . .On(tn,Ωn)|Ψ0⟩} , (1.3)

and similarly Hg for the state U(g)|Ψ0⟩ then any inner product between unit normalized
states of H0,Hg will also be of order O(e−aN2).

5But not too far. The state may return to itself in compact directions of the conformal group or
approximately back to itself due to Poincare recurrences.
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Starting with a standard HKLL operator Φ we consider the operator

Φ̂ = c

∫
B
dµ(g)U(g)P0ΦP0U(g)−1 , (1.4)

where P0 denotes the projector on (1.3) and dµ(g) is the Haar measure on SO(2, d) and B is
a reasonably sized neighborhood of SO(2, d) around the identity. The overall normalization
constant c will be specified later. The main claim, which will be discussed in section 4, is
that operators (1.4) have the desired properties: their commutators with the asymptotic
symmetry charges Q of SO(2, d) are exponentially small

[Q, Φ̂] = O(e−N2) , (1.5)

when acting on the code subspace, while at the same time, the leading large-N action of Φ̂ on
the code subspace (1.3) is the same as that of the corresponding HKLL operator Φ, that is

⟨Ψ1|Φ̂|Ψ2⟩ = ⟨Ψ1|Φ|Ψ2⟩+O(1/N) ∀ |Ψ1⟩, |Ψ2⟩ ∈ H0 . (1.6)

The interpretation is that by performing the integral (1.4) we have removed the gravitational
dressing of the operators from the boundary and moved it over to the state. This is only
possible on states where (1.2) decays sufficiently fast.

The operators (1.4) have vanishing commutators with the asymptotic charges to all
orders in 1/N . This demonstrates that the apparent obstacle to identifying a commutant
due to Gauss’s law can be overcome. In order to find a true commutant we need to ensure
vanishing commutators to all orders in 1/N with all single-trace operators in the time-band
algebra. It would be interesting to explore whether a formula achieving this goal and similar
to (1.4) can be derived, possibly by integrating over the unitary orbits generated by A.

We provide an alternative formal argument supporting the idea that the algebra A has a
nontrivial commutant when acting on the code subspace Hcode of a complicated state |Ψ0⟩.
To see that we consider an operator Φ̂ defined by

Φ̂A|Ψ0⟩ = AΦ|Ψ0⟩ ∀A ∈ A , (1.7)

where again Φ is a standard HKLL operator. This represents a set of linear equations, one for
each A ∈ A, which define the action of Φ̂ on H0. A sufficient condition for the consistency of
these equations is that for all non-vanishing operators A ∈ A we have A|Ψ0⟩ ̸= 0.6 In section 5
we provide evidence that this is true in the 1/N expansion. Given that these equations are
consistent, we will show in section 5 that the operators Φ̂ defined by (1.7) obey the following
properties: i) by construction they commute with operators in A and ii) to leading order
at large N they act like HKLL operators. This provides evidence that the algebra A has a
commutant in the 1/N expansion. As mentioned earlier, a commutant is not expected at
finite N . Indeed, at finite N it is possible to find complicated operators in the time-band
which annihilate the state |Ψ0⟩ and equations (1.7) do not have a consistent solution.

6An intuitive way to think about this condition is that since the states we will consider have a large energy,
they cannot be annihilated by single-trace operators. There is however an important subtlety with symmetries,
which we will discuss in detail.
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If we take the state |Ψ0⟩ to be the vacuum, i.e. empty AdS, then the previous construction
fails: since the vacuum is invariant under the asymptotic symmetries we no longer have the
decay of (1.2) and (1.6) fails. Also (1.7) fails because there are operators in the time-band,
in particular H , which annihilate the state. We emphasize that this failure is not a limitation
of our particular construction. Instead the interpretation of this failure is that since empty
AdS has no bulk features, the only way to specify a point in the bulk is by dressing it to
the boundary. Hence any bulk diff-invariant operators acting around the vacuum will not
commute with the asymptotic charges [46, 47]. This can also be seen from the fact that even
classically, local diff-invariant observables cannot be defined properly in the vacuum.

We clarify that the results of this paper do not contradict the claim of [48] that specifically
for perturbative states around empty AdS, it is possible to reconstruct the state from
correlators in the time-band. However we notice that interesting states, that is, states which
have bulk observers capable of performing physical experiments, are generally expected to
be of the form where the symmetries are broken and the construction presented in this
paper can be applied.

If the state |Ψ0⟩ corresponds to a black hole state, and if the variance of the asymptotic
charges scales like N2 7 we find that using the operators (1.4) we can create excitations
behind the horizon which cannot be detected by correlators of single-trace operators in the
1/N expansion. Understanding how to diagnose these excitations from a CFT calculation
remains an outstanding open problem. We emphasize that this does not contradict the fact
that, generally, excitations created by unitaries on top of typical states with small energy
spread can be detected by single-trace correlators [26, 49, 50]. Such states with small energy
spread are those for which our construction cannot be applied.

The operators we identify provide evidence supporting the idea that locality is respected
in perturbative quantum gravity and that information can be localized in subregions at the
level of perturbation theory, provided that the underlying state is sufficiently complicated. It
also suggests that it should be possible to associate algebras of observables to subregions.
However these observables have certain features of state-dependence, since both (1.4) and (1.7)
give operators which are defined only on the code-subspace of the original state |Ψ0⟩. It is
certainly possible to extend the domain of definition of our operators by combining together
code subspaces of sufficiently different states, each one of which must break the asymptotic
symmetries, thus partly eliminating the state-dependence of the operators. However the
number of these states must not be too large, otherwise the small overlaps between the code
subspaces start to accumulate and modify the correlators. This becomes particularly relevant
for black hole states, where we do not expect to have operators with the desired properties
defined globally for most microstates and some genuine state-dependence is expected.

The plan of the paper is as follows: in section 2 we review background material about
various aspects of locality in field theory and gravity. In section 3 we describe the setup in
AdS/CFT and study the decay of the inner product (1.2). In section 4 we introduce the
operators (1.4) and discuss their basic properties. In section 5 we provide an alternative
argument for the existence of a commutant based on equations (1.7). In section 6 we consider
various examples. In section 7 we consider aspects of our operators in the presence of black
holes. Finally we close with a discussion of open problems in 8.

7For example, this is true for black hole states with energy spread similar to the canonical ensemble.
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2 Aspects of locality in field theory and gravity

In this section, mostly addressed to non-experts, we review some background necessary to
explore the question of localizing information in different regions of space. A closely related
question is the association of algebras of observables to subregions and the factorization of
the Hilbert space. We start with non-gravitational field theories, where a non-dynamical
background space-time can be used in order to define sub-regions and their causal relations,
and then we consider the additional complications when gravity is taken into account.

In relativistic theories we expect that signals and information cannot travel faster than
light. Consider an initial space-like slice Σ and divide it into a compact subregion D and
its complement D′. We denote by J(D′) the domain of dependence of D′. We then want
to address the following question: is it possible to modify the state8 in region D without
affecting the state in J(D′). If the answer is positive then an observer initially in D′, and
confined to move in J(D′), cannot reconstruct information about the interior of D. Then
we say that information can be localized.

2.1 Classical field theories

At the classical level this question can be addressed by studying the initial value problem:
we specify initial data C on a spacelike slice Σ and then look for a solution in the entire
space-time, or at least a neighborhood of the slice Σ, compatible with the initial data. The
initial data will typically include the values and time-derivatives of various fields of the theory.
The theories we will be considering have gauge invariance. One of the implications is that
the existence of a solution is guaranteed only if the initial data satisfy certain constraints. In
relativistic field theories the dynamical equations are hyperbolic, which ensures that signals
propagate forward from Σ at most at the speed of light. On the other hand the constraint
equations for initial data are of elliptic nature. This makes the question of being able to
specify the initial data independently in region D and its complement D′ non-trivial. It is
thus convenient to divide the question formulated above in two steps:

A. Localized preparation of states: for given initial data C1 on Σ satisfying the
constraints, to what extent can we deform to other initial data C2, also satisfying the
constraints, such that C1, C2 agree on D′, possibly up to a gauge transformation, but
differ essentially9 on D?

B. No super-luminal propagation: suppose we are given two initial data C1, C2
which satisfy the constraints, which agree on D′ and differ on D. We then want to
show that the two corresponding solutions agree on J(D′), possibly up to a gauge
transformation.

We will return to the classical problem in theories with gauge invariance in the following
subsections. For now we briefly consider the simplest example of a free Klein-Gordon field
in flat space obeying □ϕ = m2ϕ. We consider initial data on the slice Σ corresponding to
t = 0. The initial data on this slice are parametrized by C = {ϕ(t = 0, x), ∂0ϕ(t = 0, x)}. In

8Either classical state, or quantum density matrix.
9I.e. cannot be matched by a gauge transformation on D.
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this case condition A mentioned earlier is clearly satisfied: the initial data do not need to
obey any constraint, so we can simply select the functions ϕ, ∂0ϕ to have any smooth profile
with features strictly localized in D. Notice that this requires the use of non-analytic initial
data. Condition B is also satisfied, see [51] for a basic review.10

2.2 Localization of information in QFT

In non-gravitational QFT we can associate algebras of observables to space-time regions [52–
54]. Locality is exact, and is expressed by the condition that algebras corresponding to
space-like separated regions commute. An analogue of the initial value problem in QFT is
expressed by the condition of primitive causality or relatedly the time-slice axiom which
postulates that the only operators commuting with the algebra generated by operators in
a time-band are proportional to the identity. Moreover a local version of these statements
postulates that the algebra of operators in a subregion coincides with the algebra of operators
in the causal domain of dependence of the subregion [55].

An intuitive way to see that information can be localized in QFT is as follows: suppose
|Ψ0⟩ is a state in the Hilbert space of the QFT. Consider a unitary operator UD constructed
out of observables localized in D and the new state |Ψ⟩ = UD|Ψ0⟩. The unitary UD modifies
the state by creating an excitation in region D which encodes the desired information in that
region. For any observation OD′ in region D′, and more generally in J(D′), we have

⟨Ψ|OD′ |Ψ⟩ = ⟨Ψ0|U †
DOD′UD|Ψ0⟩ = ⟨Ψ0|OD′ |Ψ0⟩ , (2.1)

where we used [UD,OD′ ] = 0. Hence states |Ψ⟩, |Ψ0⟩ are indistinguishable by measurements
in J(D′) and the excitation created by UD in D is invisible in J(D′).

2.2.1 Comments on the split property
More generally we would like to know whether it is possible to independently specify the
quantum state in space-like separated regions. The question is non-trivial since in most
quantum states these regions will be entangled. It is believed that, as long as the regions in
question are separated by a finite buffer region, then the answer should be positive. This
is related to the split property of quantum field theory [54, 56–58].

The split property can be defined as follows: consider the causal diamond whose base
is a ball D1 and the corresponding operator algebra AD1 . Consider a slightly larger ball
D2, containing D1, with corresponding operator algebra AD2 in its causal diamond. The
split property is satisfied if we can find a type I von Neumann algebra of operators N such
that AD1 ⊂ N ⊂ AD2 . It has been shown that quantum field theories with a reasonable
thermodynamic behavior, as expressed in terms of nuclearity conditions (see [54] for an
introduction), satisfy the split property. Using the algebra N we can have strict localization
of quantum information which is completely inaccessible from J(D′

2).
Equivalently, the split property can be defined by the existence of state |ϕ⟩ which is

cyclic and separating for the algebra AD1∪D′
2

and such that

⟨ϕ|a b|ϕ⟩ = ⟨0|a|0⟩⟨0|b|0⟩ ∀ a ∈ AD1 , b ∈ AD′
2
, (2.2)

10In the case of non-relativistic theories, for example the heat equation, which is first order in time and
hence not hyperbolic, we are able to specify the initial data in subregions independently but the speed of
propagation is unbounded. Hence the heat equation obeys condition A but not B.
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where |0⟩ is the Minkowski vacuum and D′
2 denotes the complement of D2. In the state |ϕ⟩

the mutual information between regions D1 and D′
2 is vanishing. Such a state is not uniquely

defined, since for any unitary U ∈ A(D′
1∩D2) a state of the form U |ϕ⟩ will also satisfy (2.2).

Starting with a split state |ϕ⟩ we can construct more general states by exciting the two
regions D1 and D′

2 acting with localized operators in the corresponding algebras. Since there is
no entanglement between D1 and D′

2 in the split state |ϕ⟩ the two algebras act independently
and we can arbitrarily approximate an excited state in D1 and another state in D′

2.
An interesting question is to estimate the energy of a split state.11 We do not expect a

split state to be an energy eigenstate, so in general it will have non-vanishing energy variance.
Here we provide some very heuristic arguments about the expectation value of the energy. As
a starting point, let us consider a CFT on R1,d−1 with coordinates x0, x1, . . . , xd−1. We define
two regions to be the causal domains of two slightly displaced Rindler wedges with bases
x0 = 0, x1 < −ϵ and x0 = 0, x1 > ϵ respectively. At x0 = 0 the two wedges are separated by
the buffer region −ϵ < x1 < ϵ. In this case the total energy of the split state will be infinite
due to the infinite planar extension of the regions in the transverse directions. However, we
expect to have a finite energy per unit area E . Since we are dealing with a CFT then the
only scale in the problem is the size ϵ of the buffer region. Hence by dimensional analysis the
energy per unit area will scale like E = s

ϵd−1 where s is a constant depending on the CFT.
If we now consider a more general compact region D1 of typical size R, which is separated
by a small buffer region of typical size ϵ from D′

2 then we would expect that a split state
with respect to D1, D

′
2 will have energy which in the ϵ → 0 limit will scale like

E = s
A(∂D1)
ϵd−1 +O( ϵ

R
) , (2.3)

where A(∂D1) is the area of the boundary of D1. This is a heuristic estimate and it would
be interesting to investigate it more carefully.

As mentioned above, this is the expectation value of the energy and it would be interesting
to understand the spectral decomposition of a split state in the energy basis. Notice that a
split state does not respect the Reeh-Schlieder property with respect to the algebra AD1 .12

This implies in particular that the split state should have non-compact support in energy,
since otherwise the Reeh-Schlieder property would have to hold for D1, see for example [59].

2.2.2 Subtleties with gauge invariance

Consider U(1) gauge theory minimally coupled to a charged scalar with Lagrangian L =
−1

4FµνF
µν − (Dµϕ)∗Dµϕ , Dµϕ = ∂µϕ − igAµϕ. The system has U(1) gauge invariance

Aµ → Aµ + ∂µΛ, ϕ → eigΛϕ. The dynamical equations are

∂νFµν = ig(ϕ∂µϕ∗ − ϕ∗∂µϕ)− 2g2Aµϕ
∗ϕ

□ϕ = ig(∂µAµ)ϕ+ 2igAµ∂µϕ+ g2AµA
µϕ .

(2.4)

11Since the split state is not unique, a reasonable question might be finding the lowest possible expectation
value for the energy of a split state.

12Since there is no entanglement between D1 and D′
2 we cannot create excitations in region D′

2 by acting
with operators in D1.
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In this case the initial data are C = {Aµ(t = 0, x), ∂0Aµ(t = 0, x), ϕ(t = 0, x), ∂0ϕ(t = 0, x)}.
Here we encounter the subtleties mentioned for gauge systems: initial data related by a
gauge transformation are physically equivalent and initial data are admissible (i.e. lead to
a solution) only if the obey a constraint, the Gauss law, which is the µ = 0 component
of the first equation in (2.4)

∂i(∂0Ai − ∂iA0) = ig(ϕ∂0ϕ
∗ − ϕ∗∂0ϕ)− 2g2A0ϕ

∗ϕ . (2.5)

We now revisit the two properties mentioned in subsection 2.1. The fact that the dynamical
part of (2.4) obey condition B follows from general properties of hyperbolic equations of this
type. Let us now examine question A in this theory. From (2.5) we see that if we try to
deform the initial data in region D, then we may be forced to change them in D′ too. For
example if we turn on a profile for the scalar in region D with total non-zero charge, then
the gauge field has to be turned on in region D′. The Gauss law constraint (2.5) is of the
familiar form ∇ · E⃗ = ρ. This imposes the constraint that

∮
∂D E⃗ · dS⃗ = QD.

However it is clear that once we make sure that the initial data in D′ are compatible
with the Gauss constraint from the total charge QD enclosed in D, there are many ways of
rearranging the initial data in region D keeping those in D′ fixed. In other words there are
deformations of the constraint equation (2.5), which are not gauge-equivalent, and which
have compact support localized in D. This means that theory under consideration obeys
condition A.

Moving on to the quantum theory, we can consider U(1) gauge theory weakly coupled to
matter. As in the classical theory the total charge Q enclosed in a region can be measured on
its boundary and the total charge of the entire state can be measured at space-like infinity.
At the quantum level we can get information not only about the expectation value of the
charge but all the higher moments

⟨Ψ|Qn|Ψ⟩ , n = 1, 2, . . . (2.6)

To proceed it is useful to consider observables in this theory. Physical observables must
be gauge invariant. In a U(1) gauge theory there are several examples of such observables
which are also local, for example local operators constructed out of Fµν(x) or ϕ∗(x)ϕ(x).
Other interesting gauge invariant operators which are not completely local, but can be
contained in compact regions are closed Wilson loops eig

∮
C
Aµdxµ

or bilocals of the form
ϕ∗(x)eig

∫ y

C,x
Aµdxµ

ϕ(y). All these operators are neutral and do not change the electric charge
of the region D, if they are entirely contained in D. We can use such operators localized in
region D to construct unitaries UD which can be used to modify the state inside D leaving
all correlators outside invariant, as in (2.1). So information can be localized in this theory
if we work with neutral operators.

But what if we want to create an excitation in region D which has non-zero charge?
We already know from the classical problem that it will not be possible to add a charge in
D without affecting the exterior due to Gauss law (2.5). The same is true at the quantum
level. A charged operator ϕ in D is not gauge invariant. It can be made gauge invariant
by dressing it with a Wilson line extending all the way to infinity. We can think of the
Wilson line as a localized tube of electric flux ensuring that Gauss law is satisfied. It may
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be energetically better to smear the Wilson line in a spherically symmetric configuration.
The important point is that the dressed operator Φ(x) = eig

∫ x

∞ Aµdxµ

ϕ(x) is no longer a local
operator, though it is gauge invariant. If we act with a unitary made out of this operator,
we will modify correlators outside D and (2.1) will fail. This means that the addition of
the charge in D can be detected immediately outside. This is not surprising, as the same
thing is already visible at the classical level.

However, looking a bit more carefully, we run into certain surprising features of the
quantum theory. Suppose we have several charged fields ϕi, labeled by a flavor index i,
with the same electric charge. We construct the corresponding dressed operators Φi(x) =
eig
∫ x

∞ Aµdxµ

ϕi(x), using some particular prescription for the Wilson line. These obey

[Q,Φi(x)] = gΦi(x) , (2.7)

where Q =
∫
S2
∞
∗F is the charge operator which can be measured at space-like infinity.

Suppose the point x = 0 is inside D. We create a charged excitation of type i in region D

by acting on |0⟩ with a unitary Ui = eiϵΦi(0). Then we study correlators in region D′ in the
state Ui|0⟩ in perturbation theory. Consider a correlator of Q and Φj(x) in region D′.

⟨0|U †
i Φj(x)QUi|0⟩ = ⟨0|Φj(x)|0⟩+ iϵ⟨0|[Φj(x)Q,Φi(0)]|0⟩+O(ϵ2) , (2.8)

where to leading order in the perturbative expansion the second term is

⟨0|[Φj(x)Q,Φi(0)]|0⟩ = g⟨0|Φj(x)Φi(0)|0⟩ ∝ δij . (2.9)

Hence by measuring correlators of all ϕj(x) and Q in D it seems that in the quantum theory
we can detect not only the presence of a charge in D, which is expected by Gauss’s law
already at the classical level, but we can even identify the flavor of the charged particle, i.e.
the value of the index i in the interior of D. A similar argument in the gravitational case
was discussed in [26, 50] for black hole states and in [60] around empty AdS.

The reason we were able to get information beyond the total charge in D is that in
the vacuum the fields have non-trivial entanglement, on which the non-vanishing 2-point
function (2.9) depends. When we act with the unitary containing the Wilson line, the Wilson
line disturbs the pattern of entanglement in such a way that it breaks the symmetry between
the fields ϕi and we can detect from D′ the flavor of the excitation in D

This suggests a way to avoid the issue and succeed in hiding the flavor of charge in
D: we start with the analogue of a split state in the U(1) gauge theory, see the discussion
in [61], and then create the charged excitation in D by acting with the same unitary. In that
case there is no entanglement bewtween D and D′ in the matter sector and hence (2.9) will
vanish making it impossible to tell from measurements in D′ what is the type of charged
excitation in D.13 This requires creating the charged excitation on top of a split state, which
has typical energy scaling like (2.3), rather than the ground state.

13A more mundane way to hide the charge is to add “screening charges” in the buffer region, but here we
want to discuss how information can be localized even though a Wilson line extends all the way to infinity.
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2.3 Classical and quantum gravity

First we notice that in non-perturbative quantum gravity we do not expect to be able to
localize information in space: holography and AdS/CFT suggest that the fundamental degrees
of freedom in quantum gravity are not local, but rather lie at the boundary. Moreover there
is strong evidence that an ingredient towards the resolution of the black hole information
paradox is that the naive factorization of the Hilbert space in space-like separated subregions
may not be true in the underlying theory of quantum gravity.

On the other hand at the classical level in General Relativity we do have an exact notion
of locality and information can be localized, as we will discuss below. An interesting question,
which is the main focus of this paper, is to understand the fate of locality at the level of
perturbative quantum gravity.

2.3.1 On the initial value problem of general relativity

In General Relativity the initial value problem is formulated by starting with a spacelike
slice Σ and specifying the data C = (hab,Kab) where hab is the intrinsic metric and Kab the
extrinsic curvature of Σ. If we have matter then the values of the fields and their normal
derivatives need to be specified. Initial data related by spatial diffeomorphisms on the slice
Σ are gauge-equivalent and have to be physically identified. In general relativity there is
one more subtlety: even if we have two initial data on the slice Σ which are not related
by a spatial diffeomorphism, they may still correspond to the same physical solution in
space-time. This is related to the freedom of choosing the initial slice Σ in space-time and
diffeomorphism invariance in full space-time.

Admissible initial data, which can be extended into a solution of the Einstein equations
must obey the following constraints

R+ (Ka
a )2 −KabK

ab = 16πGρ (2.10)

∇aKab −∇bK
c
c = −8πGJb , (2.11)

where R is the Ricci scalar of hab on Σ, the covariant derivatives are with respect to hab on
Σ, na is the unit normal to Σ and ρ = Tabn

anb and Jb = −hcbTcana.
We now want to address the question of localization of information in classical general

relativity, as formulated in subsection 2.1. A theorem, see for example [51, 62], settles
question B for pure general relativity: if we have two admissible initial data which agree, up
to spatial diffeomorphism, on a part D′ of Σ, then the corresponding solutions will agree, up
to a space-time diff, on the development of D′. This continues to be true in the presence
of matter provided certain reasonable conditions are satisfied. This shows that in general
relativity signals propagate at most at the speed of light: if we modify the initial data only
in the region D, then the signals will propagate in the causal future of D.

Then we come to question A, that of localizing information on compact regions on Σ:
to what extent is it possible to find two initial data satisfying the constraints (2.10), (2.11),
which agree on D′ but differ on D?14 The equations (2.10) and (2.11) are non-linear and

14Here we need to keep in mind that even if the initial data differ on D they may correspond to the
same solution in space-time, as they may correspond to two different choices of the slice Σ in the same
space-time solution.
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of elliptic nature, though underdetermined. Understanding the space of solutions of the
constraint equations is an interesting problem which has been studied extensively in the
literature. Here we summarize some relevant points:

1. Gravitational Gauss law: in asymptotically flat or AdS space-times, the energy and
other conserved charges are defined at space-like infinity. The constraints of general
relativity relate these asymptotic charges to contributions from excitations in the interior
of space-time. For example, in the Newtonian limit the constraint equations reduce to
the gravitational analogue of Gauss’s law

□ϕ = 4πGρ .

As in electromagnetism this implies that the initial data in region D′ know about the
total mass enclosed in D.

2. Existence of localized deformations: it is possible to find many solutions of the
constraint equations which look the same in the domain D′ but differ on D. For
example, if we restrict our attention to spherically symmetric solutions, Birkhoff’s
theorem implies that there is a large number of solutions of (2.10) and (2.11) which all
look like the Schwarzschild metric of mass M in D′ but differ in D. Examples include
static, interior, star-like geometries supported by matter or more generally spherically
symmetric, time-dependent collapsing geometries of mass M . More generally, it has
been shown [63] that under reasonable conditions a compact patch D of a solution
of the constraints (2.10) and (2.11) can be glued to a boosted, Kerr solution in D′

of appropriate mass, angular momentum, momentum and center of mass position.
The existence of a large number of solutions, which all look exactly the same in D′

demonstrates that it is possible to localize information in classical general relativity.

3. Comments on the vacuum: for asymptotically AdS geometries, if a solution looks
like empty AdS in D′,15 then it is guaranteed to be empty AdS in D as well. In other
words, starting with the vacuum it is not possible to modify the initial data in D into a
new solution, without at the same time modifying the solution in D′.

2.3.2 Diff-invariant observables in classical GR

We now consider the question of defining local diff-invariant observables in gravity. This
is a long-standing problem which is subtle even at the classical level. Let us consider
general relativity, possibly coupled to other fields, defined with certain asymptotic boundary
conditions at infinity (for example asymptotically flat or AdS) or on a closed manifold of fixed
topology. We denote by X the space of solutions of the equations of motion, in any possible
coordinate system. On this space we have the action of the group Diff of diffeomorphisms.16

Solutions related by a diffeomorphism are physically identified and we introduce

X = X/Diff . (2.12)
15Here we assume that D is compact so D′ includes the region near space-like infinity.
16If the space-time is non-compact along space we only consider small diffeomorphism, i.e. those which

become trivial fast enough at infinity.
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We can think of a diff-invariant observable as a function which has definite values on points
of X . However, we do not demand an observable to be necessarily defined on the entire
space of solutions X . Instead we will allow observables to possibly have a limited domain
of definition. Hence a diff-invariant observable is a map

A : U ⊂ X → R , (2.13)

where U is an open subset of X . Such observables can also be expressed as functions on
X which must obey A(s) = A(f∗s), where s denotes a solution in some coordinate system
and f∗ the action of a diffeomorphism.

In order for a diff-invariant observable to be local we need to impose additional conditions.
To formulate these conditions it is useful to introduce the Peierls bracket {A,B} between
two diff-invariant observables [64], which is a covariant generalization of the Poisson bracket.
To compute the value of {A,B} we consider a modification of the action as S → S + ϵA and
compute the difference of the first order change of observable B on the perturbed solutions
with advanced (+) and retarded (−) boundary conditions. The Peierls bracket is defined as17

{A,B} = δ−AB − δ+
AB . (2.14)

It can be shown that the Peierls bracket has similar properties as the Poisson bracket, for
example linearity, antisymmetry and the Jacobi identity, and in fact coincides with the Poisson
bracket if a Hamiltonian formalism is introduced. One of the advantages of the Peierls bracket
is that we do not need to pass to the Hamiltonian formalism which is somewhat complicated
due to the constraints. Notice that to define the Peierls bracket of two observables A,B
they must have a common domain of definition on X and the bracket will be generally a
non-trivial function on this overlap.

We would like to define diff-invariant observables which can be associated to points
in space-time with the property that if two such observables are associated to space-like
separated points the corresponding Peierls bracket must vanish. The difficulty in doing this
is that in order to define an observable we need to define it at least in an open neighborhood
around a state as in (2.13), so we need some prescription for following “the same point”,
on which the candidate diff-invariant observable will be localized, as we move on the space
of solutions X . General covariance implies that there is no canonical way to keep track of
the point as we change the state.

If the space-time has a well-defined boundary we can find prescriptions which select a
point in space-time for each solution in X relationally with respect to the boundary. For
example in AdS we can define a diff-invariant observable which seems to be localized at a
point by considering a radial geodesic at right angle from a specific point on the boundary,
moving a fixed regularized distance along it and measuring the value of a scalar quantity, for
example a scalar field or a scalar combination of the curvature, at the resulting point. This
gives a map from the space of solutions X to R, so it is a diff-invariant observable. Notice
however that the location of the resulting point depends on the entire geometry along the
geodesic, all the way from the boundary. Changing the metric anywhere along this geodesic

17The first order solutions are not unique due to diffeomorphism invariance, however the ambiguity drops
out when computing the change of the diff-invariant observable B.
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will move the resulting point. Hence the value of the observable will not strictly depend on
local data near the point. Similarly, if we act with one of the asymptotic symmetries the
boundary starting point will move and also the resulting bulk point will move. This implies
that the Peierls brackets of this candidate observable with the boundary charges, or other
observables along the geodesic will be non-zero, even though these regions are space-like
separated. Hence this relational observable is not really local.

Another way to define diff-invariant observables is to consider a complete gauge fixing
scheme. Then observables in the particular gauge labeled by a space-time coordinates are
automatically diff-invariant. However they will generally have non-local Peierls brackets,
since the assignment of a coordinate value to a point in space-time in the particular gauge,
will generally depend on the solution everywhere.

Additional difficulties arise in space-times without boundaries, for example in de Sitter
space. A boundary is an (asymptotic) part of the spacetime where gravity is not dynamical
anymore. This is why we can for example anchor geodesics to the boundary, and define
relational diff-invariant observables. Without a boundary, there is no part of the space-time
where gravity is turned off, and consequently no place to anchor geodesics.

2.3.3 State-dressed observables

If we consider a solution that is sufficiently complicated it is possible to specify points, and
hence define local diff-invariant observables, by using features of the state. We emphasize that
these observables will not have all the desired properties over the entire space of solutions
X , so these observables have certain aspects of state-dependence as discussed around (2.13).
One approach based on this idea was studied by DeWitt [16], building on [14, 15]. For a
D-dimensional space-time we start by identifying D scalar quantities Za, a = 1, . . . , D. These
can be combinations of curvature invariants and other scalars formed by the fields of the
theory. We could try to fix a coordinate system by using these D-scalars as coordinates. We
can use this intuition to introduce candidate local diff-invariant observables of the form

ϕ(Za0 ) =
∫
dDxϕ(x) δD(Za(x)− Za0 ) det

∂Z

∂x
. (2.15)

Here Za are the D scalar quantities introduced above and ϕ is any other scalar combination
of the fundamental fields of the theory. Similar constructions can be done for fields with
tensor indices.

Some comments are in order:

1. For a general space-time which is in-homogenous, and for certain choices of the values
Za0 , the delta function in (2.15) will click on a finite number of points, so the quantity
above is well-defined and finite. In symmetric space-times it will either not click at all,
hence the observable will be zero, or an infinite number of times so the observable will
be ill-defined. This shows that (2.15) is a quantity which is defined only on part of the
phase space. This is in accordance with our expectation that state-dressed observables
have to be state-dependent (2.13).

2. Suppose that the observable (2.15) is well defined on a state s and a neighborhood U

of the space of solutions X around it. It is clear that, at least at the classical level, this
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observable is diff-invariant, i.e. a well defined map ϕ(Za0 ) : U ⊂ X → R and hence a
good observable according to the definition (2.13).

3. One can show that under certain conditions, observables (2.15) are also local. If we
have a state s on which two such observables ϕ(ZaA), ϕ(ZbB) are well defined, with the
property that the delta functions click at single points A,B and that these points are
space-like separated with respect to the metric of s, then the corresponding observables
have vanishing Peierls brackets {ϕ(ZaA), ϕ(ZbB)} = 0, see [65] for a review. This follows
from the causality properties of linearized Green’s functions appearing in (2.14) around
the solution s. Notice that if two points A,B are spacelike separated on a solution
s, then there is a small enough neighborhood of s in which they remain space-like
separated. Hence their Peierls bracket will vanish in this entire neighborhood.

4. This shows that, as long as we accept that observables may be defined only locally on
the phase space of solutions, it is possible to find local, diff-invariant observables in
classical general relativity around states which are complicated enough. These are also
the interesting states, i.e. those containing bulk observers who want to study physics in
their environment.

5. Similar ideas are useful in cosmology, where the value of a scalar field can be used as
clock [66–68].

The next question is whether it is possible to define similar observables at the quantum
level. Aspects of this question were discussed in [17] and [18], where it was conjectured
that there is a quantum version of these observables which retain their locality properties
to all orders in the ℏ expansion, even though they are not expected to be local at the
non-perturbative level. Various difficulties are encountered at the quantum level including the
question of the renormalization of the composite operators (2.15), establishing diffeomorphism
invariance at the quantum level and the role of Poincare recurrences which will generally
introduce infinite copies where the delta function will have support [18]. In this paper we
provide support in favor of this conjecture by finding observables with certain similarities
in spirit to (2.15) directly in CFT language. This has the advantage that any object built
directly in the CFT is by construction diff-invariant.

2.3.4 A time-band in AdS

We now specialize to a setup that will allow us to make contact with AdS/CFT. We consider
geometries that are asymptotically AdSd+1 and we consider a short time-band T−ϵ,ϵ on
the boundary in global coordinates, defined as the set of points (−ϵ,+ϵ) × Sd−1 , ϵ > 0,
where the first interval refers to the time coordinate t. Near the boundary we can select a
Fefferman-Graham coordinate system where the fields, for example the metric and a scalar
of mass m2, have the behavior

ds2 = dr2

r2 +r2(−dt2+dΩ2
d−1)+r2−dgµν(r,x) dxµdxν gµν(r,x)= g(0)

µν (x)+g(2)
µν (x)r−2+. . .

ϕ= r−∆(ϕ(0)(x)+ϕ(2)(x)r−2+. . .) , (2.16)
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where x = (t,Ωd−1) and ∆ = d
2 +

√
d2

4 +m2. Here we consider normalizable states so
the growing modes, which would be dual to sources in the CFT, are set to zero.18 The
Fefferman-Graham coefficients g(0)

µν (x), ϕ(0)(x) are diff-invariant observables and are labelled
by boundary coordinates.19 This set of observables includes the asymptotic charges, for
example the ADM Hamiltonian can be computed as

H ∝
∫
Sd−1

dΩd−1g
(0)
00 (x) . (2.17)

We focus on these Fefferman-Graham observables restricted in the time band T−ϵ,ϵ. This
set of observables is closed under Peierls brackets and form a Poisson algebra A. Notice
that in this algebra we do not include observables which would be finite distance under
Poisson flow, otherwise flowing by finite distance with H would take us out of the time-band,
see also the discussion in [69].

Starting with the classical theory, we ask whether we can find observables localized deep in
the interior of AdS which are space-like with respect to the time-band and which have vanishing
Peierls brackets with observables in the time-band algebra A. These candidate observables
are to be defined as in (2.13), in particular they need to be defined on a neighborhood U ⊂ X
of a solution s ∈ U and not necessarily on the entire space of solutions X .

It is clear that observables defined relationally with respect to the boundary, or with
a gauge fixing condition which makes use of the boundary, do not satisfy these conditions.
Due to their gravitational Wilson lines they will have non-vanishing Peierls brackets with the
Hamiltonian and other charges on the boundary [46, 47]. Such observables generally change
the energy of the state, which due to the gravitational Gauss law can be measured in the
time band T−ϵ,ϵ by (2.17). Another point of view is that such observables identify a point
in the bulk, and in particular a moment in time, relationally with respect to the boundary.
Thus an infinitesimal motion in time of the starting point on the boundary is translated via
the relational prescription into an infinitesimal time motion of the corresponding bulk point.
Then the Peierls bracket of the candidate bulk observable with H generates time-derivatives
of the point in the bulk and is non-vanishing.

The discussion of the previous subsection implies that if we start with an asymptotically
AdSd+1 solution s of the bulk equations which is complicated enough, then we can define diff-
invariant observables of the form (2.15) in a neighborhood of s so that they have vanishing
Peierls bracket with all elements of the time-band algebra A including charges like the
Hamiltonian (2.17). Such observables do not change the total energy of the state but instead
they rearrange the energy, “absorbing” from the background solution the amount of energy
they themselves create. These observables select a point in the bulk, and a moment in
time, by using features of the state.

In what follows we will provide evidence that the same conclusions are true in perturbative
quantum gravity. We will proceed by translating the question in CFT language and using
the AdS/CFT correspondence.

18We only assume that the sources are zero in the time band T , they could be turned on in the far past in
order to prepare a state.

19The subleading coefficients are fixed by the equations of motion in terms of the leading ones.
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3 Holographic setup

In this paper, we will study the question of locality in quantum gravity in the context of
the AdS/CFT correspondence. A question we would like to understand is how certain bulk
subregions are encoded in the boundary CFT. There are cases where this is well understood.
For example, the bulk dual of a boundary subregion is known as the entanglement wedge,
which is the bulk region extending between the boundary subregions and the relevant Ryu-
Takayanagi surface extending in the bulk [70]. This correspondence between parts of the
boundary and bulk is known as subregion-subregion duality [44, 71, 72], and it is worthwhile
to mention that in general, the entanglement wedge of a boundary subregion is much larger
than its causal wedge (the part of the bulk contained by lightrays shot from the causal
developments of the boundary subregion).

Subregion-subregion duality and entanglement wedge reconstruction utilizes the organiza-
tion and entanglement of CFT degrees of freedom organized spatially. We will be interested
in rather different bulk subregions, which lie deep down in the bulk and never extend to the
boundary CFT. What is the CFT dual of a causal diamond located deep near the center
of AdS? The answer to this question remains elusive, and in particular it is understood
that in general, these bulk regions do not correspond to the entanglement wedge of any
boundary subregion. There have been previous attempts to understand the CFT mapping of
such regions, see for example [21–24] which attempt to assign a meaning to the entropy of a
general closed codimension-2 spatial curve in AdS. Here we will follow a different approach
by focusing on the algebra of single-trace operators [20].

We will start by reviewing some basic but relevant features of AdS/CFT, before turning
to a discussion of the class of states that we will be considering throughout this paper and
their salient properties.

3.1 Gravitional states in AdS, large diffeomorphisms and asymptotic
symmetries

We will be interested in gravitational solutions which are asymptotically AdSd+1. We have
in mind an embedding in a top-down setup with a holographic dual CFT, like N = 4 SYM
at strong coupling, on S3 × R and the N -scaling we indicate in most of the paper refers
to this theory. However for most of the discussion the details of the embedding in string
theory, the extra fields, as well as the presence of a compact internal manifold are not
important unless explicitly stated.

Solutions to the bulk equations of motion can be thought of as states in the dual CFT. If
we think of a bulk geometry described by a Penrose diagram, the diagram really represents the
entire time-history of the state. We can take the state to live at t = 0 on a boundary Cauchy
slice, and the portion of the geometry relevant to describing the state is an initial data surface
given by a bulk Cauchy slice (or the Wheeler-de Witt patch associated to the boundary
Cauchy slice). To view these geometries as states of the dual CFT, it is important that the
bulk fields have a fall-off corresponding to normalizable modes with vanishing CFT sources.20

20If these states are prepared by a Euclidean path-integral [73–76], sources can be turned on in the Euclidean
past which prepares the state, but it is important that they vanish as tE → 0 for the geometries to be
interpreted as states in the undeformed CFT.

– 19 –



J
H
E
P
0
5
(
2
0
2
4
)
2
6
1

We want to consider semi-classical solutions with non-trivial bulk geometries, i.e. where
backreaction is strong. The corresponding CFT states |Ψ0⟩, which we take to be pure, have
large energies which scale as

⟨Ψ0|H|Ψ0⟩ ∼ O(N2) , (3.1)

and as we will see, they will generally also have an energy variance of the same order. We
will also consider perturbative excitations of the quantum fields on top of the background
geometry. These excitations add/subtract quantum particles which change the energy by an
O(N0) amount, and whose backreaction on the geometry is thus generally small.

Geometries of this type will often be macroscopically time-dependent, such that the
initial data on a bulk Cauchy slice changes as we perform time-evolution of the state. This
has consequences for the variance of the energy, as we will now see. Any state |Ψ0⟩ can be
expanded in the basis of CFT energy eigenstates as

|Ψ0⟩ =
∑
i

ci|Ei⟩ . (3.2)

The time-dependence of the bulk geometry implies that such states will have energy variance

(∆H)2 ≡ ⟨Ψ0|H2|Ψ0⟩ − ⟨Ψ0|H|Ψ0⟩2 ∼ O(N2) . (3.3)

To see this, consider the inequality

1
2 |⟨[H,A]⟩| =

1
2 ⟨∂tA⟩ ≤ ∆H ·∆A , (3.4)

where in the first equality we assumed that the operator A is not explicitly time-dependent.
Then we have

∆H ≥ 1
2
⟨∂tA⟩
∆A ∼ O(N) , (3.5)

where we have used large N factorization for the operator A. This shows that provided
there is macroscopic time-dependence (the classical vev of A changes at leading order), the
variance of the energy scales at least as N2.21 Some bulk geometries we will consider are
macroscopically time-dependent, but only inside the horizon. In this case, we cannot use the
argument above, but we still expect the variance to be of order N2. It is interesting to ask
whether the variance is a quantity that can be extracted from the semi-classical geometry
alone. In general, we expect that the quantum state of the fields in the bulk is important
as well. We discuss this further in appendix A.

There are various types of explicit constructions of states of this kind. There are states
prepared by Euclidean path integral with sources for single-trace operators [73–76]. These
states should be interpreted as coherent states of the quantum gravitational dual, which
are labelled by phase-space points corresponding to initial data.22 There are also states

21Note that if the variance is parametrically larger than O(N2), the state may no longer have a good
semi-classical interpretation. An example would be a superposition of black holes of different masses.

22It appears that one may not construct arbitrary initial data this way, see [77]. This will not affect our
construction and for states prepared by a Euclidean path integral, we should simply keep in mind that we
have access to a restricted class of initial data.
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prepared by a boundary state of the CFT, further evolved by some amount of Euclidean
time [78–81]. The bulk interpretation of these states is that they correspond to black hole
geometries with End-of-the-World branes sitting behind the horizon. This is an example
where the bulk geometry is macroscopically time-dependent, but only behind the horizon.
Similarly, for two-dimensional CFTs, we can construct pure states by performing the path
integral over a surface of higher topology, for example half a genus-2 surface, see [82]. These
geometries are also macroscopically time-dependent behind the horizon, but instead of having
a brane behind the horizon, they have topology. Finally, it is worth noting that there are
semi-classical geometries that also preserve supersymmetry, the most famous of which are
the LLM geometries [83]. In these cases, one can obtain a better understanding of the dual
CFT states. We will come back to these geometries in section 6.

As usual in gravity, we should identify solutions which are related by small diffeomor-
phisms, i.e. diffeomorphisms that vanish near the AdS boundary. There is also a class of
large diffeomorphisms, which are compatible with the boundary conditions imposed in the
definition of our theory of AdS gravity. This set of diffeomorphisms forms what is called
the asymptotic symmetry group. In the case of AdSd+1, d ≥ 3 this is the conformal group
SO(2, d), while for d = 2 it gets enhanced to the Virasoro group [84]. When acting on
a given bulk solution these large diffeomorphisms will generally transform the geometry
into a new state, which is physically distinguished from the previous one, unless of course
the original state happens to be invariant under the symmetry. We will later also discuss
solutions with two asymptotic boundaries, such as the eternal black hole in AdS, in which
case the asymptotic symmetry group is larger. Let us now discuss the various elements of
the asymptotic group/conformal group:

• Time translations: one particular class of states we will discuss are those with
semiclassical time-dependence in the bulk, for example a state corresponding to the
gravitational collapse of a star. In this case large diffeomorphisms corresponding to
asymptotic time translations transform the state as |Ψ0⟩ → e−iHt|Ψ0⟩. The initial data
corresponding to |Ψ0⟩ is not the same as that of e−iHt|Ψ0⟩. Our end goal will be to
provide local operators whose gravitational dressing is done towards a feature of the
state. If the state is time-dependent then we can select a moment in time by using the
features of the state, as opposed to the boundary time coordinate. On the other hand if
the state is static, then the only way to identify a moment in time is by dressing to the
boundary. This is why it will be important for us to consider time-dependent states.

• SO(d) rotations: if the state breaks SO(d), then asymptotic rotations transform
it to a new state. In this case we can use the features of the state to identify the
angular location of a point. On the other hand, if the state is SO(d) invariant it will
generally not be possible and at best we can obtain an operator smeared over the bulk
angular coordinates, or alternatively we can fix the angular location by dressing to the
boundary.

• AdS boosts: the Lorentzian conformal group acting on Sd−1 × R has another 2d
generators which correspond to “boosts” in various directions. These can be realized
as d non-independent copies of an SL(2,R) algebra, see for example [85]. Any state
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with finite energy cannot be annihilated by Hermitian combinations of these generators,
which we show in appendix B. The only state which is annihilated by these generators
is the global vacuum and any other state will necessarily transform under the action of
these boosts.23 Therefore, in any non-trivial state, we can fix the radial position of an
operator without referring to the boundary.

In a top-down setup, the gravity dual may have an internal manifold, like the S5 in
the context of N = 4 SYM. In such cases, we would need to break the R-symmetry to
localize a bulk operator in the internal space, which would be a straightforward generalization
of our construction.

3.2 Locality in AdS

We are now ready to discuss locality in quantum gravity with asymptotically AdS boundary
conditions. We would like to understand whether one can define local observables and whether
we can localize information deep in the center of the AdS.

The presence of the AdS boundary allows us to define one natural class of diff-invariant
observables: the fields in AdS can be expanded in a Fefferman-Graham expansion. The
coefficients of this expansion are themselves diff-invariant observables, which are dressed to
the boundary since the Fefferman-Graham gauge is chosen with respect to the boundary.
Let us call these observables FG-observables. For example, the AdM Hamiltonian is one
particular observable in this class. In perturbative quantum gravity, we can also consider
the expectation values of these observables as well as their higher-point correlation functions.
As we will discuss below, if we want to stay within the regime which can be described by
semi-classical gravity we may need to restrict the complexity of the correlators (for example
the number of operator insertions in the correlation function). We emphasize again that all
these observables are dressed with respect to the boundary. In particular, they will generally
not commute with the Hamiltonian or the other charges described in the previous section.

The question we would like to address is the following. If we start with a state with a
semi-classical geometric description, is there a way to modify the state in the interior of AdS,
without modifying any of the correlators of FG-observables localized in a short time-band
of the boundary? If the answer is yes, this means we can localize information since an
observer living near the boundary will have no way to know whether or not we modified
the state. Rather than trying to come up with bulk objects that achieve this goal, we will
address this question directly in the dual CFT. This has the following advantage: any object
built out of CFT degrees of freedom is necessarily diff-invariant and non-perturbatively well
defined. Provided the object acts in the right away, we can be assured that the construction
is fully consistent.

3.3 The CFT description and the time band algebra

Consider a large N holographic CFT which is dual to semi-classical general relativity coupled
to matter fields. In the large N limit, we can define the algebra A generated by single-trace

23States with infinite energy like the AdS-Rindler vacuum could also potentially be annihilated by some
boost generators.
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operators in a time-band Dt1,t2 , where we allow products of single-trace operators where
the number of factors is arbitrary but scales like O(N0).24 This was originally discussed
in [20], inspired by the earlier work [6, 26, 27]. In [20] it was proposed that the algebra A
can be thought of as being dual to the causal wedge of the region Dt1,t2 in the bulk (see
figure 1). This picture also suggests that the algebra A has a commutant which can be
idenfitied with a spacelike-separated causal diamond in the interior. Algebras of this type
have received attention recently [28–32].

The work [20] studied this setup for states which are small perturbations around the
AdS vacuum. The geometry of AdS is homogeneous and featureless since it is a maximally
symmetric space. As already discussed in the previous section, this makes the definition of
local diff-invariant observables challenging. We would like to revisit the time-band algebra,
this time in cases where the bulk state has features, which in particular are time-dependent.
This means the state must be highly excited as can be seen for example from its energy (3.1).

At infinite N the problem can be understood in terms of QFT on a curved and in general
time-dependent background. In particular, gravitational backreaction of the quantum fields
can be ignored and one does not need to talk about gravitational dressing, which is a form of
backreaction. In this case, the existence of the commutant is obvious because we are in a
QFT situation. Note that if the Hamiltonian (which is always an element of the time band
algebra) is normalized appropriately,25 its commutator with the other single-trace operators
is suppressed by 1/N and thus vanishes when N is infinite.

At the level of 1/N corrections, the existence of the commutant is less obvious. Back-
reaction must now be taken into account and the gravitational Gauss law can spoil the
commutator between H and the other operators of the time-band algebra. For example, the
standard way to write bulk fields in terms of CFT operators is the HKLL construction [34–40]

Φ(t, r,Ω) =
∫

bdry
dt′ dΩ′

d−1K(t, r,Ω; t′,Ω′)O(t′,Ω′) , (3.6)

where K is related to a Green’s function of the Klein-Gordon operator on the appropriate bulk
geometry. This operator is defined purely within the CFT so it is manifestly diff-invariant.
To leading order at large N , it acts as a bulk field and commutes with other bulk fields at
spacelike separation. Notice however that in order to define the kernel K we have to choose
a coordinate system in the bulk. As we already mentioned, this gauge choice is defined
by making use of the asymptotic boundary, and an HKLL operator is thus dressed to the
boundary. Because of this, the commutator between an HKLL operator and the Hamiltonian
will not vanish at subleading orders in the 1/N expansion.

The physical origin of this effect is the gravitational Gauss law: acting with (3.6) will
generally create or destroy a particle in the bulk, thus changing the energy of the state, which
can be immediately measured at spacelike infinity by H. One can try to correct the HKLL

24Notice that at finite N the true algebra in a time-band would be the same as the full CFT algebra.
However, in the large N limit, a natural hierarchy emerges between “small products” of single-trace operators
and the rest of the algebra, which allows us to consider the notion of a time-band algebra. At large but finite
N , this is not a true algebra, since it does not close, but it defines a particular set of operators, which are a
subset of all of the operators in the CFT.

25A useful normalization is h = 1
N

(H − ⟨Ψ0|H|Ψ0⟩), which ensures that ⟨Ψ0|h2|Ψ0⟩ ∼ O(N0).
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operators at higher orders in 1/N by mixing it with other single- and multi-trace operators,
see [40, 86, 87], but the commutator with the Hamiltonian is universal and generally cannot
be removed in this way. It is also possible to think about the dressing in terms of (smeared)
gravitational Wilson lines connecting the bulk operator to the boundary, which make it
diff-invariant at the price of making it non-local [88–91]. The commutator with H is nonzero
because H picks up the contribution of the Wilson line.

This raises the question of whether the algebra A still has a commutant at subleading
orders in 1/N . The main goal of this paper is to provide evidence for the existence of such a
commutant. We will do so by identifying a class of operators that are gravitationally dressed
with respect to features of the state, rather than dressed to the boundary. In particular, these
operators will have vanishing commutators with the Hamiltonian, to all orders in 1/N . In
this paper, we will focus mostly on ensuring that bulk operators have a vanishing commutator
with the Hamiltonian (and the other charges), but it would be important to extend our
construction to all single-trace operators in Dt1,t2 . We given an alternative argument for the
existence of a commutatant to all orders in 1/N in section 5.

The existence of a commutant for A in 1/N perturbation theory would imply that
information can be localized in regions of the bulk and is not visible from the boundary at
the level of perturbative quantum gravity.26 We are now ready to formulate the concrete
goal that we will achieve in this paper.

3.4 Formulating the main goal

Our goal is to improve the locality properties of (3.6) by moving the gravitational dressing
from the boundary to the state. From a technical point of view, we will find CFT operators
Φ̂ which obey two properties:

1. [Qi, Φ̂] = 0 to all orders in 1/N , for all asymptotic charges Qi ∈ SO(2, d).

2. The correlators of Φ̂ agree with those of ΦHKLL to leading order in the large N expansion,
on the code subspace of |Ψ0⟩.

In taking the large N limit it is important to track how various effects scale with N . As we
will see, our new operators Φ̂ have vanishing commutator with Qi to all orders in the 1/N
expansion, but have a non-vanishing commutator at the level of e−N2 corrections.

In what follows we will first focus on ensuring a vanishing commutator of Φ̂ with the
Hamiltonian H to all orders in 1/N and then discuss the generalization to the other charges
in SO(2, d).

As we will see, our construction will not work for |Ψ0⟩ = |0⟩. Technically, this is because
the vacuum does not comply with the properties (3.1) and (3.3). Physically, it is because
the AdS vacuum has no feature that we can use to attach the dressing of our local operator.
Note that this is in line with the results of [48], where a protocol to reconstruct the bulk
state from correlators in the time-band was discussed.

26See [48, 60, 61, 69, 92–96] for other discussions of localization of information in perturbative quantum
gravity, with varying conclusions.
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3.5 Time-shifted states and return probability

We will now present the main technical tool that will enable us to define state-dressed
operators: the return probability. Let us start with a state |Ψ0⟩ satisfying the properties (3.1)
and (3.3). We define the following one-parameter family of states

|ΨT ⟩ = e−iTH |Ψ0⟩ T ∈ R . (3.7)

In the bulk, the states |ΨT ⟩ are related to |Ψ0⟩ by a large diffeomorphism, i.e. one that does
not vanish near the boundary and induces a boundary time-translation. It is important
to emphasize that they are different quantum states, even though they are related by a
symmetry. If we think about the phase space of gravity in AdS, the family of states correspond
to different phase space points, just like a particle moves on phase space as a function of
time in classical mechanics. From the bulk perspective, if |Ψ0⟩ was a coherent state, we
can also think of |ΨT ⟩ as coherent states.

We would now like to consider the overlap of such states. In particular, we would like
to study the overlap

⟨Ψ0|ΨT ⟩ . (3.8)

Thinking of these states as coherent states is useful to gain intuition about such overlaps.
For the simple harmonic oscillator, the overlap of two coherent states is

⟨α|β⟩ = e−
1
ℏf(α,β) , (3.9)

for a very simple quadratic function f . For states on the gravitational phase space, recalling
that ℏ ∼ GN ∼ 1/N2, we expect

⟨Ψ0|ΨT ⟩ = e−N
2f0(T ) , (3.10)

for a function f0 whose real part is positive. In the gravitational setting, it is not straightfor-
ward to directly compute f0(T ) from the phase space information, see [49] for a discussion on
nearby states. There is a general way to compute f0(T ) based on a Euclidean preparation
of the states [76], but it requires some effort (in particular solving the non-linear Einstein
equations). The computation of f0(T ) directly from the information on an initial data slice,
which specifies the point on phase-space, is an interesting problem.27

It is also instructive to think about the overlap from a microscopic point of view. In
the CFT, the overlap is given by

⟨Ψ0|ΨT ⟩ =
∑
i

|ci|2e−iTEi . (3.11)

Note that there are eS(E) terms here, each of size e−S(E). The suppression (3.10) must
therefore come from the summation over a large number of phases.

27Similarly, we do not know of a gravitational argument that guarantees that the real part of f0(T ) is
positive, which must be the case if the geometries have a state interpretation in the dual CFT. We comment
on this further in the discussion.

– 25 –



J
H
E
P
0
5
(
2
0
2
4
)
2
6
1

If the bulk state has no periodicities in time, we expect the real part of f0(T ) to increase
as we increase T . However, this increase will not continue forever. We will shortly give an
estimate of the time-average of (3.11), and argue that the decay will saturate at some point.
Physically, the non-trivial overlaps (3.11) imply that it is not correct to think that all the
states |ΨT ⟩ are independent, see also [49, 97, 98] for related discussions. In particular, even if
the bulk state is not macroscopically periodic, there will still be a microscopic periodicity of the
state due to Poincare recurrences, that will happen at very large T ∼ O(eeN2

). Throughout
this paper, we will be interested in much earlier time scales so it will be sufficient for us to
treat the states |ΨT ⟩ as quasi-orthogonal since all overlaps will be exponentially small.

We will also need to define the notion of the code subspace. Starting with the state
|Ψ0⟩ we define the code subspace as

H0 = span{|Ψ0⟩,O(t,Ω)|Ψ0⟩, . . . ,O1(t1,Ω1) . . .On(tn,Ωn)|Ψ0⟩} , (3.12)

HT = span{|Ψ⟩T ,O(t,Ω)|ΨT ⟩, . . . ,O1(t1,Ω1) . . .On(tn,Ωn)|ΨT ⟩} , (3.13)

with the corresponding projector PT . The projectors P0 and PT are simply related by
time-evolution, i.e. we have

PT = e−iTHP0e
iTH , (3.14)

and in particular, we emphasize again that PT ̸= P0. In what follows, it will be convenient
to work with real quantities rather than the overlap (3.8), and we are now ready to define
the return probability.

3.6 The return probability

We now ready to examine the T -dependence of the overlap (3.11) in more detail. As explained
above, it is more convenient to work with a real quantity so let us define the return probability

R(T ) := |⟨Ψ0|e−iTH |Ψ0⟩|2 . (3.15)

It is similar to the spectral form factor (the two coincide when |Ψ0⟩ = |TFD⟩ and H = HL +
HR). Recently, the spectral form factor has been extensively discussed in connection to the
black hole information paradox and quantum chaos, see for example [99]. The time-scales
of interest in that context are again late times such as t ∼ eN

2 (note this is much shorter
than the Poincare recurrence time which is doubly exponential). Here again, we will be
interested in much earlier time-scales.

In general, it is difficult to compute (3.15). As we mentioned above, the overlaps can be
computed from time-shifted coherent states in gravity but the best known technology to do
so uses the Euclidean path integral and involves solving the non-linear Einstein’s equations.
Nevertheless, we can compute the very early time dependence using large N factorization.
We present this calculation in appendix C. At early times, we have

R(T ) = e−(∆H)2T 2
, (3.16)

which is generally valid for times up to T ∼ O(N−1). For the purposes of this paper, we want
to understand how the return probability behaves at time-scales T ∼ O(1). Here, the decay
does not follow from large N factorization and it is in general not an easy task to compute it.
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In appendix C, we review that for the TFD state, the return probability (which is the
spectral form factor) decays as

RTFD(T ) = e−N
2fTFD(T ), (3.17)

where fTFD(T ) is O(N0) and for early times T ∼ O(N0) ≪ β behaves like fTFD(T ) ≈ αT 2,
where α is an O(N0) constant which depends on the temperature. This is an extremely fast
decay, much faster than thermalization where the prefactor in the exponent is of order N0,
and shows that thermofield double states at different times orthogonalize exponentially fast.

We expect similar behaviour for many other semi-classically time-dependent states, that
is for timescales of T ∼ O(1), we expect

R(T ) ∼ e−N
2f̃0(T ) , (3.18)

for a positive and O(N0) function f̃0(T ) which depends on the state |Ψ0⟩. We expect that
for small T the function f̃0(T ) starts quadratically, as in (3.16). Note that this fast decay
is not a consequence of quantum chaos, as it can occur at weak coupling or even in free
theories, provided they have a large number of degrees of freedom (see [100] for a study of
this question in weakly coupled N = 4 SYM). The difference between a free theory and a
holographic one will manifest itself in the time-scale during which the exponentially small
overlap remains valid. For free N = 4 SYM, the spectrum is integer spaced and so the return
probability will be periodic with period 2π, while in a chaotic theory it will take doubly
exponentially long for the signal to return to unity.

The average late-time value of the return probability depends on whether the theory
is chaotic or not. For a system with no degeneracies,28

R = lim
t∗→∞

1
2t∗

∫ t∗

−t∗
dT R(T ) =

∑
i

|ci|4 . (3.19)

For the type of states we are considering, i.e. those with a large energy variance, this is
exponentially small, and scales as e−α′N2 , where α′ is an O(1) constant which depends on
the particular |Ψ0⟩ we have picked. This value is often referred to as the plateau, especially
in the context of the spectral form factor.

Between the initial decay (3.17) and the plateau (3.19), there can be other regimes,
which are particularly interesting in connection to quantum chaos [101, 102]. For example, in
the spectral form factor, the plateau is preceded by a ramp where the signal grows linearly.
These effects will not be important for the present work, as we will only consider O(1)
timescales. The crucial point we will exploit throughout the paper is that the signal is already
exponentailly small in N2 at those timescales.

The overlap (3.8) obeys the property

⟨Ψt0 |Ψt0+T ⟩ = ⟨Ψ0|ΨT ⟩ . (3.20)
28Systems like N = 4 SYM will have degeneracies due to superconformal symmetry. For example, for every

primary, there are towers of descendants with degenerate energy levels. Nevertheless, the number of degenerate
states is exponentially smaller than the number of all states, at least in the high-energy sector of the theory,
so the degeneracy only contributes a subleading effect.
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This may appear trivial, but it means that even if the bulk geometry appears to be static at
the semi-classical level, the return probability may still decay following (3.17) if the state had
a period of manifest bulk time-dependence in the far past. Said differently, the variance in
energy which determines the decay is unchanged under time-evolution, so even if the 1-point
functions have stabilized, the variance remains large. This observation is particularly relevant
in the case of a black hole formed by gravitational collapse.

The exponential decay (3.17) can be extended to more general correlators of the form
⟨Ψ0|O(t1) . . .O(tn)|ΨT ⟩, where O are single-trace operators. We expect

⟨Ψ0|O(t1) . . .O(tn)|ΨT ⟩ = F (T )⟨Ψ0|ΨT ⟩ , (3.21)

where F (T ) is finite in the large N limit and satisfies

F (0) = ⟨Ψ0|O(t1) . . .O(tn)|Ψ0⟩ ,
dkF (T )
dT k

|T=0 = O(N0) . (3.22)

To see the exponential decay we write (3.21) as

⟨Ψ0|O(t1) . . .O(tn)|ΨT ⟩ =
⟨Ψ0|O(t1) . . .O(tn)|ΨT ⟩

⟨Ψ0|ΨT ⟩
⟨Ψ0|ΨT ⟩ . (3.23)

The second term in this product is responsible for the decay of the correlator. The first
term is hard to evaluate from first principles, but in holography its meaning is clearer.
In the bulk theory, it is computed by computing a correlation function on a background
dictated by the Euclidean path integral with different sources on the northern and soutern
hemisphere (corresponding to |Ψ0⟩ and |ΨT ⟩, respectively). This correlator is O(1) and a
smooth function of the background, which will generally change slowly with T , so we expect
its time derivatives not to scale with N as indicated in (3.23). We check this statement
in a few examples in section 6.

To sum up, any state in the code subspace (3.12) has an exponentially small overlap
with any state in the code subspace (3.13). This can be summarized by the relation

Rcode(T ) =
1

dcode
Tr[PTP0] = O(e−N2f̃(T )) (3.24)

where dcode is the dimensionality of the code subspace, and for the time-scales we have
discussed. The decay (3.24) can be used in combination with other useful inequalities.
For example, for a Hermitian operator O with eigenvalues λi, and if [P0,O] = 0, we have
|⟨Ψ0|O|ΨT ⟩|2 ≤

√
Tr[O4]

√
Tr[PTP0] and |⟨Ψ0|O|ΨT ⟩|2 ≤ max(λ2

i )Tr[PTP0].

3.7 Other asymptotic charges

More generally we can consider the change of the state by large diffeomorphisms corresponding
to the other asymptotic symmetries of the theory, in the case of AdSd+1 the conformal group
SO(2, d) with the generators we discussed in section 3.1. This leads us to define a natural
generalization of the return probability

R(g) = |⟨Ψ0|U(g)|Ψ0⟩|2 , g ∈ SO(2, d) , (3.25)

where U(g) is the unitary realizing the conformal transformation of the CFT on Sd−1 × time.
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What can we expect for these overlaps? To start, let us suppose the state |Ψ0⟩ breaks
rotational SO(d) symmetry at the classical level. By this, we mean that bulk dual geometry
breaks the symmetry, which would be the case for some spherically asymmetric lump of
matter. Take J to be the angular momentum generator, then we expect that the variance
of J will be of O(N2) for such a state. Hence we expect that for small values of a rotation
angle ϕ dual to J we will have

R(ϕ) = e−(∆J)2ϕ2 = e−κN
2ϕ2

, (3.26)

for κ ∼ O(1). For more general angles, we expect

R(ϕ) = e−N
2frot(ϕ) . (3.27)

However, because angular momentum is quantized, we have

R(ϕ+ 2π) = R(ϕ) , (3.28)

hence the function frot(ϕ) has period 2π. In this direction of the conformal group the return
probability has a very short Poincare recurrence equal to 2π.

All in all we find that as we increase ϕ away from 0 the return probability R(ϕ) very
quickly dips down to exponentially small values and stays there until the Poincare recurrence
at ϕ = 2π. As we see from (3.27), for any fixed ϕ which is in the range (0, 2π), we have
R(ϕ) being exponentially small in the large N limit.

Of course if the state respects spherical symmetry then the return probability will not
decay in the corresponding SO(d) directions. It is worthwhile to discuss several distinct
scenarios. In the simplest case, the state preserves the symmetry and is thus annihilated by
the generators of rotations. The second simplest situation is the case where the symmetry
is manifestly broken at the classical level (for example an asymmetric lump of matter). In
this case, the breaking of the symmetry is manifest, and would be visible in the 1-point
function of single-trace operators. There are also more subtle situations where the state
breaks the symmetry classically in the bulk, but this may be invisible in the 1-point functions.
An example of this are states by prepared by the path integral on higher genus surfaces in
d = 2, and have topology behind the horizon [82].29

Finally as discussed in section 3.1, we expect that semi-classical states also break the
other conformal symmetries. We can get some intuition by considering a state dual to a
conformal primary of dimension ∆. In this case the return probability along one of the
conformal boost directions is determined by a group theoretic computation

R(s) = |⟨∆|e−isK |∆⟩|2 =
( 1
cosh2 s

)2∆
. (3.29)

For primary states with ∆ ∼ O(N2), we get exponential decay of the form e−N
2f(s) for any

non-zero s. Notice that for the conformal boosts we do not expect any Poincare recurrence
29The thermofield double also has this property. It breaks part of the rotational symmetry of the two CFTs,

but the breaking is invisible in 1-point functions. It would be interesting to understand if this type of breaking
always requires a horizon.
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for large s, which in the case of primaries is obvious from the formula above, since such a
transformation monotonically increases the energy of the state.

In the case of AdS3 the asymptotic symmetry group is enhanced to Virasoro and similar
statements hold for the flow of the state under more general large diffeomorphisms generated
by Ln, Ln.

To summarize, if we start with a state |Ψ0⟩ which breaks all conformal symmetries at
the level of the semi-classical geometry we expect that R(g) defined in (3.25) will decay
exponentially fast in all directions away from the identity element on the conformal group
manifold.

4 State-dressed operators

We are now in a position to introduce operators Φ̂ which satisfy the two properties described
in section 3.4, namely their commutator with the Hamiltonian and other asymptotic charges
is zero to all orders in the 1/N expansion and they act like HKLL operators to leading
order at large N on the code subspaces {HT , T ∈ (−t⋆, t⋆)}. Here t∗ is an order one (i.e.
N0)) time of our choice. We define the HKLL operator Φ, (3.6), in the N → ∞ limit. In
this limit the bulk is described by a quantum field theory on a curved spacetime and code
subspaces for different T will be strictly orthogonal to one another. In addition, Φ is a local
bulk operator which commutes with all the boundary single-trace operators in the time band
algebra, including the appropriately normalized Hamiltonian [37, 86]. But it will no longer
be commuting once 1/N corrections are included. In particular, we will have

[Φ, H − ⟨H⟩
N

] = O(1/N) ̸= 0 . (4.1)

Again, the physical reason behind this is that (3.6) is a diff-invariant operator that is dressed
to the boundary. Note that for the naive HKLL operator (3.6), the commutator with other
single-trace operators will also be non-zero at order O(1/N). For almost all single-trace
operators, this can be removed order by order in 1/N by adding the appropriate corrections to
Φ [86]. However, these modifications will not be able to remove the non-vanishing commutator
with the Hamiltonian (4.1). Thus, to remove the gravitational dressing to the boundary
CFT, a more sophisticated procedure is required.

We start by focusing on setting the commutator with the Hamiltonian to zero and
discuss the extension to other asymptotic charges later. To this end, we introduce the
following operator30

Φ̂ = c

∫ t∗

−t∗
dT e−iTHP0ΦP0e

iTH , (4.2)

where t∗ is an O(N0) timescale of our choice, and c is an overall normalization constant

c−1 =
∫ t∗

−t∗
dT ⟨Ψ0|PT |Ψ0⟩ . (4.3)

30Recall that P0 is the projector on the code subspace of |Ψ0⟩, and thus [Φ, P0] = 0 in that code subspace.
Therefore, we could have defined operators with the same action on the code subspace as (4.2), using a single
projector on the left (or right) of Φ. Even though the resulting operators would act in the same way on the
relevant code subspace, the operators would not be exactly identical: they would have additional non-zero
matrix elements associated to subspaces orthogonal to H0.

– 30 –



J
H
E
P
0
5
(
2
0
2
4
)
2
6
1

As we will see, the projector P0 will be key and will make Φ̂ act appropriately on the
code subspaces. The range (−t⋆, t⋆) determines the set of code subspaces on which Φ̂ acts in
the desired fashion, and ultimately cannot be taken to be bigger than the time range where
the exponential decay of the return probability (3.17) is valid. To make the operator (4.2)
have the desired properties on as many states as possible, we can take this range to be the
time range where the return probability decays exponentially, though this is not strictly
necessary and a t∗ of O(N0) is sufficient. We also provide an alternative presentation of
the operators in subsection 4.4. In the following subsections, we will study the action of
these operators in the relevant code subspaces, and will be particularly interested in their
commutator with the Hamiltonian.

4.1 Vanishing commutator with H to all orders in 1/N

We now show that the operator (4.2) has vanishing commutator with H to all orders in
1/N . We start by rewriting the commutator as

[H, Φ̂] = −i d
ds

(
eisHΦ̂e−isH

)∣∣∣
s=0

, (4.4)

and performing a change of variables, we find

[H, Φ̂] = −i d
ds

(
c

∫ t∗−s

−t∗−s
dT e−iTHP0ΦP0e

iTH
) ∣∣∣

s=0

= ic(Pt∗Φt∗Pt∗ − P−t∗Φ−t∗P−t∗) ,
(4.5)

where we defined Φt∗ = e−iHt∗ΦeiHt∗ . Using the decay of the return probability through (3.24),
we see that the commutator inserted inside a correlator of a small number of single-trace
operators and evaluated on the state |ΨT ⟩ will give an exponentially small answer, since
each of the two terms in (4.5) give exponentially small numbers. This is valid for any T

as long as |T | < t⋆ and |T | − t⋆ ∼ O(N0). Thus,

[H, Φ̂] = O(e−γN2) , (4.6)

where γ is positive and O(N0), proving property 1, defined in subsection 3.4, for these
operators. Note (4.6) is true for our set of code subspaces with T constrained as above,
but not for all states. For example, the commutator is not exponentially suppressed in
the state |Ψt∗⟩.

4.2 Similar action as HKLL operators

A vanishing commutator with the Hamiltonian is necessary but not sufficient. There are many
CFT operators that commute with the Hamiltonian up to exponentially small corrections
in N2, but they will not have the same effect as acting with a local bulk operator, see for
example footnote 4. Therefore, we also need to show that the operator Φ̂ behaves in the
same way as the HKLL operator (3.6) to leading order at large N inside correlation functions
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of single-trace operators. For that we consider

⟨Ψ0|O . . . Φ̂ . . .O|Ψ0⟩ =

= c

∫ t∗

−t∗
dT ⟨Ψ0|O . . . e−iTHP0ΦP0e

iTH . . .O|Ψ0⟩

= c

∫ t∗

−t∗
dT ⟨Ψ0|O . . . P0PT (e−iTHΦeiTH)PTP0 . . .O|Ψ0⟩.

(4.7)

In the last line, we have inserted two projectors P0, which we are free to do since the
correlators is evaluated in the state |Ψ0⟩. The integrand above corresponds to TrPTP0, up to
some operator insertions that do not affect its general structure. From (3.24) we see that the
integrand will be exponentially suppressed as |T | increases (and is not O(1/N)) because of
the exponentially small overlap of the code subspaces. We can thus evaluate the integral by
a saddle-point method controlled by the large N limit. The dominant contribution comes
from T = 0.31 Using (3.21) and (4.3) we have

⟨Ψ0|O . . . Φ̂ . . .O|Ψ0⟩ = ⟨Ψ0|O . . .Φ . . .O|Ψ0⟩+O(1/N), (4.8)

as desired. The 1/N corrections can be thought of coming from corrections to the leading
saddle-point, and would be sensitive to the more detailed form of F (T ) in (3.21).

Notice that if we apply the operator Φ̂ to one of the time-shifted states, then as long
as |T | < t∗, we find

⟨ΨT |O . . . Φ̂ . . .O|ΨT ⟩ = ⟨ΨT |O . . . (e−iTHΦeiTH) . . .O|ΨT ⟩+O(1/N) (4.9)

Thus in the code subspace HT , Φ̂ acts as e−iTHΦeiTH to leading order at large N . We
discuss the physical interpretation of this in the next subsection. To make this even more
manifest, we can also write (4.2) as

Φ̂ = c

∫ t∗

−t∗
dT PT (e−iTHΦeiTH)PT . (4.10)

Since we have shown that, to leading order at large N , Φ̂ and Φ have the same matrix
elements on the entire code subspace it follows that higher point functions of Φ̂ will also
agree at large N with those of Φ. Consider for instance,

Φ̂i = c

∫ t∗

−t∗
dT e−iTHP0ΦiP0e

iTH (4.11)

where Φi ≡ Φ(xi) is an HKLL operator located at a certain spacetime point xi, then in
the large N limit

⟨Ψ0|O . . . Φ̂1Φ̂2 . . . Φ̂n . . .O|Ψ0⟩= cn
∫ t∗

−t∗
dT1 . . .dTn ⟨Ψ0|O . . .PT1(e−iT1HΦ1e

iT1H)PT1PT2

(e−iT2HΦ2e
iT2H)PT2 . . .PTn(e−iTnHΦneiTnH)PTn . . .O|Ψ0⟩

≈ ⟨Ψ0|O . . .Φ1Φ2 . . .Φn . . .O|Ψ0⟩ . (4.12)

31One might worry about the possibility of rapidly oscillating phases, such as the one in ⟨Ψ0|ΨT ⟩ displacing
the location of the saddle point. Notice however that from (3.21), (3.22) it follows that such rapidly oscillating
phases cancel between the bra and ket contribution.
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In addition, this implies that the commutator of Φ̂i’s is the same as that of HKLL operators
in the large N limit. Two operators, Φ̂(xi) and Φ̂(xj), will have zero commutator at spacelike
separated points whereas they have O(1) commutator if they are timelike-separated. This is
true even though these operators do not translate under commutation with the boundary
Hamiltonian, up to exponentially small corrections in N . Nevertheless, they still have bulk
space-time labels and preserve the causal properties of HKLL operators in the large N limit.

4.3 Interpretation and comments

We have just seen that to leading order in the large N limit, the operator (4.2) acts like
the HKLL operator (3.6) in the appropriate code subspace. However, it commutes with H

to all orders in 1/N . The existence of these operators provides strong evidence that the
algebra of single-trace operators in a short time band can have a non-trivial commutant
when acting on time-dependent states of high energy.

The vanishing of the commutator with H should be interpreted as (4.2) being gravita-
tionally dressed not with respect to the boundary, but instead with respect to features of
the bulk state, in particular its time-dependence. This can be seen by the fact that Φ̂ acts
differently on different states. On the time-shifted states |ΨT ⟩ and their code subspaces,
it acts as e−iTHΦeiTH . For example, imagine that in the state |Ψ0⟩ we have a supernova
explosion taking place at t = 0 and we chose the operator (3.6) so that it acts right next
to the explosion. In the state |ΨT ⟩ the explosion obviously takes place at t = −T . From
equation (4.9), we can see that the operator Φ̂ will act again right next to the supernova
explosion, even though the supernova is now at t = −T . Therefore, one and the same operator
Φ̂ knows how to always act at the correct moment (right next to the explosion) for the entire
family of states |ΨT ⟩, as long as |T | < t∗. The finiteness of t∗ indicates that there is still
some residual boundary dressing, which however is not visible in pertubation theory.32

The property of being dressed with respect to features of the state is also present in
the local observables one defines in general relativity, discussed in section 2.3.3. These state
dressed observables are defined at points where a set of D scalars, like the Ricci scalar or
RµνρσRµνρσ where Rµνρσ is the Riemann tensor, ‘click’ with a certain set of numbers. The
observables are labeled by these values and they are evaluated precisely where the scalars
take those values in each state. Locality of these observables requires them to be defined only
in some neighbourhood of a classical solution. In the same spirit, the operators discussed in
this section are also local for a certain family of code subspaces, see section 4.1.

As mentioned earlier, if the spacetime is so symmetric that the scalars take the same
values throughout the spacetime, then these classical observables are not well defined. Since
every point in the spacetime is physically equivalent, it is reasonable that local observables are
ill defined for these solutions. For this reason, the observables are state dependent. Similarly,
it is not possible to apply the same logic discussed in the previous subsections to empty
AdS, or other static states, as there are no time-dependent features in the bulk that can
be used as a ‘clock’ to define a moment in time where the operator acts. Technically, the

32Similar remarks were made in [18] for the DeWitt observables in AdS. One can certainly imagine increasing
the size of t∗, but there is a potential limitation due to Poincare recurrences.
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return probability for such states does not exhibit the rapid decay (3.10). We thus see a
nice parallel between the classical and quantum situations.

The definition (4.2) gives a bulk operator which is dressed with respect to features of the
state, but in an implicit manner. Going back to our example of a supernova explosion, one
might guess that the dressing is with respect to the supernova and that one could in principle
define a gravitational Wilson line between the operator and the supernova. But what if the
state described instead two supernovas exploding at the same or different times? To which
explosion would our operator be dressed to? The construction (4.2) does not correspond
to a dressing relative to a specific localized feature in the bulk, but rather to the overall
time-dependence of the state. If we wanted to associate the dressing to a particular part of
the bulk geometry then we would have to enlarge the set of code subspaces on which our
operator correctly acts. For example, if our operator did not move under the time-translation
of one of two supernovae, we would say that it is dressed to the other one. We hope to return
to this question in the future, but see subsection 7.3 for some related remarks.

4.4 A similarity transformation

We briefly mention a variant of operators with properties similar to those of (4.2). We first
define the shifted Hamiltonian33

Ĥ = H − ⟨Ψ0|H|Ψ0⟩I . (4.13)

Then we introduce

V = c√
2

∫ t∗

−t∗
dTe−iĤTP0 , (4.14)

with c given in (4.3). We have

V V † = c2

2

∫ t∗

−t∗
dT

∫ t∗

−t∗
dT ′e−iĤTP0e

iĤT ′
, (4.15)

where we used P 2
0 = P0. Following arguments similar to those of the previous subsection,

we find that to leading order at large N , and when computing the matrix elements of (4.15)
within the code subspace, the two integrals in (4.15) can be computed by a saddle point
method, where the dominant saddle is T = T ′ = 0. We then find that in this class of
states and at large N

V V † ≃ I, and V †V ≃ I , (4.16)

in the sense that, within the code subspace V behaves like a unitary, up to 1/N corrections.
Then we start with a boundary-dressed operator Φ and define

Φ̂ = V ΦV † . (4.17)

33This shift is useful in order to avoid rapidly oscillating phases in the discussion below.
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Following similar arguments as before we can show that the operator (4.17) satisfies properties
1 and 2 of subsection 3.4. To check the commutator of Φ̂ with H. We write

[H, Φ̂] = −i d
ds

(
eiĤsV ΦV †e−iĤs

)
|s=0

= −i d
ds

c2

2

(∫ t∗−s

−t∗−s
dTe−iĤT

)
P0ΦP0

(∫ t∗−s

−t∗−s
dT ′eiĤT

′
)
|s=0 ,

(4.18)

which again localizes on boundary terms and is thus exponentially suppressed.
Second, to show that the leading large N correlators of Φ̂ are the same as those of Φ we

follow exactly the same reasoning as in the previous subsection, but now we will have two time-
integrals. Each one of these time integrals will lead to a sharply suppressed Gaussian around
T = T ′ = 0 and can be evaluated by saddle-point at large N , reproducing the desired result.

4.5 Other asymptotic charges

More generally we need to make (3.6) commute with all boundary symmetry generators
corresponding to asymptotic symmetries. For asymptotically AdSd+1 space-times this is the
conformal group SO(2, d) and we consider a generalization of the form

Φ̂ = c

∫
B
dµ(g)U(g)P0ΦP0U(g)−1, (4.19)

where now

c−1 =
∫
B
dµ(g)⟨Ψ0|U(g)P0U(g)−1|Ψ0⟩ . (4.20)

Above, dµ(g) is the Haar measure on SO(2, d) and B is a reasonably sized connected
submanifold of SO(2, d) containing the identity. If the variance of all charges is O(N2),
the size of this ball should be O(N0), but not too big in the periodic directions. The
commutator with conformal generators will then be given by operators in the code subspace
of states U(g∗)|Ψ0⟩, where g∗ lies on the boundary ∂B. For the construction to work in this
generalization we must make sure that the overlaps

R(g) = |⟨Ψ0|U(g)|Ψ0⟩|2, (4.21)

decay exponentially in the geodesic distance of g from the identity. As discussed in subsec-
tion 3.7 we expect this to be true for states which break all symmetries at the semiclassical
level.34 The quantity R(g) is an interesting generalization of the return probability (3.15)
that would be interesting to study further.

5 A more general argument for the commutant

The operators (4.19) constructed in the previous section commute with the asymptotic charges
to all orders in 1/N , however they commute with the other single-trace operators in the
time-band generally only to leading order in 1/N . To identify a commutant for the time-band

34For compact symmetries, such as rotations, R(g) will have recurrences every 2π. Hence along the compact
directions we take g∗ ∼ O(1) < 2π.
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algebra A, the operators (4.19) have to be improved. In this short section we outline a
somewhat different argument suggesting that it is indeed possible to find a commutant to
all orders in 1/N . We caution the reader that the argument that follows is based on certain
assumptions which seem physically plausible, but for which a rigorous proof is still lacking. A
more careful treatment for the existence of a commutant (as well as a mathematically precise
definition of the time-band algebra to all orders in 1/N in the first place) would be desirable.

Let us start with a standard HKLL operator Φ. We also introduce the notation qi =
Qi−⟨Qi⟩

N for where Qi denotes any of the asymptotic SO(2, d) charges and Oj a general
single-trace operator in the time-band. Our goal is to find an operator Φ̂ which has the
following properties:

1. [Φ̂, qi] = 0 and [Φ̂,Oj ] = 0 for all qi ∈ SO(2, d) and Oj ∈ A, to all orders in 1/N .

2. To leading order at large N the correlators of Φ̂ with qj ,Oi must be the same as those
of Φ. In particular this means that for single-trace operators Oi outside the time-band
we generally expect [Oi, Φ̂] = O(N0).

The first condition is obvious. The second condition is necessary in order to ensure that
the operator Φ̂ acts in the expected way, at least to leading order at large N , and creates
particles that can be detected with an O(1) effect by operators outside the time-band when
light rays from the diamond hit the boundary.

Here we remark that in order for the two conditions to be mutually consistent, it is
important that we impose the second condition only to leading order at large N . The point is
that [qi,Φ] = O(1/N) hence when looking at leading order correlators it is indeed consistent
to demand simultaneously that i) Φ̂ commutes with qi and that ii) Φ̂ acts like Φ. However,
when moving on to subleading corrections we have a non-vanishing commutator [qi,Φ] hence
we cannot impose both conditions at the same time. We choose to impose that our operators
Φ̂ continue to commute with qi to all orders in 1/N , but we allow their correlators to depart
from those of Φi at subleading orders in 1/N .

We now define the desired operators Φ̂ by specifying how they act on the code subspace
H0. Earlier we defined the code subspace as the space generated by acting on |Ψ0⟩ with
single-trace operators, which are not necessarily restricted in the time-band. However, by
an analogue of the Reeh-Schlieder theorem35 we expect that for reasonable bulk states |Ψ0⟩
the code subspace H0 can also be generated by acting on |Ψ0⟩ with only elements of the
time-band algebra A

H0 = span{A|Ψ0⟩} . (5.1)

We now define the action of the operator Φ̂ on the code subspace by the following conditions

Φ̂A|Ψ0⟩ = AΦ|Ψ0⟩ , ∀A ∈ A . (5.2)

This set of linear equations, one for every element of the small algebra A, defines the action of
Φ̂ on the code subspace, in a way which satisfies the desired properties as we will see below.

35This was discussed in [20] for the case of empty AdS and at large N . We believe that a similar result
should hold for more general heavy states and even when taking 1/N corrections into account, but it would be
interesting to develop a more careful proof.
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Notice that these equations can also be represented as follows: we first select a ba-
sis of linearly independent elements Ai of the algebra A. then we define the matrix of
2-point functions

gij = ⟨Ψ0|A†
iAj |Ψ0⟩ . (5.3)

From (5.1), it follows that the set of states |i⟩ = Ai|Ψ0⟩ form a (possibly over-complete) basis
of the code subspace. Since Φ̂ is an operator on the code subspace it can be written as

Φ̂ = Kij |i⟩⟨j| = KijAi|Ψ0⟩⟨Ψ0|A†
j , (5.4)

for an appropriate choice of Kij . To find the matrix K, we start with the desired relation (5.2)
written as

Φ̂Al|Ψ0⟩ = AlΦ|Ψ0⟩ , (5.5)

then we replace Φ̂ with (5.4) and multiply from the left with ⟨Ψ0|A†
k to get

gjl gkiK
ij = ⟨Ψ0|A†

kAlΦ|Ψ0⟩ . (5.6)

If the set of states |i⟩ = Ai|Ψ0⟩ are linearly independent then the matrix gij is positive
definite and invertible. In that case we can solve for K as

Kij = gikgjl⟨Ψ0|A†
kAlΦ|Ψ0⟩ , (5.7)

where gijgjk = δik. When (5.7) is replaced in expression (5.4), we find an explicit solution
of the desired equation (5.2).

We emphasize that the necessary ingredient to arrive at (5.7) was the linear independence
of the states Ai|Ψ0⟩, which is equivalent to the statement that there is no non-vanishing
operator in A which annihilates the state |Ψ0⟩. We discuss this condition in the following
subsection.

5.1 On the consistency of the defining equations

Before checking that the operators Φ̂ defined by (5.2), or equivalently via (5.4), (5.7), have the
desired properties, we need to check that equations (5.2) are self-consistent linear equations.
The only possible source of inconsistency is the following: if there was an element A ̸= 0 of
the time-band algebra A such that A|Ψ0⟩ = 0, this could potentially be a problem since we
would then have A|Ψ0⟩ = 0, while in general AΦ|Ψ0⟩ ̸= 0. Then the equation (5.2) would
imply 0 = A|Ψ0⟩ = AΦ|Ψ0⟩ ̸= 0 which is a contradiction. Relatedly, gij defined in (5.3)
would not be invertible and we would not be able to get to (5.7).

We will now show that this situation does not arise, that is

A|Ψ0⟩ ̸= 0 ∀A ∈ A , A ̸= 0 . (5.8)

We will prove this by first proving that at large N (5.8) is true and then we will argue that
1/N corrections cannot change the conclusion.
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We have been working under the assumption that the time-band is short enough, which
means that in the bulk there will be a region which is space-like relative to the time band. In
the large N limit, where gravitational backreaction is turned off, operators inside that region
(for example usual HKLL operators) commute with all elements of the algebra A, including
the appropriately normalized asymptotic charges qi. Hence, in the large N limit the algebra
A has a non-trivial commutant A′. We want to argue that this commutant continues to exist
when 1/N corrections are taken into account, provided that the state |Ψ0⟩ has non-vanishing
variance of O(N2) under the asymptotic charges.

Assuming that at large N the theory in the bulk behaves like usual QFT on a curved
background, we expect that an analogue of the Reeh-Schlieder theorem will hold for the
commutant A′, which means that we can generate the code subspace H0 by acting on |Ψ0⟩
with elements of A′.

Suppose now that there was an element A of the time-band algebra A which annihilated
the state |Ψ0⟩. Then for any element a′ ∈ A′ we have

Aa′|Ψ0⟩ = a′A|Ψ0⟩ = 0 . (5.9)

Since states of the form a′|Ψ0⟩ generate H0 we conclude that the operator A has vanishing
matrix elements in H0 at large N . From this we can not immediately conclude that A = 0 as
an operator when 1/N corrections are included. For example, for |Ψ0⟩ = |0⟩ the normalized
SO(2, d) generators qi = Qi

N have vanishing matrix elements at large N , since they annihilate
|0⟩ and commute with all other operators. However they are non-vanishing operators at order
1/N . If A is a non-vanishing operator which has vanishing matrix elements at large N on
H0 then it means that it acts as a central element at large N . Here we make an additional
assumption, that the only central elements are the SO(2, d) generators qi and their functions.
Since, by assumption, the state |Ψ0⟩ has non-trivial variance under these generators, we
conclude that it cannot be annihilated by a non-trival A.

Let us assume now that we have a state of the form A|Ψ0⟩ which has finite (i.e. O(N0))
positive norm at large N . Including 1/N corrections will generally modify the norm of this
state, but it will do so by corrections suppressed by powers of 1/N . Since the previous
argument established that the leading large N norm of the state A|Ψ0⟩ is a finite positive
number, perturbative 1/N corrections cannot make it vanish. Hence we expect property (5.8)
to be true to all orders in 1/N perturbation theory.

We emphasize that the fact that we cannot annihilate the state by the time-band algebra
A relies on the fact that we have restricted our attention to small products of single-trace
operators. As discussed in a related context [20, 26], if we consider the full algebra of
operators in the time-band we can find sufficiently complicated combinations which can
annihilate the state.36

Finally, as should be clear from the above, if the state |Ψ0⟩ has very small or vanishing
variance in the asymptotic charges then (5.8) fails and it is not possible to define operators
obeying (5.2).

36For example, consider a state |Ψ⟩ with ⟨Ψ0|Ψ⟩ = 0. Then the (complicated) operator |Ψ⟩⟨Ψ| annihi-
lates |Ψ0⟩.
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5.2 Proof that Φ̂ has the desired properties

Having established that equations (5.2) are consistent, we argue that the operator Φ̂ has
the desired properties.

First it is obvious by (5.2) that the operator Φ̂ has vanishing commutators with elements
of A. To see that consider A1 ∈ A and a general state in the code subspace which can be
written as A2|Ψ0⟩, with A2 ∈ A. Then we have

[Φ̂,A1]A2|Ψ0⟩=Φ̂(A1A2)|Ψ0⟩−A1(Φ̂A2|Ψ0⟩)=A1A2Φ|Ψ0⟩−A1A2Φ|Ψ0⟩=0 , (5.10)

where in the second equality we used (5.2). Since this is true for all A2, we find

[Φ̂, A1] = 0 ∀A1 ∈ A , (5.11)

where it should be understood that this equation holds on the relevant code subspace.
Second, we will show that to leading order at large N , the operator Φ̂ acts like the HKLL

operator Φ. To see this, consider an arbitrary matrix element on the code subspace. Two
general states of the code subspace can be written as A1|Ψ0⟩, A2|Ψ0⟩. Then we have

⟨Ψ0|A†
1Φ̂A2|Ψ0⟩ = ⟨Ψ0|A†

1A2Φ|Ψ0⟩ = ⟨Ψ0|A†
1ΦA2|Ψ0⟩+ ⟨Ψ0|A†

1[Φ, A2]|Ψ0⟩ . (5.12)

In the first equality we used (5.2). Now, the operator A2 is some combination of single-trace
operators in the time band, as well as the normalized SO(2, d) generators qi. All of these
operators have commutators with Φ which are suppressed by powers of 1/N . Hence the last
term in the equation above is suppressed. All in all, we find

⟨Ψ0|A†
1Φ̂A2|Ψ0⟩ = ⟨Ψ0|A†

1ΦA2|Ψ0⟩+O(1/N) , (5.13)

which establishes the desired result. This ensures that large N correlators of Φ̂ are the
same as Φ.

We emphasize that the operators defined in this section are not exactly the same as the
operators (4.2) discussed earlier. For example, unlike (4.2) the operators (5.2) were defined to
act only on the code subspace H0 of |Ψ0⟩ and not on the code subspace HT for T = O(N0).
Also, the commutator of (4.2) with the Hamiltonian is of order e−N2 while it is exactly zero,
within the code subspace, for the operators (5.2).

6 Examples

In this section we consider various examples. Our primary focus will be on examining the
validity of equations (3.18), (3.21), (3.22), on which the construction of our operators relies.

6.1 Coherent states

In general, we are interested in time-dependent semi-classical geometries. Many of these
states can be thought of as bulk coherent states. We will discuss the overlap of these states
closely following [76]. In the CFT, these states are prepared by a Euclidean path integral

|Ψ⟩ = Te
−
∫

tE<0 dtEd
d−1x ϕb(tE ,x)O(tE ,x) |0⟩ , (6.1)
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where O is a single-trace operator dual to a supergravity field, and the source is scaled
appropriately so that it leads to states with non-trivial gravitational backreaction, i.e. the
expectation value of the energy and variance of this state will scale like (3.1) and (3.3).

In the large N limit the overlap of two such states can be computed by a Euclidean
gravitational path integration which in the semi-classical limit can be approximated by a
saddle point computation. For example, the norm of the state is

⟨Ψ|Ψ⟩ ≈ e−Igrav(λb) , (6.2)

where λb is the following boundary condition for the bulk field

λb =


ϕb(tE , x), tE < 0

ϕ⋆b(−tE , x), tE > 0 ,
(6.3)

and Igrav(λb) is the on-shell gravitational action in the presence of the sources specified above.
Generalizing to two states |Ψ1⟩ and |Ψ2⟩, the normalized inner product between them is

R = |⟨Ψ1|Ψ2⟩|2

⟨Ψ1|Ψ1⟩⟨Ψ2|Ψ2⟩
, (6.4)

which at large N can be computed by a supergravity saddle-point computation

R ≈ exp
[
−2Re(Igrav(λ̃)) + Igrav(λ1) + Igrav(λ2)

]
, (6.5)

where the supergravity solutions have the boundary sources λ̃, λ1 and λ2 which take the
following form

λ̃ =


ϕ2(tE , x), tE < 0

ϕ⋆1(−tE , x), tE > 0,
λi =


ϕi(tE , x), tE < 0

ϕ⋆i (−tE , x), tE > 0,
(6.6)

where i = 1, 2.37

Notice that in each of the terms of (6.5), the gravitational on-shell action is proportional
to 1

GN
∼ N2. Since quantum mechanically we need R ≤ 1, we find that the following

inequality has to be satisfied

2Re(Igrav(λ̃)) ≥ Igrav(λ1) + Igrav(λ2) , (6.7)

for the on-shell value of solutions of the Einstein plus matter equations, for any choice of
sources of the form (6.6). If the two sources are different, we expect a strict inequality. It
would be interesting to explore this inequality directly from the gravitational point of view.
We discuss this further in the discussion.

37The sources ϕ2(tE , x) and ϕ⋆
1(−tE , x) should decay sufficiently fast at the t = 0 surface such that the

states are normalizable. This also implies that the bra and ket preprations of different states can be smoothly
glued to each other.
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We now move on to the computation of the return probability for states of the form (6.1)
after a small (not N -dependent) time evolution. That is, we take the time-evolved state,
|Ψ(T )⟩ = e−iHT |Ψ⟩, and consider the following quantity

R(T ) = |⟨Ψ(0)|Ψ(T )⟩|2

⟨Ψ(0)|Ψ(0)⟩⟨Ψ(T )|Ψ(T )⟩ . (6.8)

To apply the general formalism described above, we need to analyze how the Euclidean
sources ϕ0 preparing the state |Ψ(0)⟩ need to be modified to ϕT , in order to prepare |Ψ(T )⟩.
From a technical point of view computing ϕT in terms of ϕ0 is not straightforward, as it
requires a solution of the Einstein equations. Nevertheless, we can in principle compute the
return probability using (6.4) and (6.5) with a modified source

λ̃ =


ϕT (tE , x), tE < 0

ϕ⋆0(−tE , x), tE > 0,
λT =


ϕT (tE , x), tE < 0

ϕ⋆T (−tE , x), tE > 0 .
(6.9)

Thus we get

R(T ) = exp
[
−2Re(Igrav(λ̃)) + Igrav(λ0) + Igrav(λt)

]
, (6.10)

and this is exponentially suppressed in the semi-classical limit because of the 1/GN ∼ N2

coefficient in the gravitational action and the condition (6.7).

6.2 Thermofield double state

We now consider the thermofield double state

|TFD⟩ = 1√
Z(β)

∑
n

e−
βEn

2 |En⟩L ⊗ |En⟩R , (6.11)

where the |En⟩’s are the energy eigenstates and Z(β) is the partition function at inverse
temperature β. In the strong coupling limit, for temperatures below the Hawking-Page
temperature, the state is dual to two entangled thermal AdS geometries, while for temperatures
higher than the Hawking-Page temperature, it is expected to be dual to the eternal black
hole in AdS [103]. This geometry has two asymptotically AdS boundaries, on the “left” and
the “right”, hence the asymptotic symmetry group is SO(2, d)L × SO(2, d)R. The state (6.11)
is invariant under certain combinations of the asymptotic charges, for example we have

(HR −HL) |TFD⟩ = 0 but (HR +HR) |TFD⟩ ̸= 0 (6.12)

and similarly for the other charges. In this case we can generalize the return probability to
include all possible large diffeomorphisms on the two sides

R(g1, g2) = |⟨TFD|UL(gL)UR(gR) |TFD⟩|2 , gL/R ∈ SO(2, d)L/R . (6.13)

We expect R(gL, gR) to rapidly decay along certain directions but remain constant along
others due to the symmetries of the state (6.11).
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In what follows we focus on a particular class of deformations, corresponding to evolving
with HL +HR. This gives what is usually called the spectral form factor (SFF) defined as

R(t) = |⟨TFD|e−i
T
2 (HL+HR)|TFD⟩|2 =

∣∣∣∣Z(β + iT )
Z(β)

∣∣∣∣2 , (6.14)

which was introduced in the context of the eternal AdS black hole in [97] and studied in
detail in [99].

We are interested in studying (6.14) above the Hawking-Page temperature for small times,
i.e, T ∼ O(1). One way to proceed is by computing Z(β) and then analytically continuing
β → β + iT . If we are above the Hawking-Page temperature Z(β) can be estimated by the
Euclidean AdS-Schwarzschild black hole saddle point

Z(β) ≈ e−IBH(β) , (6.15)

where IBH(β) is the on-shell action on the Euclidean black hole background. For exam-
ple, we find

IBH(β) = − π2

2GNβ
(for AdS3) IBH(β) =

β

GN
g(rH) (for AdS5) , (6.16)

where we have set the AdS radius ℓAdS = 1 and rH is the horizon radius, while

g(rH) =
V3
8π (−r

4
H + r2

H) (6.17)

where V3 is the dimensionless volume associated with the metric on a unit sphere. For the
AdS5 case, rH ≈ π/β for small real β. A detailed discussion of the action can be found
in [104]. The central charge of the CFT2 is c = 3/2GN and the rank for the gauge group of
the dual four dimensional SU(N) N = 4 super Yang Mills theory is given by N2 = π/2GN .

For small T the complexified partition function Z(β + iT ) will be given in terms of the
analytic continuation of the above actions. Thus for T ≪ β, one gets the following for AdS3,

R(T ) ≈ e
− 2π2

β3 c T
2
, (6.18)

which is exponentially small in the large central charge limit.38 Similarly for AdS5, we find
that Z(β) ∼ e

πN2
β3 in the high temperature limit. Again for T ≪ β, we have

R(T ) ≈ e
− 12π

β5 N
2T 2

. (6.19)

As T becomes larger and approaches T ∼ β, the dominant saddle point will no longer be
the black hole, as the analytically continued action can start to compete with thermal AdS.
In addition the analytically continued black hole saddle point corresponds to a geometry
with a complex metric, and as T ∼ O(β) this metric becomes ‘unallowable’ according to
the criteria of [105], see also [106]. Thermal AdS becomes the dominant saddle point before
the metric becomes not allowable [100].

An exponential decay of R(T ) in N is to be expected even when T ∼ β, since in this case
the thermal AdS saddle dominates and, |Z(β + iT )|2 ∼ eg̃(T )/β3 where g̃ is O(N0) periodic
function of time. Thus, the numerator of (6.14) |Z(β + iT )|2 is N0 while the denominator
is O(eN2) leading to an exponentially suppressed R(T ).

38There will be additional terms suppressed in T 2/β2 which will not affect the exponential decay in the
large c limit as long as t is smaller than β.

– 42 –



J
H
E
P
0
5
(
2
0
2
4
)
2
6
1

6.3 Weakly coupled, large N gauge theories

It is interesting to consider the behavior of the SFF at small, or even vanishing ’t Hooft
coupling λ. In this case the bulk dual is stringy and moreover at λ = 0, the spectrum of the
dual CFT is (half)-integer-spaced and thus not chaotic at all. Nevertheless the decay (3.18)
is still valid for a certain time-scale, even in the free theory. This was discussed in detail
in [100]. For concreteness, we consider the partition function of free N = 4 SYM on S3 × R,
where the sphere has unit radius. It has the form [107, 108]

Z(β) =
∫

DU e
∑

R

∑∞
m

1
m
zR

m(β)χR(Um) , (6.20)

where DU is the invariant Haar measure on the gauge group normalized to one, χR is
character in the representation R and

zRm(β) =
∑

Ri,B=R
e−mβEi + (−1)m+1 ∑

Ri,F =R
e−mβEi , (6.21)

where the first sum is over bosonic states and the sum in the second term is over fermionic
states.

The behavior of the SFF
∣∣∣Z(β+iT )

Z(β)

∣∣∣2, as well as of the microcanonical analogue YE,∆E(T ),
based on the analytic continuation of (6.20) was discussed in [100].

Even at λ = 0 the SFF obeys (3.18), though in this case the Poincare recurrence time
is very short, i.e. 4π.39 While in this limit the bulk theory does not admit a semiclassical
gravitational description, we could still apply the procedure (4.2) to identify operators with
vanishing commutators with the Hamiltonian to all orders in 1/N , though now they do not
have a nice bulk interpretation.40 In doing so, we would need to be careful to take t∗ to
be a short O(1) time-scale which is less than 4π.

Here we notice that similar results have been derived for the analytically continued super-
conformal index [109], which can be thought of as the SFF for 2-sided eternal supersymmetric
AdS black holes.

6.4 Perturbative states around empty AdS

We now briefly discuss the return probability for perturbative states around empty AdS. We
want to consider states which have a large number of particles, but still small enough so that
we can ignore gravitational backreation. We can get some useful estimates by considering
a thermal gas of particles in AdSd+1. These are dual to a gas generated by single-trace
operators in the CFT. Suppose we have low-lying single-trace operators with conformal
dimension ∆i. For simplicity we consider only scalars and we take the radius of AdSd+1 to be
1. Then the partition function of single-particle states z(β) and the multi-trace Fock-space
partition function are respectively

z(β) =
∑
i

e−β∆i

(1− e−β)d , Z(β) = exp
[ ∞∑
n=1

1
n
z(nβ)

]
. (6.22)

39In our conventions conformal dimensions in the free theory are half-integers.
40To start with, the HKLL procedure cannot be implemented at subleading orders in 1/N due to the many

stringy fields present in the bulk. Therefore, the issue of non-commutativity with the Hamiltonian does not
stand out like it does in the case of Einstein gravity.
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It is now straightforward to do the analytic continuation

Z(β + iT ) = exp
{ ∞∑
n=1

∑
i

e−(nβ+inT )∆i

(1− e−nβ+inT )d

}
. (6.23)

For scalar BPS operators dual to SUGRA modes, ∆i is integer. Then it is obvious that
the SFF R(T ) =

∣∣∣Z(β+iT )
Z(β)

∣∣∣2 has periodicity T = T + 2π, as expected. What we want to
estimate is the decay rate of the SFF at early times, and how close to 0 the SFF drops
between the recurrences.

First we notice that the partition function factorizes to a product over ∆i. Hence we
can study the behavior of a given ∆i and we drop the sum over i. If we first take the small
β limit, before analytically continuing, we find

Z(β) ∼ exp
[
ζ(d+ 1) 1

βd

]
. (6.24)

Using this approximation we find that for early times

R(T ) ∼ e
− d(d+1)ζ(d+1)

βd+2 T 2
. (6.25)

As expected the decay is controlled by the variance of H. Of course if we use the high
temperature approximation (6.24) to perform the analytic continuation, then we do not see
the recurrences. At high temperature the SFF starts decaying quite rapidly, stays close to
zero for a while and then goes back to 1 every T = 2π × integer. To find an estimate of
how closely it approaches zero it is convenient to evaluate it at T = π. Suppose that the
conformal dimension is an even integer. Then we find

R(π) =
exp

[
2∑∞

n=1
1
n

e−nβ∆

(1−(−1)ne−nβ)d

]
exp

[
2∑∞

n=1
1
n

e−nβ∆

(1−e−nβ)d

] ∼ e
−(2−2−d)ζ(d+1) 1

βd − 1
2d log β∆

2 (6.26)

So we see significant suppression at small β, though of course, the suppression does not
scale like e−N

2 .
We expect a similar qualitative behavior for R(T ) for generic pure states of similar

energy profile as the states studied above (namely high energy states whose energy scales as
O(N0)): they will have recurrences every 2π, but the return probability will quickly decay
to small values for 0 < t < 2π. If we use (4.2) for such states, with t∗ ∼ O(1) < π, then the
commutator with H will be suppressed by a factor of the order of (6.26) rather than e−N

2 .
Note that this is not small enough, since the commutator we are trying to cancel is O(1/N),
which in the large N limit is much smaller than the suppression controlled by (6.26).

6.5 LLM geometries

An interesting class of semiclassical states with AdS5×S5 asymptotics in type IIB supergravity
are the LLM geometries [83]. These are dual to 1

2 -BPS states in N = 4 SYM. While these
geometries do not break all of the asymptotic symmetries, they do provide a useful toy model
where we can study in detail the behavior of the return probability as a function of time.
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The 1
2 -BPS states in N = 4 SYM on S3 × R are states that preserve 16 of the 32

supersymmetries of the theory in addition to the bosonic symmetries SO(4)×SO(4)×R where
R corresponds to the Hamiltonian H − Ĵ where H is the Hamiltonian and Ĵ an R-symmetry
generator. These states correspond to operators that lie in the (0, J, 0) representation of
the SU(4) ∼ SO(6) R-symmetry and they saturate a unitarity bound for their conformal
dimension. It is illuminating to consider the N = 1 vector and three chiral multiplet
decomposition of the N = 4 theory. In this case the scalars of the chiral multiplets are
organized into Zj = ϕj + iϕj+3, where j = 1, 2, 3, which are in the adjoint representation. We
will focus on j = 1 from now on without loss of generality. Then the states we are interested
in correspond, via the state-operator map, to single-trace operators of the form Tr(Zni), as
well as multi-trace operators of the form Πi(Tr(Zni))ri [83, 110, 111].

Since these operators saturate the unitarity bound ∆ = J , they correspond to the lowest
Kaluza-Klein mode of Z on S3. This mode has a harmonic oscillator potential due to its
conformal coupling to the curvature of S3. Thus we are interested in gauge invariant states
of the matrix Z in a harmonic potential [111]. The ground state of this model, corresponding
to empty AdS, is given by a Gaussian wave function

Ψvac = Ce−
1
2N

2tr(Z2) , (6.27)

where C = (π/N)−N2/4 and we introduce the notation trZ = 1
N TrZ = 1

N

∑N
i νii. Fluctua-

tions with operators with ∆ = J ≪ N will be small excitations around the ground state. As
discussed in [112] excitations with ∆ = J ∼ N2 will be other coherent states which are given by

Ψ = C[J(Z)]1/2e−N
2tr( 1

2ϕ(Z)2−iψ(Z)) , (6.28)

parameterized by two functions ϕ(Z) and ψ(Z) which are monotonically increasing and
arbitrary functions of Z, respectively. J [Z] is the Jacobian given by det[∂ϕ(Z)ij/∂Zkl].

It is well known that one can describe such a system by N fermions in a harmonic
potential [113]. In the large N limit, states in such a system can be thought of as droplets
in a two dimensional phase space, where for example a circular droplet corresponds to the
ground state of the system [113–115]. The precise connection between the functions ϕ(Z)
and ψ(Z) and the droplet picture on the phase space will be discussed in the next subsection.

In the bulk, the LLM solutions correspond to 10 dimensional geometries of asymptotically
AdS5 × S5 spacetimes, see appendix D, that are completely determined by a function z on a
two dimensional surface. In particular, specifying whether z takes value 1/2 or −1/2 at each
point on this plane completely specifies the full bulk solution. This is in parallel with the
two dimensional fermionic phase space mentioned earlier where the fermion takes occupation
number 1 (black) or 0 (white) at each point in the phase space, giving droplet of a given
shape. For instance, in the fermionic picture the ground state is a circular droplet of a certain
radius, say r0. It corresponds in the bulk is to the empty AdS5 × S5.

Fluctuations with operators of ∆ = J ≪ N correspond to having ripples in the edge
of the circular droplet and corresponds to having gravitons propagating in the AdS5 × S5

background. While operators of energy ∆ = J ∼ N correspond to giant gravitons in the
bulk. Operators with ∆ = J ∼ N2 correspond to other bulk geometries and different shapes
of droplets in the fermionic phase space [83, 116, 117]. The geometries will not be time
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translation invariant (rotational invariant in the fermionic picture) in general,41 but they
are invariant under t → t + 2π.

The goal here is to consider a certain geometry that breaks time translation invariance and
compute its return probability for short time scales. In the fermionic picture this corresponds
to a droplet that breaks the rotational invariance, an ellipse for instance. In the matrix
quantum mechanics picture it is easy to compute the return probability, evolving (6.28) with
the quadratic Hamiltonian and computing the square of the inner product. But first, we
need to review the dictionary between the two pictures.

6.5.1 Computation of the return probability

The way the matrix quantum mechanics picture and the fermionic picture are related will
be obvious once we diagonalize the matrix Z and express it in terms of the eigenvalues
(µi), where the Jacobian becomes

J(Z) =
N∏
i

ϕ
′(µi)

∏
i ̸=j

ϕ(µi)− ϕ(µj)
µi − µj

, (6.29)

which is 1 for the vacuum. In the large N limit, the Gaussian measure dZ exp
(
−N2tr(Z2)

)
will

reduce to the well known Wigner semi-circle distribution for the density of eigenvalues [118],

dϱ(µ) = 1
π
(2− µ2)1/2Θ(2− µ2)dµ. (6.30)

Let us now introduce new variables to parameterize the coherent states in the large N

limit, w(µ) := dϱ(ϕ(µ))/dµ which is the density of eigenvalues and v(µ) := ψ(µ). These
parameters are canonical conjugates of one another,42 that is their Poisson bracket is the
Dirac delta function. In the large N limit, the appropriately renormalized Hamiltonian (hcl)
can also be written in terms of w and v

′ = dv/dµ and thus an action can be written for
these variables [112, 119–121]. In particular,

hcl =
1
2

∫
dµ w(µ)

(
v
′(µ)2 + π3

3 w(µ)
2 + µ2

)
. (6.31)

Coming back to the two dimensional phase space picture, we consider a blob centered at the
origin. We assume the horizontal direction (x-axis) represents the q variable of the phase
space, which we take to be the eigenvalues (µ). Consider a vertical line crossing the blob.
Assuming that the blob has a simple geometry without folds, this vertical line intersects
the boundary of the blob twice. We parametrize these points by p±(µ) respectively. Then,
the density of eigenvalues for any µ is proportional to (p+ − p−)(µ). Computing the kinetic
energy of fermions for a given dµ by integrating p2/2 from p = p− to p = p+ and matching
this to the kinetic part of (6.31), we get

p± = ±πw + v
′
. (6.32)

41There are also static configurations, concentric circles for example [83].
42Note that the two variables are not totally independent and w(µ) has to satisfy a constraint, in particular∫
dµ w(µ) = 1.
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This has also been mentioned in the context of c = 1 string theory in [122–125]. Note that for
the vacuum (i.e. the empty AdS5 × S5 geometry), p± = ±(2− µ2)1/2Θ(2− µ2) and v′ = 0.

Since we are looking for a time dependent geometry, we need a blob in fermion phase
space that breaks the rotational symmetry. The simplest non trivial modification of (6.32)
is to take v to be quadratic.43 In this case we have

p+(µ) = (2− µ2)1/2Θ(2− µ2) + 2µ. (6.33)

This can be seen to be half of a tilted ellipse, which combined with an appropriate p− gives
the full elliptic blob. This will evolve non trivially under rotation and the corresponding
geometry will be a time dependent one. This geometry, together with the five form, can
be found using the mapping discussed earlier, by first solving for z(x1, x2, y) then inserting
it into (D.2), (D.3), (D.4) and (D.5).

Now we proceed with the computation of the return probability for this state. We go
back to (6.28) and consider a state Ψ(0) with ϕ = Z and ψ = v = Z2 and after evolving
it, compute the overlap

⟨Ψ(0)|Ψ(T )⟩ =
∫
dZ Ψ(Z, 0)∗Ψ(Z, T ) (6.34)

The state we are interested has the form

Ψ(Z, 0) =
(
π

N

)−N2/4
e−

1
2N

2(1−2i)tr(Z2) =
∏
i,j

φ(νij) , where φ(ν) =
(
π

N

)−1/4
e−

N
2 (1−2i)ν2

.

(6.35)
Since we are dealing with matrix quantum mechanics with a quadratic potential, each matrix
element evolves independently and governed by the usual harmonic oscillator propagator

φ(ν, T ) =
∫
dν

′
K(ν ′

, ν, T )φ(ν ′) , (6.36)

where

K(ν ′
, ν, T ) =

√
N

2πi sinT exp
[
iN

2sinT ((ν2 + (ν ′)2)cosT − 2νν ′)
]
, (6.37)

for t < π. We can then compute the overlap

⟨Ψ(0)|Ψ(T )⟩ = [z(T )]N2
, z(T ) =

∫
dν φ⋆(ν, 0)φ(ν, T ) (6.38)

Following (6.36) we find

φ(ν, T ) =
(
N

πX

)1/4
e−NYν2 and, Ψ(Z, T ) =

(
N

πX

)−N2/4
e−N

2Ytr(Z2) , (6.39)

where X and Y are periodic functions of time given by,

X (T ) = (cosT + (2 + i)sinT )2

Y(T ) = 1
2

((1− 2i) cosT + i sinT
(i+ 2) sinT + cosT

)
.

(6.40)

43Translated circle blobs will not correspond to physical geometries when the gauge group is SU(N), since
the centre of the blob is fixed by imposing the condition Tr(Z)=0.
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Thus,
z(T ) =

∫
dν φ⋆(ν, 0)φ(ν, T ) = A1/2 , (6.41)

where
A = 1

3i sinT + cosT . (6.42)

It can be checked that z(T ) is 1 when T = 0 and

|z(T )|2 = |A| =
( 1
9 sin2T + cos2T

)1/2
. (6.43)

Since |z(T )|2 ≤ 1, R(T ) is an exponentially decaying function in the large N limit, for small
times, but a periodic function in T = π. That is

R(T ) = |⟨Ψ(0)|Ψ(T )⟩|2 = e−N
2F (T ) , (6.44)

where the function F (T ) = −2log|z(T )| is zero at T = 0, and increases to the local maximum
F (T = π/2) = log 9 and goes back to zero at T = π. Thus in the time scales we are
interested in, in particular T < π/2, the square of the inner product (6.34) which is the return
probability of a given LLM semi classical geometry in the large N limit, is exponentially
suppressed in N2 as expected. Note that the return probability is periodic in π, which is due
to the symmetry of the particular state considered. In general, the period will be 2π.

We can also compute the overlap of states in different code subspaces built upon Ψ(Z, 0)
and Ψ(Z, T ). The simplest is the inner product of the states Ψ(Z, 0) and Tr(Z2n)Ψ(Z, T )
which can be written as

⟨Ψ(0)| tr(Z2n) |Ψ(T )⟩ ≡
∫
dZ Ψ⋆(Z, 0)tr(Z2n)Ψ(Z, T )

=
(

π

NX 1/2

)−N2/2 ∫
dZ tr(Z2n) e−

S
2 N

2 tr(Z2)
(6.45)

where S = (1 + 2i) + 2Y. Following (3.23), we can rewrite the above integral as

⟨Ψ(0)| tr(Z2n) |Ψ(T )⟩ = ⟨Ψ(0)|Ψ(T )⟩
∫
dZ tr(Z2n) e−S

2 N
2 tr(Z2)∫

dZ e−
S
2 N

2 tr(Z2)
(6.46)

The second factor corresponds to an expectation value in a Gaussian matrix model. Keeping
only planar diagrams at large N we find

⟨Ψ(0)| tr(Z2n) |Ψ(T )⟩ ≃ ⟨Ψ(0)|Ψ(T )⟩ Cn
Sn

(6.47)

where Cn = 1
n+1

(2n
n

)
are the Catalan numbers.

Similarly, for multi-trace operators the overlap can be computed and using large N

factorization we get

⟨Ψ(0)|
k∏
i

tr(Z2ni) |Ψ(T )⟩ ≃ ⟨Ψ(0)|Ψ(T )⟩
∏k
i Cni

Sn
, (6.48)

where n = n1 + . . . + nk.
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Thus, as long as n does not scale with N the correlator will still be exponentially
suppressed, otherwise the periodic coefficient can spoil the exponentially decaying behaviour.
This is to be expected since in such cases the dimension of the multi-trace operators will be
order N and they will not be just small fluctuations of the background and can, in principle,
evolve the state back in time to T = 0. In any case, our code subspace is constructed
by the action of multitrace operators whose dimension is finite in the large N limit, i.e,
n is an O(1) number.

6.6 Kourkoulou-Maldacena states in SYK model

The SYK model is a quantum mechanical model of N Majorana fermions interacting with
random interactions which is given by the Hamiltonian

H =
∑
iklm

jiklm ψiψkψlψm , (6.49)

where ψi are the Majorana fermions {ψi, ψj} = δij , and the coupling jiklm has drawn from
the distribution

P (jiklm) ∼ exp
(
−N3j2

iklm/12J2
)
, (6.50)

leading to disorder average of

jiklm = 0, j2
iklm = 3!J2

N3 . (6.51)

In a particular realization of the couplings, we consider pure states which are obtained
by using the Jordan-Wigner transformation and combining pairs of Majorana fermions into
qubit like operators and choosing states with definite eigenvalues for the σ3 components
of all qubits. These states are denoted by |Bs⟩, where s = (s1, s2, . . . , sN/2) with sk = ±1,
and they satisfy the relations below

Sk |Bs⟩ = sk |Bs⟩ , (6.52)

where Sk = σk3/2 ≡ 2i ψ2k−1ψ2k is the spin operator. By choosing all possible combinations
of the {sk}’s we get a basis of the Hilbert space whose dimension is 2N/2 (N is an even integer
number). We further evolve these states over some distance l in Euclidean time in order
to get low energy states |Bs,l⟩ = e−lH |Bs⟩ which we will refer to as Kourkoulou-Maldacena
(KM) states. To stay in the low-energy regime where the SYK model exhibits conformal
invariance we take 1 ≪ lJ ≪ N [78].

As discussed in [78] the KM states can be thought of as a toy model of pure black hole
microstates which are out of equilibrium and which contain excitations behind the horizon.
Hence they are states which exhibit time-dependence and our general formalism should be
applicable. We start by discussing the behavior of the return probability for these states.

6.6.1 Analytical computation of the return probability at large N

We start with the normalization of the KM states. In the large N limit, due to the approximate
O(N) symmetry of the theory it can be shown [78] that

⟨Bs,l |Bs,l⟩ = ⟨Bs| e−2lH |Bs⟩ = 2−N/2Z(β) , (6.53)
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where β = 2l [78]. The return probability then in the large N limit is given by

R(T ) =
∣∣∣⟨Bs,l|e−iHT |Bs,l⟩

⟨Bs,l |Bs,l⟩

∣∣∣2 =
∣∣∣Z(β + iT )

Z(β)
∣∣∣2. (6.54)

In a low temperature expansion, the partition function can be estimated [126] using the
Schwarzian approximation to be

Z(β) ∝ e
2
√

2π2αS
N
βJ

(βJ)3/2 . (6.55)

Using (6.55) we find for the return probability

R(T ) = 1(
1 + T 2

β2

)3/2 e
−
(

4
√

2π2αS
N

Jβ3

)
T 2

, (6.56)

which is compatible with (3.18), after we take into account the different N -dependence in
the SYK model vs N = 4 SYM.

We can now try to test the more general decay of the inner product between states in
time-shifted code subspaces (3.21). Let us denote the unit-normalized KM states as

|B̂s,l⟩ =
|Bs,l⟩√

⟨Bs,l|Bs,l⟩
, (6.57)

and denote their time-dependence as |B̂s,l(T )⟩ = e−iHT |B̂s,l⟩. We consider an operator A(t)
which is a simple combination of the fermions, so that the state A(t)|B̂s,l⟩ is in the code
subspace. Then we write

⟨B̂s,l(0)|A(t)|B̂s,l(T )⟩ = ⟨B̂s,l(0)|B̂s,l(T )⟩ ×
⟨Bs,l(0)|A(t)|Bs,l(T )⟩

⟨Bs,l(0)|Bs,l(T )⟩
. (6.58)

Let us focus on the last ratio. We can rewrite it as

⟨Bs,l(0)|A(t)|Bs,l(T )⟩
⟨Bs,l(0)|Bs,l(T )⟩

=
⟨Bs|e−(l+i

T
2 )HA

(
t− T

2

)
e−(l+i

T
2 )H |Bs⟩

⟨Bs|e−(l+i
T
2 )He−(l+i

T
2 )H |Bs⟩

, (6.59)

which depends holomorphically on l + iT2 , so we can evaluate if by analytic continuation.
All in all we find

⟨B̂s,l(0)|A(t)|B̂s,l(T )⟩= ⟨B̂s,l(0)|B̂s,l(T )⟩×
[
⟨B̂s,l(0)|A

(
t−T

2

)
|B̂s,l(0)⟩

]
l→l+iT

2

. (6.60)

At large N and for flip-invariant operators [78] we can also write this as

⟨B̂s,l(0)|A(t)|B̂s,l(T )⟩ = ⟨B̂s,l(0)|B̂s,l(T )⟩ × ⟨A
(
t− T

2

)
⟩β |β→β+iT , (6.61)

where in the last term we first compute the thermal 1-point function ⟨A(t− T
2 )⟩β as a function

of β and then analytically continue β.
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As an example, we consider the case where A = ψk(t)ψk(t′) (no summation over k
implied). Following [78] we have for real time and large N

⟨B̂s,l(0)|ψk(t)ψk(t′) |B̂s,l(0)⟩ = Gβ(t− t′) , (6.62)

where, for t > t′, we have

Gβ(t− t′) = π1/4
√
2βJ

e−iπ/4√
sinh[π(t− iϵ)/β]

. (6.63)

Therefore, using (6.60) we get

⟨B̂s,l(0)|ψk(t)ψk(t′)|B̂s,l(T )⟩ = ⟨B̂s,l(0)|B̂s,l(T )⟩ Gβ+iT (t− t′) , (6.64)

where the last term can be computed as the analytic continuation of (6.63).
Similarly for A = ψ2k−1(t)ψ2k(t′)Sk we have [78]

⟨B̂s,l(0)|ψ2k−1(t)ψ2k(t′)Sk|B̂s,l(0)⟩ = −2iskGβ(t)Gβ(t′) +O(1/N), (6.65)

hence

⟨B̂s,l(0)|ψ2k−1(t)ψ2k(t′)Sk|B̂s,l(T )⟩ = ⟨B̂s,l(0)|B̂s,l(T )⟩×

×
[
−2iskGβ+iT

(
t− T

2

)
Gβ+iT

(
t′ − T

2

)
+O(1/N)

]
.

(6.66)

The examples (6.64) and (6.66) are consistent with our general expectations, see (3.21)
and (3.22).

6.6.2 Some numerical checks

In this subsection we perform some simple numerical checks of (3.21) and (3.24), as well
as the behavior of the operators (4.2) for KM states in the SYK model. The first step is
to select an appropriate value for the inverse temperature β = 2l. The early time decay
of the return probability is

R(T ) = e−∆H2T 2
. (6.67)

Earlier we used the Schwarzian approximation to compute the partition function (6.55) from
which we can also get the variance

∆H2 = 4
√
2π2αS

N

β3 = 0.396N
β3 . (6.68)

We compare this result with a numerical computation of the variance ∆H2 for a KM state
constructed from |Bs⟩ = |+−− . . .−⟩. This is shown in figure 2. In figure 3, we show the
value of the plateau for the KM state, as defined in (3.19) for various values of N and β.
For the range of values of N we are interested in, we can take the inverse temperature to
be β = 5, which is the value we will use in what follows.
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Figure 2. The blue lines are the numerical results for the variance of Hamiltonian as a function of β
while the yellow ones are the Schwarzian approximation ∆H2 = 0.396N/β3.
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Figure 3. The plateau height R̄ as a function of l = β/2.
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Figure 4. Return probability as a function of T for different values of N.

In figure 4 we can see the return probability as a function of t for different values of N
for the corresponding KM state. As discussed in subsection 3.6, we expect that the overlap
between any state in the code subspace at t = 0 will and the one at t = T will also decay
exponentially fast. We can encode the overlap between all such pairs of states by

Rcode(T ) =
1

dcode
Tr[PTP0] . (6.69)

For the numerical computation we need to make some choice about the code subspace. One
condition is that the dimension dcode of the code subspace should satisfy dcode ≪ 2N/2. As an
example, and for the purpose of the numerical computation, we can define the code subspace as

Hcode = span{Oi1
1 . . .Oik

k |Bs⟩; ij = 0, 1} , (6.70)

for some choice of the operators Oi. Here Dcode = 2k the value of k should be such that
D ≪ 2N/2. Note that the states in (6.70) are generally not orthonormal but it is easy to
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Figure 5. Rcode(T ) as a function of T for three different examples of codesubspaces in the form
of (6.70).

write a projector on the code subspace in terms of elements of this basis, see [127] for a
related discussion.

In figure 5, we see plots of the behavior of Rcode(T ) as a function of time for some
specific choices of such a code subspace:

• a: the dimension of the code subspace is D = 8 and the operators are chosen to be

O1 = ψ1(t = 0), O2 = ψ1(t = 0.1), O3 = ψ1(t = 0.5).

• b: the dimension of the code subspace is D = 8 and the operators are chosen to b

O1 = ψ1(t = 0), O2 = ψ1(t = 0.1), O3 = h.

• c: the dimension of the code subspace is D = 16 and the operators are chosen to be

O1 = ψ1(t = 0), O2 = ψ1(t = 0.1), O3 = ψ1(t = 0.5), O4 = ψ1(t = 1).

where in case (b) the operator h is the normalized Hamiltonian

h = 1√
N

(H − ⟨H⟩). (6.71)

We finally check that the operator (4.2) has similar correlators as the boundary-dressed
operator. We take the code subspace as

Hcode = span{|Bs⟩,O1|Bs⟩, . . .Ok|Bs⟩, h|Bs⟩, hO1|Bs⟩, . . . hOk|Bs⟩}, (6.72)

where the dimension of the code subspace is dcode = 2(k + 1) ≪ 2N/2. In figure 6, we plot
the result for the case of k = 5 and where the operators chosen to be

O1 = ψ1(t = 0), O2 = ψ1(t = 2), O3 = ψ1(t = 4) O4 = ψ1(t = 6), O5 = ψ1(t = 8)

for N = 20 (dcode = 12 ≪ 210) are plotted. One can see from figure 6(b) that the state-dressed
operator for ψ3 has approximately the same correlation function as the original one.
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Figure 6. Results for the code subspace (6.72). (a) Rcode(T ) as a function of T . (b) The blue line is
⟨ψ3(0)ψ3(t)⟩ as a function of t, while in the case of the yellow line, ψ3(0) is replaced by the dressed
operator obtained from our proposal. Here N=20.

6.7 Holographic boundary states

The KM states discussed in the previous section can be thought of as certain a-typical black
hole microstates in the context of SYK/AdS2. Interesting analogs in higher dimensional
examples of AdS/CFT can be found by considering boundary states in CFTs [79, 128, 129].
A boundary state characterizes boundary conditions which can be imposed on a boundary
of space-time on which the CFT lives. For each allowed boundary condition, we can evolve
the state along the Euclidean time to suppress the high-energy contributions and obtain a
state of finite energy which is called a regularized boundary state of the CFT.

For holographic theories, the CFT path integral maps onto the gravity path integral.
Therefore, we will be able to make use of the AdS/CFT correspondence to deduce the
corresponding geometries if we can choose a state for which we can understand a gravity
prescription for dealing with the boundary condition at the initial Euclidean time. As
discussed in [80], we can describe boundary states by starting with the TFD state of two
CFTs labeled by L and R

|TFD(β/2)⟩ = 1
Z

∑
i

e−βEi/4 |Ei⟩L ⊗ |Ei⟩R , (6.73)

and then project the TFD state onto some particular pure state |B⟩ of the left CFT. As
a result we obtain a pure state of the right CFT given by

|ΨB,β⟩ =
1
Z

∑
i

e−βEi/4⟨B |Ei⟩ |Ei⟩ . (6.74)

If the temperature is high enough, the TFD state is dual to the maximally extended
AdS-Schwarzschild black hole in the bulk. The geometry which is dual to these regularized
boundary states is expected to contain a significant portion of the left asymptotic region.
Therefore, in a holographic CFT, this class of regularized boundary states can be regarded
as microstates of a single-sided black hole. These black hole microstates can be thought of
as black holes with end of the world (EOW) branes on the left side.44 Generally the EOW

44Proving from first principles that boundary states dual to EOW branes exist is far from trivial. It has
been investigated from a bootstrap perspective in [130], where it was suggested that such boundary states
must be extremely fine-tuned. In [131], the full classification of boundary states in large N symmetric orbifolds
was carried out, and typical boundary states are not of this form.
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brane configuration is time-dependent at the macroscopic level. Hence these are states with
energy and energy variance compatible with (3.1) and (3.3), so we expect to be able to apply
our construction and define operators (4.2). As we will discuss in the next section, one way
to think of them is that the gravitational dressing has been moved over to the EOW brane.

6.7.1 Computation of the return probability and correlators

First we define unit-normalized boundary states

|B̂a(0)⟩ =
e−

βH
4 |Ba⟩√

⟨Ba| e−
βH

2 |Ba⟩
. (6.75)

Then we want to show that return probability of a boundary state

R(T ) = |⟨B̂a(0) |B̂a(T )⟩ |2 , (6.76)

decays exponentially fast at early time. For boundary states in holographic 2d CFTs we
have (E.11)

G(β) = ⟨Ba|e−
βH

2 |Ba⟩ ≃ e
π2c
6β , (6.77)

where we have taken the CFT to be defined on a spatial circle of length 2π. For small T we have

R(T ) = |G(β + 2iT )|2
|G(β)|2 ≃ e

− 4π2c
3β3 T

2
. (6.78)

The energy variance of the boundary state can be easily computed from (6.77) and we find

∆H2 = ⟨H2⟩ − ⟨H⟩2 = 4π2c

3β3 , (6.79)

so the initial decay (6.78) is, not surprisingly, consistent with (3.16), (3.18) and (6.79).
In higher dimensional cases we can read from (E.13)

G(β) = e
αd

βd−1 , (6.80)

thus
R(T ) = |G(β + 2iT )|2

|G(β)|2 ≃ exp
[
− αd
βd+1 4d(d− 1)T 2

]
. (6.81)

We can again check that

∆H2 = ⟨H2⟩ − ⟨H⟩2 = αd
βd+1 4d(d− 1), (6.82)

which is compatible with (6.81).
We now proceed with checking that the other states in the code subspace around a

boundary state are orthogonal to the time evolved code subspace. Consider for example the
state O(t, x)|B̂a⟩. Following similar reasoning as in subsection 6.6 we can show that

|⟨B̂a(0)|O(t, x)|B̂a(T )⟩|2 = ⟨B̂a(0)|O(t, x)|B̂a(T )⟩ ⟨O(t− T

2 , x)⟩β→β+2iT , (6.83)
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where ⟨B̂a(0)|O(t, x)|B̂a(T )⟩ = Ga(I,β+2iT )
Ga(I,β) . More generally

⟨B̂a(0)|O(t1, x1)O(t2, x2) . . .O(tn, xn)|B̂a(T )⟩ =

⟨B̂a(0)|O(t, x)|B̂a(T )⟩⟨O(t1 −
T

2 , x1)O(t2 −
T

2 , x2) . . .O(tn −
T

2 , xn)⟩β→β+2iT . (6.84)

Thus, as long as the analytical continuation of the correlation function in β does not introduce
any surprising N -dependent factors we will get the expected behavior (3.22). We now check
this condition for low-point functions in 2d boundary states.

Here we assume that for a holographic CFT, and if we are working in the large N limit, the
1-point function of light conformal primaries can be computed by a method of images. Then
for a 1-point function of a scalar primary O with dimension ∆ on a boundary state we have

⟨B̂a(0)|O(t, x)|B̂a(0)⟩ =
AO(

β
π cosh

[
2π
β t
])∆ , (6.85)

for some constant AO which depends on the boundary state a and the operator O. After
the analytic continuation necessary for (6.83) we find

⟨O(t− T

2 , x)⟩β→β+2iT = AO(
(β+2iT )

π cosh[ 2π
(β+2iT )

(
t− T

2

)
]
)∆ . (6.86)

Hence we notice that the results (6.83), (6.86) are consistent with our general expecta-
tions (3.21), (3.22).

We can also check 2-point functions, which we can compute in the large N limit. First
we compute the 2-point function on the boundary state, using the method of images

⟨B̂a(0)|O(t1,x1)O(t2,x2)|B̂a(0)⟩=
+∞∑

n=−∞

1∣∣β
π sinh

(
π
β [(x1−x2+2πn)−(t1−t2)]

)∣∣2∆ ± 1∣∣β
π cosh

(
π
β [(x1−x2+2πn)−(t1+t2)]

)∣∣2∆ ,

(6.87)

After the analytic continuation necessary for (6.84) we find from (6.87) that we do not
notice any unexpected behavior of this part of the correlator as T increases, so the re-
sult (6.84) is dominated by the decay of the return probability, and is consistent with our
expectations (3.21), (3.22).

7 Black hole microstates

One question which is particularly interesting is whether we can apply our construction to
black hole microstates. We have already mentioned in section 3.1 that there are various
classes of black hole microstates, some of which have macroscopic time dependence and
some of which do not. We will now discuss these various cases in more detail and interpret
our operators for these types of states.

– 56 –



J
H
E
P
0
5
(
2
0
2
4
)
2
6
1

7.1 States with macroscopic time-dependence

We will start with the simplest situation: states with macroscopic time-dependence. This
can be visible outside the horizon, for example black holes in the presence of infalling matter.
Alternatively it can be that the geometry appears to be static outside the horizon but there
is no corresponding Killing isometry in the interior. As the first case is more straightforward,
we focus on the second case. Two examples of such states are boundary states of the CFT,
corresponding to end-of-the-world branes inside the horizon, which have already been discussed
in the previous section. A second example is states prepared by the Euclidean path integral
on some surface of higher topology. The dual geometries have topology behind the horizon,
and are often referred to as geons [82, 132, 133]. It is worth re-emphasizing that both of
these states are usually prepared by the Euclidean path integral and are in fact very a-typical
states, even if the CFT 1-point functions are very close to those in a thermal state (or said
differently, even if the classical geometry is exactly that of a black hole outside the horizon).

Both of these examples involve pure states |Ψ0⟩ that have a large energy variance, of order
N2, such that the return probability will decay as (3.17). We can thus apply our construction
to build local operators that are not dressed to the boundary CFT. The interpretation is
that the operators are dressed with respect to the time-dependence of the interior. Consider
for example the genus-2 geon in d = 2, which is prepared by the Euclidean path integral on
half of a genus-2 surface [82, 134]. Microscopically, the state can be described by

|Ψ0⟩ ∼
∑
i,j

Ciije
−Eiβi/2−Ejβj |Ej⟩ , (7.1)

where ∼ indicates that we have not been careful about the parametrization of the genus-2
surface, but βi,j are related to the moduli of the surface. The un-normalized overlap of
this state corresponds to a genus-2 partition function in the dumbbell channel, where βj
parametrizes the length of the two handles, and βi parametrizes the length of the neck
between them.

It is not straightforward to write down a metric that covers the entire space-time of such
states. Outside the horizon whose size is controlled by βj , they look exactly like the BTZ
geometry. Inside the horizon, they have macroscopic time-dependence. A nice coordinate
patch that covers the Wheeler-de Witt patch of the t = 0 slice of the geometry can be
written down in a very simple form

ds2 = −dt2 + cos2 t dΣ2
2 , (7.2)

where dΣ2
2 is the constant negative curvature metric on half of a genus-2 surface. This

coordinate patch covers the entire t = 0 slice of the geometry, which is precisely half of a
genus-2 surface. The neck corresponds to the horizon, and there is topology (one handle)
behind the horizon. From this metric, we explicitly see the time dependence of the geometry,
even if a metric for the full spacetime is hard to write down. The interpretation of our
operator is that the dressing is to the time-dependence of the geometry that sits inside the
horizon. For end-of-the-world brane geometries, the situation is similar and the operator
is dressed to the end-of-the-world brane.
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7.2 Typical states

The question we would now like to ask is whether our prescription works in typical black
hole microstates. Contrary to states with end-of-the-world branes or topology behind the
horizon, it seems reasonable to expect that typical states should also look like the thermal
state a finite distance inside the black hole (see for example [135, 136]).

Whether or not our prescription works depends on the definition of a typical black hole
microstate, and in particular on the energy spread we are choosing. One possibility is to
define typical states using an ensemble of energy eigenstates with spread O(N0) in energy
(recall that there are still eS with S ∼ O(N2) states in this energy band). In that situation,
our prescription does not work, as the variance of energy is O(N0) and the return probability
will not decay fast enough. Another possibility is to consider typical states with an energy
spread similar to that of the canonical ensemble, that is

(∆E)2 ∼ O(N2) . (7.3)

For such states, the return probability will decay following the behaviour (3.17). Therefore,
we can follow our prescription and define the operators in the same way and they will satisfy
the two properties of commuting with the Hamiltonian to all orders in 1/N and acting like
HKLL operators to leading order at large N .

While these operators are certainly diff-invariant, since they are operators defined
in the CFT, the bulk interpretation of their gravitational dressing on typical black hole
microstates is not entirely clear. When the gravitational configurations are macroscopically
time-dependent, our operators are dressed with respect to the features of the geometry. The
typical states are still time-dependent, but only microscopically, as it seems plausible to
assume that macroscopically they are featureless. In some sense our operators are dressed
to the microscopic time-dependence of the state (the phases of the ci in (3.2)), but it is
unclear exactly what that means in the bulk.

Notice however, that if we start with a particular typical pure state |Ψ0⟩, assume it
has a smooth horizon without any perturbations behind it and then act with a unitary
made out of the operator (4.2), associated to that state, then the predictions for what an
infalling observer jumping into the black hole will see are unambiguous. For example, the
operators (4.2) will generally create an excitation in the bulk and the location in time relative
to that of the infalling observer who jumps from the boundary at a particular boundary time,
can be unambiguously computed for each state |Ψ0⟩ and corresponding operators (4.2). We
emphasize that for this interpretation it is important to remember that the operators (4.2)
are state-dependent and cannot generally be promoted to a single operator which acts in
a specific way globally on most typical states.

We briefly comment on black hole interior reconstruction. Suppose we start with a
typical black hole microstate with energy spread of order (3.3). If we assume that the horizon
is smooth, then the possibility of removing the dressing of the operators implies that we
can deform the state behind the horizon by creating some particles there, in such a way
that these excitations cannot be detected from the boundary CFT by the measurement of
single-trace correlators, including the Hamiltonian, in the 1/N expansion. This was also
discussed in [137, 138]. We emphasize that this does not contradict the statements made
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in [26, 135, 136] that for typical states with microcanonical energy spread, it is impossible
to add excitations without affecting single-trace correlators.

7.3 Two entangled CFTs

Similar considerations apply to geometries with two asymptotically AdS regions. Consider
two non-interacting CFTs with total Hamiltonian H = HL +HR. We take the full system
to be in a pure state |Ψ0⟩ which may be entangled, but we will assume the pattern of
entanglement is generic. In particular, we do not consider states like the thermofield-double
which have a very fine-tuned structure of entanglement. We can imagine the state |Ψ0⟩ to
be, for example, UL |TFD⟩, where UL is a complicated unitary acting on the left CFT. In
this case we can consider the following generalization of our construction. Let us consider
the 2-parameter family of time-shifted states

e−i(TLHL+TRHR)|Ψ0⟩.

We start with an HKLL operator Φ dressed with respect the to left system, which commutes
with HR but not HL. We now consider the following generalization of the operators (4.2)

Φ̂ = c

∫
dTLdTRe

−i(TLHL+TRHR)P0ΦP0e
i(TLHL+TRHR) (7.4)

using P0 = PL0 ⊗ PR0 and [Φ, PR0 ] = 0 then

Φ̂ = c

∫
dTLe

−iTLHLPL0 ΦPL0 eiTLHL ⊗
∫
dTRP

R
TR

(7.5)

The resulting operator commutes with both HL and HR on the relevant code subspaces. In
this case, the operator is not dressed with respect to the overall time-dependence of the full
system, but rather to the time dependence of the “left” subsystem.

There are states with special entanglement pattern such as the TFD state, which was
already discussed in section 6.2. The generalized return amplitude ⟨Ψ0|e−i(HLTL+HrTR)|Ψ0⟩
which is a function of TL and TR does not decay in all directions for these special states. For
example, in the TFD state it is constant along the line TL = −TR. In those cases we cannot
set both commutators with HL, HR to zero. So we can move the dressing from one side to
another if we wish to, but there it is always dressed to one of the boundaries. This happens
because the TFD state has a symmetry, it is annihilated by HL −HR.

7.4 Island discussion

Our prescription is also useful to resolve some paradoxes in the context of black hole
evaporation and islands. Consider a setup where a holographic CFT is coupled to a bath
such that the bulk description is given by an evaporating black hole. After the Page time, a
non-trivial quantum extremal surface appears in the bulk delimiting an island, i.e. a part
of the interior of the black hole that is encoded in the bath degrees of freedom rather than
in those of the CFT [9, 11].

There is an apparent tension in this context related to gravitational dressing already
at the perturbative level [139]. If we create an excitation in the island by acting with a
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local operator ϕisland, where does the gravitational dressing go? It appears that the only
place for the dressing to go is the boundary CFT. This implies that the local operator
will have the property

[ϕisland, HCFT] ̸= 0 , (7.6)

where the r.h.s. is O(GN ). But this seems to be inconsistent, because since the operator is
in the island, it should be reconstructable from the bath degrees of freedom, and commute
with the CFT degrees of freedom.

Our operators provide a way out of this paradox in perturbation theory in GN . We can
apply our prescription above in terms of two entangled systems with a generic pattern of
entanglement (there is a subtlety here since the bath and CFT are actually coupled rather
than non-interacting, but we can treat this interaction as weak). In that case, even if we did
start with an operator that had a non-trivial commutator (7.6), we would engineer a new
operator which commutes with HCFT up to exponentially small corrections. This new operator
is now dressed with respect to the radiation, rather than the boundary CFT. Of course we
expect that there is also a version of the operator in the island which exactly commutes with
HCFT, even though we do not have an explicit expression for it. What we are pointing out is
that the apparent paradox (7.6) at the level of perturbative quantum gravity can be resolved.

The interpretation of the dressing is similar to that of the typical states. While it would
be tempting to imagine dressing the operator to the quantum extremal surface, the bulk
geometry only has extremely slow time-dependence so it is unclear if time-dependent features
of the geometry are sharp enough to dress with respect to them. It appears that the dressing
is towards the microscopic time-dependence of the radiation. The story becomes less subtle if
we consider a doubly holographic model (see for example [10, 140]). In that case, the dressing
to the bath can be directly geometrized in the higher-dimensional geometry. Our operators
can perhaps be thought as a counter-part of the operators in the doubly-holographic setup,
but in cases where the dressing cannot be so easily geometrized.

Finally, we would like to clarify the distinction between reconstruction and dressing.
To make things simple, let us consider the TFD state and consider an HKLL operator on
the left ϕL. This operator is dressed to the left CFT. Now we run our protocol, and as
explained above, we can move the dressing to the right. The operator ϕ̂L now commutes
with HL but no longer with HR [97]. This does not mean that it can be reconstructed
from the right degrees of freedom, but that it can be detected from the right CFT via
the Gauss law tail. It is still mostly built from the left CFT degrees of freedom, only its
dressing has been pushed to the right.

8 Discussion

In this paper, we have investigated whether information can be localized in perturbative
quantum gravity, in the context of the AdS/CFT correspondence. The challenge at hand is to
construct local diff-invariant operators that are not dressed to the boundary where the CFT
lives. We have presented evidence that such operators exist, at least around high energy states
with a large energy variance. Such states include semi-classical geometries with features that

– 60 –



J
H
E
P
0
5
(
2
0
2
4
)
2
6
1

break the symmetries of the dual CFT and for such states, local operators can be dressed to
the features of the state. We have argued that there exist CFT operators that commute with
all single-trace operators in a narrow time-band to all orders in the 1/N expansion, including
the Hamiltonian and other charges that generate conformal transformations, while at the
same time act like standard HKLL operators to leading order at large N .

We have presented an explicit construction of such operators, and checked that they
commute with the Hamiltonian to all orders in the 1/N expansion, and act like HKLL
operators to leading order. Technically the construction of such operators is made possible
due to the fact that different semi-classical states have exponentially small overlap. We
have also discussed a generalization of our operators that would commute with all boundary
charges of the conformal group. Moreover, we presented a definition of operators that
commutes with all single-trace operators, not just conserved charges. The construction of
these operators is slightly less explicit, and we define them by specifying their action on the
code subspace around a semi-classical geometry. We argue that such operators commute
with all single-trace operators in a narrow CFT time-band, while also acting like HKLL
operators to leading order at large N . Acting with such operators creates excitations that are
completely invisible to CFT correlation functions in a narrow time-band, even if they become
accessible at later times when a lightray from the location where the bulk excitation was
created reaches the boundary. This suggests that information can be lozalized in perturbative
quantum gravity, to all orders in GN perturbation theory. We conclude with some open
questions that we raised along the way.

8.1 The variance of the energy from semi-classical gravity

A quantity that played a primordial role throughout the paper is the variance of energy, which
controls the early time decay of the return probability through (3.16). One question that
would be interesting to understand better is how we can compute the variance ⟨Ψ0|∆H2|Ψ0⟩
from semi-classical gravity. In appendix A we give an example that we can change the O(N2)
coefficient of the variance of the Hamiltonian without changing the semi-classical geometry.
This implies that the variance of the energy is not just a property of the geometry, but also of
the quantum state of the fields on top of that geometry. Of course, if the metric changes as a
function of time, this puts a bound on the variance through (3.5). This suggests that if we
start with some time-dependent semi-classical geometry with a matter QFT state with large
variance, it should not be possible to change the state in a way to make the variance decrease
to O(1) without changing the metric towards a time-independent solution. The mechanism
by which this would happen is unclear, and it would be interesting to pursue it further.

On a related note, we can ask how we can quantize the bulk mode associated to the
Hamiltonian directly in gravity. The expectation value of the Hamiltonian is extracted
through the fall-off of the metric near the AdS boundary, as is standard in AdS/CFT,
but this does not capture its quantum 2-point function. If one computes the stress-tensor
connected 2-point function on the geometry, takes the relevant components and performs
the spatial integrals, one should obtain the variance. It would be desirable to have a more
direct representation of the variance in terms of the bulk wavefunction of the non-propagating
s-wave mode of the graviton and also understand from this point of view the lower bound
on the variance for time-dependent geometries.
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8.2 Gravitational proof for the decay of the return probability

A central part of this paper was played by the decay of the return probability. The physical
interpretation of this decay for a semi-classical time-dependent geometry is that it computes
(the square) of an overlap between two distinct geometries, namely the original one and
the time-evolved one. The general expectation is that the overlap of two distinct coherent
states should be given by

⟨λ1|λ2⟩ ∼ e−N
2f(λ1,λ2) , (8.1)

where f is some O(1) function whose real part is positive (we have assumed that the states
|λ1,2⟩ are normalized). The intuition is that N2 plays the role of 1/ℏ which controls the
overlap of coherent states, and from a gravitational stand-point, the on-shell action of any
geometry will be proportional to 1/GN . However, this gravitational argument does not
necessarily imply that the real part of f is positive, which is required by reflection positivity
of the CFT dual. As we have seen in (6.7), interpreting geometries as quantum states implies
constraints on various on-shell actions.

It would be interesting to understand this problem directly in gravity. Can reflection
positivity be proven directly at the level of the gravitational path integral? This requires
proving (6.7) directly in gravity. A possible way to prove this is the following: we consider
two states λ1 and λ2 with fixed sources, and their associated geometries contributing to the
overlaps ⟨λ1,2|λ1,2⟩, with geometries g1 and g2 and on-shell actions I1 and I2. We start by
considering a gravitational configuration which is half of g1 (say the northern hemi-ball) and
half of g2 (the southern hemi-ball). This configuration has action

Itot =
I1 + I2

2 . (8.2)

Note that the geometry is off-shell at the gluing surface between g1 and g2, and there could be
another contribution Ijunction to the action coming from the gluing, which we will not include
for now. To find the smooth saddle-point geometry, we need to let this geometry relax by
modifying its configuration near the junction. One may be able to prove that this smoothing
of the glued geometry comes with a definite sign in the action, therefore proving (6.7). It
would be interesting to pursue this idea.

8.3 Microscopically time-dependent states

We have seen that for any state with large energy and large energy variance, we can find
bulk local operators who commute with the time-band algebra. The interpretation of these
operators is that they are dressed with respect to features of the state (in particular the
time-depdence of the state), rather than to the boundary CFT. This intuitive picture is clear
when the state describes a semi-classical geometry that is macroscopically time-dependent,
as the time-dependence can be seen directly from the background metric which has features
with respect to which we can attach a gravitational dressing.

As we have discussed, our prescription also works for typical states with energy variance
of O(N2). In that context, the interpretation of the dressing is less clear. The dual geometry
is not macroscopically time-dependent. We can declare that the operator is dressed with
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respect to the microscopic time-dependence, but it is unclear what that means. It would be
interesting to have a better physical understanding of the dressing for such type of states.
We hope to return to this question in the future.

It is also important to note that our operators are state-dependent, even outside the
horizon. For a given typical state, we can use our construction to find the state-dressed local
operator. However, if we now pick a different typical state then the operator will not act in
the desired fashion. In this sense, our operators are similar to mirror operators [6], but they
can live outside the horizon. Nevertheless, we wish to emphasize again that independently of
questions surrounding the interpretation of these operators, an important message of this
paper is that these operators exist and that states created by acting on the corresponding
typical state with unitaries built from these state-dressed operators have identical correlators
of single-trace operators in a narrow time-band in the 1/N expansion as the original state.
Moreover, this can be done around any typical state once the state has been fixed.

8.4 Microcanonical states and small energy variance

There are also typical states with a small energy variance, of O(N0). For example, when one
refers to the microcanonical ensemble, one often has in mind picking a state with spread
in energy which is O(N0). For such states, the return probability does not decay to values
which are exponentially small in N2 after an order one time, which means we cannot use our
construction to define state-dressed operators. The variance of the energy is a very coarse way
to define how time-dependent a state is, and for states with energy variance of size O(N0),
the state is not time-dependent enough to dress operators to it. Of course, all these states
look macroscopically time independent, and all the information is in the microscopic phases
of the state. It would be interesting to study this further, and have a better physical picture
of whether one can find state-dressed operators to these small variance states.

It is worthing mentioning that if the variance is O(N c) for any 0 < c < 2, our prescription
does work. For typical states, this is some kind of intermediate regime between canonical
states and microcanonical states. For coherent states that are macroscopically time-dependent,
this situation would occur if the profile of the fields are not O(1), but rather scale with some
positive power of GN . In that case, backreaction is small, but the return probability still
decays. It would be interesting to understand these regimes better, they interpolate between
coherent states of the bulk quantum fields propagating on a frozen AdS background, and
semi-classical geometries with a non-trivial metric.

8.5 The AdS vacuum and low-energy states

For low-energy states like the AdS vacuum or states with an O(N0) energy above it, our
construction does not work. Therefore, the results of this paper do not contradict the claims
of [48], that for perturbative excitations on top of the AdS vacuum one can reconstruct the
state directly from the time-band. Technically, this happens because the return probability
does not decay to exponentially small values for such states. Physically, states like the AdS
vacuum have no features to which we can dress operators, so the only possible diff-invariant
way to specify a point is with relation to the boundary. Even classically, there are no
diff-invariant local observables in classical general relativity for the case of vacuum AdS. It
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thus appears that the failure of constructing approximately local diff-invariant operators
around the AdS vacuum happens because of the special nature of the state, rather than a
fundamental obstruction due to the non-locality of quantum gravity.

For excited states on top of the AdS vacuum, it is less obvious why local diff-invariant
states cannot be constructed. One may imagine that if the VEV of a scalar field has a
quantum lump in some region of space-time, we could dress an operator to the location
of this lump. Technically, we see that at least our operators cannot achieve this goal. It
would be interesting to have a more physical understanding of why it is not possible to
dress operators to quantum profiles, rather than semi-classical ones. As we have seen in the
previous subsection, it is not completely related to backreaction. If we consider a coherent
state on top of vacuum AdS corresponding to a source which scales as N1/4, the return
probability would decay fast enough for our construction to work, even if backreaction can
be neglected. Note however that such a state is not really part of the low-energy EFT on
top of vacuum AdS, since it has energy that scales with some fractional power of the Planck
scale. It would be interesting to understand this better.
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A Changing the variance of H

We would like to understand whether the variance of the energy is accessible within semi-
classical gravity, simply from the geometry, or whether it requires more knowledge and
in particular, the knowledge of the bulk quantum state for the fields propagating on the
background. As we will see, knowledge of the quantum state seems to be required to extract
the variance.

The quantity we would like to compute is

⟨Ψ0|H2|Ψ0⟩ − ⟨Ψ0|H|Ψ0⟩2 ≡ ⟨Ψ0|H2|Ψ0⟩c . (A.1)

This is a connected correlation function in holography, which usually would be compute from
the 2-point function of the associated propagating fields on the relevant background. This
2-point function is sensitive both to the geometry and to the bulk quantum state of the
propagating fields. However, here the situation is more subtle, because we are not studying
the local correlation function of an operator, but rather the 2-point function of the spatial
integral of a local operator. In this particular case, the situation is a lot more confusing
because the dual bulk field would be the s-wave graviton, which is not a propagating degree
of freedom in gravity.
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So what computes this variance? We will not be able to answer this question, and
we believe it to be an interesting open problem which we hope to return to in the future.
Nevertheless, we will study some particular states that should be interpreted as adding
an s-wave graviton in the bulk. Even though this mode doesn’t propagate, we will see
that adding it can affect the CFT variance. We will consider two type of deformations
of the thermofield double (TFD) state, both of which are related to adding an integrated
stress-tensor operator on the cylinder that prepares the TFD state. Let us start with some
basics. We consider the TFD state

|TFD⟩ = 1√
Z

∑
i

e−βEi/2 |Ei⟩ |Ei⟩ . (A.2)

We assume that the partition function has the usual large N behavior

Z(β) = exp
[
N2

(
F0(β) +

1
N2F1(β) + . . .

)]
, (A.3)

from which we can compute

⟨Hn⟩β = (−1)n 1
Z

dn

dβn
Z , (A.4)

where H is HL or HR. We have

⟨TFD|H |TFD⟩ = ⟨H⟩β = −N2F ′
0 − F ′

1 , (A.5)
⟨TFD|H2 |TFD⟩ − ⟨TFD|H |TFD⟩2 = ⟨H2⟩β,c ≡ ⟨H2⟩β − ⟨H⟩2

β . (A.6)

We have

⟨H2⟩β,c = N2F ′′
0 + F ′′

1 . (A.7)

Now, consider the following state

|ψ⟩ = H |TFD⟩ . (A.8)

We now have

⟨ψ|ψ⟩ = ⟨H2⟩β (A.9)

Let us now see how the energy and variance of the state have evolved. We have

⟨ψ|H |ψ⟩
⟨ψ|ψ⟩

= ⟨TFD|H3 |TFD⟩
⟨TFD|H2 |TFD⟩

=
⟨H⟩3

β + 3 ⟨H2⟩β,c ⟨H⟩β + ⟨H3⟩β,c
⟨H⟩2

β + ⟨H2⟩β,c
, (A.10)

where we defined

⟨H3⟩β,c ≡ ⟨H3⟩β − 3 ⟨H2⟩β,c ⟨H⟩β − ⟨H⟩3
β . (A.11)

Large N factorization implies that we can expand this answer and we find

⟨ψ|H |ψ⟩
⟨ψ|ψ⟩

= ⟨H⟩β + 2
⟨H2⟩β,c
⟨H⟩β

+ · · ·

= −N2F ′
0 − F ′

1 − 2F
′′
0
F ′

0
+ · · · . (A.12)
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We see that we obtain the TFD answer, up to a correction term, which is of size N0. This
means we have not changed the geometry classically, but only added a quantum particle
on top of the TFD state. Similarly, one can compute

⟨ψ|H2 |ψ⟩
⟨ψ|ψ⟩

−
(⟨ψ|H |ψ⟩

⟨ψ|ψ⟩

)2
=

⟨H⟩4
β + 6 ⟨H2⟩β,c ⟨H⟩2

β + · · ·
⟨H⟩2

β + ⟨H2⟩β,c
−
(
⟨H⟩2

β + 4 ⟨H2⟩β,c + · · ·
)

= ⟨H2⟩β,c + · · ·

= N2F ′′
0 + · · · (A.13)

We see that the energy has changed at N0, but the variance has not changed at order N2,
only at order N0. So this state modifies both the variance and the energy at subleading order
compared to the TFD. We will now build a state that modifies the energy at subleading
order, but the variance at leading order compared to the TFD.

Consider the state

|ϕ⟩ = (H − ⟨H⟩β) |TFD⟩ . (A.14)

We now have

⟨ϕ|ϕ⟩ = ⟨H2⟩β,c , (A.15)

and we can now compute the energy in this state:

⟨ϕ|H |ϕ⟩
⟨ϕ|ϕ⟩

=
⟨H3⟩β − 2 ⟨H2⟩β ⟨H⟩β + ⟨H⟩3

β

⟨H2⟩β,c
= ⟨H⟩β +

⟨H3⟩β,c
⟨H2⟩β,c

= −N2F ′
0 − F ′

1 − 2F
′′′
0
F ′′

0
+ · · · .

(A.16)
We see that this state modifies again the energy only at order N0, and in a slightly different
way than the previous state. In a similar way, we compute the variance and find

⟨ϕ|H2 |ϕ⟩
⟨ϕ|ϕ⟩

−
(⟨ϕ|H |ϕ⟩

⟨ϕ|ϕ⟩

)2
= ⟨H⟩2

β+3⟨H⟩2
β,c+

2⟨H3⟩β,c ⟨H⟩β+⟨H4⟩β,c
⟨H2⟩β,c

−
(
⟨H⟩β+

⟨H3⟩β,c
⟨H2⟩β,c

)2

=3⟨H2⟩β,c+
⟨H4⟩β,c
⟨H2⟩β,c

−
(
⟨H3⟩β,c
⟨H2⟩β,c

)2

=3N2F ′′
0 +

3(F ′′
0 )2F ′′

1 −(F ′′′
0 )2+F ′′

0 F
′′′′
0

(F ′′
0 )2 +. . . (A.17)

One can see that the change in the variance is order N2 (it is three times the variance of the
TFD state), so this is a modification of the variance at the order we were looking for.

From this, we can conclude that the semi-classical geometry is not enough to extract
the variance of the energy. The quantum state of the bulk fields is equally important. For
the state |ϕ⟩, we have the same leading large N properties, but a different quantum state for
the graviton. The fact that it is the s-wave of the graviton that enters is still puzzling, and
it would be interesting how to propertly quantize this non-propagating degree of freedom.
We leave this for the future.
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B Boosts in global AdS

As we have discussed in section 3, the conformal generators on the d-dimensional cylinder
R× Sd−1 organize themselves as time-translations, rotations, and 2d remaining generators
which correspond to boosts in the dual AdS geometry. The goal of this section is to discuss
whether there exist states that can preserve the boost symmetry. As we have seen throughout
the paper, symmetries that are broken by semi-classical states allow us to specify bulk points
by dressing the location of a bulk point to the feature of the state that breaks the symmetry.
It is important to understand which symmetries are broken, and which symmetries can be
preserved by semi-classical states. For time translations and rotations, this is straightforward,
but it is somewhat more subtle for boosts, which is the purpose of this section.

The 2d boost generators can be realized as d non-independent copies of SL(2,R) [85].
For simplicity, we will study the case of AdS3, but the higher dimensional versions follow
in a straight forward manner. In d = 2, the two copies of SL(2,R) are well-known and
correspond to the left and right moving sectors of conformal transformation. The generators
are given by L−1, L0, L1 and L̄−1, L̄0, L̄1. Time-translations and rotations are obtained by
the combinations

H = L0 + L̄0 , J = L0 − L̄0 . (B.1)

The four residual generators correspond to boosts in AdS3. For explicit expressions, see [141].
We would now like to analyze whether non-trivial states can be annihilated by these boosts.
As a starting point, notice that there are obviously CFT states which are annilitated by
L−1 and L̄−1: primary states. However, we would like to consider generators that can be
exponentiated to norm-preserving group elements. This means the generators should be
Hermitian. The generators L−1 and L̄−1 do not satisfy this property. However, we can
assemble them into the combinations

L+ = L−1 + L1 , L− = i(L−1 − L1) (B.2)

Using that L†
−1 = L1, we see that L± are hermitian operators and can thus be exponentiated

to form unitaries.
The question we would like to ask is whether there are states in the Hilbert space

that are eigenstates of L±. We will see that the only finite energy eigenstates of these
operators are those where the left-moving part of the CFT is in the vacuum. To see this,
we consider the commutator

[L+, L−] = 4iL0 (B.3)

Suppose now that |ψ⟩ is a normalizable eigenstate of —say— L+. Computing the expectation
value of this equation we find

⟨ψ|L0|ψ⟩ = 0 (B.4)

From the positivity of the energy spectrum this is possible only if L0|ψ⟩ = 0. The only states
with this property are states where the left moving sector of the CFT is in the vacuum.
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Non-trivial states will thus break boost invariance, which can be use to specify the
radial location of an operator. For the construction of operators presented in this paper,
this would require considering the states obtained by acting with the unitary operators on
semi-classical states |ψ0⟩ as

e−iγL± |ψ0⟩ , (B.5)

and studying the generalized return probability

R(γ) ≡
∣∣∣⟨ψ0| e−iγL± |ψ0⟩

∣∣∣2 . (B.6)

These return probabilities have not been studied but for semi-classical states, it is natural
to expect them to be exponentially small for γ ∼ O(1).

C Early time decay of the return probability

We wish to estimate the early time decay of the return probability (3.15). We will see that
at very early times, namely t ∼ 1

N , we can find the decay purely from large N factorization.
We will first recall a general property of coherent state overlaps which follows from large N
factorization, and then adapt the situation slightly to the return probability.

C.1 Overlap of coherent states and large N factorization

Coherent states of quantum gravity in AdS/CFT can be described by states prepared by
a Euclidean path integral with sources turned on for single-trace operators. These states
are thus given by

|λ⟩ = e

∫
x0<0 dx

dλ(x)O(x) |0⟩ , (C.1)

where we have not written the appropriate time-ordering which is left implicit. We will
now show that the overlap is given by

⟨λ1|λ2⟩ = e
∫
Rd λ

∗
1(y)λ2(x)⟨O(y)O(x)⟩ +O(1/N) , (C.2)

where it should be understood that y is integrated over the upper half plane while x is
integrated over the lower half plane.

We can explicitly expand out the integrals of the bra and the ket states, and use large N
factorization: this implies that the operators should be paired up and contracted using Wick’s
theorem, up to 1/N corrections. At a given power in the source, we will have a term of the form(∫

dxdy

)k 1
(k!)2λ

∗
1(y)kλ2(x)k ⟨0| Ok(y)Ok(x) |0⟩ . (C.3)

We can now apply Wick’s theorem and find(∫
dxdy

)k 1
(k!)2λ

∗
1(y)kλ2(x)k ⟨0|Ok(y)Ok(x) |0⟩= 1

k!

(∫
dxdyλ∗1(y)λ2(x)⟨0|O(y)O(x) |0⟩)

)k

,
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which we can re-exponentiate to find (C.2). Note that we have not written the normalization
of the states, which takes care of the Wick contraction between any two operators living
both in the lower half plane, or upper half plane. Similarly, terms which have a different
powers of upper and lower operators do not give contributions to leading order at large N
because we cannot pair the operators and use Wick’s theorem.

For this to work, we have implicitly assumed that λ ∼ O(N0). To see this, note that the
connected correlation functions of higher-point operators are suppressed by 1/N , but also
have more sources than lower-point functions. If we scale the sources as λ ∼ N1/2, which
is the correct scaling to induce O(1) back-reaction on the dual spacetime,45 we have to be
more careful, as some of the terms we dropped involving connected correlators will be the
same size as the Wick contractions. For example, we have

λ∗1(y)λ2(x) ⟨O(y)O(x)⟩ ∼ N2 (C.4)
(λ∗1(y)λ2(x))2 ⟨O(y)O(y)O(x)O(x)⟩c ∼ N2 . (C.5)

This means that we cannot truncate to the sector of Wick contraction, and we must resum
the entire expansion. Note however that the contributions corresponding to loop diagrams
in AdS are still suppressed by 1/N , so we are resumming tree-level diagrams to build the
backreacted geometry.

The upshot of this analysis is that we can use large-N factorization to easily compute
the overlap of coherent states, but only if the sources are O(1), in which case the exponent
in the exponential is also O(1). If we try to make the sources scale with N , the exponent
will be of order N2 and then infinitely many contributions must be resummed. We will
now apply this logic to the return probability.

C.2 The return probability

We can now apply the same logic as above, taking the operator e−iHT to be seen as an
imaginary Euclidean source for the Hamiltonian (which is the integral of the stress-tensor).
We want to compute

R(T ) = ⟨Ψ0|e−iHT |Ψ0⟩⟨Ψ0|eiHT |Ψ0⟩ . (C.6)

Applying the logic above, we would find that to leading order we have

R(T ) = e−iT ⟨Ψ0|H0|Ψ0⟩eiT ⟨Ψ0|H0|Ψ0⟩ = 1 +O(1/N) . (C.7)

So we see that the candidate leading term vanishes, and we must go to the next order. This is
due to the nature of the return probability, which is a square of overlaps. A quick expansion
of the exponentials shows that at order T 2, we have

T 2
(
− ⟨Ψ0|H2|Ψ0⟩+

(
⟨Ψ0|H|Ψ0⟩

)2) = −T 2∆H2 . (C.8)

For reasons similar to those explained above, this term can be exponentiated such that we find

R(T ) = e−T
2∆H2 +O(1/N) . (C.9)

45For operators that have unit 2-point function.
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As in the previous section, we can only trust this approximation if the exponent is O(1).
Because we are considering states that have ∆H ∼ N2, we see that we can trust this
exponential decay of the return probability for time-scales up to t ∼ 1/N .

For larger time-scales, it may still hold, but it cannot be justified based solely on large
N factorization. It is instructive to consider the case of the thermofield double state and
the spectral form factor, as we already discussed in section 6.2. For simplicity, we set
d = 2 where we have

Z(β) = e
c

12
4π2

β . (C.10)

The spectral form factor then gives

R(T ) = e
π2c

3

(
1

β+IT
+ 1

β−iT

)
= e

2π2c
3

β

β2+T 2 . (C.11)

We can expand this expression in T , as long as T ≪ β, to find

R(T ) ≈ Z(β)2e
− 2π2c

3
T 2
β3 . (C.12)

We find the exponential decay that goes like T 2. What is important is that even though T

must be much smaller than β, it is allowed to scale as N0. This cannot be justified solely
from large N factorization, but still holds in this particular context. We expect the return
probability to satisfy this property for holographic states more generally.

D LLM solutions in the bulk

The LLM geometries correspond to solutions of type IIB supergravity with symmetry SO(4)×
SO(4)×R. We assume the axion and dilaton are constant and the IIB three forms are vanishing.
We introduce coordinates xµ = (t, y, x1, x2) and Ω3, Ω̃3 for two 3-spheres corresponding to
the SO(4) isometries. We parametrize the five form as

F5 = Fµνdx
µ ∧ dxν ∧ dΩ3 + F̃µνdx

µ ∧ dxν ∧ dΩ̃3 , (D.1)

where the self duality of the five form implies that the two forms F and F̃ are dual to each other.
After demanding that the geometry preserves the Killing spinor in the presence of the

five form, we arrive at the following solution for the 1
2 -BPS bulk states [83]

ds2 = −(dt+ Vidx
i)2

h2 + h2(dy2 + dxidxi) + yeGdΩ2
3 +

y

eG
dΩ̃2

3 , (D.2)

where every function in the metric is expressed in terms of a function z(x1, x2, y) and we
defined z = 1

2tanh G, h−2 = 2y cosh G, and

y∂yVi = ϵij∂jz, y(∂iVj − ∂jVi) = ϵij∂yz . (D.3)

For the forms F, F̃ we have

F = dBt ∧ (dt+ V ) +BtdV + dB̂, F̃ = dB̃t ∧ (dt+ V ) + B̃tdV + d ˆ̃B , (D.4)
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where Bt = −1
4y

2e2G and B̃t = −1
4y

2e−2G. On the other hand,

dB̂ = −1
4y

3 ⋆3 d

(
z + 2
y2

)
, d ˆ̃B = −1

4y
3 ⋆3 d

(
z − 2
y2

)
, (D.5)

where ⋆3 is the epislon symbol in the flat three dimensions.
The only free function, z, is constrained to solve the equation,

∂i∂jz + y∂y

(
∂yz

y

)
= 0 . (D.6)

We focus our attention on the plane y = 0. Since the product of the radii of the two 3-spheres
is y, there will be a conical singularity at y = 0 unless the function z has a special behaviour.

Let’s consider the case where R1 is kept finite, i.e, e−G → 0 as y → 0. Thus, one has,
z ∼ 1/2 − e−2G + . . .. If one assumes that z = 1/2 at y = 0, then one gets the expansion,
z ∼ 1/2− y2f(x1, x2) + . . . for some positive function f , with our boundary conditions. Thus,
e−G ∼ yc(x1, x2) + . . . and h2 ∼ c(x1, x2) + . . .. Therefore, close to y = 0, the part of the
metric involving R2 will look like,

h2dy2 +R2dΩ̃2
3 ≈ c(dy2 + y2dΩ̃2

3) . (D.7)

Thus the conical singularity is resolved. In the case where R2 is kept fixed, the same argument
goes through but now with the condition that z = −1/2 at y = 0.

With these boundary values of z at y = 0 as a source, one can solve the Laplace
equation46 (D.6) and compute z(x1, x2, y). In addition, Vi can also be expressed in terms
of an integral of z(x1, x2, 0) over the two dimensional space.

E Notes on boundary states

Some useful references for this section are [81, 142–144].

E.1 Boundary states in 2D CFT

Boundary states in a 2d CFT need to satisfy [142]

(Ln − L̃n) |B⟩ = 0. (E.1)

In any Verma module, one can find a simple solution to these conditions as

|Ih⟩ =
∑
k⃗

|⃗k, h⟩L ⊗ |⃗k, h⟩R , (E.2)

where |⃗k, h⟩L is a linear combination of Virasoro descendants of the primary state |h⟩
characterized by an infinite dimensional vector k⃗ = (k1, k2, . . .) with non-negative integer
components. We identify these states by starting with descendants of the form

. . . LKn
−n . . . L

K1
−1 |h⟩L , (E.3)

and forming an orthonormal basis selected such that L⟨k⃗, h|k⃗′, h⟩L = δ
k⃗,k⃗′

.
46More precisely, it is a Laplace equation for z/y2.
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The state |Ih⟩ is called the Ishibashi state for the primary state |h⟩L, where the states
|⃗k, h⟩ are the descendant on top of the primary labeled by h. It can be seen easily that

Ln|Ih⟩ = L̃n|Ih⟩ . (E.4)

It is clear that the Ishibashi states have maximal entanglement between the left-moving and
right-moving sectors. Linear combinations of the Ishibashi states satisfy the constraint (E.1)
as well.

Physical boundary sates are given by special linear combinations of Ishibashi states
which are called Cardy states

|Ba⟩ =
∑
h

Ca,h |Ih⟩ . (E.5)

Physical boundary states should satisfy a consistency condition of the partition function on
a finite cylinder related to open-closed duality [142].

The Cardy states are singular because the norm of the Ishibashi states is divergent. One
can define regularized boundary states by evolving in Euclidean time as

|Ba,β⟩ = e−
β
4Hc |Ba⟩ , (E.6)

where β is a positive constant and Hc = L0 + L̃0 − c
12 . Since [L0 − L̃0, Hc] = 0, the state (E.6)

is still space-translational invariant on the circle, but it is time-dependent.
Ishibashi states are orthogonal to each other. The amplitude of Euclidean time evolution

by β/2 between two such states is computed as

⟨Ik|e−βHc/2|Il⟩ = δklχk(e−β/2) . (E.7)

χk is the character for the primary k. On the other hand, the Cardy states are not orthogonal
to each other but satisfy the open-closed duality relation as follows

⟨Ba|e−
β
2Hc |Bb⟩ =

∑
k

N
(k)
a,b Trk

[
e
− 4π2

β
Ho

]
(E.8)

where Ho = Lo − c
24 denotes the Hamiltonian in the dual channel, characterized by the

boundary conditions a, b. On the right hand side, Trk[. . .] denotes a trace in the sector
associated to a primary k as well as its descendants. Moreover, N (k)

a,b counts the degeneracy
of sectors which belong to the primary k with boundary conditions a and b.

In the high temperature limit β → 0, we find that

⟨Ba|e−
β
2Hc |Bb⟩ ≃ N

(km)
a,b e

− 4π2
β

(
h

(min)
a,b

− c
24

)
, (E.9)

where km is the lightest primary among those satisfy N (km)
a,b ̸= 0, whose conformal dimension

is denoted as h(min)
a,b .

We can estimate the inner products between two normalized boundary states in this
limit as

⟨ψa|e−
β
2Hc |ψb⟩ =

⟨Ba|e−
β
2Hc |Bb⟩√

⟨Ba|e−
β
2Hc |Ba⟩⟨Bb|e−

β
2Hc |Bb⟩

≃ δa,b +N
(km)
a,b e

− 4π2
β
h

(min)
a,b . (E.10)
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Note that N (0)
a,a = 1. In this way, a large gap in the open string channel leads to a large

exponential suppression of off-diagonal elements of inner products.
In holographic BCFT, the inner product between two boundary states can be computed

by evaluating the gravity action on the dual background. When we consider the gravity dual
of a cylinder, there are two candidates of classical gravity solutions depending on whether
the end of the word brane is connected or disconnected which are called connected and
disconnected solutions. When we consider the overlap for an identical boundary condition
a, then both the connected and disconnected solution are allowed. In the limit β → 0, the
connected solution is favored and one can find that

⟨Ba|e−
β
2Hc |Ba⟩ ≃ e

π2c
6β . (E.11)

We will use it later to calculate the return probability for boundary states. In addition to
it, one can find the inner product between two boundary states with different boundary
conditions. In this case, only the disconnected solutions are allowed and

⟨Ba|e−
β
2Hc |Bb⟩ ≃ e

cβ
12 +S(a)

bdy+S(b)
bdy , (E.12)

where S(i)
bdy, i = a, b are the boundary entropies [81].

E.2 Boundary states in higher dimensions

One can generalize to higher dimensions and define a boundary state |Ba⟩ as a state associated
to a (d− 1)-dimensional boundary in d-dimensional CFT [81, 145]. Taking the boundary to
be a torus Td−1, the inner product between two boundary states in a holographic BCFT can
be computed as a partition function on a d-dimensional open manifold Iβ/2 × Td−1 where
Iβ/2 is a length β/2 interval. As in the 2d case, there are two bulk solutions, a connected
and a disconnected one. In the β → 0 limit the connected solution is dominant and one can
find the inner product between two identical boundary states using the gravity solution as

⟨Ba|e−
β
2Hc |Ba⟩con ≃ eαd/β

d−1
, (E.13)

where

αd = (4ζ(T ))d R
d−1

16GN
Ld−1 , (E.14)

where R is the AdS radius, L is the length of the compactified spatial directions and ζ(T )
is a function of tension which is defined when T < 0 as

ζ(T ) ≡ Γ(1/d)Γ(1/2)
Γ(1/d+ 1/2)

R|T |
d(d− 1)

(
1− R2T 2

(d− 1)2

)1/d−1/2

F (1, 1/d, 1/2 + 1/d; 1− R2T 2

(d− 1)2 ) ,

(E.15)
and when T > 0, ζ(T ) = 2π

d − ζ(−T ). The tension takes values in the range |T | < d−1
R .

For d > 2, ζ(T ) non-trivially depends on T and there is an upper bound of the tension
T < T∗ which T∗ > 0 and ζ(T∗) = 0 [81].
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E.3 Correlation functions in BCFTs

Let us first start with the simplest case where the CFT is defined on the upper half plane
and the boundary state |B⟩ is placed along the real axis. We consider the 1-point function
of a local operator placed at z in the upper half plane. In the case of a CFT on the plane,
the 1-point function of a primary operator in the vacuum is required to vanish by the
symmetries. These are partly broken in a BCFT. The remaining symmetries constraint
the 1-point function to have the form

⟨O(z)⟩UHP = AO
(2 Im(z))∆ , (E.16)

where AO is determined by the details of the theory and the precise boundary state in
question. One could think of this as the boundary providing a source for the operator O.

The 2-point function of a primary operator in a BCFT is more complicated than the
case with no boundaries where it is exactly fixed by the symmetries. Non-trivial information
about the operator content and OPE coefficients is necessary to compute the 2-point function
exactly in a BCFT. We assume that for large N holographic CFTs the large N 2-point
function takes the form

⟨O(z1)O(z2)⟩UHP = ⟨O(z1)⟩UHP ⟨O(z2)⟩UHP + ⟨O(z1)O(z2)⟩ ± ⟨O(z1)O(z∗2)⟩ , (E.17)

where
⟨O(z1)O(z2)⟩ =

1
|z1 − z2|2∆ , (E.18)

where the contribution from an image insertion placed at z∗2 . The sign of the last term is
governed by the boundary conditions, being either Dirichlet (−) or Neumann (+).

Mapping the z coordinate to a new coordinate w by

w → z = exp(2πw/β + i2π/4) , (E.19)

we can map the upper half plane to the a strip of width β/2, where the positive (negative)
real axis is mapped to the lower (upper) edge of the strip.

Since primary operators continue to transform in the usual way, the correlation functions
now transform to

⟨O(w)⟩strip = AO(
β
π cos

[
2π
β τ
])∆

⟨O(w1)O(w2)⟩connected
strip = 1

|βπ sinh
[
π
β (w1 − w2)

]
|2∆

± 1
|βπ cosh

[
π
β (w1 − w̄2)

]
|2∆

,

(E.20)

where the second line is only the connected piece of the large N 2-point function [79]. Higher
order correlation function can be found through large N factorization.

Correlation functions on a state defined on a circle by

|Bβ⟩ = e−βH/4 |B⟩ , (E.21)

can be thought of as correlation function on a cylinder of width β/2 where the boundary
state is placed on both sides. We can instead consider a strip of width β/2, from τ = −β/4
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to τ = β/4 with periodicity x ∼ x + R. We choose R = 2π for simplicity from now on.
In large N holographic CFTs correlation functions on the cylinder can be found from the
correlation function on the strip using the method of images

⟨O(w1)O(w2)⟩connected
cylinder =

∞∑
n=0

⟨O(w1 + 2πn)O(w2)⟩connected
strip . (E.22)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv.
Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].

[2] G. ’t Hooft, On the Quantum Structure of a Black Hole, Nucl. Phys. B 256 (1985) 727
[INSPIRE].

[3] L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity,
Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].

[4] S.B. Giddings, Nonviolent nonlocality, Phys. Rev. D 88 (2013) 064023 [arXiv:1211.7070]
[INSPIRE].

[5] R. Bousso, Complementarity Is Not Enough, Phys. Rev. D 87 (2013) 124023
[arXiv:1207.5192] [INSPIRE].

[6] K. Papadodimas and S. Raju, An Infalling Observer in AdS/CFT, JHEP 10 (2013) 212
[arXiv:1211.6767] [INSPIRE].

[7] E. Verlinde and H. Verlinde, Black Hole Entanglement and Quantum Error Correction, JHEP
10 (2013) 107 [arXiv:1211.6913] [INSPIRE].

[8] J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013)
781 [arXiv:1306.0533] [INSPIRE].

[9] G. Penington, Entanglement Wedge Reconstruction and the Information Paradox, JHEP 09
(2020) 002 [arXiv:1905.08255] [INSPIRE].

[10] A. Almheiri, R. Mahajan, J. Maldacena and Y. Zhao, The Page curve of Hawking radiation
from semiclassical geometry, JHEP 03 (2020) 149 [arXiv:1908.10996] [INSPIRE].

[11] A. Almheiri, N. Engelhardt, D. Marolf and H. Maxfield, The entropy of bulk quantum fields and
the entanglement wedge of an evaporating black hole, JHEP 12 (2019) 063 [arXiv:1905.08762]
[INSPIRE].

[12] G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole
interior, JHEP 03 (2022) 205 [arXiv:1911.11977] [INSPIRE].

[13] A. Laddha, S.G. Prabhu, S. Raju and P. Shrivastava, The Holographic Nature of Null Infinity,
SciPost Phys. 10 (2021) 041 [arXiv:2002.02448] [INSPIRE].

[14] A. Komar, Construction of a Complete Set of Independent Observables in the General Theory
of Relativity, Phys. Rev. 111 (1958) 1182 [INSPIRE].

[15] P.G. Bergmann and A.B. Komar, Poisson brackets between locally defined observables in general
relativity, Phys. Rev. Lett. 4 (1960) 432 [INSPIRE].

– 75 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://arxiv.org/abs/hep-th/9711200
https://inspirehep.net/literature/451647
https://doi.org/10.1016/0550-3213(85)90418-3
https://inspirehep.net/literature/205470
https://doi.org/10.1103/PhysRevD.48.3743
https://arxiv.org/abs/hep-th/9306069
https://inspirehep.net/literature/355341
https://doi.org/10.1103/PhysRevD.88.064023
https://arxiv.org/abs/1211.7070
https://inspirehep.net/literature/1204974
https://doi.org/10.1103/PhysRevD.87.124023
https://arxiv.org/abs/1207.5192
https://inspirehep.net/literature/1123485
https://doi.org/10.1007/JHEP10(2013)212
https://arxiv.org/abs/1211.6767
https://inspirehep.net/literature/1204765
https://doi.org/10.1007/JHEP10(2013)107
https://doi.org/10.1007/JHEP10(2013)107
https://arxiv.org/abs/1211.6913
https://inspirehep.net/literature/1204824
https://doi.org/10.1002/prop.201300020
https://doi.org/10.1002/prop.201300020
https://arxiv.org/abs/1306.0533
https://inspirehep.net/literature/1236661
https://doi.org/10.1007/JHEP09(2020)002
https://doi.org/10.1007/JHEP09(2020)002
https://arxiv.org/abs/1905.08255
https://inspirehep.net/literature/1735792
https://doi.org/10.1007/JHEP03(2020)149
https://arxiv.org/abs/1908.10996
https://inspirehep.net/literature/1751747
https://doi.org/10.1007/JHEP12(2019)063
https://arxiv.org/abs/1905.08762
https://inspirehep.net/literature/1735823
https://doi.org/10.1007/JHEP03(2022)205
https://arxiv.org/abs/1911.11977
https://inspirehep.net/literature/1767458
https://doi.org/10.21468/SciPostPhys.10.2.041
https://arxiv.org/abs/2002.02448
https://inspirehep.net/literature/1778932
https://doi.org/10.1103/PhysRev.111.1182
https://inspirehep.net/literature/1476824
https://doi.org/10.1103/PhysRevLett.4.432
https://inspirehep.net/literature/44703


J
H
E
P
0
5
(
2
0
2
4
)
2
6
1

[16] B. DeWitt, The Quantization of geometry, in Gravitation: An introduction to current research
Louis Witten ed., Wiley (1962), pp. 266–381 [INSPIRE].

[17] S.B. Giddings, D. Marolf and J.B. Hartle, Observables in effective gravity, Phys. Rev. D 74
(2006) 064018 [hep-th/0512200] [INSPIRE].

[18] D. Marolf, Comments on Microcausality, Chaos, and Gravitational Observables, Class. Quant.
Grav. 32 (2015) 245003 [arXiv:1508.00939] [INSPIRE].

[19] I. Khavkine, Local and gauge invariant observables in gravity, Class. Quant. Grav. 32 (2015)
185019 [arXiv:1503.03754] [INSPIRE].

[20] S. Banerjee, J.-W. Bryan, K. Papadodimas and S. Raju, A toy model of black hole
complementarity, JHEP 05 (2016) 004 [arXiv:1603.02812] [INSPIRE].

[21] V. Balasubramanian, B. Czech, B.D. Chowdhury and J. de Boer, The entropy of a hole in
spacetime, JHEP 10 (2013) 220 [arXiv:1305.0856] [INSPIRE].

[22] V. Balasubramanian et al., Bulk curves from boundary data in holography, Phys. Rev. D 89
(2014) 086004 [arXiv:1310.4204] [INSPIRE].

[23] R.C. Myers, J. Rao and S. Sugishita, Holographic Holes in Higher Dimensions, JHEP 06 (2014)
044 [arXiv:1403.3416] [INSPIRE].

[24] M. Headrick, R.C. Myers and J. Wien, Holographic Holes and Differential Entropy, JHEP 10
(2014) 149 [arXiv:1408.4770] [INSPIRE].

[25] V.E. Hubeny, Covariant Residual Entropy, JHEP 09 (2014) 156 [arXiv:1406.4611] [INSPIRE].

[26] K. Papadodimas and S. Raju, State-Dependent Bulk-Boundary Maps and Black Hole
Complementarity, Phys. Rev. D 89 (2014) 086010 [arXiv:1310.6335] [INSPIRE].

[27] K. Papadodimas and S. Raju, Black Hole Interior in the Holographic Correspondence and the
Information Paradox, Phys. Rev. Lett. 112 (2014) 051301 [arXiv:1310.6334] [INSPIRE].

[28] S. Leutheusser and H. Liu, Causal connectability between quantum systems and the black hole
interior in holographic duality, Phys. Rev. D 108 (2023) 086019 [arXiv:2110.05497] [INSPIRE].

[29] S.A.W. Leutheusser, Emergent Times in Holographic Duality, Phys. Rev. D 108 (2023) 086020
[arXiv:2112.12156] [INSPIRE].

[30] E. Witten, Gravity and the crossed product, JHEP 10 (2022) 008 [arXiv:2112.12828]
[INSPIRE].

[31] V. Chandrasekaran, G. Penington and E. Witten, Large N algebras and generalized entropy,
JHEP 04 (2023) 009 [arXiv:2209.10454] [INSPIRE].

[32] S. Leutheusser and H. Liu, Subalgebra-subregion duality: emergence of space and time in
holography, arXiv:2212.13266 [INSPIRE].

[33] E. Bahiru et al., State-dressed local operators in the AdS/CFT correspondence, Phys. Rev. D
108 (2023) 086035 [arXiv:2209.06845] [INSPIRE].

[34] T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field
theory, hep-th/9808016 [INSPIRE].

[35] I. Bena, On the construction of local fields in the bulk of AdS5 and other spaces, Phys. Rev. D
62 (2000) 066007 [hep-th/9905186] [INSPIRE].

[36] A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: A
boundary view of horizons and locality, Phys. Rev. D 73 (2006) 086003 [hep-th/0506118]
[INSPIRE].

– 76 –

https://inspirehep.net/literature/44830
https://doi.org/10.1103/PhysRevD.74.064018
https://doi.org/10.1103/PhysRevD.74.064018
https://arxiv.org/abs/hep-th/0512200
https://inspirehep.net/literature/700681
https://doi.org/10.1088/0264-9381/32/24/245003
https://doi.org/10.1088/0264-9381/32/24/245003
https://arxiv.org/abs/1508.00939
https://inspirehep.net/literature/1386667
https://doi.org/10.1088/0264-9381/32/18/185019
https://doi.org/10.1088/0264-9381/32/18/185019
https://arxiv.org/abs/1503.03754
https://inspirehep.net/literature/1351901
https://doi.org/10.1007/JHEP05(2016)004
https://arxiv.org/abs/1603.02812
https://inspirehep.net/literature/1426819
https://doi.org/10.1007/JHEP10(2013)220
https://arxiv.org/abs/1305.0856
https://inspirehep.net/literature/1232105
https://doi.org/10.1103/PhysRevD.89.086004
https://doi.org/10.1103/PhysRevD.89.086004
https://arxiv.org/abs/1310.4204
https://inspirehep.net/literature/1260543
https://doi.org/10.1007/JHEP06(2014)044
https://doi.org/10.1007/JHEP06(2014)044
https://arxiv.org/abs/1403.3416
https://inspirehep.net/literature/1285969
https://doi.org/10.1007/JHEP10(2014)149
https://doi.org/10.1007/JHEP10(2014)149
https://arxiv.org/abs/1408.4770
https://inspirehep.net/literature/1311652
https://doi.org/10.1007/JHEP09(2014)156
https://arxiv.org/abs/1406.4611
https://inspirehep.net/literature/1301212
https://doi.org/10.1103/PhysRevD.89.086010
https://arxiv.org/abs/1310.6335
https://inspirehep.net/literature/1261878
https://doi.org/10.1103/PhysRevLett.112.051301
https://arxiv.org/abs/1310.6334
https://inspirehep.net/literature/1261877
https://doi.org/10.1103/PhysRevD.108.086019
https://arxiv.org/abs/2110.05497
https://inspirehep.net/literature/1942165
https://doi.org/10.1103/PhysRevD.108.086020
https://arxiv.org/abs/2112.12156
https://inspirehep.net/literature/1996543
https://doi.org/10.1007/JHEP10(2022)008
https://arxiv.org/abs/2112.12828
https://inspirehep.net/literature/1997150
https://doi.org/10.1007/JHEP04(2023)009
https://arxiv.org/abs/2209.10454
https://inspirehep.net/literature/2154670
https://arxiv.org/abs/2212.13266
https://inspirehep.net/literature/2618649
https://doi.org/10.1103/PhysRevD.108.086035
https://doi.org/10.1103/PhysRevD.108.086035
https://arxiv.org/abs/2209.06845
https://inspirehep.net/literature/2152249
https://arxiv.org/abs/hep-th/9808016
https://inspirehep.net/literature/474214
https://doi.org/10.1103/PhysRevD.62.066007
https://doi.org/10.1103/PhysRevD.62.066007
https://arxiv.org/abs/hep-th/9905186
https://inspirehep.net/literature/500596
https://doi.org/10.1103/PhysRevD.73.086003
https://arxiv.org/abs/hep-th/0506118
https://inspirehep.net/literature/684983


J
H
E
P
0
5
(
2
0
2
4
)
2
6
1

[37] A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local bulk
operators, Phys. Rev. D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].

[38] A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: A
holographic description of the black hole interior, Phys. Rev. D 75 (2007) 106001 [Erratum ibid.
75 (2007) 129902] [hep-th/0612053] [INSPIRE].

[39] A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT and
the fate of the BTZ singularity, AMS/IP Stud. Adv. Math. 44 (2008) 85 [arXiv:0710.4334]
[INSPIRE].

[40] I. Heemskerk, D. Marolf, J. Polchinski and J. Sully, Bulk and Transhorizon Measurements in
AdS/CFT, JHEP 10 (2012) 165 [arXiv:1201.3664] [INSPIRE].

[41] A. Almheiri, T. Anous and A. Lewkowycz, Inside out: meet the operators inside the horizon. On
bulk reconstruction behind causal horizons, JHEP 01 (2018) 028 [arXiv:1707.06622] [INSPIRE].

[42] J. Cotler et al., Entanglement Wedge Reconstruction via Universal Recovery Channels, Phys.
Rev. X 9 (2019) 031011 [arXiv:1704.05839] [INSPIRE].

[43] C.-F. Chen, G. Penington and G. Salton, Entanglement Wedge Reconstruction using the Petz
Map, JHEP 01 (2020) 168 [arXiv:1902.02844] [INSPIRE].

[44] D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative
entropy, JHEP 06 (2016) 004 [arXiv:1512.06431] [INSPIRE].

[45] T. Faulkner and A. Lewkowycz, Bulk locality from modular flow, JHEP 07 (2017) 151
[arXiv:1704.05464] [INSPIRE].

[46] S.B. Giddings and A. Kinsella, Gauge-invariant observables, gravitational dressings, and
holography in AdS, JHEP 11 (2018) 074 [arXiv:1802.01602] [INSPIRE].

[47] W. Donnelly and S.B. Giddings, Observables, gravitational dressing, and obstructions to locality
and subsystems, Phys. Rev. D 94 (2016) 104038 [arXiv:1607.01025] [INSPIRE].

[48] C. Chowdhury, V. Godet, O. Papadoulaki and S. Raju, Holography from the Wheeler-DeWitt
equation, JHEP 03 (2022) 019 [arXiv:2107.14802] [INSPIRE].

[49] K. Papadodimas and S. Raju, Remarks on the necessity and implications of state-dependence in
the black hole interior, Phys. Rev. D 93 (2016) 084049 [arXiv:1503.08825] [INSPIRE].

[50] K. Papadodimas, A class of non-equilibrium states and the black hole interior,
arXiv:1708.06328 [INSPIRE].

[51] R.M. Wald, General Relativity, Chicago Univ. Pr., Chicago, U.S.A. (1984)
[DOI:10.7208/chicago/9780226870373.001.0001] [INSPIRE].

[52] R.F. Streater and A.S. Wightman, PCT, spin and statistics, and all that, Princeton University
Press (1989) [INSPIRE].

[53] R. Haag and D. Kastler, An algebraic approach to quantum field theory, J. Math. Phys. 5 (1964)
848 [INSPIRE].

[54] R. Haag, Local quantum physics: Fields, particles, algebras, Springer Berlin, Heidelberg (1992)
[DOI:10.1007/978-3-642-97306-2] [INSPIRE].

[55] R. Haag and B. Schroer, Postulates of Quantum Field Theory, J. Math. Phys. 3 (1962) 248.

[56] H. Roos, Independence of local algebras in quantum field theory, Commun. Math. Phys. 16
(1970) 238 [INSPIRE].

[57] D. Buchholz, Product states for local algebras, Commun. Math. Phys. 36 (1974) 287 [INSPIRE].

– 77 –

https://doi.org/10.1103/PhysRevD.74.066009
https://arxiv.org/abs/hep-th/0606141
https://inspirehep.net/literature/719413
https://doi.org/10.1103/PhysRevD.75.106001
https://arxiv.org/abs/hep-th/0612053
https://inspirehep.net/literature/733810
https://arxiv.org/abs/0710.4334
https://inspirehep.net/literature/765209
https://doi.org/10.1007/JHEP10(2012)165
https://arxiv.org/abs/1201.3664
https://inspirehep.net/literature/1084942
https://doi.org/10.1007/JHEP01(2018)028
https://arxiv.org/abs/1707.06622
https://inspirehep.net/literature/1610883
https://doi.org/10.1103/PhysRevX.9.031011
https://doi.org/10.1103/PhysRevX.9.031011
https://arxiv.org/abs/1704.05839
https://inspirehep.net/literature/1592406
https://doi.org/10.1007/JHEP01(2020)168
https://arxiv.org/abs/1902.02844
https://inspirehep.net/literature/1719181
https://doi.org/10.1007/JHEP06(2016)004
https://arxiv.org/abs/1512.06431
https://inspirehep.net/literature/1410810
https://doi.org/10.1007/JHEP07(2017)151
https://arxiv.org/abs/1704.05464
https://inspirehep.net/literature/1592402
https://doi.org/10.1007/JHEP11(2018)074
https://arxiv.org/abs/1802.01602
https://inspirehep.net/literature/1653473
https://doi.org/10.1103/PhysRevD.94.104038
https://arxiv.org/abs/1607.01025
https://inspirehep.net/literature/1473806
https://doi.org/10.1007/JHEP03(2022)019
https://arxiv.org/abs/2107.14802
https://inspirehep.net/literature/1896593
https://doi.org/10.1103/PhysRevD.93.084049
https://arxiv.org/abs/1503.08825
https://inspirehep.net/literature/1357183
https://arxiv.org/abs/1708.06328
https://inspirehep.net/literature/1617801
https://doi.org/10.7208/chicago/9780226870373.001.0001
https://inspirehep.net/literature/209356
https://inspirehep.net/literature/290343
https://doi.org/10.1063/1.1704187
https://doi.org/10.1063/1.1704187
https://inspirehep.net/literature/9124
https://doi.org/10.1007/978-3-642-97306-2
https://inspirehep.net/literature/338216
https://doi.org/10.1063/1.1703797
https://doi.org/10.1007/BF01646790
https://doi.org/10.1007/BF01646790
https://inspirehep.net/literature/65398
https://doi.org/10.1007/BF01646201
https://inspirehep.net/literature/80387


J
H
E
P
0
5
(
2
0
2
4
)
2
6
1

[58] S. Doplicher and R. Longo, Standard and split inclusions of von Neumann algebras, Invent.
Math. 75 (1984) 493 [INSPIRE].

[59] E. Witten, APS Medal for Exceptional Achievement in Research: Invited article on
entanglement properties of quantum field theory, Rev. Mod. Phys. 90 (2018) 045003
[arXiv:1803.04993] [INSPIRE].

[60] C. Chowdhury, O. Papadoulaki and S. Raju, A physical protocol for observers near the
boundary to obtain bulk information in quantum gravity, SciPost Phys. 10 (2021) 106
[arXiv:2008.01740] [INSPIRE].

[61] W. Donnelly and S.B. Giddings, How is quantum information localized in gravity?, Phys. Rev.
D 96 (2017) 086013 [arXiv:1706.03104] [INSPIRE].

[62] S.W. Hawking and G.F.R. Ellis, The Large Scale Structure of Space-Time, Cambridge
University Press (1973) [DOI:10.1017/cbo9780511524646].

[63] J. Corvino and R.M. Schoen, On the asymptotics for the vacuum Einstein constraint equations,
J. Diff. Geom. 73 (2006) 185 [gr-qc/0301071] [INSPIRE].

[64] R.E. Peierls, The commutation laws of relativistic field theory, Proc. Roy. Soc. Lond. A 214
(1952) 143 [INSPIRE].

[65] B. Dewitt, The Peierls Bracket, NATO Sci. Ser. C 530 (1999) 111 [INSPIRE].

[66] D.N. Page and W.K. Wootters, Evolution without evolution: dynamics described by stationary
observables, Phys. Rev. D 27 (1983) 2885 [INSPIRE].

[67] K.V. Kuchar, Time and interpretations of quantum gravity, Int. J. Mod. Phys. D 20 (2011) 3
[INSPIRE].

[68] C.J. Isham, Canonical quantum gravity and the problem of time, NATO Sci. Ser. C 409 (1993)
157 [gr-qc/9210011] [INSPIRE].

[69] D. Marolf, Unitarity and Holography in Gravitational Physics, Phys. Rev. D 79 (2009) 044010
[arXiv:0808.2842] [INSPIRE].

[70] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,
Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[71] B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The Gravity Dual of a
Density Matrix, Class. Quant. Grav. 29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].

[72] A. Almheiri, X. Dong and D. Harlow, Bulk Locality and Quantum Error Correction in
AdS/CFT, JHEP 04 (2015) 163 [arXiv:1411.7041] [INSPIRE].

[73] K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality, Phys. Rev. Lett. 101 (2008)
081601 [arXiv:0805.0150] [INSPIRE].

[74] M. Botta-Cantcheff, P. Martínez and G.A. Silva, On excited states in real-time AdS/CFT,
JHEP 02 (2016) 171 [arXiv:1512.07850] [INSPIRE].

[75] D. Marolf et al., From Euclidean Sources to Lorentzian Spacetimes in Holographic Conformal
Field Theories, JHEP 06 (2018) 077 [arXiv:1709.10101] [INSPIRE].

[76] A. Belin, A. Lewkowycz and G. Sárosi, The boundary dual of the bulk symplectic form, Phys.
Lett. B 789 (2019) 71 [arXiv:1806.10144] [INSPIRE].

[77] A. Belin and B. Withers, From sources to initial data and back again: on bulk singularities in
Euclidean AdS/CFT, JHEP 12 (2020) 185 [arXiv:2007.10344] [INSPIRE].

– 78 –

https://doi.org/10.1007/BF01388641
https://doi.org/10.1007/BF01388641
https://inspirehep.net/literature/895152
https://doi.org/10.1103/RevModPhys.90.045003
https://arxiv.org/abs/1803.04993
https://inspirehep.net/literature/1662490
https://doi.org/10.21468/SciPostPhys.10.5.106
https://arxiv.org/abs/2008.01740
https://inspirehep.net/literature/1810220
https://doi.org/10.1103/PhysRevD.96.086013
https://doi.org/10.1103/PhysRevD.96.086013
https://arxiv.org/abs/1706.03104
https://inspirehep.net/literature/1604302
https://doi.org/10.1017/cbo9780511524646
https://arxiv.org/abs/gr-qc/0301071
https://inspirehep.net/literature/611962
https://doi.org/10.1098/rspa.1952.0158
https://doi.org/10.1098/rspa.1952.0158
https://inspirehep.net/literature/44829
https://doi.org/10.1007/978-94-011-4542-8_5
https://inspirehep.net/literature/1707809
https://doi.org/10.1103/PhysRevD.27.2885
https://inspirehep.net/literature/13239
https://doi.org/10.1142/S0218271811019347
https://inspirehep.net/literature/327212
https://arxiv.org/abs/gr-qc/9210011
https://inspirehep.net/literature/339949
https://doi.org/10.1103/PhysRevD.79.044010
https://arxiv.org/abs/0808.2842
https://inspirehep.net/literature/793537
https://doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/hep-th/0603001
https://inspirehep.net/literature/711505
https://doi.org/10.1088/0264-9381/29/15/155009
https://arxiv.org/abs/1204.1330
https://inspirehep.net/literature/1104741
https://doi.org/10.1007/JHEP04(2015)163
https://arxiv.org/abs/1411.7041
https://inspirehep.net/literature/1330275
https://doi.org/10.1103/PhysRevLett.101.081601
https://doi.org/10.1103/PhysRevLett.101.081601
https://arxiv.org/abs/0805.0150
https://inspirehep.net/literature/784858
https://doi.org/10.1007/JHEP02(2016)171
https://arxiv.org/abs/1512.07850
https://inspirehep.net/literature/1411338
https://doi.org/10.1007/JHEP06(2018)077
https://arxiv.org/abs/1709.10101
https://inspirehep.net/literature/1627666
https://doi.org/10.1016/j.physletb.2018.10.071
https://doi.org/10.1016/j.physletb.2018.10.071
https://arxiv.org/abs/1806.10144
https://inspirehep.net/literature/1679892
https://doi.org/10.1007/JHEP12(2020)185
https://arxiv.org/abs/2007.10344
https://inspirehep.net/literature/1808102


J
H
E
P
0
5
(
2
0
2
4
)
2
6
1

[78] I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS2 gravity,
arXiv:1707.02325 [INSPIRE].

[79] A. Almheiri, A. Mousatov and M. Shyani, Escaping the interiors of pure boundary-state black
holes, JHEP 02 (2023) 024 [arXiv:1803.04434] [INSPIRE].

[80] S. Cooper et al., Black hole microstate cosmology, JHEP 07 (2019) 065 [arXiv:1810.10601]
[INSPIRE].

[81] M. Miyaji, T. Takayanagi and T. Ugajin, Spectrum of End of the World Branes in Holographic
BCFTs, JHEP 06 (2021) 023 [arXiv:2103.06893] [INSPIRE].

[82] D. Marolf and J. Wien, The Torus Operator in Holography, JHEP 01 (2018) 105
[arXiv:1708.03048] [INSPIRE].

[83] H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10
(2004) 025 [hep-th/0409174] [INSPIRE].

[84] J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic
Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986)
207 [INSPIRE].

[85] B. Freivogel, J. McGreevy and S.J. Suh, Exactly Stable Collective Oscillations in Conformal
Field Theory, Phys. Rev. D 85 (2012) 105002 [arXiv:1109.6013] [INSPIRE].

[86] D. Kabat, G. Lifschytz and D.A. Lowe, Constructing local bulk observables in interacting
AdS/CFT, Phys. Rev. D 83 (2011) 106009 [arXiv:1102.2910] [INSPIRE].

[87] D. Kabat and G. Lifschytz, CFT representation of interacting bulk gauge fields in AdS, Phys.
Rev. D 87 (2013) 086004 [arXiv:1212.3788] [INSPIRE].

[88] N. Anand et al., An Exact Operator That Knows Its Location, JHEP 02 (2018) 012
[arXiv:1708.04246] [INSPIRE].

[89] A. Castro, N. Iqbal and E. Llabrés, Wilson lines and Ishibashi states in AdS3/CFT2, JHEP 09
(2018) 066 [arXiv:1805.05398] [INSPIRE].

[90] H. Chen, J. Kaplan and U. Sharma, AdS3 reconstruction with general gravitational dressings,
JHEP 07 (2019) 141 [arXiv:1905.00015] [INSPIRE].

[91] S.B. Giddings, Gravitational dressing, soft charges, and perturbative gravitational splitting,
Phys. Rev. D 100 (2019) 126001 [arXiv:1903.06160] [INSPIRE].

[92] R. Bousso, V. Chandrasekaran, I.F. Halpern and A. Wall, Asymptotic Charges Cannot Be
Measured in Finite Time, Phys. Rev. D 97 (2018) 046014 [arXiv:1709.08632] [INSPIRE].

[93] W. Donnelly and S.B. Giddings, Gravitational splitting at first order: Quantum information
localization in gravity, Phys. Rev. D 98 (2018) 086006 [arXiv:1805.11095] [INSPIRE].

[94] T. Jacobson and P. Nguyen, Diffeomorphism invariance and the black hole information paradox,
Phys. Rev. D 100 (2019) 046002 [arXiv:1904.04434] [INSPIRE].

[95] S.B. Giddings, Holography and unitarity, JHEP 11 (2020) 056 [arXiv:2004.07843] [INSPIRE].

[96] S.B. Giddings, On the questions of asymptotic recoverability of information and subsystems in
quantum gravity, JHEP 08 (2022) 227 [arXiv:2112.03207] [INSPIRE].

[97] K. Papadodimas and S. Raju, Local Operators in the Eternal Black Hole, Phys. Rev. Lett. 115
(2015) 211601 [arXiv:1502.06692] [INSPIRE].

[98] J. Chakravarty, Overcounting of interior excitations: A resolution to the bags of gold paradox in
AdS, JHEP 02 (2021) 027 [arXiv:2010.03575] [INSPIRE].

– 79 –

https://arxiv.org/abs/1707.02325
https://inspirehep.net/literature/1609281
https://doi.org/10.1007/JHEP02(2023)024
https://arxiv.org/abs/1803.04434
https://inspirehep.net/literature/1662312
https://doi.org/10.1007/JHEP07(2019)065
https://arxiv.org/abs/1810.10601
https://inspirehep.net/literature/1700427
https://doi.org/10.1007/JHEP06(2021)023
https://arxiv.org/abs/2103.06893
https://inspirehep.net/literature/1851405
https://doi.org/10.1007/JHEP01(2018)105
https://arxiv.org/abs/1708.03048
https://inspirehep.net/literature/1615457
https://doi.org/10.1088/1126-6708/2004/10/025
https://doi.org/10.1088/1126-6708/2004/10/025
https://arxiv.org/abs/hep-th/0409174
https://inspirehep.net/literature/659502
https://doi.org/10.1007/BF01211590
https://doi.org/10.1007/BF01211590
https://inspirehep.net/literature/231928
https://doi.org/10.1103/PhysRevD.85.105002
https://arxiv.org/abs/1109.6013
https://inspirehep.net/literature/929866
https://doi.org/10.1103/PhysRevD.83.106009
https://arxiv.org/abs/1102.2910
https://inspirehep.net/literature/889716
https://doi.org/10.1103/PhysRevD.87.086004
https://doi.org/10.1103/PhysRevD.87.086004
https://arxiv.org/abs/1212.3788
https://inspirehep.net/literature/1207630
https://doi.org/10.1007/JHEP02(2018)012
https://arxiv.org/abs/1708.04246
https://inspirehep.net/literature/1616112
https://doi.org/10.1007/JHEP09(2018)066
https://doi.org/10.1007/JHEP09(2018)066
https://arxiv.org/abs/1805.05398
https://inspirehep.net/literature/1673203
https://doi.org/10.1007/JHEP07(2019)141
https://arxiv.org/abs/1905.00015
https://inspirehep.net/literature/1732531
https://doi.org/10.1103/PhysRevD.100.126001
https://arxiv.org/abs/1903.06160
https://inspirehep.net/literature/1724976
https://doi.org/10.1103/PhysRevD.97.046014
https://arxiv.org/abs/1709.08632
https://inspirehep.net/literature/1625716
https://doi.org/10.1103/PhysRevD.98.086006
https://arxiv.org/abs/1805.11095
https://inspirehep.net/literature/1675269
https://doi.org/10.1103/PhysRevD.100.046002
https://arxiv.org/abs/1904.04434
https://inspirehep.net/literature/1728976
https://doi.org/10.1007/JHEP11(2020)056
https://arxiv.org/abs/2004.07843
https://inspirehep.net/literature/1791664
https://doi.org/10.1007/JHEP08(2022)227
https://arxiv.org/abs/2112.03207
https://inspirehep.net/literature/1985237
https://doi.org/10.1103/PhysRevLett.115.211601
https://doi.org/10.1103/PhysRevLett.115.211601
https://arxiv.org/abs/1502.06692
https://inspirehep.net/literature/1346251
https://doi.org/10.1007/JHEP02(2021)027
https://arxiv.org/abs/2010.03575
https://inspirehep.net/literature/1821964


J
H
E
P
0
5
(
2
0
2
4
)
2
6
1

[99] J.S. Cotler et al., Black Holes and Random Matrices, JHEP 05 (2017) 118 [Erratum ibid. 09
(2018) 002] [arXiv:1611.04650] [INSPIRE].

[100] Y. Chen, Spectral form factor for free large N gauge theory and strings, JHEP 06 (2022) 137
[arXiv:2202.04741] [INSPIRE].

[101] S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067
[arXiv:1306.0622] [INSPIRE].

[102] P. Saad, S.H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity,
arXiv:1806.06840 [INSPIRE].

[103] J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112]
[INSPIRE].

[104] R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT
correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].

[105] M. Kontsevich and G. Segal, Wick Rotation and the Positivity of Energy in Quantum Field
Theory, Quart. J. Math. Oxford Ser. 72 (2021) 673 [arXiv:2105.10161] [INSPIRE].

[106] E. Witten, A Note On Complex Spacetime Metrics, arXiv:2111.06514 [INSPIRE].

[107] B. Sundborg, The Hagedorn transition, deconfinement and N = 4 SYM theory, Nucl. Phys. B
573 (2000) 349 [hep-th/9908001] [INSPIRE].

[108] O. Aharony et al., The Hagedorn-deconfinement phase transition in weakly coupled large N
gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].

[109] S. Choi, S. Kim and J. Song, Supersymmetric Spectral Form Factor and Euclidean Black Holes,
Phys. Rev. Lett. 131 (2023) 151602 [arXiv:2206.15357] [INSPIRE].

[110] S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4
SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [INSPIRE].

[111] D. Berenstein, A toy model for the AdS/CFT correspondence, JHEP 07 (2004) 018
[hep-th/0403110] [INSPIRE].

[112] L.G. Yaffe, Large n Limits as Classical Mechanics, Rev. Mod. Phys. 54 (1982) 407 [INSPIRE].

[113] E. Brézin, C. Itzykson, G. Parisi and J.B. Zuber, Planar Diagrams, Commun. Math. Phys. 59
(1978) 35 [INSPIRE].

[114] A. Jevicki and B. Sakita, The Quantum Collective Field Method and Its Application to the
Planar Limit, Nucl. Phys. B 165 (1980) 511 [INSPIRE].

[115] J.A. Shapiro, A Test of the Collective Field Method for the N → ∞ Limit, Nucl. Phys. B 184
(1981) 218 [INSPIRE].

[116] D. Berenstein and A. Miller, Superposition induced topology changes in quantum gravity, JHEP
11 (2017) 121 [arXiv:1702.03011] [INSPIRE].

[117] D. Berenstein and A. Miller, Code subspaces for LLM geometries, Class. Quant. Grav. 35
(2018) 065003 [arXiv:1708.00035] [INSPIRE].

[118] E.P. Wigner, Proceedings of the fourth Canadian Mathematical Congress, Banff, 1957,
University of Toronto Press, Toronto (1959).

[119] A. Dhar, G. Mandal and S.R. Wadia, Classical Fermi fluid and geometric action for c = 1, Int.
J. Mod. Phys. A 8 (1993) 325 [hep-th/9204028] [INSPIRE].

– 80 –

https://doi.org/10.1007/JHEP05(2017)118
https://arxiv.org/abs/1611.04650
https://inspirehep.net/literature/1498126
https://doi.org/10.1007/JHEP06(2022)137
https://arxiv.org/abs/2202.04741
https://inspirehep.net/literature/2030696
https://doi.org/10.1007/JHEP03(2014)067
https://arxiv.org/abs/1306.0622
https://inspirehep.net/literature/1236835
https://arxiv.org/abs/1806.06840
https://inspirehep.net/literature/1678263
https://doi.org/10.1088/1126-6708/2003/04/021
https://arxiv.org/abs/hep-th/0106112
https://inspirehep.net/literature/558359
https://doi.org/10.1103/PhysRevD.60.104001
https://arxiv.org/abs/hep-th/9903238
https://inspirehep.net/literature/497424
https://doi.org/10.1093/qmath/haab027
https://arxiv.org/abs/2105.10161
https://inspirehep.net/literature/1864652
https://arxiv.org/abs/2111.06514
https://inspirehep.net/literature/1967378
https://doi.org/10.1016/S0550-3213(00)00044-4
https://doi.org/10.1016/S0550-3213(00)00044-4
https://arxiv.org/abs/hep-th/9908001
https://inspirehep.net/literature/504954
https://doi.org/10.4310/ATMP.2004.v8.n4.a1
https://arxiv.org/abs/hep-th/0310285
https://inspirehep.net/literature/632130
https://doi.org/10.1103/PhysRevLett.131.151602
https://arxiv.org/abs/2206.15357
https://inspirehep.net/literature/2103999
https://doi.org/10.4310/ATMP.2001.v5.n4.a6
https://arxiv.org/abs/hep-th/0111222
https://inspirehep.net/literature/567216
https://doi.org/10.1088/1126-6708/2004/07/018
https://arxiv.org/abs/hep-th/0403110
https://inspirehep.net/literature/646057
https://doi.org/10.1103/RevModPhys.54.407
https://inspirehep.net/literature/166408
https://doi.org/10.1007/BF01614153
https://doi.org/10.1007/BF01614153
https://inspirehep.net/literature/122559
https://doi.org/10.1016/0550-3213(80)90046-2
https://inspirehep.net/literature/8331
https://doi.org/10.1016/0550-3213(81)90216-9
https://doi.org/10.1016/0550-3213(81)90216-9
https://inspirehep.net/literature/9803
https://doi.org/10.1007/JHEP11(2017)121
https://doi.org/10.1007/JHEP11(2017)121
https://arxiv.org/abs/1702.03011
https://inspirehep.net/literature/1512920
https://doi.org/10.1088/1361-6382/aaa623
https://doi.org/10.1088/1361-6382/aaa623
https://arxiv.org/abs/1708.00035
https://inspirehep.net/literature/1613915
https://doi.org/10.1142/S0217751X93000138
https://doi.org/10.1142/S0217751X93000138
https://arxiv.org/abs/hep-th/9204028
https://inspirehep.net/literature/333611


J
H
E
P
0
5
(
2
0
2
4
)
2
6
1

[120] A. Dhar, G. Mandal and S.R. Wadia, Nonrelativistic fermions, coadjoint orbits of W(infinity)
and string field theory at c = 1, Mod. Phys. Lett. A 7 (1992) 3129 [hep-th/9207011] [INSPIRE].

[121] A. Dhar, G. Mandal and S.R. Wadia, W(infinity) coherent states and path integral derivation of
bosonization of nonrelativistic fermions in one-dimension, Mod. Phys. Lett. A 8 (1993) 3557
[hep-th/9309028] [INSPIRE].

[122] J. Polchinski, Classical limit of (1 + 1)-dimensional string theory, Nucl. Phys. B 362 (1991) 125
[INSPIRE].

[123] P.H. Ginsparg and G.W. Moore, Lectures on 2-D gravity and 2-D string theory, in the
proceedings of the Theoretical Advanced Study Institute (TASI 92), Boulder, U.S.A., June 1–26,
(1992) [hep-th/9304011] [INSPIRE].

[124] S.R. Das, The one-dimensional matrix model and string theory, in the proceedings of the Spring
School on Superstrings, Trieste, Italy, March 30 – April 14 (1992) [hep-th/9211085] [INSPIRE].

[125] S.R. Das, D-branes in 2-d string theory and classical limits, in the proceedings of the 3rd
International Symposium on Quantum Theory and Symmetries, Argonne, U.S.A., October
20–24 (2003) [DOI:10.1142/9789812702340_0026] [hep-th/0401067] [INSPIRE].

[126] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94
(2016) 106002 [arXiv:1604.07818] [INSPIRE].

[127] E. Bahiru and N. Vardian, Explicit reconstruction of the entanglement wedge via the Petz map,
JHEP 07 (2023) 025 [arXiv:2210.00602] [INSPIRE].

[128] T. Takayanagi, Holographic Dual of BCFT, Phys. Rev. Lett. 107 (2011) 101602
[arXiv:1105.5165] [INSPIRE].

[129] A. Karch and L. Randall, Open and closed string interpretation of SUSY CFT’s on branes with
boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [INSPIRE].

[130] W. Reeves et al., Looking for (and not finding) a bulk brane, JHEP 12 (2021) 002
[arXiv:2108.10345] [INSPIRE].

[131] A. Belin, S. Biswas and J. Sully, The spectrum of boundary states in symmetric orbifolds, JHEP
01 (2022) 123 [arXiv:2110.05491] [INSPIRE].

[132] J. Louko and D. Marolf, Single exterior black holes and the AdS/CFT conjecture, Phys. Rev. D
59 (1999) 066002 [hep-th/9808081] [INSPIRE].

[133] M. Guica and S.F. Ross, Behind the geon horizon, Class. Quant. Grav. 32 (2015) 055014
[arXiv:1412.1084] [INSPIRE].

[134] H. Maxfield, S. Ross and B. Way, Holographic partition functions and phases for higher genus
Riemann surfaces, Class. Quant. Grav. 33 (2016) 125018 [arXiv:1601.00980] [INSPIRE].

[135] J. de Boer et al., On the interior geometry of a typical black hole microstate, JHEP 05 (2019)
010 [arXiv:1804.10580] [INSPIRE].

[136] J. De Boer et al., Probing typical black hole microstates, JHEP 01 (2020) 062
[arXiv:1901.08527] [INSPIRE].

[137] D. Harlow, Aspects of the Papadodimas-Raju Proposal for the Black Hole Interior, JHEP 11
(2014) 055 [arXiv:1405.1995] [INSPIRE].

[138] J. de Boer, D.L. Jafferis and L. Lamprou, On black hole interior reconstruction, singularities
and the emergence of time, arXiv:2211.16512 [INSPIRE].

– 81 –

https://doi.org/10.1142/S0217732392002512
https://arxiv.org/abs/hep-th/9207011
https://inspirehep.net/literature/335602
https://doi.org/10.1142/S0217732393002294
https://arxiv.org/abs/hep-th/9309028
https://inspirehep.net/literature/35783
https://doi.org/10.1016/0550-3213(91)90559-G
https://inspirehep.net/literature/29550
https://arxiv.org/abs/hep-th/9304011
https://inspirehep.net/literature/36050
https://arxiv.org/abs/hep-th/9211085
https://inspirehep.net/literature/341128
https://doi.org/10.1142/9789812702340_0026
https://arxiv.org/abs/hep-th/0401067
https://inspirehep.net/literature/642570
https://doi.org/10.1103/PhysRevD.94.106002
https://doi.org/10.1103/PhysRevD.94.106002
https://arxiv.org/abs/1604.07818
https://inspirehep.net/literature/1452588
https://doi.org/10.1007/JHEP07(2023)025
https://arxiv.org/abs/2210.00602
https://inspirehep.net/literature/2159474
https://doi.org/10.1103/PhysRevLett.107.101602
https://arxiv.org/abs/1105.5165
https://inspirehep.net/literature/901430
https://doi.org/10.1088/1126-6708/2001/06/063
https://arxiv.org/abs/hep-th/0105132
https://inspirehep.net/literature/522627
https://doi.org/10.1007/JHEP12(2021)002
https://arxiv.org/abs/2108.10345
https://inspirehep.net/literature/1909825
https://doi.org/10.1007/JHEP01(2022)123
https://doi.org/10.1007/JHEP01(2022)123
https://arxiv.org/abs/2110.05491
https://inspirehep.net/literature/1942181
https://doi.org/10.1103/PhysRevD.59.066002
https://doi.org/10.1103/PhysRevD.59.066002
https://arxiv.org/abs/hep-th/9808081
https://inspirehep.net/literature/474799
https://doi.org/10.1088/0264-9381/32/5/055014
https://arxiv.org/abs/1412.1084
https://inspirehep.net/literature/1332529
https://doi.org/10.1088/0264-9381/33/12/125018
https://arxiv.org/abs/1601.00980
https://inspirehep.net/literature/1413728
https://doi.org/10.1007/JHEP05(2019)010
https://doi.org/10.1007/JHEP05(2019)010
https://arxiv.org/abs/1804.10580
https://inspirehep.net/literature/1670642
https://doi.org/10.1007/JHEP01(2020)062
https://arxiv.org/abs/1901.08527
https://inspirehep.net/literature/1716592
https://doi.org/10.1007/JHEP11(2014)055
https://doi.org/10.1007/JHEP11(2014)055
https://arxiv.org/abs/1405.1995
https://inspirehep.net/literature/1294928
https://arxiv.org/abs/2211.16512
https://inspirehep.net/literature/2605930


J
H
E
P
0
5
(
2
0
2
4
)
2
6
1

[139] H. Geng et al., Inconsistency of islands in theories with long-range gravity, JHEP 01 (2022) 182
[arXiv:2107.03390] [INSPIRE].

[140] H.Z. Chen et al., Quantum Extremal Islands Made Easy, Part II: Black Holes on the Brane,
JHEP 12 (2020) 025 [arXiv:2010.00018] [INSPIRE].

[141] J.M. Maldacena and A. Strominger, AdS3 black holes and a stringy exclusion principle, JHEP
12 (1998) 005 [hep-th/9804085] [INSPIRE].

[142] J.L. Cardy, Boundary conformal field theory, hep-th/0411189 [INSPIRE].

[143] M. Miyaji, S. Ryu, T. Takayanagi and X. Wen, Boundary States as Holographic Duals of
Trivial Spacetimes, JHEP 05 (2015) 152 [arXiv:1412.6226] [INSPIRE].

[144] W.-Z. Guo, Entanglement Properties of Boundary State and Thermalization, JHEP 06 (2018)
044 [arXiv:1708.07268] [INSPIRE].

[145] M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP 11 (2011) 043
[arXiv:1108.5152] [INSPIRE].

– 82 –

https://doi.org/10.1007/JHEP01(2022)182
https://arxiv.org/abs/2107.03390
https://inspirehep.net/literature/1879702
https://doi.org/10.1007/JHEP12(2020)025
https://arxiv.org/abs/2010.00018
https://inspirehep.net/literature/1820670
https://doi.org/10.1088/1126-6708/1998/12/005
https://doi.org/10.1088/1126-6708/1998/12/005
https://arxiv.org/abs/hep-th/9804085
https://inspirehep.net/literature/469200
https://arxiv.org/abs/hep-th/0411189
https://inspirehep.net/literature/665058
https://doi.org/10.1007/JHEP05(2015)152
https://arxiv.org/abs/1412.6226
https://inspirehep.net/literature/1335164
https://doi.org/10.1007/JHEP06(2018)044
https://doi.org/10.1007/JHEP06(2018)044
https://arxiv.org/abs/1708.07268
https://inspirehep.net/literature/1618765
https://doi.org/10.1007/JHEP11(2011)043
https://arxiv.org/abs/1108.5152
https://inspirehep.net/literature/925046

	Introduction
	Aspects of locality in field theory and gravity
	Classical field theories
	Localization of information in QFT
	Classical and quantum gravity

	Holographic setup
	Gravitional states in AdS, large diffeomorphisms and asymptotic symmetries 
	Locality in AdS
	The CFT description and the time band algebra
	Formulating the main goal 
	Time-shifted states and return probability
	The return probability 
	Other asymptotic charges

	State-dressed operators
	Vanishing commutator with H to all orders in 1/N
	Similar action as HKLL operators
	Interpretation and comments
	A similarity transformation
	Other asymptotic charges

	A more general argument for the commutant
	On the consistency of the defining equations
	Proof that operators have the desired properties

	Examples 
	Coherent states
	Thermofield double state
	Weakly coupled, large N gauge theories
	Perturbative states around empty AdS
	LLM geometries
	Kourkoulou-Maldacena states in SYK model
	Holographic boundary states

	Black hole microstates
	States with macroscopic time-dependence
	Typical states
	Two entangled CFTs
	Island discussion

	Discussion
	The variance of the energy from semi-classical gravity
	Gravitational proof for the decay of the return probability
	Microscopically time-dependent states
	Microcanonical states and small energy variance
	The AdS vacuum and low-energy states

	Changing the variance of H 
	Boosts in global AdS 
	Early time decay of the return probability
	Overlap of coherent states and large N factorization
	The return probability

	LLM solutions in the bulk
	Notes on boundary states
	Boundary states in 2D CFT
	Boundary states in higher dimensions
	Correlation functions in BCFTs


