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Abstract
Geo-referenced and temporal data are becoming more and more ubiquitous in a wide range of fields such as medicine and
economics. Particularly in the realm ofmedical research, spatio-temporal data play a pivotal role in tracking and understanding
the spread and dynamics of diseases, enabling researchers to predict outbreaks, identify hot spots, and formulate effective
intervention strategies. To forecast these types of data we propose a Probabilistic Spatio-Temporal Neural Network that (1)
estimates, with computational efficiency, models with spatial and temporal components; and (2) combines the flexibility of a
Neural Network—which is free from distributional assumptions—with the uncertainty quantification of probabilistic models.
Our architecture is compared with the established INLA method, as well as with other baseline models, on COVID-19 data
from Italian regions. Our empirical analysis demonstrates the superior predictive effectiveness of our method across multiple
temporal ranges and offers insights for shaping targeted health interventions and strategies.

Keywords Probabilistic deep learning · Poisson regression · Entity embedding ·Disease mapping ·Uncertainty quantification

1 Introduction

In recent years, the surge in spatial and spatio-temporal data
availability has been remarkable, largely related to techno-
logical advancements in computational tools. These tools
enable the real-time acquisition of data from sources like
GPS satellites, cellular network triangulation, Wi-Fi loca-
tion tracking, etc. Consequently, researchers across diverse
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domains, from epidemiology, ecology, and climatology all
the way to social sciences, often find themselves dealingwith
geo-referenced and time-stamped data that encapsulate spa-
tial information as well as temporal aspects.

Machine learning anddeep learninghave attracted tremen-
dous attention from researchers in various fields, e.g., AI,
computer vision, and language processing, but also from
more traditional sciences, e.g., physics, biology, and man-
ufacturing. The added value provided by these algorithms is
the few or no assumptions to be met. They are far more flex-
ible than traditional statistical models, as they have weaker
requirements in terms of collinearity, Gaussianity of resid-
uals, and similar. Thus, they have high model uncertainty
tolerance. In spite of themany pros, neural networks are often
blamed for lack of interpretability (black-box models) and of
uncertainty quantifications, and for high computational costs.

Image processing components such as convolutional neu-
ral networks, sequence processing models, such as recurrent
neural networks, and regularization layers, such as dropouts
[1], are used extensively, and they contribute to the lack of
interpretability.

Yet, in sectors like physics, biology, business, and man-
ufacturing, the representation of model uncertainty remains
paramount.As these sectors increasingly lean toward embrac-
ing uncertainty, deep learning presents novel opportunities.
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Coherently, the goal of the currentwork is twofold: to create a
model that is able to infer both the spatial and temporal com-
ponents and to combine the advantages of both approaches,
namely the flexibility of a neural network and the quantifi-
cation of uncertainty offered by a traditional probabilistic
regression model.

To implement this model different approaches were used:

• Embeddings, a relatively low-dimensional space into
which we translate high-dimensional vectors, to model
spatio-temporal components and feed them to neural net-
works;

• A neural network architecture able to handle sequences
of data and quantify the uncertainty of each prediction.

We conduct a comprehensive analysis on the historical
series of COVID-19 deaths. We evaluate the accuracy of our
forecasts in comparison with other state-of-the-art models in
the machine learning and spatio-temporal statistical litera-
ture, over various forecasting ranges.

2 Related works

In this section we reference, to the best of our knowledge,
some studies related to the use of statistical models and
machine learning for the analysis of COVID-19 data.

In [2] and [3] authors usemachine learningmodels to fore-
cast the number of upcoming patients affected byCOVID-19.
In particular, in [2] four standard forecasting models, such
as linear regression (LR), least absolute shrinkage and selec-
tion operator (LASSO), support vector machine (SVM), and
exponential smoothing (ES), have been used, while [3] uses
different ML algorithms for predicting the chance of being
infected and leverages an autoregressive integrated moving
average time series for forecasting confirmed cases for vari-
ous states of India.

Authors in [4] proposed comparative forecasting results
using machine learning methods. The classical SIR model
was used to fit COVID-19 data using different techniques
and tools for forecasting, including machine learning with
fitting functions. In [5] a multilayer perceptron for predict-
ing the spread of COVID-19 is proposed, while in [6] simple
Recurrent Neural Network (RNN), Long short-termmemory
(LSTM), Bidirectional L-STM (BiLSTM), Gated recurrent
units (GRUs), and Variational AutoEncoder (VAE) algo-
rithms have been applied for global forecasting ofCOVID-19
cases based on a small volume of data.

Authors of [7] compared the performance of several
machine learning methods to predict the COVID-19 spread
in different countries. In [8] a multimodel machine learning
technique for forecasting COVID-19-related parameters in

the long term both within India and on a global scale has
been proposed.

In [9] the author proposes a semi-parametric approach
to estimate the evolution of COVID-19 (SARS-CoV-2) in
Spain using a combination of both a Deep learning model
and a Poisson-Gamma Bayesian regression model to take
into account uncertainty quantification. The goal was to elicit
the expected number of counts and their reliability. In [10]
they use a INLA spatio-temporal stochastic model to explain
the temporal and spatial variations in the daily number of
new confirmed cases in Spain, Italy, and Germany. In [11]
authors present a Poisson autoregressive model to monitor
the temporal evolution of COVID-19 contagion and associ-
ated reproduction rate, dynamically adapting parameters to
explain the epidemic propagation in terms of short- and long-
term case count dependencies, demonstrating how health
policies can impact contagion trends. In [12], authors use a
Poisson autoregressive model to analyze daily new observed
cases, revealing whether the contagion exhibits a trend and
determining the position of each country on that trend, while
in [13] an endemic–epidemic model is proposed in order to
track COVID-19 contagion dynamics both temporally and
spatially, exemplified through an empirical analysis ofNorth-
ern Italy’s provinces affected by the pandemic. Authors of
[14] use a discrete latent variable model with spatial and time
dependences, for the analysis of SARS-CoV-2 infections.
Finally, [15] reviews different spatial and spatio-temporal
approaches to identify spatial clusters and associated risk
factors.

3 Methods

3.1 Modeling spatial and temporal components
with embeddings

Embeddings are numerical representations of categorical
variables, commonly used in machine learning [16]. They
capture the semantic meaning of a variable by mapping it
to a dense vector of real numbers. Models based on embed-
dings can thus learn the relationships among the variables in
a continuous space rather than a discrete one.

The idea is to embed spatial and temporal components
by synthesizing “context” information (i.e., locations with
similar behavior have similar latent representation). Entity
Embedding [17] serves this purpose: the idea is to map
categorical variables into Euclidean spaces using a func-
tion approximation problemwhere categories are turned into
“Entity” (a.k.a. category) Embeddings. It is expected that
similar categories are close in the embedding space.

In this work, we take into account categorical information
related to regions, week-day, month, season, and year. To
give an intuition on how embeddings work we can observe
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Fig. 1 Aplot of the embeddings related to the spatial information input.
For visualization purposes t-SNE was applied to represent embeddings
in 2 dimensions. Same color points belong to the same cluster. Clusters
are identified using a K-Means algorithm with K = 4 on the embedding
representations

Fig. 1. In this case, data come from the COVID-19 daily
deaths time series for each of the 20 Italian regions (as dis-
cussed extensively in Sect. 4) and the goal is to embed each
region in a latent space using the entity embedding approach.
Figure1 represents the embeddings in a two-dimensional-
reduced space for visualization purposes, after applying the
t-SNE [18] to the (n-dimensional) latent embeddings vec-
tors. It can be observed that regions that have had a similar
incidence of deaths from COVID-19 lie close together in
the two-dimensional embedding representation of Fig. 1. The
resulting clusters among regions can be intuitively justified.

3.2 Model architecture

Weaim to construct a neural network (NN) architecture capa-
ble of discerning patterns within spatio-temporal count data.
To achieve this, we will model the outcome using a probabil-
ity distribution [19, 20] suitable for count data, such as the
Poisson distribution. Additionally, our NN will incorporate
uncertainty in its predictions, akin to conventional statistical
models.

The proposed architecture is shown in Fig. 2, and it is
based on a multi-head CNN-LSTM [21] structure. We will
now delve into the various components of the architecture,
emphasizing their novel aspects.1

Consider a scenario where we wish to study the temporal
progression of a specific phenomenon across N distinct loca-
tions. Formally, for each location j ∈ {1, . . . , N } an event is
observed at T time intervals, and our objective is to forecast
for subsequent intervals up to a horizon of T + h.

The first layer consists of N inputs, where N is the number
of sites under consideration, ensuring that the T temporal
data of each site are individually accounted for.

1 The codebase is available to facilitate reproducibility at the following
link: https://github.com/Fede-stack/Probabilistic-COVID19.

The temporal data are processed by a 1D convolutional
layer, or Conv1D. This layer serves to provide temporal
smoothing, ensuring that fluctuations over time are harmo-
nized. Moreover, it is instrumental in identifying pertinent
patterns within the time series. Following this process, the
output from the convolutional layer is flattened [22] and
reshaped, making it compatible with subsequent layers.
The next step in the architecture involves employing two
stackedLSTMs [23]. These are useful to extract insights from
sequential data. In parallel with the spatio-temporal data, the
network is also fed with additional information about the
region under prediction, the day of the week, month, and
year. These details are processed through different embed-
ding layers.

These different processing flows are then joined together:
the additional information embeddings (focusing on the
region under prediction,…, month, and year), which encom-
pass both temporal and spatial information, are merged with
the LSTMs outputs. This ensures that the model has a com-
prehensive view of the data, priming it to make accurate
predictions.

For each time instance, identical input data are supplied
to the network N times, each paired with the spatial data
pertinent to the specific location for which a prediction is
being generated. The rationale behind supplying both data
and spatial embeddings as network inputs is that the embed-
dings will provide invaluable insights to compute the output
for a specific site, while considering input data frommultiple
sites. Furthermore, replicating the same information N times
acts as a data augmentation strategy: more complex models
demand larger datasets for effective training. For instance,
if we were to rely solely on a year’s worth of observations,
we would be limited to 365 input data points to train our
architecture. However, by iterating this process N times, we
effectively amplify the number of input observations avail-
able to the model. This not only enhances the robustness of
our model, but also aids in parameter estimation, ultimately
leading to more accurate predictions.

After concatenating the embeddings and the LSTM layer
outputs, a dense layer is added, culminating in the output
layer. The latter is a dense layer with as many neurons as
the range of forecast, representing the rate parameters λ of
a Poisson distribution, which fully identifies the conditional
probability distribution (CPD) of the outcome y given the
input x . The whole NN input scheme is summarized in Algo-
rithm 1.

Conventionally, a NN updates its parameters based on the
minimization of a loss function. In our context, the approach
is centered around maximizing the likelihood, ensuring that
the resulting model can predict observed values with high
probability. The likelihood of an arbitrary CPD can be max-
imized within a neural network framework by interpreting
the probabilistic neural network’s output as a unique dis-
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Fig. 2 Skeleton of our probabilistic neural network architecture

tribution parameter. The neural network “learns” to predict
the λ value that maximizes the likelihood—or minimizes the
negative log likelihood (NLL)—of the observed data

NLL(λ; X) =
n∑

i=1

[−xi log(λi ) + λi + log(xi !)
]

where

• λi is the value predicted by the neural network for the i th

data point.
• xi is the i th observed data point.
• n is the total number of data points.

Algorithm 1 Neural Network Input Preparation
1: Constants: N = 20 � Number of regions
2: T � Number of time instances
3: for t = 1 to T do
4: Day(t) � ∈ {1, . . . , 7}
5: Month(t) � ∈ {1, . . . , 12}
6: Season(t) � ∈ {1, . . . , 4}
7: Year(t) � ∈ {1, . . . , 3}
8: end for
9: for j = 1 to N do
10: TimeSeriesData = getTimeSeriesData(j)
11: for t = 1 to T do
12: InputData = concatenate(TimeSeriesData, Day(t), Month(t),

Season(t), Year(t))
13: feedToNeuralNetwork(InputData, j)
14: end for
15: end for

3.3 Alternativemodels

To evaluate the performance of our model, the results are
compared with a pool of alternatives that are commonly
used in the literature for spatio-temporal data forecasting:
two ensemble models: Random Forest [24] and XGBoost
[25]; and a Bayesian statistical model: INLA [26].

In particular, regarding the ensemble models, the embed-
dings obtained from the embedding layers of a neural
network are used as input. These embeddings are tasked to
learn meaningful data representations along with the lagged
time series. Regarding INLA, we have used a Poisson dis-
tribution for modeling the outcomes. The choice of the
Poisson distribution was driven by the estimated dispersion
parameter in our data being close to one, indicating that the
Poisson distribution adequately captures the data variability.
Additionally, we incorporated a spatial component using the
Besag-York-Mollié (BYM) model [27] and an autoregres-
sive temporal component, in order to capture spatio-temporal
dynamics in our data.

4 Data

Our primary data source for the analysis is derived from the
GitHub repository maintained by the Italian Civil Protec-
tion, accessible via this link: https://github.com/pcm-dpc/
COVID-19. This repository provides daily updates, offering
a comprehensive overview of the pandemic’s progression. It
includes different time series such as the number of new pos-

123

https://github.com/pcm-dpc/COVID-19
https://github.com/pcm-dpc/COVID-19


International Journal of Data Science and Analytics

Fig. 3 Historical trend of number of deaths across five Italian regions: LOMBARDY, VENETO, BASILICATA, CALABRIA, and
VALLE D’AOSTA. The time series from January 2021 to December 2021 is zoomed in on the upper part to better highlight the differences
between the historical series

itive cases, ICU occupancy, swabs made, and deceased, both
from a national and regional perspective.

Our analysis primarily centers on the historical series of
daily deaths for several reasons:

• This time series exhibits significant variability and is
prone to abrupt fluctuations. The daily death count often
undergoes revisions in the days following its initial pub-
lication. Consequently, discerning the genuine signal
amidst this noise requires the deployment of complex
modeling techniques.

• It is used as an indicator of the pandemic’s severity.
Unlike time series like New Daily Positive cases (which
are influenced by the number of swabs conducted) and
ICU occupancy (that exhibit a degree of temporal persis-
tence), the count of new deaths provides a more direct
and unfiltered reflection of the pandemic’s impact.

Figure3 showcases the historical series of COVID-19-
related deaths across five Italian regions: LOMBARDY,
VENETO, BASILICATA, CALABRIA, and VALLED’AO-
STA. A cursory examination reveals notable disparities in
death counts across regions. Furthermore, on certain days,
there are significant spikes, indicating abrupt surges in fatal-
ities.

5 Experiments and results

Table 1 presents two metrics to evaluate the performance
of the proposed model in comparison with benchmarks: the

Table 1 Mean absolute error (MAE) and mean squared error (MSE)
are reported for each forecast interval (7, 14, 21, and 28 days) in the
considered period 12/01/2023–12/28/2023

Scores PNN INLA XGBoost Random Forest
12/01/2023 - 12/28/2023

MAE 7 days 1.74 2.09 1.93 2.18

MSE 7 days 7.28 8.60 7.92 8.94

MAE 14 days 1.96 2.55 2.35 2.65

MSE 14 days 9.76 14.94 13.48 15.28

MAE 21 days 2.17 2.81 2.65 2.89

MSE 21 days 13.30 18.23 17.05 18.76

MAE 28 days 2.2 3.23 3.01 3.13

MSE 28 days 14.06 23.46 21.27 21.86

The values in bold highlight the model with the least prediction error
(thus the best performant model) conditional on the considered time
range

mean absolute error (MAE), which measures the average
absolute prediction error, and the mean squared error (MSE),
which more heavily penalizes large prediction errors. Com-
parisons were made using different forecasting ranges (7,
14, 21, and 28 days) for the period considered in December
2023. This approach aimed to assess the accuracy and relia-
bility of forecasts over varying time spans within the specific
month. Table 2 shows the two error metrics across different
regions, specifically for each model, in the context of the 28-
day forecast. It is observed that the regions with the largest
discrepancies between the observed and predicted cases are
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Table 2 Mean absolute error (MAE) and mean squared error (MSE) are reported for each model across various regions within the forecast interval
considered (12/01/2023 - 12/28/2023). In bold are highlighted the models that have a better score on the specific region

PNN INLA XGBoost Random forest

Regions MAE MSE MAE MSE MAE MSE MAE MSE

ABRUZZO 1.46 3.18 1.79 4.21 1.82 4.82 1.86 5.29

BASILICATA 0.11 0.11 .46 .46 0.64 0.64 0.79 .929

CALABRIA 0.93 1.57 0.89 1.39 .86 1.50 1.11 2.39

CAMPANIA 3.39 12.75 5.46 32.50 5.04 27.96 4.79 24.90

EMILIA ROMAGNA 4.25 24.61 6.68 59.40 6.32 52.39 6.39 53.00

FRIULI VENEZIA GIULIA 1.29 2.71 1.36 3.29 1.18 2.18 1.21 2.93

LAZIO 2.43 7.86 4.46 24.50 4.07 20.93 4.18 22.10

LIGURIA 1.68 3.32 2.71 8.14 2.04 5.11 2.39 7.04

LOMBARDY 10.04 147.89 10.80 179.00 10.50 171.21 10.67 172.39

MARCHE 0.75 1.11 1.61 3.32 1.11 2.04 1.57 3.29

MOLISE 0.39 0.54 0.39 .54 1.04 1.75 0.79 1.29

PIEDMONT 4.14 18.21 6.5 45.2 5.82 37.32 6.14 40.57

APULIA 2.04 5.46 3.25 13.50 2.68 10.54 3.14 12.29

SARDINIA 1.00 1.00 1.50 2.50 1.00 1.50 1.32 2.61

SICILIA 3.07 11.36 5.25 29.40 4.89 25.82 4.89 26.75

TOSCANA 3.04 18.39 3.39 18.5 3.32 18.82 3.18 16.54

TRENTINO ALTO ADIGE 0.93 1.07 1.32 2.25 1.18 1.82 1.07 1.93

UMBRIA 0.82 0.82 1.11 1.54 0.79 1.07 0.96 1.46

VALLE D’AOSTA 0.32 0.61 0.32 0.61 0.79 1.5 0.99 1.64

VENETO 4.00 21.79 5.36 39.90 5.11 36.54 5.21 37.93

also thosewith higher incidence andgreater variability (Lom-
bardy, Piedmont, and Veneto).

The proposed model, which we name probabilistic neu-
ral network (PNN), outperforms the others in terms of both
metrics in all scenarios. Additionally, Fig. 4 shows that PNN
returns highly accurate predictions at national level (obtained
summing the daily regional forecasts): the 0.025 and 0.975
quantiles of the conditional probability distribution define a
95%prediction interval that quantifies the uncertainty of each
prediction, and in most cases it includes the true number of
COVID-19 deaths. To more accurately assess the accuracy
of prediction intervals, in Table 3 we compared the inter-
vals generated by the PNN model with those derived from
the INLA approach. This analysis reveals that the coverage
of the PNN’s prediction intervals is close to the theoretical
level, but not perfectly in line. The regional coverages in
both cases do not reach the nominal 95%, possibly because
of anomalies in regional data, such as recounts of previous
days’ deaths. These events introduce significant and sudden
variations in the observed regional time series, making pre-
dictions more uncertain and affecting the coverage of the
prediction intervals.

Table 3 Prediction interval (95% level) coverage, for PNN and INLA
models at both regional and national levels

Model Regional coverage (%) National Coverage (%)

PNN 84,82 96,43

INLA 88,57 100

6 Strength and weaknesses

The model we propose offers several advantages, compared
to competing models:

• It is designed to handle input data characterized by spatial
and temporal changes, and it delivers accurate results,
offering a comprehensive and detailed view of trends and
patterns. Moreover, this is a lightweight approach, which
canbe easily runon standard laptops,making it accessible
with no advanced hardware resources.

• Compared to a traditional neural approach, it adopts a
probabilistic approach, thus providing an estimate of the
probability of a particular outcome. This makes it flex-
ible and particularly suitable for the analysis of count
data. Specifically, the Poisson distribution that we adopt
returns outputs that are integer values, capturing the
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Fig. 4 The forecasts at the national level are represented (with the dashed blue lines) along with their respective 95% confidence intervals for the
time period considered

inherent nature of count data and ensuring more mean-
ingful predictions.

• Embedding-related representations can be extracted to
provide insights on specific features, such as locations.
This means that the model can identify and place sim-
ilar entities close in the embedding space, facilitating
the interpretation and the understanding of relationships
between different entities.

However, alongside the numerous advantages, it is also
appropriate to analyze the potentialweaknesses of ourmodel.
First, like all deep learning models, a substantial amount of
data is needed to train the models, while a limited amount
of data can, in fact, compromise parameters estimation accu-
racy and reliability. Furthermore, an incorrect representation
of the embeddings can lead to a model that cannot correctly
discriminate between different locations. This means that if
the embeddings are not properly calibrated or correctly inter-
preted, the model might fail to distinguish between different
positions or categories, leading to inaccurate or misleading
results.

7 Conclusion

We introduce a neural network architecture capable of deliv-
ering forecasts for spatio-temporal data, together with a
measure of uncertainty.Ourmodel is evaluated across various
range of forecasting intervals, outperforming benchmarks.

The use of a neural network, particularly a probabilis-
tic one, offers a level of flexibility that traditional statistical
models often lack. This flexibility is especially crucial when
dealing with complex datasets, such as the spatio-temporal
one we focus on. Neural networks can adapt to intricate pat-
terns and complex relationships in the data, which might
be challenging to capture by conventional statistical mod-
els. Moreover, by employing a probabilistic neural network,
we not only benefit from the adaptability of neural archi-
tectures but also retain the advantages of statistical models
in estimating uncertainty. This combination ensures that our
predictions are both accurate and endowed with a reliable
measure of confidence.

Moreover, embeddings have proven to be a valuable
tool in guiding the network’s learning process, especially
when forecasting COVID-19-related deaths across different
Italian regions. These embeddings allow the model to under-
stand and represent the similarities and differences between
regions, enhancing predictive capabilities.

The proposed model serves as an efficient foundational
framework and, in light of the results we discuss, is versatile
enough to be extended for other related series and geogra-
phies.
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