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Abstract

Several physical phenomena are described by systems of partial differential equations (PDEs) that, after space discretization,
ield the solution of saddle point algebraic linear systems. In realistic three-dimensional numerical simulations, these linear
ystems are large scale and ill-conditioned, thus they require the development of effective solvers. The aim of this work is the
onstruction and numerical validation of parallel block preconditioners for a set of three-dimensional saddle point problems
iscretized by the low order virtual element method (VEM). VEM is a recent numerical technology for the approximation of
DEs on polygonal and polyhedral meshes. We focus on the following systems of PDEs: stationary Maxwell equations in the
ixed Kikuchi formulation; elliptic equations in mixed form; Stokes system; linear elasticity in the mixed Hellinger–Reissner

ormulation. We provide two parallel block preconditioners: one based on the approximate Schur complement and the other on
regularization technique. Several numerical experiments are run in parallel on a Linux cluster. We analyze the performance

f the iterative solvers in terms of GMRES iterations and computational time. We verify the robustness of the solvers with
espect to different polyhedral meshes and the scalability of both the assembling and solution time by varying the number of
rocessors. The performance of the two iterative solvers is also compared with state-of-the-art parallel direct linear solvers.
c 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

eywords: Virtual element method; Saddle-point linear systems; Parallel computing; Block preconditioners

1. Introduction

The Virtual Element Method (VEM) is a recent technology, first proposed in [1,2], for the numerical approxima-
ion of partial differential equations (PDEs) on polygonal or polyhedral grids; see also the reviews in [3,4]. In the
ast six years, VEM solution strategies have been constructed and analyzed for several problems governed by PDEs:
calar elliptic equations in primal [1,5,6] and mixed [7–9] form, elasticity [10–12], topology optimization [13,14],
tokes [15–17], Maxwell [18–20], parabolic and hyperbolic equations [21,22], Cahn–Hilliard [23] and further
pplications.

Analogously to the finite element case, VEM discretizations of scalar elliptic or elasticity equations in mixed form
nd further PDEs such as Stokes and Navier–Stokes equations or Maxwell equations, yield the solution of saddle-
oint linear algebraic systems, which are indefinite and ill-conditioned. As a consequence, the solution of such linear
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systems with iterative methods (see e.g. [24,25]) requires the development of robust and effective preconditioners,
usually based on approximate block factorization, see [26–31]. Several Domain Decomposition preconditioners have
also been proposed for finite element discretizations of this kind of problems, see [32–38]. So far, only a few studies
have focused on the conditioning of the stiffness matrix resulting from VEM discretizations (see [6,39]) and on the
development of preconditioners for VEM approximations of PDEs (see [40–43]).

The aim and novelty of the present work is the construction of parallel block preconditioners for the solution
inear systems deriving from VEM discretizations of the following three-dimensional saddle point problems:
tationary Maxwell equations in the mixed Kikuchi formulation [19]; elliptic equations in mixed form [9]; Stokes
ystems [17]; linear elasticity in the mixed Hellinger–Reissner formulation [12]. We develop two parallel block
reconditioners, one based on the approximate Schur complement and one on a regularization technique. We
ompare the iterative methods against the parallel direct solver Mumps [44,45] and Pardiso [46–48] by performing
everal parallel tests on a Linux cluster with varying number of processors and type of polyhedral grid.

The rest of the paper is organized as follows: in Section 2, we briefly introduce the variational formulation of
he saddle point problems and we describe the three-dimensional VEM discretizations of the model problems; in
ection 3, we introduce the parallel block preconditioners used for the solution of the saddle point linear systems
nd we report the numerical experiments on a Linux cluster. Finally, in Section 4, we draw some conclusions about
he analysis done in the numerical experiment part.

. Saddle-point problems

In the present work, we consider different kind of variational problems which require the solution of a
addle-point linear system, i.e., the stiffness matrix can be written as

A =

[
A BT

B 0

]
, (1)

here A ∈ Rn×n and B ∈ Rm×n , then the whole linear system A ∈ R(n+m)×(n+m).
Many physical phenomena can be described via partial differential equations whose discretization leads to a

inear system like the one in Eq. (1).
In a very general setting the variational formulation of such problems is the following. Let Ω be a bounded

ipschitz domain in Rd , whose boundary is denoted by ∂Ω . We look for a couple of functions (u, q) ∈ V × Q
hich satisfies{

a(u, v) + b(v, p) = c1(v) ∀v ∈ V

b(u, q) = c2(q) ∀q ∈ Q
, (2)

here a(·, ·) and b(·, ·) are bi-linear forms, while c1(·) and c2(·) are linear forms. More specifically, the linear
perators a(·, ·) and b(·, ·) will define the matrix A and B of the linear system A, see Eq. (1). According to the
roblem at hand the unknowns u and p represent different physical quantities and, consequently, the functional
paces V and Q have to be chosen accordingly. Suppose, for instance, that we are interested in a static fluid-
ynamics. In such case the u variable represents the velocity vector field, while p is the scalar field which represents
ressure.

In the last part of this section we show which are the problems taken into account for the solver and
reconditioners analysis. More specifically, we will underline which are the continuous spaces (V and Q) and
inear/bi-linear forms involved for each kind of problem, i.e., we define the forms a(·, ·), b(·, ·), c1(·) and c2(·) for
ach PDE taken into account.

Throughout the present work, we consider low-order virtual element discretizations of such problems. Since we
re interested in the performances of different solvers, we will not go into the details about the virtual element
iscretization itself, but we will provide all the references so that the reader can find an in-depth analysis of such
iscretizations.

ixed-form elliptic equations. Let us consider the continuous spaces

VD(Ω ) :=

{
v ∈ H (div ;Ω ) : v · n = uN on ∂Ω

}
and QD(Ω ) :=

{
q ∈ L2(Ω ) :

∫
q dΩ = 0

}
,

Ω

2
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and the linear/bi-linear forms:

aD(v, w) : VD
× VD

→ R, aD(v, w) :=

∫
Ω

ν(x) v · w dΩ ,

bD(v, q) : VD
× QD

→ R, bD(v, q) := −

∫
Ω

q div (v) dΩ , (3)

cD2 (q) : QD
→ R, cD2 (q) := −

∫
Ω

f q dΩ ,

D
1 (v) is identically zero, ν(x) is a positive piece-wise constant scalar function and f ∈ L2(Ω ). Such problem arises
n the simulation of multi-phase in-compressible flow through porous media. We consider the virtual element spaces
ntroduced in [9,49].

tokes problem. For such problem we consider the following functional spaces

VS (Ω ) := [H 1
0 (Ω )]3 and QS (Ω ) :=

{
q ∈ L2(Ω ) :

∫
Ω

q dΩ = 0
}

.

hen, we have the following forms

aS (v, w) : VS
× VS

→ R, aS (v, w) :=

∫
Ω

ν(x) ∇v : ∇w dΩ ,

bS (v, q) : VS
× QS

→ R, bS (v, q) :=

∫
Ω

q div (v) dΩ ,

cS1 (v) : VS
→ R, cS1 (v) :=

∫
Ω

f · v dΩ ,

cS2 (v) is identically zero, f ∈ [L2(Ω )]3. Stokes differential equations are widely used to describe the flow motion.
n this paper we will use the virtual element discretization proposed in [17]. We refer to this paper for a deeper
nalysis about virtual element spaces and how discretize such forms.

agneto-static problem. We take these functional spaces

VM(Ω ) :=

{
v ∈ [L2(Ω )]3

: curl(v) ∈ [L2(Ω )]3 with v ∧ n = 0 on ∂Ω

}
and

QM(Ω ) :=

{
q ∈ H 1(Ω ) : q = 0 on ∂Ω

}
.

n such case the linear and bi-linear forms of Eq. (2) become

aM(v, w) : VM
× VM

→ R, aM(v, w) :=

∫
Ω

curl(v) · curl(w) dΩ ,

bM(v, q) : VS
× QS

→ R, bM(v, q) :=

∫
Ω

∇q · µv dΩ ,

cM1 (v) : VS
→ R, cS1 (v) :=

∫
Ω

j · curl(v) dΩ ,

M
2 (v) is identically zero, µ is the magnetic permeability and j is the current density, j ∈ H (div ;Ω ) such that
iv ( j ) = 0 in Ω . Such problem describes the distribution of the magnetic field in the presence of a current density

j . To have a virtual element discretization of such problem, we take into account the lowest-order formulation
roposed in [19].

ellinger–Reissner elasticity problem. We consider the functional spaces

E { t} E [ 2 ]3
V (Ω ) := v ∈ H (div;Ω ) : v = v and Q (Ω ) := L (Ω ) ,

3
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where as usual the functional space H (div;Ω ) denotes the space of tensors in [L2(Ω )]3×3 whose divergence
is the vector-valued operator in [L2(Ω )]3. In this framework VE and QE represent the stress tensor and the
displacement, respectively. We take the following linear/bi-linear forms to set the variational formulation based
on the Hellinger–Reissner principle:

aE (v, w) : VE
× VE

→ R, aE (v, w) :=

∫
Ω

Dv : w dΩ ,

bE (v, q) : VE
× QE

→ R, bE (v, q) :=

∫
Ω

div (v) · q dΩ ,

cE2 (v) : QE
→ R, cE2 (q) :=

∫
Ω

f · q dΩ ,

cE1 (v) is identically zero, f ∈
[
L2(Ω )

]3 is the loading term and D is a symmetric tensor associated with the elastic
roperty of the material we are considering.

In the definition of this problem, we make an abuse of notation. Indeed, q ∈ QE is a vectorial function, but
e do not use bold faced letters. We make this decision to further underline the saddle-point nature of the linear

ystem arising form such formulation and, consequently, the common aspects with the previous three problems. To
ake a virtual element discretization of such problem, we refer to the theory proposed in [12].
Let Ωh be a polyhedral discretization of a domain Ω ⊂ R3. To solve one of the problem defined in Section 2,

e follow a standard VEM approach, i.e., we define local spaces on each polyhedron P ∈ Ωh and then we glue
them together to get the global space.

Since the focus of this paper is a generic lower-order discretization of a continuous problem that provides
a saddle-point linear system, we cannot describe in detail all the virtual functional spaces taken into account.
We describe only the virtual element spaces used for a mixed-form elliptic problem and we demand the reader
to [12,17,19] for a deeper description about the other ones.

However, at the end of this section we summarize the common aspects of the virtual element spaces involved to
solve each problem described in Section 2.

2.1. Virtual element spaces for a mixed-form elliptic problem

To discretize the space VD(Ω ) we consider the virtual element space introduced in [9]. As we said before we
focus on the definition of such space in a polyhedron P and, since we are interested in the lowest-order case, we
how the degree one definition. Given a polyhedron P , the velocity field is defined as

VD
h (P) :=

{
vh ∈ H (div ; P) ∩ H (curl; P) : vh · nF ∈ P1(F) ∀F ∈ ∂ P,

div (vh) ∈ P0(P), curl(vh) ∈ [P0(P)]3
}

. (4)

o uniquely define a function inside such space, we introduce the following degrees of freedom:

• normal face moments∫
F

(vh · n) p1 dF ∀p1 ∈ P1(F) and ∀F ∈ ∂ P.

• internal cross moments∫
P

vh · (x ∧ p0) dP ∀ p0 ∈ [P0(P)]3 ,

where x = (x, y, z)t .

n the other hand, to get a numerical approximation of QD(Ω ), we use the space of element-wise constant
olynomials, i.e.,

QD
h (P) :=

{
qh ∈ L2(P) : qh ∈ P0(P)

}
.

4
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In such space a function is determined by one degree of freedom. In the virtual element framework, we take the
following degree of freedom

• the internal moment∫
P

qh dP . (5)

Although a function vh is virtual, it is possible to compute its divergence and the polynomial defined on each
face F [9]. Moreover, we define the L2-projection operator Π0

: VD
h (P) → [P1(P)]3 such that∫

P
Π0vh · p1 dP =

∫
P

vh · p1 dP . (6)

Since the function vh is virtual the main issue is associated with the right-hand side of Eq. (6). Indeed, starting
from the degrees of freedom and the polynomial identity

p1 = ∇ p2 + x ∧ p0,

we have∫
P

vh · p1 dP =

∫
P

vh · (∇ p2) dP +

∫
P

vh · (x ∧ p0) dP

= −

∫
P

div (vh) p2 dP +

∫
∂ P

(vh · n) p2 dF +

∫
P

vh · (x ∧ p0) dP

= −

∫
P

div (vh) p2 dP +

∑
F∈∂ P

∫
F

(vh · nF ) p2 dF +

∫
P

vh · (x ∧ p0) dP .

ince we can get both the polynomials (vh · nF ) on each face and the constant divergence of vh via the degrees of
reedom, we can compute the right-hand side and the projection operator Π0 too.

.2. Operators for a mixed-form elliptic problem

To proceed with the discretization of a mixed-form elliptic problem, we introduce some linear/bi-linear operators
hat are the discrete counterpart of the ones defined in Eq. (3). For this particular problem we define the following
ocal forms:

• flux operator:

aD
h,P (vh, wh) :=

∫
P

ν(x)Π0vh · Π0wh dP + sP (vh − Π0vh, wh − Π0wh) , (7)

where sP is any symmetric and positive definite bi-linear form which scales as the a(·, ·). In this paper we
choose the Euclidean scalar product associated with the degrees of freedom of VD

h (P) multiplied by the volume
of P and the value of ν(x) at its barycenter [2,7], i.e.,

sP (vh, wh) = ν(x P ) |P|

#dofP∑
i=1

dofi (vh) dofi (wh),

where #dofP are the number of degrees of freedom associated with a function in VD
h (P) and dofi : VD

h (P) →

R is a linear functional that associates to a function in VD
h (P) the value of its i th degree of freedom.

• divergence operator:

bDP (vh, qh) :=

∫
P

div (vh) qh dP , (8)

• right-hand side operator:

cD2,h,P (qh) := −

∫
f qh dP.
P

5
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Then, the global one is obtained by the sum of all these local contributions, i.e.,

aD(v, w) ≈ aD
h (vh, wh) =

∑
P∈Ωh

aD
h,P (vh, wh) ,

bD(v, q) ≈ bD(vh, qh) =

∑
P∈Ωh

bDP (vh, qh) ,

cD2 (q) ≈ cD2,h(qh) =

∑
P∈Ωh

cD2,h,P (qh) .

2.3. Saddle-point common aspects

In this subsection we show the common characteristic of the proposed saddle-point linear systems. We focus on
each sub-matrix of A defined in Eq. (1).

Sub-matrix A. In all the proposed saddle-point problems this sub-matrix is built by an operator similar to the one
in Eq. (7). Indeed, there is always a first part which depends on a suitable L2-projection operator and a second part
with a stabilization. Consequently such global matrix is the sum of two matrices,

A = C + S,

where C involves projection operators, the so-called consistency matrix, and S is the stabilization matrix. The matrix
gives the right accuracy of the method with respect to the polynomial degree. However, since the virtual element

space is richer than the polynomial space, the matrix C is singular, i.e., its rank is lower than its dimension. The
role of the matrix S is to correct the rank of C so that the whole matrix A has full rank.

To get the matrix S, we use a similar stabilization operator. Indeed in all the problems we use the stabilization sP
based on the dofi linear operator and it is properly scaled by the data of the problem at hand. Consider for instance
a mixed-form elliptic or a Stokes problem. In such case we use the evaluation of the ν(x) function at the barycenter.
While, when we have an elasticity problem via the Hellinger–Reissner principle, we scale the stabilization with the
trace of the linear tensor D.

Sub-matrix B. In a Maxwell problem such matrix has a structure similar to the sub-matrix A. Indeed it has both a
projection and a stabilization part. However, B becomes more interesting if we are considering the other problems
taken into account.

In all these cases the matrix B is computed exactly in the virtual element spaces. Consider for instance the Darcy
problem described in Section 2.2. If we analyze more into the details of the definition of the local operator bP ,
Eq. (8), we observe that we know exactly all the functions involved in the computation of such integral. Indeed,

h is a polynomial and div (vh) is a constant polynomial, see the definition of VD
h (P) in Eq. (4). Both polynomials

are computable from the degrees of freedom of the spaces so, although the function vh is virtual, we are able to
compute such integral.

Notice that to better underline this fact, we omit the subscript h in the definition of bDP , see Eq. (8). Indeed, if
we are able to compute integrals of polynomial in polyhedrons, we get the exact value of this bi-linear operator.

As already mentioned, a similar observation holds for both Stokes and Hellinger–Reissner problems. More
specifically, in the first one we have exactly the same configuration of a Mixed problem, i.e., the divergence of
a virtual function vh ∈ VS

h (P) is a constant polynomial and qh ∈ QS
h (P) is a polynomial too. Then, in an

Hellinger–Reissner problem the divergence of vh ∈ VE
h (P) and the displacement space QD

h (P) are rigid body
motions, i.e., vectorial polynomials of the form

r(x) = α + ω (x − x P ),

here α, ω ∈ [P0(P)]3 and x P is the barycenter of the polyhedron P . In [12] it is shown that the degrees of freedom
f the space VE

h (P) are chosen in such a way that the known coefficients of α and ω are computable.

. Parallel preconditioners

The c++ parallel code we have developed is based on the PETSc library from Argonne National Laboratory

50–52]. Such library is built on the MPI standard and offers advanced data structures and routines for the parallel

6
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Fig. 1. Hexahedral (Cube, left), octahedral (Octa, middle) and Voronoi (CVT, right) meshes of the unit cube.

olution of partial differential equations, such as basic vector and matrix operations and even more complex linear
nd non-linear equation solvers. In our c++ code, vectors and matrices are built and sub-assembled in parallel on
ach processor.

To solve the saddle-point linear system A, see Eq. (1), we use the parallel GMRES method provided by the
ETSc library, employing a zero initial guess and a stopping criterion of 10−10 reduction of the relative residual.

We consider two types of block-diagonal preconditioners (see e.g. [29–31]) of the form

BD =

[
B1 0
0 B2

]
: (9)

• Block-Schur where

B−1
1 = diagonal or Algebraic Multigrid preconditioner for A

B−1
2 = exact solution of the approximate Schur complement S (10)

with S = −B diag(A)−1 BT . As Algebraic Multigrid preconditioner we use the GAMG solver of PETSc or
BoomerAMG [53], provided within the Hypre library [54]. Since we did not observe significant improvements
changing the parameters of the Algebraic Multigrid solvers, all the next results are obtained using the default
values. For the inversion of S at each preconditioning step we use the parallel multifrontal direct solver
Mumps [44,45].

• Block-Reg where

B−1
1 = Algebraic Multigrid preconditioner for A + BT W −1 B,

B−1
2 = W −1 (11)

with W = γ I , for a suitable parameter γ > 0. To our knowledge, there is no theoretical support for the
choice of γ . In the numerical tests, we study the dependence of the solver on the choices γ = h, h2, h3. As
Algebraic Multigrid preconditioner we use the GAMG solver of PETSc.

In the following tests we compare the previous two block-diagonal preconditioners and two parallel direct solvers
Mumps and Pardiso [46–48] considering the model problems introduced in Section 2.

3.1. Numerical results

In the numerical tests we use the Linux cluster INDACO of the University of Milan, constituted by 16 nodes,
each carrying 2 processors INTEL XEON E5-2683 V4 2.1 GHz, with 16 cores each (www.indaco.unimi.it). We
consider three types of polyhedral meshes discretizing the unit cube: hexahedral (Cube), octahedral (Octa) and
Voronoi (CVT), see Fig. 1. We underline that the first two mesh types are regular but, although CVT meshes do
not have stretched polygons, they present small and distorted faces/edges next to regularly shaped ones, see the
details in Fig. 2. Consequently, when we are dealing with such mesh type, the proposed preconditioners will be

also tested against such “bad” mesh configurations. Since we are not interested in verifying the convergence rate

7
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Fig. 2. A detail of one CVT mesh to underline that such kind of mesh presents some bad features such as distorted faces and small
edges/faces next to big ones.

of each method, the exact solution of the problem is irrelevant. Indeed, it changes only the right hand side and it
will not affect the behavior of the solver or preconditioner used.

Regarding the boundary conditions, for the Hellinger–Reissner problem we set homogeneous Neumann boundary
onditions, while we consider Dirichlet boundary conditions for all the other ones.

We consider two classes of test. In the first one we make a sensitivity analysis of the diagonal preconditioner for
A, i.e., B1, and the parameter γ in the Block-Reg preconditioner. Then, in the last set of examples we make a strong
caling test among the direct solvers MUMPS and Pardiso and the iterative solvers Block-Schur and Block-Reg with
he best choice of preconditioner derived by the previous test.

.2. Test 1: choice of sub-block preconditioners

In this test, we investigate the effect of the choice of the B1 sub-block preconditioner and of parameter γ

on the performance of Block-Schur and Block-Reg preconditioners, respectively. For Block-Schur, we consider
the following choices of B1 sub-block preconditioners: diagonal (diag(A)), GAMG (gamg(A)) and BoomerAMG
(boom(A)). For Block-Reg, we consider the following choices of γ parameter: h, h2 and h3, where h denotes the
mesh size.

3.2.1. Maxwell equations solver
The Cube, Octa and CVT meshes considered consist of 46 656 elements (198 505 dofs), 30 375 elements

(173 656 dofs) and 8000 elements (136 865 dofs), respectively. The results reported in Table 1 show that:

• for Block-Schur, the most effective choice, in terms of CPU time, of B1 sub-block is the diagonal
preconditioner, being about twice (1.5 times) as fast as the GAMG preconditioner in case of Cube (CVT)
mesh. The BoomerAMG preconditioner does not converge in case of Octa and CVT meshes;

• for Block-Reg, the most effective choice, in terms of CPU time, of γ parameter is γ = h2 on all meshes.

3.2.2. Mixed elliptic equations solver
The Cube, Octa and CVT meshes considered consist of 17 576 elements (234 573 dofs), 15 552 elements

(233 281 dofs) and 8000 elements (192 861 dofs), respectively. The results reported in Table 2 show that:

• for Block-Schur, the most effective choice, in terms of CPU time, of B1 sub-block is the diagonal
preconditioner, being about 1.5 (3) times as fast as the GAMG preconditioner in case of Octa (CVT) mesh.
Even in this case, the BoomerAMG preconditioner does not converge in case of Octa and CVT meshes;
8
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Table 1
Choice of block B1 and parameter γ in Block-Schur and Block-Reg preconditioners, respectively, for Maxwell equations solver. p := number
of procs; nel := number of elements; Tsol := solution time in seconds; it := GMRES iterations; NC := not converged.

Maxwell equations solver

Block-Schur preconditioner, p = 16

Mesh nel dofs B1 = diag(A) B1 = gamg(A) B1 = boom(A)

it Tsol it Tsol it Tsol

Cube 46 656 198 505 382 110 551 216 3863 2171
Octa 30 375 173 656 646 148 429 150 NC –
CVT 8000 136 865 696 367 853 540 NC –

Block-Reg preconditioner, p = 16

Mesh nel dofs γ = h γ = h2 γ = h3

it Tsol it Tsol it Tsol

Cube 46 656 198 505 1485 144 348 44 342 47
Octa 30 375 173 656 2767 301 528 71 768 101
CVT 8000 136 865 3788 494 669 120 863 157

Table 2
Choice of block B1 and parameter γ in Block-Schur and Block-Reg preconditioners, respectively, for mixed elliptic equations solver. p :=

number of procs; nel := number of elements; Tsol := solution time in seconds; it := GMRES iterations; NC := not converged.

Mixed elliptic equations solver

Block-Schur preconditioner, p = 16

Mesh nel dofs B1 = diag(A) B1 = gamg(A) B1 = boom(A)

it Tsol it Tsol it Tsol

Cube 17 576 234 573 66 6 39 7 68 7
Octa 15 552 233 281 79 6 48 10 NC –
CVT 8000 192 861 142 6 72 20 NC –

Block-Reg preconditioner, p = 16

Mesh nel dofs γ = h γ = h2 γ = h3

it Tsol it Tsol it Tsol

Cube 17 576 234 573 120 12 109 13 110 12
Octa 15 552 233 281 158 17 172 18 263 22
CVT 8000 192 861 143 25 117 24 209 28

• for Block-Reg, all choices γ parameter are comparable in terms of CPU time, whereas γ = h2 seems to be
the most effective in terms of GMRES iterations.

3.2.3. Stokes equations solver
The Cube, Octa and CVT meshes considered consist of 8000 elements (238 764 dofs), 4608 elements (166 180

dofs) and 2000 elements (154 068 dofs), respectively. The results reported in Table 3 show that:

• for Block-Schur, the most effective choice, in terms of CPU time, of B1 sub-block is the diagonal
preconditioner, being about 3 (4) times as fast as the GAMG preconditioner in case of Cube (Octa) mesh.
The GAMG preconditioner does not converge in case of CVT mesh, whereas the BoomerAMG preconditioner
does not converge in case of both Octa and CVT meshes;

• for Block-Reg, the most effective choice, in terms of both GMRES iterations and CPU time, of γ parameter
is γ = h on all meshes.
9
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Table 3
Choice of block B1 and parameter γ in Block-Schur and Block-Reg preconditioners, respectively, for Stokes equations solver. p := number

f procs; nel := number of elements; Tsol := solution time in seconds; it := GMRES iterations; NC := not converged.

Stokes equations solver

Block-Schur preconditioner, p = 16

Mesh nel dofs B1 = diag(A) B1 = gamg(A) B1 = boom(A)

it Tsol it Tsol it Tsol

Cube 8000 238 764 1793 67 789 215 1146 73
Octa 4608 166 180 1397 38 552 171 NC –
CVT (p = 8) 2000 154 068 1262 38 NC – NC –

Block-Reg preconditioner, p = 16

Mesh nel dofs γ = h γ = h2 γ = h3

it Tsol it Tsol it Tsol

Cube 8000 238 764 270 163 1652 265 3868 533
Octa 4608 166 180 441 162 2259 303 7453 749
CVT 2000 154 068 245 317 336 330 1208 460

Fig. 3. Strong scaling test, Maxwell equations solver. GMRES iterations of Block-Schur (left) and Block-Reg (right) preconditioners as a
function of the number of processors.

3.2.4. Hellinger–Reissner equations solver
For the sake of conciseness, we have not reported the analogous test for the Hellinger–Reissner equations, because

the Block-Schur preconditioner fails on all meshes and the performance of the Block-Reg preconditioner is not
significantly sensitive with respect to the three choices (h, h2, h3) of the γ parameter.

.3. Test 2: strong scaling

In this strong scaling test, we investigate the performance of the two iterative solvers Block-Schur and Block-
eg, when the number of processors increase, keeping fixed the total dofs. For Block-Schur, we consider as B1

ub-block the diagonal preconditioner (diag(A)), whereas, for Block-Reg, we take γ = h2 for Maxwell, Mixed
lliptic and Hellinger–Reissner equations solvers and γ = h for Stokes. Denoting by p the number of processors,
e recall that the parallel efficiency E p is defined as

E p :=
CPU time with 1 procs

p(CPU time with p procs)
.

he two iterative solvers are compared in terms of CPU time with the parallel direct solvers Mumps and Pardiso.
10
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Table 4
Strong scaling test for the Maxwell equations solver. p := number of procs; Tass := assembling time in seconds; Tsol := solution time in
econds; it := GMRES iterations; E p := parallel efficiency; OoM := out of memory.

Maxwell equations solver

Cube mesh with 46 656 elements, k = 1, dofs = 198 505

Pardiso Tsol = 174

p Tass E p Mumps Block-Schur Block-Reg

Tsol E p it Tsol E p it Tsol E p

1 58 – 3740 – 379 704 – 256 231 –
2 23 126% 1968 95% 381 411 86% 296 129 89%
4 14 104% 1173 80% 385 239 74% 328 89 65%
8 7 104% 591 79% 381 183 48% 330 54 53%
16 4 91% 352 66% 382 110 40% 348 44 33%
32 2 91% 195 60% 377 96 23% 418 29 25%

Octa mesh with 30 375 elements, k = 1, dofs = 173 656

Pardiso Tsol = 76

p Tass E p Mumps Block-Schur Block-Reg

Tsol E p it Tsol E p it Tsol E p

1 44 – OoM – 649 712 – 368 334 –
2 18 122% OoM – 650 496 72% 440 211 79%
4 11 100% OoM – 647 275 65% 442 133 63%
8 6 92% 1345 – 647 247 36% 496 91 46%
16 2 137% 1077 62% 646 148 30% 528 71 29%
32 1 137% 941 36% 648 204 11% 544 181 6%

CVT mesh with 8000 elements, k = 1, dofs = 136 865

Pardiso Tsol = 516

p Tass E p Mumps Block-Schur Block-Reg

Tsol E p it Tsol E p it Tsol E p

1 28 – OoM – 749 1869 – 428 467 –
2 13 108% OoM – 755 1093 85% 624 356 66%
4 7 100% 2717 – 696 695 67% 649 247 47%
8 3 117% 1761 77% 755 490 48% 660 161 36%
16 2 87% 1416 48% 696 367 32% 669 120 24%
32 1 87% 1070 32% 755 866 7% 689 72 20%

3.3.1. Maxwell equations solver
The Cube, Octa and CVT meshes considered consist of 46 656 elements (198 505 dofs), 30 375 elements

(173 656 dofs) and 8000 elements (136 865 dofs), respectively. The results of the strong scaling test are reported in
Table 4 and Fig. 3.

We first observe that, for all polyhedral meshes, the CPU times needed to assemble the stiffness matrix and the
right hand side (Tass) are completely scalable, with parallel efficiency always greater than 80%. Both Block-Schur
and Block-Reg iterative solvers are scalable in terms of GMRES iterations, which seem to approach constant values
when the number of processors increase, as clearly shown by the plots in Fig. Instead, in terms of CPU times the
two iterative solvers present a good scalability up to 16 processors.

In case of Cube mesh, the most effective solver is Block-Reg (p = 32, Tsol = 29 s), being about 3, 6 and 6
times as fast as the Block-Schur (p = 32, Tsol = 96 s), Mumps (p = 32, Tsol = 195 s) and Pardiso (Tsol = 174 s),
respectively.

In case of Octa mesh, the most effective solvers are Block-Reg (p = 16, Tsol = 71 s) and Pardiso (Tsol = 76 s),
being about 2 and 13 times as fast as the Block-Schur (p = 16, Tsol = 148 s) and Mumps (p = 32, Tsol = 941 s),
respectively.
11
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Table 5
Strong scaling test for the mixed elliptic equations solver. p := number of procs; Tass := assembling time in seconds; Tsol := solution time
n seconds; it := GMRES iterations; E p := parallel efficiency.

Mixed elliptic equations solver

Cube with 17 576 elements, k = 1, dofs = 234 573

Pardiso Tsol = 49

p Tass E p Mumps Block-Schur Block-Reg

Tsol E p it Tsol E p it Tsol E p

1 35 – 240 – 67 15 – 71 20 –
2 17 103% 121 99% 67 9 83% 97 18 56%
4 10 87% 66 91% 66 6 62% 101 13 38%
8 6 73% 43 70% 66 5 37% 101 11 23%
16 3 73% 26 58% 66 4 23% 109 9 14%
32 1 109% 15 50% 66 5 9% 124 9 7%

Octa mesh with 15 552 elements, k = 1, dofs = 233 281

Pardiso Tsol = 36

p Tass E p Mumps Block-Schur Block-Reg

Tsol E p it Tsol E p it Tsol E p

1 42 – 574 – 79 14 – 72 25 –
2 19 110% 281 102% 79 8 87% 124 27 46%
4 12 87% 151 95% 79 6 58% 162 24 26%
8 6 87% 97 74% 79 5 35% 156 16 19%
16 4 66% 54 66% 79 5 17% 172 14 11%
32 2 66% 33 54% 79 5 9% 172 39 2%

CVT mesh with 8000 elements, k = 1, dofs = 192 861

Pardiso Tsol = 281

p Tass E p Mumps Block-Schur Block-Reg

Tsol E p it Tsol E p it Tsol E p

1 71 – 2136 – 142 11 – 55 35 –
2 34 104% 1084 98% 142 8 69% 81 55 32%
4 22 81% 585 91% 142 5 55% 103 45 19%
8 12 74% 346 77% 142 5 27% 114 25 17%
16 6 74% 202 66% 142 5 14% 117 17 13%
32 3 74% 117 57% 142 5 7% 121 10 11%

In case of CVT mesh, the most effective solver is again Block-Reg (p = 32, Tsol = 72 s), being about 5, 14
and 7 times as fast as the Block-Schur (p = 16, Tsol = 367 s), Mumps (p = 32, Tsol = 1070 s) and Pardiso
(Tsol = 516 s), respectively.

3.3.2. Mixed elliptic equations solver
The Cube, Octa and CVT meshes considered consist of 17 576 elements (234 573 dofs), 15 552 elements

(233 281 dofs) and 8000 elements (192 861 dofs), respectively. The results of the strong scaling test are reported in
Table 5 and Fig. 4.

For all polyhedral meshes, the assembling CPU time for the stiffness matrix and the right hand side (Tass) are
scalable, with parallel efficiency always greater than 65%. Both Block-Schur and Block-Reg iterative solvers are
scalable in terms of GMRES iterations, as confirmed by the plots in Fig. 4. In terms of CPU times, the two iterative
solvers do not exhibit a scalable behavior. This could be attributed to the fact that the linear system is not sufficiently
large, and its solution is quite effective even with 1 processor. We could not test larger problems because Mumps
failed with more dofs and we did not have a comparison.
12
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Fig. 4. Strong scaling test, mixed elliptic equations solver. GMRES iterations of Block-Schur (left) and Block-Reg (right) preconditioners
s a function of the number of processors.

Fig. 5. Strong scaling test, Stokes equations solver. GMRES iterations of Block-Schur (left) and Block-Reg (right) preconditioners as a
function of the number of processors.

In case of Cube mesh, the most effective solver is Block-Schur (p = 16, Tsol = 4 s), being about 2, 3 and 12
times as fast as the Block-Reg (p = 16, Tsol = 9 s), Mumps (p = 32, Tsol = 15 s) and Pardiso (Tsol = 49 s),
respectively.

In case of Octa mesh, the most effective solver is Block-Schur (p = 8, Tsol = 5 s), being about 3, 6 and 7
times as fast as the Block-Reg (p = 16, Tsol = 14 s) and Mumps (p = 32, Tsol = 33 s) and Pardiso (Tsol = 36 s),
respectively.

In case of CVT mesh, the most effective solver is again Block-Schur (p = 4, Tsol = 5 s), being about twice,
23 and 56 times as fast as the Block-Reg (p = 32, Tsol = 10 s), Mumps (p = 32, Tsol = 117 s) and Pardiso
(Tsol = 281 s), respectively.

3.3.3. Stokes equations solver
The Cube, Octa and CVT meshes considered here consist of 8000 elements (238 764 dofs), 4608 elements

(166 180 dofs) and 2000 elements (154 068 dofs), respectively. The results of the strong scaling test are reported in
Table 6 and Fig. 5.

For all polyhedral meshes, the assembling CPU time for the stiffness matrix and the right hand side (Tass) exhibit
a very good scalability, with parallel efficiency always greater than 70%. Both Block-Schur and Block-Reg iterative
solvers are scalable in terms of GMRES iterations, which seem to approach constant values when the number of
processors increases, as confirmed by the plots in Fig. 5. However, iteration counts are very large, yielding a loss of
13
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Table 6
Strong scaling test for the Stokes equations solver. p := number of procs; Tass := assembling time in seconds; Tsol := solution time in
econds; it := GMRES iterations; E p := parallel efficiency; NC := not converged.

Stokes equations solver

Cube with 8000 elements, k = 2, dofs = 238 764

Pardiso Tsol = 354

p Tass E p Mumps Block-Schur Block-Reg

Tsol E p it Tsol E p it Tsol E p

1 2481 – 2542 – 1516 157 – 163 178 –
2 1266 98% 1486 85% 1724 104 75% 220 263 34%
4 709 87% 771 82% 1761 76 52% 248 276 16%
8 367 84% 471 67% 1719 64 31% 255 266 8%
16 189 82% 271 59% 1793 63 16% 270 163 7%
32 99 78% 166 48% 1715 71 7% 294 98 6%

Octa mesh with 4608 elements, k = 2, dofs = 166 180

Pardiso Tsol = 106

p Tass E p Mumps Block-Schur Block-Reg

Tsol E p it Tsol E p it Tsol E p

1 1857 – 466 – 1392 85 – 200 168 –
2 950 98% 332 70% 1295 58 73% 259 251 33%
4 536 87% 143 81% 1339 42 51% 343 284 15%
8 269 86% 95 61% 1389 39 27% 416 253 8%
16 137 85% 49 59% 1397 38 14% 441 162 6%
32 72 81% 33 44% 1252 455 1% 441 97 5%

CVT mesh with 2000 elements, k = 2, dofs = 154 068

Pardiso Tsol = 1557

p Tass E p Mumps Block-Schur Block-Reg

Tsol E p it Tsol E p it Tsol E p

1 2159 – 5839 – 1303 140 – 106 276 –
2 1119 96% 3860 76% 1289 88 79% 153 665 21%
4 619 87% 1685 87% NC – – 172 684 10%
8 326 83% 1134 64% 1262 38 46% 202 419 8%
16 174 77% 666 55% NC – – 245 317 5%
32 95 71% 371 49% 1302 39 11% 266 184 5%

scalability in terms of CPU times. In case of CVT mesh, Block-Schur does not converge with 4 and 16 processors.
urther research is needed to develop robust iterative solvers for this VEM approximation of the Stokes equations.

Nevertheless, in case of Cube mesh, the most effective solver is Block-Schur (p = 16, Tsol = 63 s), being about
wice and 5 times as fast as the Block-Reg (p = 32, Tsol = 162 s), Mumps (p = 32, Tsol = 166 s) and Pardiso
Tsol = 354 s), respectively.

In case of Octa mesh, the performances of Block-Schur (p = 16, Tsol = 38 s) and Mumps (p = 32, Tsol = 33 s)
re comparable, being about 7 times and twice as fast as the Block-Reg (p = 16, Tsol = 276 s) and Pardiso
Tsol = 106 s), respectively.

In case of CVT mesh, the most effective solver is again Block-Schur (p = 8, Tsol = 38 s), being about 4,
and 40 times as fast as the Block-Reg (p = 32, Tsol = 182 s), Mumps (p = 32, Tsol = 371 s) and Pardiso

Tsol = 1557 s), respectively.

.3.4. Hellinger–Reissner equations solver
The Cube and Octa meshes considered here consist of 10 648 elements (264 264 dofs) and 9000 elements

253 200 dofs), respectively. The Block-Schur solver did not converge on any kind of polyhedral mesh, while
14
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Table 7
Strong scaling test for the Hellinger–Reissner equations solver. p := number of procs; Tass := assembling
time in seconds; Tsol := solution time in seconds; it := GMRES iterations; E p := parallel efficiency.

Hellinger–Reissner equations solver

Cube with 10 648 elements, k = 1, dofs = 264 264

Pardiso Tsol = 155

p Tass E p Mumps Block-Reg

Tsol E p it Tsol E p

1 272 – 1484 – 2124 301 –
2 135 101% 924 80% 2124 150 100%
4 69 98% 460 81% 2124 85 88%
8 35 97% 262 71% 2124 52 72%
16 19 89% 142 65% 2124 44 43%
32 10 85% 86 54% 2124 25 38%

Octa mesh with 9000 elements, k = 1, dofs = 253 200

Pardiso Tsol = 122

p Tass E p Mumps Block-Reg

Tsol E p it Tsol E p

1 331 – 540 – 2255 297 –
2 174 95% 352 77% 2255 159 93%
4 93 89% 190 71% 2255 87 85%
8 49 84% 108 62% 2255 57 65%
16 28 74% 54 62% 2255 51 36%
32 15 69% 36 47% 2255 29 32%

the Block-Reg solver did not converge on the CVT meshes. The results of the strong scaling test are reported in
Table 7.

As in the previous tests, for both polyhedral meshes, the assembling CPU time for the stiffness matrix and
the right hand side (Tass) exhibit a very good scalability, with parallel efficiency always greater than 70%. The
Block-Reg iterative solver is scalable in terms of GMRES iterations, which remain constant when the number of
processors increases. CPU times exhibit also a quite good scalability, since they reduce significantly with the growth
of the number of processors.

In case of Cube mesh, the most effective solver is Block-Reg (p = 32, Tsol = 25 s), being about 3 and 6 as
fast as Mumps (p = 32, Tsol = 86 s) and Pardiso (Tsol = 155 s), respectively.

In case of Octa mesh, the best performances of Block-Reg (p = 32, Tsol = 29 s) and Mumps (p = 32,
Tsol = 36 s) are comparable, being about 4 times as fast as Pardiso (Tsol = 122 s).

. Conclusions

In the present work, we have developed and studied numerically parallel block preconditioners for a set
f three-dimensional saddle point problems discretized by low order virtual elements. We have restricted the
nvestigation to the following systems of PDEs: stationary Maxwell equations in the mixed Kikuchi formulation;
lliptic equations in mixed form; Stokes system; linear elasticity in the mixed Hellinger–Reissner formulation. Two
lock preconditioners have been proposed: one based on the approximate Schur complement (Block-Schur) and the
ther on a regularization technique (Block-Reg). Several numerical experiments have been conducted in parallel
n a Linux cluster in order to study the performance of the iterative solvers in terms of GMRES iterations and
omputational time. We verify the robustness of the solvers with respect to different polyhedral meshes and the
calability of both the assembling and solution time by varying the number of processors. We have also compared
he two iterative solvers with the parallel direct linear solvers Mumps and Pardiso. The results have shown that:

• in case of Maxwell equations, the most effective solver is Block-Reg, being comparable or in the range of

6–14 times as fast as the Mumps and Pardiso solvers, depending on the type of polyhedral mesh;
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• in case of mixed elliptic equations, the most effective solver is Block-Schur, being in the range of 3–50 times
as fast as the Mumps and Pardiso solvers, depending on the type of polyhedral mesh;

• in case of Stokes equations, the most effective solver is Block-Schur, being comparable or in the range of
2–40 times as fast as the Mumps and Pardiso solvers, depending on the type of polyhedral mesh;

• in case of Hellinger–Reissner equations, the most effective solver is Block-Reg, being in the range of 3–6
times as fast as the Mumps and Pardiso solvers, depending on the type of polyhedral mesh.

The main limitations of this study are the use of low order virtual elements and the consideration of only symmetric
problems. Future research should be devoted to the construction of parallel iterative solvers robust with respect to
higher order virtual element discretizations and non-symmetric problems, such as linear systems deriving from
discretizations of the Navier–Stokes equations.
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