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A B S T R A C T

This paper examines a kind of explainable AI, centered around what we term pro-hoc explanations, that is a form
of support that consists of offering alternative explanations (one for each possible outcome) instead of a specific
post-hoc explanation following specific advice. Specifically, our support mechanism utilizes explanations by
examples, featuring analogous cases for each category in a binary setting. Pro-hoc explanations are an instance
of what we called frictional AI, a general class of decision support aimed at achieving a useful compromise
between the increase of decision effectiveness and the mitigation of cognitive risks, such as over-reliance,
automation bias and deskilling. To illustrate an instance of frictional AI, we conducted an empirical user
study to investigate its impact on the task of radiological detection of vertebral fractures in x-rays. Our study
engaged 16 orthopedists in a ‘human-first, second-opinion’ interaction protocol. In this protocol, clinicians
first made initial assessments of the x-rays without AI assistance and then provided their final diagnosis
after considering the pro-hoc explanations. Our findings indicate that physicians, particularly those with less
experience, perceived pro-hoc XAI support as significantly beneficial, even though it did not notably enhance
their diagnostic accuracy. However, their increased confidence in final diagnoses suggests a positive overall
impact. Given the promisingly high effect size observed, our results advocate for further research into pro-hoc
explanations specifically, and into the broader concept of frictional AI.
1. Introduction

One of the earliest and most influential works promoting the human-
centered approach to the design of interactive computer systems is
Norman’s book ‘The Design of Everyday Things’ [1]. Based on various
studies conducted in the early years of personal computing, Norman
promoted the basic principles of a design philosophy that would
consider the needs, preferences, and requirements of users to make
their use experiences not only more effective but also enjoyable, and
consequently to ensure better efficacy of action through pleasantness
and tool usability. From this idea, a very broad consensus emerged
that the interfaces of digital tools should be developed to make the
use of the systems as natural as possible, intuitive, easy, without
barriers and difficulties: ‘‘Don’t make me think’’ by Krug [2] soon
became a bestseller in the community of user interface designers and
Human-Computer Interaction (HCI) scholars.

Yet, at the same time, Norman also warned that systems should
not become too easy to use, because this could make users complacent
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and unthinking in their interactions. ‘‘The task’’, Norman wrote, must
be ‘‘at just the proper level of difficulty: difficult enough to provide
a challenge and require continued attention, but not so difficult that
it invokes frustration and anxiety’’. A few years later (1999), Allan
Cooper [3] introduced and discussed at length the concept of cognitive
friction, defined as ‘‘the resistance encountered by a human intellect
when it engages with a complex system of rules’’ and constraints
imposed, for instance, by the technology they employ. Although Cooper
primarily associated this concept with artifacts that are ill-designed
and need to be improved to make them more usable, and thus as
frictionless as possible, some measure of friction can be considered
advantageous in light of Norman’s insight: certain tasks should not be
made too immediate because there is a risk of fostering attitudes of
over-dependence, excessive complacency [4] and insufficient vigilance,
as well as the risk of drifting users towards some form of deskilling [5].

In light of these insights, our paper presents an empirical compara-
tive study that evaluates decision effectiveness and user experience in a
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system that intentionally introduces decision-making friction, as a way
o foster more thoughtful and responsible human decision-making. We
ill delve deeper into this study and its background in the following

ection.

. Motivations and background

The title of this work hints at a well-known scene from Star Wars
Episode V: The Empire Strikes Back) where Han Solo replies ‘‘Never
ell me the odds!’’ to the anthropomorphous robot C-3PO telling him
he (very low) odds of successfully navigating an asteroid field. Al-
hough this line can be considered a typical response to those who tell
ne what their chances of doing something are, we take it as a cue
or an approach to AI development that requires these systems not to
ive odds, i.e., probabilities (or confidence scores), nor ready answers,
lear-cut classifications, or predictions; but rather aimed at designing
ystems meeting the main requirements to help users think better [6].

Thus, the main motivation for this research grounds on the fol-
owing conjecture: Decision support systems that provide full-fledged
nswers, such as the classification advice or quantitative or proba-
ilistic estimates that the latest generation of AI systems can yield,
ight induce some form of over-dependence in users and, in the long

un, a significant loss of skills (i.e., deskilling [7]) to their judgmental
apacities.

While we are aware that this conjecture is still in need of strong
mpirical confirmation, we note that it has circulated in many envi-
onments where the computer support of knowledge work, judgment,
nd case interpretation is most promising and effective (e.g., [8]), and
risk-based approach, such as that advocated by the EU regulation

nd other similarly prudent approaches, require that such a conjecture
hould be taken as true until proven otherwise.

Moreover, in contexts such as medicine, traditional systems can
lso encourage opportunistic behavior such as defensive medicine [9],
.e. deferring to the machine’s answer to avoid accusations of negli-
ence and malpractice. Paradoxically, this latter effect and the more
eneral one of technology over-reliance [10] is all the more likely to
appen the more accurate and reliable the systems are.

A possible preventive solution to this class of problems sometimes
eferred to as the unintended consequences of AI [5], less radical than
bandoning decision support and foregoing its undoubted benefits, is to
esign supports that do not completely relieve the user of interpretative
ork, but rather promote it, by adding some cognitive friction to the
ecision-making process.

In this paper, we focus on a possible instance of frictional AI, which
e will further characterize in Section 5: a solution that is based on

he concept of a pro-hoc explanation. The name of this technique comes
rom its main feature to distinguish it from the more common post-hoc
xplanations: instead of providing the user with an explanation of the
achine’s answer after this has been given for a given case, like in

ase of post-hoc explanations, the system instead receives the user’s
entative judgment (what in [11] is called human-first protocol and
n [12,13] update cognitive forcing function) and returns one (or more)
ossible explanations associated with that judgment (or counterfactual
xplanations for alternative outcomes). Therefore, instead of giving an
xplanation after a machine advice (post-hoc explanation), this solution
ntails the provision of a pro-hoc explanation (pro-hoc, from Latin,
instead of that’), which substitutes the machine advice.

In this relatively unexplored domain, our focus is on explanations by
xamples [14], wherein the system presents cases akin to the current
ne. The concept of employing similar cases is not novel in AI re-
earch [15], and has been applied, for instance, in machine learning for
imilar image retrieval in medical contexts [16]: A prominent example
s the SMILY system [17,18]. However, our study diverges in both its
bjectives and scope from these precedents. Previous studies primarily
oncentrated on augmenting the image retrieval process itself [17],
2

r on enhancing pathologist engagement to refine search outcomes
ased on visual similarity [18]. In contrast, our research ventures
nto decision support via pro-hoc explanations. We are not seeking
o develop new algorithms for similar image retrieval or to explore
ow presenting comparable cases might bolster conventional predictive
ystems. Instead, our focus is on investigating the impact of presenting
linicians with analogous cases as the sole form of explanation (termed
ro-hoc explanations above) for each potential outcome in a binary
ecision-making process.

Our unique contribution thus lies in examining the impact of these
xample-based pro-hoc explanations on the decision-making process in
linical settings, particularly in terms of cognitive effects and decision
ccuracy.

Specifically, in this paper, we will report the results of an ex-
loratory user study in which (see Fig. 1) we provided the users with
imilar cases depending on their prior judgment, both pro-hoc expla-
ations that support the user’s hypothesis, as well as counterfactual
xplanations responding to the objection ‘‘what if you were wrong?
his would be the most similar case with the opposite label’’. In the
atter case, we aim to see whether such ‘‘cognitively non-invasive’’ and
‘non-substitutive’’ support is effective (i.e. allows users to improve their
aseline performance) and also perceived as such, i.e. useful, or not.

The case study above is designed in the context of radiological
nterpretation and diagnosis, for the task of identifying vertebral frac-
ures from x-rays. In what follows, we will thoroughly describe the
ethods adopted to conduct the experiment (Section 3) and report

he results therein collected (Section 4). Section 5 elaborates on the
oncept of frictional AI, and Section 6 discusses the study results and
heir implications. Finally, Section 7 concludes the work.

. Methods

In what follows, we describe the methods applied to conduct the
tudy to demonstrate whether giving physicians similar cases retrieved
y the training set was decision-effective, i.e. it increased the users’
iagnostic accuracy and was perceived as useful by them, even if this
ind of support substituted traditional diagnostic support and abstained
rom classifying the new case.

In this experiment, we involved 16 physicians with varying degrees
f experience in reading spine x-rays in their daily work, that is board-
ertified orthopaedic spine subspecialists (N = 10) and orthopaedic

residents (N = 6). Their task was to annotate 18 x-rays cases, which
ad been selected in a previous study [6] for their representativeness of
aried and complex cases, in terms of positive images (presenting some
ertebral fracture) and negative images (with no vertebral fracture).
he human-AI interaction protocol of this study, described in Fig. 1,
as kept as simple as possible: each orthopedist was presented one

ase at a time, through an online questionnaire, which had been
mplemented on the LimeSurvey platform [19]. For each case, each
edical doctor was asked to provide a diagnostic opinion in terms of

he presence (positive) or absence (negative) of lesions and fractures
n an x-ray of 800 × 800 pixels (HD1 in Fig. 1) and to indicate the
erceived degree of difficulty (or complexity) of the case and his or her
onfidence in the proposed diagnosis, on a 6-value ordinal scale. Based
n this first opinion (positive/negative), recorded by the system as
D1, the AI system retrieved, from the repository of available cases, the

wo most similar cases that presented (or did not present, respectively)
ractures, as well as the most similar cases that did not have (or had,
espectively) some fracture (see the middle step in Fig. 1). The similar
ases were retrieved according to their Cosine similarity, which was
he similarity metric found to be more correlated with human ratings
n a previous user study [20]. Conceptually, the experiment was the
mplementation of a human-first [11] (or second-opinion), partially
ritiquing [21] human-AI collaboration protocol. After considering these
hree similar cases, each physician had to indicate his or her final
iagnosis, recorded by the system as FHD, also indicating confidence
n his or her final choice (see the last step in Fig. 1). The physician’s
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Fig. 1. BPMN diagram depicting the experimental design of the study. The x-rays are real cases, the examples regard two positive cases and one negative case.
baseline accuracy, or pre-support accuracy, is then the observed success
rate at the HD1 level; the post-support accuracy is FHD; the AI support
regards the retrieval and visualization of similar cases, associated with
their ground truth diagnosis, without proposing any categorical advice
or probability scores, that is by abstaining from interpreting the case at
hand: that is, we proposed the doctors to consider alternative pro-hoc
explanations that support either their initial judgment or its opposite.

We collected their 288 diagnoses and analyzed them by adopting
a confidence level of 95% and applying non-parametric hypothesis
testing. We also computed the so-called Number of Decisions Needed
(NDN) to get a significant effect on the decision-making. This indicator
was computed by Eq. (1), which is based on the Number Needed to
Treat (NNT) used in epidemiology:

𝑁𝐷𝑁 = 1

(2 × pnorm
(

𝑑
√

2

)

− 1)
, (1)

where pnorm is the integral from −∞ to q of the probability density
function of the normal distribution and q is a Z-score, such as the
effect size at hand. Intuitively, the NDN represents the average number
of decisions users must make with the provided support (i.e., pro-
hoc explanations) for one decision to be correct, as opposed to the
likelihood of making incorrect decisions without such aid: in other
words, the NDN is the number of decisions users must make with
the given support to prevent an incorrect decision they would have
otherwise made without the aid.

4. Results and main interpretations

In what follows, we report the results of the user study described
above and outline some conjectures on the main factors that these
results help to highlight.

What was the impact of showing similar cases instead of regular
classifications (the pro-hoc approach) upon decision performance? As
shown in Figs. 2 and 3 it was small but positive: the pre-support
accuracy of the participants was 78.8%, while their post-support ac-
curacy was 80.9% (two proportion test p-value = .53, Z = −0.62,
effect size .05). Although this results is not statistically significant,
this small increase is better interpreted in the light of the Number of
Decisions Needed. In fact, the observed NDN is 50, suggesting that using
this system for approximately 50 decisions would suffice to avoid a
mistake that would have been made without its adoption. Moreover,
small effect sizes are typical in studies that evaluate the impact of XAI
on diagnostic accuracy, when this impact is decoupled from the AI’s
effect (which is usually substantial) [10,11]. For instance, in a similar
setting considering 1548 diagnoses and 12 physicians, the effect size
of providing explanations in the form of visual pixel-attribution maps
associated with an 80% accurate support was 0.08 [22].
3

Table 1
Reliance patterns’ table for the user study. The Decision Support System (DSS) is the
provision of Pro-Hoc explanations by similar cases. Zeros stand for wrong answers,
while 1s for right ones. Mistakes passed from 61 (pre-DSS) to 55 (post-DSS): thus 6
mistakes were prevented by the tool, i.e., a 10% reduction. This table was generated
by the online tool https://mudilab.github.io/dss-quality-assessment/.

Pre-DSS (HD1) Post-DSS (FHD) Count

0 0 50
0 1 11
1 0 5
1 1 222

The small effect of showing similar cases on accuracy can be traced
back to a very small number of decision changes (16 over a total of
288 decisions, see Table 1 which reports the reliance pattern [11]
frequencies observed in the study). Notably, however, most decision
changes were for the good: the number of decision changes from an
initially wrong to a correct diagnosis (11) was more than double the
number of decision changes in the reverse direction (5): this is why the
observed effect of the pro-hoc explanations was found to be positive,
as it accounted for a 10% reduction of diagnostic errors (see caption of
Table 1).

The number of positive cases correctly identified, as well as the
sensitivity and specificity, differed between the pre-support and post-
support settings, but not significantly so (respectively, 177 vs. 173,
p-value = .73, Z = 0.34, es = .03; .903 vs. .910, p-value = .84, z =
-0.20; es = .02, NDN = 89; .674 vs. .708, p-value = .52, Z = -0.64; es
= .08, NDN = 22). As a matter of fact, this latter not-so-slight increase
in specificity could suggestively back up the finding, emerging also in
other studies (e.g. [23]), that explanations (as similar cases are) can
make decision-makers less risk-averted (under the interpretation that
the call for a ‘negative test’, which is more conservative for the patient,
is more risky for the physician, in case they are wrong, in light of
potential malpractice claims).

In regard to accuracy, we observed some interesting differences
between residents (N = 6) and specialists (N = 10) (see Fig. 3). When
unaided, the residents performed better than the specialists, with an
average accuracy of .83 (SD: .06) vs. .76 (SD: .08) and with a large
effect size (1.03, NDN = 2), albeit not significantly so (p-value = .5, T
= 2.1). This could be due to a greater commitment to the task of the
residents (as compared with specialists), who took the opportunity to
test their skills and (informally) compete with each other: indeed, on
average, residents took 4 min more (15%) to complete the task than
specialists.

However, this performance gap almost completely disappeared after
the participants were shown similar cases. Indeed, although showing
similar cases has improved the physicians’ average accuracy in a not
significant way (the 𝑝-value equaling .41, the test statistic 𝑇 equaling

https://mudilab.github.io/dss-quality-assessment/
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Fig. 2. Pre- and post-support average performances in the ROC space. Pre-support performance means sensitivity and specificity observed before showing similar cases, that is the
pro-hoc explanations; post-support means performance exhibited by decision-makers after being exposed to the pro-hoc explanations.
Fig. 3. Detail of a benefit diagram illustrating the difference between pre and post-support average performances (generated with the online tool https://mudilab.github.io/dss-
quality-assessment/). The blue region signifies performance enhancements attributed to the AI system, whereas the red region denotes performance decline resulting from its
application. Blue dots represent specialist doctors, while orange dots correspond to resident doctors.
−0.84, with a mean accuracy across the physicians that changed from
.79 [.74,.82], .81 [.77, .84]), the observed effect size for the specialists
was small-to-moderate (.3, NDN = 6). In particular, while 60% of them
improved their accuracy, no resident improved their (see the Benefit
diagram in Fig. 3). This could be due to fixation by the residents. In-
deed, when aided by the system, specialists changed their minds twice
as frequently as residents (4% vs. 7%): in two-thirds of these changes,
the decisions regarded the diagnosis of cases that were deemed to be
complex (that is the cases whose perceived complexity was evaluated
higher than 2). More notably, two-thirds of these decision changes were
for the better, whereas one-third induced some form of automation
bias: nevertheless, automation bias was two and a half times larger in
residents than in specialists (0.028 vs. 011). Most notably the rate with
which specialists changed their minds for the better was 6 times greater
than the rate for residents (5.6% vs. 9%).

Although the positive effect on accuracy was found not to be
significant (for the small sample of decisions considered), as we already
commented on above, the observed effect sizes, especially for the spe-
cialists, were not negligible, nor the NDN: the system helped to avoid
a potential mistake every 6 aided diagnoses. This makes us conclude
that showing similar cases had a positive effect on the radiological task
considered, and could therefore be considered useful: this finding is
also confirmed by noting the Technology Impact, TI (see Fig. 4). This
is a measure of the usefulness of AI support, which was introduced
in [10] and is defined as the ratio of the probability of making a correct
decision when supported to the probability of making a correct decision
4

when unsupported. For this study, the TI was slightly positive and
significantly so: as shown in Fig. 4, the 95% confidence interval for
the odds ratio does not contain the line of ‘no impact’ (TI = 1).

To confirm this statistical finding from a more qualitative perspec-
tive, we also asked directly to the participants in the case study if
they found the support useful. Not surprisingly then, the perceived
usefulness (evaluated for every single decision on a 4-value ordinal
scale) was high (average: 2.7, 95% confidence interval [2.62, 2.87])
and the vast majority of respondents chose a value in the upper half
of the scale (.62 vs. .38, significant majority with 𝑝-value from the
binomial test .0002). The difference in perceived usefulness between
residents and specialists is significant (p-value = .010, Mann Whitney
Z = 2.57, standardized effect size = .16, common language effect size
= .59). As it can be seen in Fig. 5, residents considered the aid more
useful than the specialists, although its impact on their accuracy, and
hence the augmentation effect, was much smaller, as also confirmed by
the Benefit Diagram depicted in Fig. 3.

Considering similar cases made respondents slightly more confident
(but not significantly so) with respect to not having any support. The
𝑝-value equals .176, the test statistic Z equals −1.353. The observed
standardized effect size is small (0.056, NDN = 32), but the observed
common language effect size was moderate (0.47). For specialists, the
difference was stronger, although still not significant (P = .07724) with
a standardized effect size almost twofold bigger (.093, NDN = 19). More
generally, confidence changed in slightly more than 55% of the cases
for which physicians changed their decision, and within these cases,

https://mudilab.github.io/dss-quality-assessment/
https://mudilab.github.io/dss-quality-assessment/
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Fig. 4. Technology impact odds ratio, for the decision support study. Horizontal lines denote 95% C.I. computed according to the standard formula for odds ratios. The red region
denotes an overall negative effect of the AI support, while the blue region denotes an overall positive effect (moreover, since the confidence interval does not cross the boundary,
the effect is significant). Diagram generated with the online tool https://mudilab.github.io/dss-quality-assessment/.
Fig. 5. Boxplots of the perceived usefulness of showing similar cases for each diagnostic decision (N = 288), reported by residents (on the left) and specialists (on the right) on
a 4-point ordinal scale. Box notches represent 95% confidence intervals of the median; crosses represent means, in their 95% CIs as well. The horizontal red line represents the
mid-scale: estimated averages that do not cross this line indicate statistically significant trends in the collected responses.
confidence improved in two-thirds of the decision changes. Indeed,
after seeing similar cases, the number of times the physicians’ confi-
dence increased is significantly higher than the number of decreases
(.66 vs. .34, p-value = .0014; test statistic X = 64) and effect size is
.34 (NDN = 5). Thus, although in half of the cases reported confidence
did not change, in almost one-quarter of the cases presenting similar
cases improved the confidence of decision-makers in their decisions.
On the one hand, this does not surprise, as similar cases are additional
information that, ideally, can make physicians more certain of their
diagnosis; on the other hand, this result suggests that similar cases are
considered useful in corroborating confidence about the correctness of
one’s diagnosis, and this effect could not be given for granted.

Finally, we also observed some interesting correlations between the
observed accuracy of the physicians and their perceptions (see Fig. 6)
as well as between these perceptions and the perceived complexity of
cases (see Fig. 7). More in particular, we notice that the psychometric
variables reported by the participants, that is their confidence and the
perceived complexity of the cases, were a reliable proxy of their actual
accuracy. As expected, the more confident the physicians were about
their diagnosis (HD1) in regard to a case, the higher the actual accuracy
(see Fig. 6, on the left), that is the match between FHD and the ground
truth. Likewise, the higher the perceived complexity, the lower the
actual accuracy (see Fig. 6, on the right). In both cases, correlation
scores were high and significant (resp, confidence: +.48; complexity:
−.39). We observed also two other significant and strong correlations:
between the perceived complexity of cases and confidence in the final
decision (see Fig. 7 on the left), and between perceived complexity
and perceived usefulness of pro-hoc explanations (see Fig. 7 on the
right). As understandable, the higher the perceived complexity, the
lower the confidence (correlation: −.78) and, most notably, the higher
the perceived usefulness of the AI support (+.32). These results confirm
the ecological validity of our study and the importance of involving
real subject matter experts in Human-Centered Artificial Intelligence
and Medical AI studies.
5

5. Frictional AI

Before delving into the implications of our findings, it is crucial to
elaborate on the concept of frictional AI, briefly introduced in Section 1:
this discussion will provide a framework for better appreciating the
scope and impact of our results.

As mentioned earlier, the term ‘cognitive friction’, as initially pre-
sented by Cooper in 1999 [3], has predominantly been viewed as an
inadvertent consequence of poor design in interactive systems, rather
than as a potential tool to encourage more mindful user engagement in
the spirit of Norman [1].

The promotion of a more mindful approach to technology echoes
Kahneman’s seminal work ‘‘Thinking, Fast and Slow’’ [24], which
distinguishes two main modalities of human thinking: System 1 and
System 2. System 1 represents our fast, intuitive, and ‘‘automatic’’
decision-making, while System 2 concerns slower, analytic, rational
thinking. Despite being a simplistic interpretation of human think-
ing [25], the two-system framework can help us think of over-reliance
not as an intrinsic, unavoidable phenomenon due to cognitive biases,
but rather as a specifically designed mode of human-AI interaction
in which a Decision Support System (DSS) leverages System 1 more
than System 2, usually for the sake of efficiency. Conversely, to create
the best conditions facilitating commitment, oversight, and responsible
caution, we investigate AI systems that elicit System 2 thinking through
careful interaction designs that disrupt or discourage automatic user
behavior [26–29].

One such example regards systems that embed micro boundaries
[27]: these are defined as small obstacles or moments of reflection
that ‘‘create just enough friction to switch someone from having their
behavior driven by System 1 to System 2’’ [27] by slowing down
the decision-making process. In this sense, micro boundaries are in
stark contrast with so-called dark patterns, namely design choices
aimed at ‘‘sludging’’ users into undesired behaviors by exploiting their

https://mudilab.github.io/dss-quality-assessment/
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Fig. 6. Scatterplots of the relationship between self-reported confidence in the decision, on the left, and reported perceived case complexity, on the right, with actual accuracy
(vertical axis). Points correspond to single decisions, jittered to avoid clutter and overlapping. Pearson correlation coefficients are indicated in red, close to the regression trend.
Fig. 7. Scatterplots showing the correlations between case (perceived) complexity and, respectively, the physicians’ confidence on their initial diagnosis (left), the physicians’
accuracy (middle), and the perceived usefulness of the ‘similar case’ support. Spearman correlation coefficients (reported in red) are all statistically significant.
inattentiveness and eliciting quick, instinctual responses [27,30]. Dark
patterns produce an intentionally seamless and smooth experience
of use, to conceal complexity and secondary motives. A completely
different approach, called seamful design, intentionally reveals system
shortcomings and the ‘‘mismatches and cracks between assumptions
made in designing and developing the AI system and the reality of
the deployment context’’ [31], to promote a balanced level of user
reliance [32], and make users more aware of existing uncertainty and
inconsistency [33].

Thus, in the wake of the seminal work by Norman [1], some
researchers began to consider the appropriateness of including elements
that intentionally cause friction, under the names of critical design [34],
reflective design [35], adversarial design [36] and the concept of
‘intentional - beneficial - friction’ [37]. The cognitive friction that these
approaches envision can be rendered in multiple ways: for instance, by
disabling functionalities that might otherwise be expected or desired;
by making them more difficult to run; or by purposedly introducing
slow-downs, pauses, and inefficiencies.

Frischmann and Selinger [38] convincingly argued that ‘‘some fric-
tion, some inefficiency, even some transaction costs may be necessary
to sustain an underdetermined environment conducive to human flour-
ishing’’. (p. 141). From the same authors, this idea was then concretely
translated in terms of programmed inefficiencies, which are ‘‘deliberately
engineered’’ ‘‘sources of friction’’ (p. 286) [38], that is, design features
that implement what Ohm and Frankle [39] called one year earlier
‘‘desirable inefficiency’’ (i.e., a design pattern that connects apparently
6

inefficient code and human values), and a little earlier the authors
of [40] called ‘‘inspired inefficiency’’ (i.e., the result of balancing
algorithms and intuition), and the authors of [41], probably predating
all the others, called ‘‘meaningful inefficiencies’’ (p. 254) in the context
of civic life. We also conducted some empirical studies on the concept
of programmed inefficiency [5,42] in medical decision-making and
second-opinion settings. Known precursors of similar approaches are
slow technology [43] and reflective design [35], which focus on how
technology can encourage and aid a thoughtful and considerate de-
meanor in users throughout the interaction. Conceptually preliminary
proposals in that direction are ‘‘uncomfortable interactions’’ [44] and
‘‘critical design’’ promoting reflection and critique through making
technology ‘‘unfriendly’’ to users [45] or subverting assumptions and
expectations, like the strong one that decision support systems should
only give recommendations and pieces of advice.

Pierce introduced the idea of integrating ‘‘digital limitations’’ when
designing ‘‘counterfunctional things’’ (that is ‘‘a thing that figuratively
counters some of its own functionality’’), partly under the influence
of the tenets of nudging theory and the research on choice overload.
More recently, Pierce presented a framework for ‘‘frictional design’’,
which grounds on his pioneering research on undesign [46] and al-
ternative designs, which include five tendencies: ‘‘diverging, opposing,
accelerating, counterfactualizing, and analogizing’’ [47].

Acknowledging Pierce’s contribution [46], we introduce Frictional
AI as the umbrella term for a set of various approaches whose aim is to
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design AI systems that promote reflection and critique rather than com-
placency or mindless reliance. This approach carefully inserts design
frictions [27] or programmed inefficiencies [5] instead of recklessly
removing them to make interaction faster and more efficient. This is
done following the idea that it is designers, rather than users, who
are to be held responsible for creating the best conditions facilitating
commitment, oversight, and responsible judgment.

In the domain of DSS and AI design, reflection machines [48] are
systems that prompt users to critically reflect on their own decision-
making strategies; evaluative AI [49], on the other hand, denote sys-
tems that do not offer direct recommendations but rather provide
evidence for and against a specific decision. Both these approaches can
be considered as instances of what we call frictional AI. Also in the
case of pro-hoc explanations, the friction is intended to mitigate the
risk that users might over-rely on the support and develop heuristics or
opportunistic behaviors in which they exert low vigilance or overtrust
in the system advice, even when this is wrong: automation bias and
complacency are the terms usually associated with these behaviors
when they regard individual decisions and choices [4,50], but also the
risk of deskilling has been reported in the long run [7].

Thus, we call frictional AI the composite field of design research
aimed at applying the above tenets and insights to the development of
AI systems and data-driven decision support systems, in order to create
some cognitive friction in the human process of situation assessment or
decision-making. In what follows we provide a typology of frictional AI
applications, expanding on the work by [51], without any ambition of
exhaustiveness and completeness.

1. Cautious protocols, where the system presents multiple options
or none. In the former case, the system presents a set of can-
didate answers, which are associated with either an individual
confidence score each, or with a defined level of probability of
encompassing the right answer, like in conformal prediction. The
latter case is what is also called abstention, that is the deliberate
rejection to provide support, or a degenerate case of conformal
prediction in which all possible options are mentioned. In all
those cases, the system recognizes the case as being too complex
or too different to the cases seen in the training set [52], and
applied this kind of protocol not to mislead the decision-maker.

2. Judicial or antagonist protocols, where the system hosts ar-
guments and explanations backing up multiple and opposite
decisions or interpretations. A particular case envisioned in [49]
is that of perorative explanations produced by opposing conver-
sational agents, which try to convince the human decision-maker
that their interpretation and classification is the right one, while
the other is wrong. Another instance is that of agonistic machine
learning models (two or more) that provide opposite answers
and related explanations. These models could belong to different
model families or apply different hyperparameters, or be trained
on different ground truths and representations [53] or be opti-
mized for different targets such as utility, specificity, sensitivity
or discriminative performance [54]. The introduction of such
‘‘conflicting rules/knowledge’’ is what Kliegr [55] identified as
a debiasing technique against overconfidence and underconfidence
and has been previously studied by Wang et al. [56], Bhatt
et al. [57], Bussone [58], and Wolfe [59].

3. Decentralized AI or adjunct protocols. These protocols, first
introduced in [60] with the term adjunct AI, employ process
friction to make decision-making less dependent on AI or to make
AI-supported processes less effective than unaided ones. This can
be accomplished, for instance, by embedding cognitive forcing
functions [12] such as timeout periods, longer waiting times, and
purposefully slowed-down algorithms, which have been found to
improve user evaluation of algorithmic accuracy [61]. Another
case of process friction entails assigning the AI to the role of a
second-opinion giver [62], after that the human decision-maker
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Table 2
Summative table of the main findings and the related implications for either the
development of the XAI feature at hand or the design of future empirical studies
evaluating its effectiveness. The Number of Decisions Needed (NDN) is computed
according to Eq. (1). The Recommended Sample Size (RSS), in terms of the minimum
number of decisions to observe to get statistically significant results, has been produced
with the procedure presented in [69], and by adopting a Power of .8 and 𝛼 of .05.

Finding Effect size Number of Decisions
Needed (NDN)

Recommended
Sample Size (RSS)

Pro-Hoc
Explanations
improve user
diagnostic accuracy

.05 50 6000

Pro-Hoc
Explanations
improve expert
diagnostic accuracy

.30 6 320

Pro-Hoc
Explanations make
users more confident

.06 32 3500

Pro-Hoc
Explanations make
experts more
confident

.09 19 2800

has recorded their first opinion. This solution has been applied
in [11] and denoted as human-first protocol. Both solutions
are aimed at mitigating biases, such as algorithmic deference,
selective adherence, priming effects, framing, and anchoring
bias [63–65], as the user is required to come up with their own
interpretation on the case at hand before being influenced by
the AI output. Thus, adjunct AI protocols give value to human
intuition and aim to complement it, rather than substitute it. In
our user study, we applied this kind of protocol, combined with
the following one;

4. Comparative or analogical protocols, where the system pro-
vides users with access to the most similar cases (to the case at
hand) that are associated with their ground truth; or the most
similar cases (to the case at hand) that are associated with each
of all the available classes. Users are then invited to reflect on
the elements that differentiate or liken the present case and past
ones, orienting their final decision according to the labels asso-
ciated with the previous cases [66]. In these cases, the system
can be considered as a case-mining tool or transactive memory,
rather than an oracular [67] support, which fosters analogical
thinking [68]. This is exactly the case of pro-hoc explanations,
which replace, rather than complement, the AI decision support.

6. Design implications and further considerations

This study aims to see whether showing similar cases is an effective
alternative for giving explicit categorical advice, that is testing the
effectiveness (and usability) of pro-hoc explanations. The main findings
are summarized in Table 2: they suggest that pro-hoc explanations by
examples are considered useful (see Fig. 5) and they might also increase
accuracy, although minimally so, since the observed effect was very
low (see Figs. 2 and 3). However, a relatively low number of decisions
are necessary before avoiding some mistakes that would be committed
without the support, as shown by the NDN indicator. This finding, as
well as the fact that showing multiple similar cases (with known and
verified diagnoses) is tantamount to not giving physicians any ready-
made answer, suggest that pro-hoc explanations can be considered
one of the Frictional AI solutions associated with the smallest risk of
deskilling and over-reliance: indeed, this kind of solution still require
physicians to exert their interpretative skills and judge the images by
themselves.

All things considered, from the findings above (see also Table 2),
we can draw some guidelines and recommendations. We outline them
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in what follows, with no particular ambition of generalization, but with
the aim to inform the design of frictional AI systems aimed at improving
diagnostic accuracy in radiological settings, as well as to stimulate
further research in this domain:

– In image annotation and ground truthing, information about
case/decision complexity and diagnostic confidence should be
collected: indeed, as we have shown in our experiments (see
Fig. 6), these data correlate with actual accuracy. Moreover, this
information could be useful to modulate the level of friction of
the system, as seen in [70].

– Showing cases similar to the one under examination, includ-
ing both negative and positive instances of a specific condition
(e.g., vertebral fractures), may assist readers in their diagnos-
tics. This potential improvement appears to be more perceptible
among less experienced readers than expert ones.

– The presentation of similar cases may enhance the confidence of
image readers in their final decisions. This effect could be more
pronounced among expert readers, though it is not exclusive to
them. It is important to note that this increased confidence may
occur even if there is no change in their final decision (i.e., when
𝐻𝐷1 = 𝐹𝐻𝐷). While not definitive, this trend towards greater
confidence after using the DSS might be interpreted as a form of
satisfaction or an indicator of a positive user experience. Conse-
quently, this suggests that pro-hoc explanations could potentially
enhance the usability of the DSS, although this effect may vary
among users.

Since the last point concerns one of the most important elements for
those involved in the HCI field, we investigated this point in greater
detail, by involving the two authors who are expert clinicians and
who were originally involved in the design of the pro-hoc functionality.
They both found the adoption of this functionality intriguing to use
and of high potential in terms of usability: indeed, they noticed that
learning from analogous cases reported and described in scientific
articles, as well as in textbooks or congress presentations, is a common
and essential aspect of medical education [71,72]. As a consequence,
clinicians are very familiar with this kind of unobtrusive aid: this could
be a factor in regard to the rise in confidence that we observed in this
study, even in those cases where the physicians did not change their
initial diagnostic interpretation.

To better illustrate how a clinician could leverage the above func-
tionality and trigger effective analogical reasoning, or at least a line
of reasoning that increases their confidence and hence satisfaction, we
discussed with the above clinicians some cases used in our study in
greater detail.

For instance, case 100 (see Fig. 8) was associated with highly
correlated similarity scores with those retrieved by the AI. One of these
retrieved cases (see case 100POS2 in Fig. 8) exhibited the same type
of fracture as the former case index, which nevertheless is extremely
rare (A2, in the AOSpine classification), as it is observed in only 3%
of fractures [73]. For its rarity and appearance, case 100 (and similar
cases) are relatively easy to diagnose (for expert readers) and hence
the perceived utility of the AI aid was relatively low, although it was
effective in retrieving a conceptually similar case.

In other cases, where diagnosing a fracture was less straightforward,
similar cases were perceived as more useful. For instance, in regard
to cases 122 and 13 (both depicted in Fig. 8), which are actually
hard to diagnose, the AI retrieved two similar cases (respectively,
case 122POS2 and 13POS1 in Fig. 8) that presented the same spe-
cific fracture pattern and anatomical lesion (i.e., anterosuperior corner
fracture) and had been associated with a verified diagnosis of fracture
presence, thus suggesting that also the former case (122POS2) was
positive. Consequently, not only the AI aid did improve the physician’s
confidence in the final diagnosis, but it also provided a differential
benefit in regard to accuracy, and the more so especially for those cases
whose difficulty level was higher (i.e., MIO grading 3 and 4).
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However, not all decisions were so straightforward and some cases
posed interpretative challenges. For instance, case 65 (see Fig. 9)
exhibited a fracture with a lesion pattern that is hard to detect and
recognize on plain X-rays, usually resulting in lower detection rates
and higher error rates. In a real-world and naturalistic setting, any
fracture diagnosis for a case like that would have to be confirmed using
second-level imaging, such as a (much more expensive and invasive)
CT or a much more stressful and expensive exam such as MRI. For
the above case, the more similar cases retrieved by the AI had been
labeled as negatives (e.g., see case 65NEG1 in Fig. 9), thus potentially
confusing and potentially misleading the clinician. Similarly, case 81
presented a comparable scenario with a different initial diagnosis. In
this case, the case was actually negative for fracture (according to
the ground truth), but the most similar case retrieved by the AI had
been labeled as positive for fracture (see case 81POS1 in Fig. 9).
This could also mislead the physician, who might have been led to
believe that they were missing a fracture diagnosis and that a second
(unnecessary) imaging was to be prescribed. Nevertheless, it is worth
noting that from a clinical perspective, the impact of a missed fracture
is much more serious than that of an incorrect diagnosis of a fracture.
In the former scenario, the patient could go untreated, resulting in
potentially serious consequences [74], whereas in the latter scenario,
second-level imaging, or further physical inspection, would lead to the
correct diagnosis. Therefore, in orthopedic settings, an AI aid should
be designed to optimize sensitivity (over specificity), that is to make
false negatives more rare to result in a more useful support [70]. The
above comments choose to adopt a pro-hoc support a design choice
that can have different effects based on contextual elements, such as
the complexity, difficulty or rarity of the case: this an additional reason
to collect the physicians’ perception at use time, to classify cases also
along these subjective dimensions.

7. Conclusions

While friction is typically seen as a drawback in HCI, increasing
research indicates its potential to foster more deliberate, mindful, and
critical interactions with digital systems. In this paper, we contribute
to the research that explores the deliberate incorporation of friction in
decision support systems. This approach aims to encourage more con-
scientious decisions and counterbalance the risks of excessive reliance
on technology and its dominance, in the short term [10], and to address
concerns about skill deterioration and learning degradation, in the long
term [5].

The design and evaluation of human-AI interaction protocols are
inherently human-centered because they are built grounding on users’
perceptions and involve direct user participation. Therefore, our re-
search aligns with both the Human-Centered Artificial Intelligence and
the One Health approaches for two main reasons: firstly, our user study
aims to improve the efficacy of clinical DSSs and, by extension, medical
decision-making, although the insights gained may also be applicable
to other decision-making contexts. Secondly, we embrace the core
principle of the One Health initiative, which posits that technologies
intended to ensure the health of individuals and their environment
should be designed holistically, taking into account long-term effects
and distant externalities associated with any improvement in human
decision performance. In this context, we consider the innate variability
of human beings and their propensity for minimal effort, shortcuts, and
‘cognitive economy’ strategies [75], as motivations to introduce con-
trolled friction in decision-making processes and assess their potential
in reducing over-reliance on technology, technology dominance [10]
and the tendency to perceive AI systems as agents that are equally or
more capable than humans, rather than as mere tools that enhance our
cognitive abilities [42].

To this aim, we conducted an empirical user study in a controlled
environment for the diagnostic task of detecting vertebral fractures in
spine x-rays. The interaction protocol, as illustrated in Fig. 1, prioritized
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Fig. 8. Cases from the experimental set where the AI aid was proved to be useful in either confidence or accuracy improvements, in virtue of the similarity between the case at
hand and those retrieved.
Fig. 9. Cases from the experimental set where the AI aid was controversial or potentially misleading, in virtue of the similarity between the case at hand and those retrieved.
human judgment: clinicians first made an initial assessment of the x-
ray without AI assistance and then provided a final diagnosis with AI
support. This support involved displaying three similar cases identified
by the AI: two matching the physician’s initial classification and one
from the opposite class. While the application of this kind of support
only marginally improved accuracy (approximately by an additional
2%), its utility was greatly appreciated by the medical practitioners
involved, particularly those with less experience, despite more ex-
perienced clinicians showing greater improvement. Participants also
reported increased confidence in their final decisions.

A key limitation of this study is the small scale, both in case numbers
and participant count. While this restricts the generalizability of our
findings, the identified effects are substantial enough to inform future
research design: specifically, the identified effect sizes are of critical
importance to support the power analysis and estimation of the sample
size of future studies (see Table 2). This makes our study capable
of informing the design of future, more-powered, studies involving
potentially larger, and more diverse, samples of clinicians.

Our future work will also go in this above direction: more specif-
ically, we plan to further explore how frictional AI protocols, like
pro-hoc explanations, can support human users, particularly in prevent-
ing errors. As discussed in Section 6, pro-hoc explanations help users by
allowing them to compare their preliminary assessments against actual
diagnoses of closely similar cases, thereby prompting a reassessment of
their initial reasoning and conclusions. The promising results reported
in this study suggest that further research should focus on evaluat-
ing other methods by which less immediately exploitable AI outputs
can still augment human decision-making, according to the typology
outlined in Section 5.
9
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