
International Journal of Computational Intelligence Systems
Vol. 13(1), 2020, pp. 1687–1698

DOI: https://doi.org/10.2991/ijcis.d.201012.002; ISSN: 1875-6891; eISSN: 1875-6883
https://www.atlantis-press.com/journals/ijcis/

Research Article

Simpful: A User-Friendly Python Library for Fuzzy Logic

Simone Spolaor1, , Caro Fuchs2, , Paolo Cazzaniga3,4,5, , Uzay Kaymak2, , Daniela Besozzi1,4,5, , Marco S. Nobile2,4,5,*,

1Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
2School of Industrial Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
3Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
4SYSBIO/ISBE.IT Centre of Systems Biology, Milan, Italy
5Bicocca Bioinformatics, Biostatistics and Bioimaging Centre (B4), Milan, Italy

ART I C L E I N FO
Article History

Received 10 Jun 2020
Accepted 07 Oct 2020

Keywords

Decision support
Fuzzy logic
Fuzzy networks
Modeling and control
Open- source software
Python library

ABSTRACT
Many researchers have used fuzzy set theory and fuzzy logic in a variety of applications related to computer science and engi-
neering, given the capability of fuzzy inference systems to deal with uncertainty, represent vague concepts, and connect human
language to numerical data. In this work we propose Simpful, a general-purpose and user-friendly Python library designed to
facilitate the definition, analysis, and interpretation of fuzzy inference systems. Simpful provides a lightweight Application Pro-
gramming Interface that allows to intuitively define fuzzy sets and fuzzy rules, and to perform fuzzy inference. Worthy of note,
in Simpful the fuzzy rules are specified by means of strings of text written in natural language. We provide here some practical
examples to show that Simpful represents a valuable addition to the open-source software that supports fuzzy reasoning.

© 2020 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Fuzzy set theory and fuzzy logic [1,2] are extensions of classic set
theory and logic, which have been largely used in computer sci-
ence and engineering. The ability of fuzzy inference systems (FISs)
[3] to deal with uncertainty, represent vague concepts, and connect
human language to numerical data, allowed fuzzy logic to be suc-
cessfully exploited in different contexts [3,4], and in knowledge- or
data-driven applications [5], as in the case of decision-making [6],
modeling and control [7,8], classification, and regression problems
[9–11].

The success of fuzzy reasoning led to the development of several
methods and software tools involving fuzzy sets or FISs, usually
aimed at specific applications [12]. However, general-purpose soft-
ware libraries and toolboxes capable of handling fuzzy sets and/or
fuzzy logic are limited in number and scope, and they are often out-
dated or not open-source. Reasons for this shortcoming might be
the difficulty in dealing with the complex objects required by fuzzy
reasoning (i.e., fuzzy sets, fuzzy rules, and natural language), and
the high number of existing types of FISs [13].

To overcome these limitations, here we propose Simpful, a user-
friendly Python library designed to define FISs for any purpose.
Simpful provides a lightweight Application Programming Interface
(API) for fuzzy reasoning, including a set of classes and methods to
intuitively define fuzzy sets and fuzzy rules, and to perform fuzzy

*Corresponding author. Email: m.s.nobile@tue.nl

inference. A noticeable feature of Simpful is that fuzzy rules can be
constructed by means of strings of text written in natural language,
thus simplifying the definition of fuzzy rule bases.

To show the usefulness and the advantages of Simpful, we provide
three practical applications, related to the definition of a Mamdani
and Takagi-Sugeno FIS for the tipping problem, a FIS for a clini-
cal decision support system for septic patients, and a dynamic fuzzy
model (DFM) of a biochemical system. The first two examples illus-
trate how Simpful can be used to easily define the membership
functions and a fuzzy rule base, and how it embeds the execution
of fuzzy inference. The third example shows how Simpful can be
exploited to model and simulate the dynamics of complex systems
[25,26], by creating fuzzy networks (FNs) [27], i.e., networks where
nodes represent linguistic variables, and the connections between
them represent interactions in the form of fuzzy rule outputs fed as
variable inputs to a downstream linguistic variable. These networks
can be defined with arbitrary topologies, including cycles and feed-
back loops, to describe the interactions existing in complex systems
[27–30].

The paper is structured as follows: In Section 2 we provide a
survey of the available software for the design of FISs, while in
Section 3 we describe the implementation details of Simpful. In
Section 4 we describe the three examples of application of Simp-
ful. Finally, in Section 5 we draw some final remarks and provide
insights on future developments of the library.

https://doi.org/10.2991/ijcis.d.201012.002
https://www.atlantis-press.com/journals/ijcis/
https://orcid.org/0000-0002-3383-367X
https://orcid.org/0000-0002-4815-0310
https://orcid.org/0000-0001-7780-0434
https://orcid.org/0000-0002-4500-9098
https://orcid.org/0000-0001-5532-3059
https://orcid.org/0000-0002-7692-7203
http://creativecommons.org/licenses/by-nc/4.0/


1688 S. Spolaor et al. / International Journal of Computational Intelligence Systems 13(1) 1687–1698

2. RELATED WORK

A detailed overview of the software tools that deal with fuzzy logic
and fuzzy reasoning can be found in Ref. [12]. In this section, we
restrict our discussion to general-purpose software (see Table 1).

Matlab is one of the most popular environments used to implement
fuzzy logic tools [19]. More recently, Mathworks has introduced a
Fuzzy Logic Toolbox [20] that is still supported by the company,
and offers a variety of functions to manage many systems involv-
ing fuzzy logic. Additional extensions and new software were also
presented in the past (e.g., in Ref. [31]) to address the needs of dif-
ferent fuzzy logic communities. However, Matlab has the drawback
of being commercially distributed only, thus open-source alterna-
tives were developed by the scientific community. At present, most
of these open-source software are designed for specific applica-
tions only, whereas others are often outdated or not continually
maintained.

PyFuzzy [21] was the first general-purpose library to design FISs
using the Python programming language (version 2.7). It is depen-
dent on the ANTLR 3 runtime. PyFuzzy allows to manage all the
entities needed to construct FISs and to create numerous types of
fuzzy sets. It also supports the export and sharing of FISs by means
of the Fuzzy Control Language (FCL) files. FCL files implement the
old standard IEC 61131 (IEC61131-7) [32], which was designed for
fuzzy control applications and remained for many years the only de
facto standard to represent FISs. Despite its completeness, PyFuzzy
is now outdated and not maintained anymore, and Python 2 is no
longer officially supported.

To date, the software developed using Python 3 includes Scikit-
Fuzzy [23] and Fuzzylab [22]. Scikit-Fuzzy is a fuzzy logic API
meant to work in the scipy stack [33], which offers functions and
classes to support the modeling of fuzzy systems. Fuzzylab is a
recently published Python 3 library, based on the Octave Fuzzy
Logic Toolkit, designed for the creation of logic controllers. Both
these libraries do not support the definition of custommembership

functions (providing only pre-implemented shapes), nor Takagi-
Sugeno inference systems of arbitrary order. At present, Scikit-
Fuzzy supports only Mamdani inference, while Fuzzylab supports
Mamdani and 0-order Takagi-Sugeno inference systems.Moreover,
both libraries do not provide an interface close to natural language
for the definition of FISs. For example, neither Fuzzylab nor Scikit-
Fuzzy allow to define fuzzy rules as strings of text written in natural
language. Fuzzylab employs a matrix that needs to be input by the
user to define the full rule base. In itsmainAPI, Scikit-Fuzzy adopts
the prefix notation (i.e., operators precede the operands) to define
the antecedents of rules. A later developed API (designed to imple-
ment control systems) is also available, but it requires tomanipulate
linguistic variable objects and to index them by means of linguistic
terms in order to define a fuzzy rule.

Most of the recent open-source software for fuzzy logic are aimed at
machine learning, classification and regression analysis, or decision
support systems. Among the most popular, one can find FuzzyR
[18], a general-purpose toolkit for fuzzy reasoning, implemented in
R and supporting type-1 and type-2 FISs; FuzzyLite [14], a collec-
tion of C++ libraries designed for fuzzy control; Fispro [15], a C++
software provided with a graphical user interface (GUI), designed
for data-driven applications of FISs and their automatic learning
from a dataset; Juzzy [16], a Java based toolkit for handling type-2
fuzzy sets, and JT2FIS [34], a Java class library for the definition of
interval type-2 FISs. One of the most recent and interesting imple-
mentations in the fuzzy community is represented by the JFML
library [17], the only open-source library (implemented in Java)
incorporating the most recently developed standard for represent-
ing FISs, the IEEE 1855-2016 standard [35], which defines a new
W3C eXtensibleMarkup Language named FuzzyMarkup Language
(FML) [36]. Notably, a Python wrapper for JFML was also released
[24], allowing the definition of FML-compliant FISs by means of
Python scripts and of the JFML library. However, it should be noted
that this solution requires the Py4J framework [37], which is needed
for the Python interpreter to dynamically access Java objects in a
Java Virtual Machine.

Table 1 Software for the design of FISs.

Name Language Latest Release Description

FuzzyLite [14] C++ 2017 A collection of C++ libraries designed for fuzzy control, compatible with the
FCL standard

FisPro [15] C++ 2019 A general-purpose software provided with a GUI, designed to facilitate the
learning of fuzzy inference systems from data

Juzzy [16] Java 2013 A Java based toolkit, implementing type-2 fuzzy reasoning
JFML [17] Java 2018 A Java library implementing the FML standard
FuzzyR [18] R 2019 An R toolkit, provided with a GUI, for the design of type-1 and type-2 fuzzy

inference systems
Fuzzy Toolbox for Matlab [19] Matlab 1994 General-purpose toolbox implemented in the Matlab environment
Fuzzy Logic Toolbox [20] Matlab 2020 Commercially distributed toolbox, provided with a GUI and available inside

the Matlab environment
PyFuzzy [21] Python 2 2014 A Python 2 library, compatible with the FCL standard. The development of

the library was discontinued and Python 2 is no longer officially supported.
This library depends on the ANTLR 3 runtime

Fuzzylab [22] Python 3 2019 Python library based on the Octave Fuzzy Logic Toolkit
Scikit-Fuzzy [23] Python 3 2019 General-purpose API meant to work in the scipy stack, offering classes and

methods to support the definition of fuzzy systems
Py4JFML [24] Python 3 2019 A Python wrapper for the JFML java library

Note: FIS, fuzzy inference system; FCL, Fuzzy Control Language; GUI, graphical user interface; FML, Fuzzy Markup Language; API, Application Programming Interface.



S. Spolaor et al. / International Journal of Computational Intelligence Systems 13(1) 1687–1698 1689

Table 2 Features supported by the available software for the design of FISs.

Name Mamdani Zero-order First-order Higher Order Open
Takagi–Sugeno Takagi–Sugeno Takagi–Sugeno Source

FuzzyLite [14] ✓ ✓ ✓ ✓ ✓
FisPro [15] ✓ ✓ ✓
Juzzy [16] ✓ ✓
JFML [17] ✓ ✓ ✓ ✓
FuzzyR [18] ✓ ✓
Fuzzy Toolbox for Matlab [19] ✓ ✓ ✓
Fuzzy Logic Toolbox [20] ✓ ✓ ✓
PyFuzzy [21] ✓ ✓ ✓
Fuzzylab [22] ✓ ✓ ✓
Scikit-Fuzzy [23] ✓ ✓
Py4JFML [24] ✓ ✓ ✓ ✓
Simpful ✓ ✓ ✓ ✓ ✓
Note: FIS, fuzzy inference system; FML, Fuzzy Markup Language.

An overview of the features supported by the abovementioned
software for the design of FISs can be found in Table 2. Exclud-
ing the outdated and discontinued PyFuzzy, a general-purpose,
open-source, and intuitive Python library is nowadays still missing,
prompting the development of Simpful to overcome the limitations
of the existing software.

3. SOFTWARE DESCRIPTION

Simpful is implemented in the Python 3 programming language
[38]. Its dependencies are numpy [39] and scipy [33]. The latest ver-
sion of Simpful currently supports the following features:

• Definition of polygonal (e.g., vertex-based) and functional (e.g.,
sigmoidal, Gaussian, custom shaped) membership functions.

• Definition of fuzzy rules as strings of text written in natural
language.

• Definition of arbitrarily complex fuzzy rules built with the logic
operators AND, OR, NOT.

• Mamdani [40] and any order Takagi-Sugeno [41] inference
methods.

Simpful takes as input a human-readable representation of a FIS,
consisting of a collection of fuzzy sets defined by membership
functions, linguistic variables, fuzzy rules, and consequent outputs
(specified as crisp values, arbitrary functions, or fuzzy sets). When
this information is fed to Simpful’s FuzzySystem object, the sys-
tem automatically performs a recursive tokening and parsing of the
antecedents of each rule (exploiting the parentheses as delimiters),
in order to identify atomic clauses and functional operators (i.e.,
the logical connectors AND, OR, NOT). By using these compo-
nents, Simpful builds executable representations of the antecedents
of rules in the form of derivation trees (Figure 1): the nodes repre-
sent the functional operators (blue nodes), while the leaves denote
linguistic variables and terms (green and red nodes, respectively).
By providing the input values for the antecedents, Simpful can per-
form a fuzzy inference and eventually provides the final output
values (Figure 2).

A fuzzy set can be defined by using the FuzzySet object either as an
ordered list of points in a plane, or as an arbitrary function:

Figure 1 Example of derivation tree produced by Simpful
while parsing a fuzzy rule.

Figure 2 Graphical representation of the FuzzySystem
object in Simpful.

• In the first case, the points are passed to the constructor using
the argument points. For each point, the first coordinate
corresponds to its value in the universe of discourse 𝕌, while
the second represents the degree of membership. This
sequence of points ultimately identifies a polygon. Simpful
joins each pair of consecutive points in the sequence to identify
the membership function characterizing the fuzzy set. Simpful
deals with input values that are outside the specified universe
of discourse by extrapolating, using the closest point specified
in the sequence. This also means Simpful supports the use of
shouldered fuzzy sets.



1690 S. Spolaor et al. / International Journal of Computational Intelligence Systems 13(1) 1687–1698

• In the second case, the user creates a FuzzySet object by passing
a function pointer, using the argument function. This custom
function should be in the form f: 𝕌 → [0, 1], 𝕌 ⊆ ℝ, mapping
every element of the universe of discourse to a valid
membership value. In case the codomain of the custom
function f provided by the user is not equal to the expected
interval, Simpful automatically clamps it to [0, 1]. Simpful also
provides a set of objects with preimplemented general-purpose
parametric functions, namely: Gaussian (Gaussian_MF),
inverted Gaussian (InvGaussian_MF), double Gaussian
(DoubleGaussian_MF), sigmoid (Sigmoid_MF), inverted
sigmoid (InvSigmoid_MF), triangular (Triangular_MF) and
trapezoidal (Trapezoidal_MF). It is worth noting that all these
objects are derived from the same abstract class, named
MF_object: by providing an implementation of the virtual
method _execute(), users can straightforwardly create
arbitrarily complex fuzzy sets exploiting any custom function.
In this case, the new method must accept an argument x ∈ 𝕌
and must return a valid membership value.

The user is also required to associate a meaningful linguistic term
with each fuzzy set. The defined fuzzy sets are then employed in the
creation of specific LinguisticVariable objects, provided with their
own names, as given by the user. If the fuzzy sets are specified by
means of a sequence of points only, Simpful automatically identifies
the boundaries of the universe of discourse by exploiting the min-
imum and the maximum value among the first coordinates of all
the points that define all the fuzzy sets. On the contrary, if a fuzzy
set is defined by means of custom functions, the user can specify
a valid interval of values for the LinguisticVariable object, by using
the optional argument universe_of_discourse. The definition of this
interval is required in order to use the draw() method of the Lin-
guisticVariable class, which can be exploited to plot the fuzzy sets,
thus allowing for a rapid inspection and debugging of their imple-
mentation. Worthy of note, both point- and function-based fuzzy
sets can be exploited simultaneously in the definition of a single lin-
guistic variable. In order to facilitate its usage, Simpful also provides
a AutoTriangle() class, which returns a LinguisticVariable object
whose universe of discourse is subdivided in a user-defined num-
ber of normalized triangular fuzzy sets.

The fuzzy rules used for the inference must be defined by means
of well-formed strings, written in natural language (Figure 1).
The current version of Simpful supports the most common fuzzy
operators AND, OR, NOT, defined as

• NOT x = 1 − x.

• x OR y = max(x, y).
• x AND y = min(x, y).

Each rule must use the variables’ names and linguistic terms that
were defined in the LinguisticVariable objects.

In the case of Takagi–Sugeno systems, the consequent of rules
must also use strings that are associated with the output crisp val-
ues or with the output functions defined by the user. In this case,
the user has to define the functions exploited in the inference as
follows:

• 0-order functions (i.e., constant functions) are defined as
“output crisp values.”

• For higher order Takagi–Sugeno systems, the user can define
“output functions” as strings of text involving the linguistic
variables. These functions are evaluated at runtime by
exploiting the eval() function of Python, which parses the
expression given as a string argument and executes it as a code
within the program.

Output crisp values, output functions, and output fuzzy sets must
have an associated meaningful and unique string to identify them,
which will be exploited in the definition of the fuzzy rules.

Linguistic variables, fuzzy rules, output crisp values, output func-
tions, and output fuzzy sets are added to a fuzzy system object,
which implements the whole FIS. Given the input values for the
variables appearing in the antecedents of the fuzzy rules, the meth-
ods implementing theMamdani or Takagi–Sugeno inference can be
called for one or more of the variables appearing in the consequent
of fuzzy rules, in order to obtain their final output. As an alterna-
tive, the user can invoke the inference() method of the FuzzySys-
tem class to let Simpful choose and use the most appropriate
inference method (i.e., Mamdani or Takagi–Sugeno). As a matter
of fact, during the initialization phase, Simpful analyzes the outputs
of the model and automatically determines the class of the defined
FIS. The results of the inference are returned to the user as key-value
pairs inside a dictionary, where keys represent the names of the vari-
ables. Figure 2 shows a schematic overview of how to construct a
fuzzy system object and how to perform inference in Simpful.

The source code of Simpful is available, under GPL license, on
GitHub at the following URL: https://github.com/aresio/simpful.
Simpful can be installed by using the PyPI facility: pip install simp-
ful. The example code described in this work can be found on
Code Ocean at the following URL: https://codeocean.com/capsule/
2230971/tree.

4. ILLUSTRATIVE EXAMPLES

In this section we provide three examples, together with their cor-
responding Python code, to show the potential and the usage of
Simpful.

4.1. Tipping Problem

The tipping problem consists in computing a fair tip (in terms of
percentage of the overall bill), taking into account a restaurant’s ser-
vices. Listings 1 and 2 show two examples of Simpful code to define
a FIS that calculates the tipping amount on the basis of two input
variables, describing food and serving staff quality.

In Listing 1 the tipping problem is modeled as a Mamdani FIS. In
line 5 a fuzzy systemobject is created. The fuzzy sets and the linguis-
tic variable “Service” are defined in lines 8 to 11; this variable con-
tains three fuzzy sets, “poor,” “good,” and “excellent,” ranging from
0 to 10. From line 13 to 15 the linguistic variable for food quality is
defined, exploiting two fuzzy sets, “rancid” and “delicious.” The out-
put variable “Tip” and its fuzzy sets are defined from line 18 to 21.
All fuzzy sets used in this example are triangular (hence the use of

https://github.com/aresio/simpful
https://codeocean.com/capsule/2230971/tree
https://codeocean.com/capsule/2230971/tree


S. Spolaor et al. / International Journal of Computational Intelligence Systems 13(1) 1687–1698 1691

Listing 1 AMamdani FIS for the tipping problem, defined in Simpful.
1 from simpful import *
2
3 # A simple fuzzy inference system for the tipping problem
4 # Create a fuzzy system object
5 FS = FuzzySystem()
6
7 # Define fuzzy sets and linguistic variables
8 S_1 = FuzzySet(function=Triangular_MF(a=0, b=0, c=5), term=”poor”)
9 S_2 = FuzzySet(function=Triangular_MF(a=0, b=5, c=10), term=”good”)
10 S_3 = FuzzySet(function=Triangular_MF(a=5, b=10, c=10), term=”excellent”)
11 FS.add_linguistic_variable(”Service”, LinguisticVariable([S_1, S_2, S_3], concept=”Service quality”, universe_of_discourse=[0,10]))
12
13 F_1 = FuzzySet(function=Triangular_MF(a=0, b=0, c=10), term=”rancid”)
14 F_2 = FuzzySet(function=Triangular_MF(a=0, b=10, c=10), term=”delicious”)
15 FS.add_linguistic_variable(”Food”, LinguisticVariable([F_1, F_2], concept=”Food quality”, universe_of_discourse=[0,10]))
16
17 # Define output fuzzy sets and linguistic variable
18 T_1 = FuzzySet(function=Triangular_MF(a=0, b=0, c=10), term=”small”)
19 T_2 = FuzzySet(function=Triangular_MF(a=0, b=10, c=20), term=”average”)
20 T_3 = FuzzySet(function=Trapezoidal_MF(a=10, b=20, c=25, d=25), term=”generous”)
21 FS.add_linguistic_variable(”Tip”, LinguisticVariable([T_1, T_2, T_3], universe_of_discourse=[0,25]))
22
23 # Define fuzzy rules
24 R1 = ”IF (Service IS poor) OR (Food IS rancid) THEN (Tip IS small)”
25 R2 = ”IF (Service IS good) THEN (Tip IS average)”
26 R3 = ”IF (Service IS excellent) OR (Food IS delicious) THEN (Tip IS generous)”
27 FS.add_rules([R1, R2, R3])
28
29 # Set antecedents values
30 FS.set_variable(”Service”, 4)
31 FS.set_variable(”Food”, 8)
32
33 # Perform Mamdani inference and print output
34 print(FS.Mamdani_inference([”Tip”]))

the preimplemented function Triangular_MF), except for the fuzzy
set that denotes a “Generous” tip, which is an example of a trape-
zoidal set (Trapezoidal_MF). The resulting membership functions
are visualized in Figure 3. The fuzzy rules are defined in lines 24 to
27. Once the input values are set (lines 30 and 31, where “Service”
and “Food” quality scored 4 and 8 points, respectively), Mamdani
fuzzy inference is performed (line 34) to obtain the final tipping
percentage, which is equal to 14.17% in this example.

Listing 2 shows the definition of another FIS to solve the tipping
problem, this time using a Takagi–Sugeno model. Again, the fuzzy
system object is created in line 5. From line 8 to 15 the fuzzy sets
for the input variables are defined. In this example, the fuzzy sets
are defined as polygons, using an ordered list of points, instead of
exploiting a pre-implemented membership function as in the pre-
vious example. However, the resulting fuzzy sets are the same as the
sets used in the Mamdani FIS. The output crisp values for a “small”
and “average” tip are set to 5% and 15% respectively in line 18 and
19. The output value for a “generous” tip is a function (defined in
line 22) depending on the scores for service and food quality. In
this example this is a linear function, but any arbitrary function can
be handled by Simpful. The fuzzy rules are then defined in lines
25 to 28. The input values are set in line 31 and 32, and Takagi–
Sugeno inference is performed in line 35. Given that “Service” and

“Food” quality scored 4 and 8 points, the tipping percentage should
be 14.77% according to this example.

Finally, Figure 4 shows a comparison of the output surfaces pro-
duced by simpful and Scikit-Fuzzy. The response of the two libraries
is identical, confirming the correctness of Simpful’s fuzzy inference.

4.2. Clinical Decision Support for Sepsis

When a patient enters the intensive care unit (ICU) with symp-
toms of sepsis, clinicians must diagnose quickly and start treatment
within an hour of admission. Clinical decision support systems aim
at helping clinicians with these decisions by processing patient data,
such as blood levels and symptoms, and giving suggestions for diag-
nosis or treatment plans.

In Listing 3, we provide a simplified clinical decision supportmodel
that calculates how likely it is the patient suffers from sepsis. First,
the fuzzy system object is created in line 5. The fuzzy sets and their
linguistic terms for the input variables are specified in lines 8 to 31.
In this example, the fuzzy sets are defined by using sigmoidal and
Gaussian functions. Since these functions have 𝕌 = ℝ as domain,
it is not possible to automatically estimate the limits of the universe
of discourse for plotting the membership functions with the draw()



1692 S. Spolaor et al. / International Journal of Computational Intelligence Systems 13(1) 1687–1698

Figure 3 The membership functions for the tipping problem.

Listing 2 A Takagi-Sugeno FIS for the tipping problem, defined in Simpful.
1 from simpful import *
2
3 # A simple fuzzy inference system for the tipping problem
4 # Create a fuzzy system object
5 FS = FuzzySystem()
6
7 # Define fuzzy sets and linguistic variables
8 S_1 = FuzzySet(points=[[0., 1.], [5., 0.]], term=”poor”)
9 S_2 = FuzzySet(points=[[0., 0.], [5., 1.], [10., 0.]], term=”good”)
10 S_3 = FuzzySet(points=[[5., 0.], [10., 1.]], term=”excellent”)
11 FS.add_linguistic_variable(”Service”, LinguisticVariable([S_1, S_2, S_3], concept=”Service quality”))
12
13 F_1 = FuzzySet(points=[[0., 1.], [10., 0.]], term=”rancid”)
14 F_2 = FuzzySet(points=[[0., 0.], [10., 1.]], term=”delicious”)
15 FS.add_linguistic_variable(”Food”, LinguisticVariable([F_1, F_2], concept=”Food quality”))
16
17 # Define output crisp values
18 FS.set_crisp_output_value(”small”, 5)
19 FS.set_crisp_output_value(”average”, 15)
20
21 # Define function for generous tip (food score + service score + 5%)
22 FS.set_output_function(”generous”, ”Food+Service+5”)
23
24 # Define fuzzy rules
25 R1 = ”IF (Service IS poor) OR (Food IS rancid) THEN (Tip IS small)”
26 R2 = ”IF (Service IS good) THEN (Tip IS average)”
27 R3 = ”IF (Service IS excellent) OR (Food IS delicious) THEN (Tip IS generous)”
28 FS.add_rules([R1, R2, R3])
29
30 # Set antecedents values
31 FS.set_variable(”Service”, 4)
32 FS.set_variable(”Food”, 8)
33
34 # Perform Sugeno inference and print output
35 print(FS.Sugeno_inference([”Tip”]))



S. Spolaor et al. / International Journal of Computational Intelligence Systems 13(1) 1687–1698 1693

Figure 4 Comparison of output surfaces obtained on the Mamdani fuzzy inference system (FIS) for the tipping problem, implemented in
Simpful (left) and Scikit-Fuzzy (right): the output of the two libraries is the same.

Listing 3 A clinical decision support system to diagnose sepsis, implemented in Simpful.
1 from simpful import *
2
3 # A simple decision support model to diagnose sepsis in the ICU
4 # Create a fuzzy system object
5 FS = FuzzySystem()
6
7 # Define fuzzy sets for the variable PaO2
8 P1 = FuzzySet(function=Sigmoid_MF(c=40, a=0.1), term=”low”)
9 P2 = FuzzySet(function=InvSigmoid_MF(c=40, a=0.1), term=”high”)
10 LV1 = LinguisticVariable([P1,P2], concept=”PaO2 level in blood”, universe_of_discourse=[0,80])
11 FS.add_linguistic_variable(”PaO2”, LV1)
12 LV1.plot()
13
14 # Define fuzzy sets for the variable base excess
15 B1 = FuzzySet(function=Gaussian_MF(mu=0,sigma=1.25), term=”normal”)
16 LV2 = LinguisticVariable([B1], concept=”Base excess of the blood”, universe_of_discourse=[-10,10])
17 FS.add_linguistic_variable(”BaseExcess”, LV2)
18 LV2.plot()
19
20 # Define fuzzy sets for the variable trombocytes
21 T1 = FuzzySet(function=Sigmoid_MF(c=50, a=0.75), term=”low”)
22 T2 = FuzzySet(function=InvSigmoid_MF(c=50, a=0.75), term=”high”)
23 LV3 = LinguisticVariable([T1,T2], concept=”Trombocytes in blood”, universe_of_discourse=[0,100])
24 FS.add_linguistic_variable(”Trombocytes”, LV3)
25 LV3.plot()
26
27 # Define fuzzy sets for the variable creatinine
28 C1 = FuzzySet(function=Sigmoid_MF(c=300, a=0.2), term=”low”)
29 C2 = FuzzySet(function=InvSigmoid_MF(c=300, a=0.1), term=”high”)
30 LV4 = LinguisticVariable([C1,C2], concept=”Creatinine in blood”, universe_of_discourse=[0,600])
31 FS.add_linguistic_variable(”Creatinine”, LV4)
32 LV4.plot()
33
34 # Define the consequents
35 FS.set_crisp_output_value(”low_probability”, 1)
36 FS.set_crisp_output_value(”high_probability”, 99)
37
38 # Define the fuzzy rules
39 RULE1 = ”IF (PaO2 IS low) AND (Trombocytes IS high) AND (Creatinine IS high) AND (BaseExcess IS normal) THEN (Sepsis IS low_probability)”



1694 S. Spolaor et al. / International Journal of Computational Intelligence Systems 13(1) 1687–1698

Listing 3 A clinical decision support system to diagnose sepsis, implemented in Simpful.
40 RULE2 = ”IF (PaO2 IS high) AND (Trombocytes IS low) AND (Creatinine IS low) AND (NOT(BaseExcess IS normal)) THEN (Sepsis IS

high_probability)”
41
42 # Add fuzzy rules to the fuzzy reasoner object
43 FS.add_rules([RULE1, RULE2])
44
45 # Set antecedent values
46 FS.set_variable(”PaO2”, 50)
47 FS.set_variable(”BaseExcess”, -1.5)
48 FS.set_variable(”Trombocytes”, 50)
49 FS.set_variable(”Creatinine”, 320)
50
51 # Perform Sugeno inference and print output
52 print(FS.Sugeno_inference([”Sepsis”]))

method. Therefore, the user has to explicitly set the universe of dis-
course by specifying the argument universe_of_discourse (lines 10,
16, 23 and 30). Please note that this (explicitly limited) universe of
discourse is only used to plot themembership functions: the system
still supports input values outside this rangewhen inferring the out-
put. In line 12, the plots for the membership functions of the first
variable are generated (Figure 5).

In lines 15 to 17, the variable “base excess” is created by first speci-
fying the fuzzy set describing physiological values (using the preim-
plemented Gaussian_MF function). This is the only fuzzy set for
this linguistic variable, meaning that the fuzzy set for the abnor-
mal values for the base excess is not explicitly modeled, but corre-
sponds to the complement of the fuzzy set for normal values (note
the NOT operator in second fuzzy rule, line 40). The same results
could be achieved bymodeling the set of non-normal values explic-
itly, either using the InvGaussian_MF function, or splitting the uni-
verse of discourse in a low, medium, and high fuzzy set, and later
connecting the low and high fuzzy set in the fuzzy rule through an
OR operator. However, using the NOT operator simplifies the FIS
and preserves its high levels of interpretability. The output crisp val-
ues “low_probability” and “high_probability,” referring to the prob-
ability that the patient is suffering from sepsis, are defined in lines
35 and 36. The fuzzy rules are then defined and added to the fuzzy
system object in lines 39 to 43. Lines 46 to 49 provide example input
values to the model, and fuzzy inference is performed in line 52 to
obtain the probability that the patient is suffering from sepsiswhich,
in this example, is equal to 69.3%.

4.3. Repressilator

The repressilator is a synthetic regulatory network consisting of
three genes placed in a feedback loop, where the genetic product of
each gene inhibits the expression of the next gene in the network
(Figure 6). This simple systemwas designed to exhibit a stable oscil-
latory regime, studied by means of mechanistic modeling, and then
implemented in vivo in the bacterium E. coli [42]. Here, we provide
a simple redefinition of the repressilator in terms of a DFM, to show
how Simpful can also be applied for the fuzzy modeling of complex
systems.

DFM is a formalism useful to analyze the emergent behavior of
complex systems characterized by uncertainty [25]. ADFMconsists

of a set of linguistic variables describing the components of the sys-
tem, and a set of fuzzy rules providing a qualitative description of
their interactions. ADFM can be considered as a FN [27], i.e., a net-
work of interacting FISs. Thus, a FN can be depicted as a directed
graph (as in Figure 6), where nodes represent linguistic variables,
and arcs the presence of some fuzzy rules governing them.

The example code of the repressilator is given in Listing 4. In line 6 a
fuzzy system object is created. From line 9 to 12, the three linguistic
variables related to the three species constituting the repressilator
are defined. All three species are characterized by a universe of dis-
course ranging from 0 to 1 (the default universe of discourse), and
by the presence of two fuzzy sets, “low” and “high,” representing the
quantity of each protein. Note that here the AutoTriangle() class is
used (line 9) in order to define a general linguistic variable charac-
terized by 2 symmetrical fuzzy sets covering the whole universe of
discourse. In this example, a value of 1 in the universe of discourse
corresponds to themaximumquantity, while 0 to the absence of the
protein. Analogously, the output crisp values are defined in lines 15
and 16, by setting “low” to 0 and “high” to 1. Lines 19 to 26 contain
the definition of the fuzzy rules, representing the negative feedbacks
existing between the three genes.

The initial state of the DFM is set in lines 29 to 31, the number
of simulation steps is defined in line 34, while the data structure
containing the results of the simulation is initialized in lines 35 and
36. Lines 39 to 42 contain the for loop in which the simulation is
performed. In particular, the new state of the system is inferred in
line 40, updated in line 41, and then stored in the previously defined
data structure. Note that, in this example, we exploit the inference()
method provided by the FuzzySystem object (see line 40).

The final output, i.e., the simulation of the system’s dynamics, can
be plotted as shown in Figure 7. Despite its simplicity and the lack
of a precise kinetic parameterization, this model can reproduce the
typical oscillatory dynamics of the three species, as shown in the
original model [42].

5. CONCLUSIONS

Simpful is a novel library that addresses the need of having a
lightweight, open-source, Python API to support the creation of
readable FISs, based on either Mamdani or Takagi–Sugeno fuzzy



S. Spolaor et al. / International Journal of Computational Intelligence Systems 13(1) 1687–1698 1695

Figure 5 The membership functions for the clinical decision support system to diagnose sepsis at the intensive care unit
(ICU).

Figure 6 Graphical representation of the
repressilator.

reasoning. Users can define fuzzy sets as polygons (formalized as
sequences of vertices), parametric functions (e.g., Gaussian and sig-
moid), or even arbitrary custom functions in the universe of dis-
course/degree of membership space. Fuzzy rules are encoded as
strings of text written in natural language, making FISs created
in Simpful easier to read and to inspect compared to competitor
libraries. To show its usage, we provided three examples: the defi-
nition of a FIS for the tipping problem, the definition of a clinical
decision support system to diagnose sepsis, and the modeling and
simulation of a complex biochemical system by means of a DFM.
Thanks to its features, Simpful is a valuable addition to the open-
source software that support fuzzy reasoning, and it is expected to
highly facilitate the definition, analysis and interpretation of FISs in
a wide variety of data- and knowledge-driven applications.

Simpful was employed to implement the FuzzX framework for
the modeling and simulation of hybrid (qualitative and quanti-
tative) systems [26]. The porting of FUMOSO [25] to Simpful,
currently in progress, will also promote the use of DFMs for the
investigation of complex systems. Simpful is also employed within
pyFUME [43], a novel Python package developed to estimate FISs

automatically from data [44–47]. Moreover, Simpful can be read-
ily integrated in computational intelligencemethods that useMam-
dani or Takagi–Sugeno inference, such as the class of global opti-
mization meta-heuristics exploiting fuzzy reasoning for dynamic
parameter adaptation [48,49].

In future releases, we plan to extend Simpful with support for addi-
tional fuzzy logic operators and other fuzzy inferencemethods (e.g.,
Tsukamoto [50], and AnYa [51] methods). In particular, we will
add support for weighted fuzzy rules [52], type-2 FISs [53], and
probabilistic fuzzy reasoning [54], the latter providing a means to
combine the interpretability of FIS with the statistical properties of
probabilistic systems. Finally, Simpful will support the FML for-
mat defined in the IEEE Std 1855-2016 [35], possibly by leveraging
existing software (i.e., JFML and Py4JFML [17,24]), to facilitate the
import, export, and sharing of the FISs defined within this library.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.



1696 S. Spolaor et al. / International Journal of Computational Intelligence Systems 13(1) 1687–1698

Listing 4 A DFM of the repressilator model, implemented using Simpful.
1 from simpful import *
2 from copy import deepcopy
3
4 # A simple dynamic fuzzy model of the repressilator
5 # Create a fuzzy reasoner object
6 FS = FuzzySystem()
7
8 # Define fuzzy sets and linguistic variables
9 LV = AutoTriangle(2, terms=[’low’, ’high’])
10 FS.add_linguistic_variable(”LacI”, LV)
11 FS.add_linguistic_variable(”TetR”, LV)
12 FS.add_linguistic_variable(”CI”, LV)
13
14 # Define output crisp values
15 FS.set_crisp_output_value(”low”, 0.0)
16 FS.set_crisp_output_value(”high”, 1.0)
17
18 # Define fuzzy rules
19 RULES = []
20 RULES.append(”IF (LacI IS low) THEN (TetR IS high)”)
21 RULES.append(”IF (LacI IS high) THEN (TetR IS low)”)
22 RULES.append(”IF (TetR IS low) THEN (CI IS high)”)
23 RULES.append(”IF (TetR IS high) THEN (CI IS low)”)
24 RULES.append(”IF (CI IS low) THEN (LacI IS high)”)
25 RULES.append(”IF (CI IS high) THEN (LacI IS low)”)
26 FS.add_rules(RULES)
27
28 # Set antecedents values
29 FS.set_variable(”LacI”, 1.0)
30 FS.set_variable(”TetR”, 0.5)
31 FS.set_variable(”CI”, 0.0)
32
33 # Set simulation steps and save initial state
34 steps = 14
35 dynamics = []
36 dynamics.append(deepcopy(FS._variables))
37
38 # At each simulation step, perform Sugeno inference, update state and save the results
39 for i in range(steps):
40 new_values = FS.inference()
41 FS._variables.update(new_values)
42 dynamics.append(new_values)

Figure 7 Dynamics of the variables of the dynamic fuzzy
model (DFM) representing the repressilator.

AUTHORS’ CONTRIBUTIONS

MSN conceived the idea of the library; SS and MSN designed and
implemented the library; SS and CF conceived the usage examples,
analyzed the results and performed comparisons with the other
methods; SS, CF and MSN prepared and created the figures and
wrote the first draft of the manuscript; PC, UK and DB critically
reviewed and edited the manuscript; All authors read and approved
its final version.

Funding Statement

This work was partially funded by the SYSBIO/ISBE.IT Research
Centre of Systems Biology.



S. Spolaor et al. / International Journal of Computational Intelligence Systems 13(1) 1687–1698 1697

REFERENCES

[1] L.A. Zadeh, Fuzzy sets, Inf. Control. 8 (1965), 338–353.
[2] L.A. Zadeh, Computing with words, IEEE Trans. Fuzzy Syst. 4

(1996), 103–111.
[3] J. Yen, R. Langari, Fuzzy Logic: Intelligence, Control, and Infor-

mation, vol. 1, Prentice Hall, Upper Saddle River, 1999.
[4] G.J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Appli-

cations, Prentice Hall, Upper Saddle River, 1995.
[5] E. Hüllermeier, From knowledge-based to data-driven fuzzy

modeling, Informatik-Spektrum. 38 (2015), 500–509.
[6] A. Mardani, A. Jusoh, E.K. Zavadskas, Fuzzy multiple crite-

ria decision-making techniques and applications–two decades
review from 1994 to 2014, Expert Syst. Appl. 42 (2015),
4126–4148.

[7] L.A. Zadeh, Outline of a new approach to the analysis of complex
systems and decision processes, IEEE Trans. Syst. Man Cybern. 3
(1973), 28–44.

[8] R. Babuška, H.B. Verbruggen, An overview of fuzzy modeling for
control, Control Eng. Pract. 4 (1996), 1593–1606.

[9] L.Y. Cai, H.K. Kwan, Fuzzy classifications using fuzzy inference
networks, IEEE Trans. Syst. Man Cybern. Part B. 28 (1998),
334–347.

[10] Y.-H.O. Chang, B.M. Ayyub, Fuzzy regression methods–a com-
parative assessment, Fuzzy Sets Syst. 119 (2001), 187–203.

[11] E.H. Ruspini, Numerical methods for fuzzy clustering, Inf. Sci. 2
(1970), 319–350.

[12] J. Alcalá-Fdez, J.M. Alonso, A survey of fuzzy systems software:
taxonomy, current research trends, and prospects, IEEE Trans.
Fuzzy Syst. 24 (2015), 40–56.

[13] R.R. Yager, L.A. Zadeh, An Introduction to Fuzzy Logic Applica-
tions in Intelligent Systems, vol. 165, Springer Science & Business
Media, New York, NY, USA, 2012.

[14] J. Rada-Vilela, The FuzzyLite Libraries for Fuzzy Logic Control,
2018. https://www.fuzzylite.com/

[15] S. Guillaume, B. Charnomordic, Learning interpretable fuzzy
inference systems with FisPro, Inf. Sci. 181 (2011), 4409–4427.

[16] C. Wagner, Juzzy-a java based toolkit for type-2 fuzzy logic, in
2013 IEEE Symposium on Advances in Type-2 Fuzzy Logic Sys-
tems (T2FUZZ), IEEE, Singapore, 2013, pp. 45–52.

[17] J.M. Soto-Hidalgo, J.M. Alonso, G. Acampora, J. Alcalá-Fdez,
JFML: a java library to design fuzzy logic systems according to the
IEEE std 1855-2016, IEEE Access. 6 (2018), 54952–54964.

[18] C. Wagner, S. Miller, J.M. Garibaldi, A fuzzy toolbox for the R
programming language, in 2011 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE 2011), IEEE, Taipei, Taiwan, 2011,
pp. 1185–1192.

[19] R. Babuška, Fuzzy Toolbox for MATLAB: Reference Guide,
Version 3.0, Technical Report, Delft University of Technology,
Department of Electrical Engineering, Control Laboratory, Delft,
Netherlands, 1994.

[20] MathWorks, Fuzzy Logic Toolbox - r2020a, 2020. https://www.
mathworks.com/products/fuzzy-logic.html

[21] Pyfuzzy-python Fuzzy Package, 2014. http://pyfuzzy.sourceforge.
net/

[22] E. Avelar, O. Castillo, J. Soria, Fuzzy logic controller with fuzzy-
lab python library and the robot operating system for autonomous
robot navigation: a practical approach, in: O. Castillo, P. Melin, J.

Kacprzyk (Eds.), Intuitionistic and Type-2 Fuzzy Logic Enhance-
ments in Neural and Optimization Algorithms: Theory and
Applications, Springer, Cham, Switzerland, 2020, pp. 355–369.

[23] SciKit-Fuzzy, 2019. https://pythonhosted.org/scikit-fuzzy/
[24] J. Alcalá-Fdez, J.M. Alonso, C. Castiello, C. Mencar, J.M. Soto-

Hidalgo, Py4JFML: a Pythonwrapper for using the IEEE Std 1855-
2016 through JFML, in 2019 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE), IEEE,NewOrleans, LA,USA, 2019,
pp. 1–6.

[25] M.S. Nobile, G. Votta, R. Palorini, S. Spolaor, H. De Vitto,
P. Cazzaniga, et al., Fuzzy modeling and global optimization to
predict novel therapeutic targets in cancer cells, Bioinformatics.
36 (2019), 2181–2188.

[26] S. Spolaor, M.S. Nobile, G. Mauri, P. Cazzaniga, D. Besozzi,
Coupling mechanistic approaches and fuzzy logic to model and
simulate complex systems, IEEE Trans. Fuzzy Syst. 28 (2020),
1748–1759.

[27] A. Gegov, Fuzzy Networks for Complex Systems, Springer, Berlin,
Heidelberg, Germany, 2010.

[28] H. Kawamura, Fuzzy network for decision support systems, Fuzzy
Sets Syst. 58 (1993), 59–72.

[29] P.-T. Chang, E.S. Lee, Fuzzy decision networks and deconvolution,
Comput. Math. Appl. 37 (1999), 53–63.

[30] A.M. Yaakob, A. Serguieva, A. Gegov, FN-TOPSIS: fuzzy net-
works for ranking traded equities, IEEE Trans. Fuzzy Syst. 25
(2017), 315–332.

[31] O. Castillo, P. Melin, J.R. Castro, Computational intelligence soft-
ware for interval type-2 fuzzy logic, Comput. Appl. Eng. Educ. 21
(2013), 737–747.

[32] International Electrotechnical Commission (IEC), Technical
report, publisher IEC, IEC 61131-7, Programmable Controllers
Part 7 - Fuzzy Control Programming, 2000.

[33] E. Jones, T. Oliphant, P. Peterson, et al., Scipy: Open Source Sci-
entific Tools for Python, 2001. https://www.scipy.org/

[34] M. Castañón-Puga, J.R. Castro,M. Flores-Parra, Jt2fis: Java type-2
fuzzy inference system-an object-oriented class library for build-
ing java intelligent applications, in International Conference on
Enterprise Information Systems, Angers, France, SCITEPRESS,
2013, vol. 2, pp. 524–529.

[35] IEEE-SA Standards Board, IEEE Standard for FuzzyMarkup Lan-
guage, IEEE Std 1855-2016, 2016.

[36] G. Acampora, Fuzzy markup language: a XML based language
for enabling full interoperability in fuzzy systems design, in: G.
Acampora, V. Loia, C.S. Lee, M.H. Wang (Eds.), On the Power of
Fuzzy Markup Language, Springer, Berlin, Heidelberg, Germany,
2013, pp. 17–31.

[37] Py4J - a Bridge between Python and Java, 2018. https://www.py4j.
org/

[38] T.E. Oliphant, Python for scientific computing, Comput. Sci. Eng.
9 (2007), 10–20.

[39] T.E. Oliphant, A Guide to NumPy, vol. 1, Massachusetts Institute
of Technology, Cambridge, MA, USA, 2006.

[40] E.H. Mamdani, S. Assilian, An experiment in linguistic synthe-
sis with a fuzzy logic controller, Int. J. Man-Mach. Stud. 7 (1975),
1–13.

[41] T. Takagi,M. Sugeno, Fuzzy identification of systems and its appli-
cations to modeling and control, IEEE Trans. Syst. Man Cybern.
15 (1985), 116–132.

https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1109/91.493904
https://doi.org/10.1109/91.493904
https://doi.org/10.1007/s00287-015-0931-8
https://doi.org/10.1007/s00287-015-0931-8
https://doi.org/10.1016/j.eswa.2015.01.003
https://doi.org/10.1016/j.eswa.2015.01.003
https://doi.org/10.1016/j.eswa.2015.01.003
https://doi.org/10.1016/j.eswa.2015.01.003
https://doi.org/10.1109/TSMC.1973.5408575
https://doi.org/10.1109/TSMC.1973.5408575
https://doi.org/10.1109/TSMC.1973.5408575
https://doi.org/10.1016/0967-0661(96)00175-X
https://doi.org/10.1016/0967-0661(96)00175-X
https://doi.org/10.1109/3477.678627
https://doi.org/10.1109/3477.678627
https://doi.org/10.1109/3477.678627
https://doi.org/10.1016/S0165-0114(99)00091-3
https://doi.org/10.1016/S0165-0114(99)00091-3
https://doi.org/10.1016/S0020-0255(70)80056-1
https://doi.org/10.1016/S0020-0255(70)80056-1
https://doi.org/10.1109/TFUZZ.2015.2426212
https://doi.org/10.1109/TFUZZ.2015.2426212
https://doi.org/10.1109/TFUZZ.2015.2426212
https://doi.org/10.1007/978-1-4615-3640-6
https://doi.org/10.1007/978-1-4615-3640-6
https://doi.org/10.1007/978-1-4615-3640-6
https://www.fuzzylite.com/
https://doi.org/10.1016/j.ins.2011.03.025
https://doi.org/10.1016/j.ins.2011.03.025
https://doi.org/10.1109/T2FZZ.2013.6613298
https://doi.org/10.1109/T2FZZ.2013.6613298
https://doi.org/10.1109/T2FZZ.2013.6613298
https://doi.org/10.1109/ACCESS.2018.2872777
https://doi.org/10.1109/ACCESS.2018.2872777
https://doi.org/10.1109/ACCESS.2018.2872777
https://doi.org/10.1109/FUZZY.2011.6007743
https://doi.org/10.1109/FUZZY.2011.6007743
https://doi.org/10.1109/FUZZY.2011.6007743
https://doi.org/10.1109/FUZZY.2011.6007743
https://www.mathworks.com/products/fuzzy-logic.html
https://www.mathworks.com/products/fuzzy-logic.html
http://pyfuzzy.sourceforge.net/
http://pyfuzzy.sourceforge.net/
https://doi.org/10.1007/978-3-030-35445-9_27
https://doi.org/10.1007/978-3-030-35445-9_27
https://doi.org/10.1007/978-3-030-35445-9_27
https://pythonhosted.org/scikit-fuzzy/
https://doi.org/10.1109/FUZZ-IEEE.2019.8858811
https://doi.org/10.1109/FUZZ-IEEE.2019.8858811
https://doi.org/10.1109/FUZZ-IEEE.2019.8858811
https://doi.org/10.1109/FUZZ-IEEE.2019.8858811
https://doi.org/10.1109/FUZZ-IEEE.2019.8858811
https://doi.org/10.1093/bioinformatics/btz868
https://doi.org/10.1093/bioinformatics/btz868
https://doi.org/10.1093/bioinformatics/btz868
https://doi.org/10.1093/bioinformatics/btz868
https://doi.org/10.1109/TFUZZ.2019.2921517
https://doi.org/10.1109/TFUZZ.2019.2921517
https://doi.org/10.1109/TFUZZ.2019.2921517
https://doi.org/10.1109/TFUZZ.2019.2921517
https://doi.org/10.1007/978-3-642-15600-7
https://doi.org/10.1007/978-3-642-15600-7
https://doi.org/10.1016/0165-0114(93)90322-9
https://doi.org/10.1016/0165-0114(93)90322-9
https://doi.org/10.1016/S0898-1221(99)00143-1
https://doi.org/10.1016/S0898-1221(99)00143-1
https://doi.org/10.1109/TFUZZ.2016.2555999
https://doi.org/10.1109/TFUZZ.2016.2555999
https://doi.org/10.1109/TFUZZ.2016.2555999
https://doi.org/10.1002/cae.20522
https://doi.org/10.1002/cae.20522
https://doi.org/10.1002/cae.20522
https://www.scipy.org/
https://doi.org/10.1007/978-3-642-45111-9_18
https://doi.org/10.1007/978-3-642-45111-9_18
https://doi.org/10.1007/978-3-642-45111-9_18
https://doi.org/10.1007/978-3-642-45111-9_18
https://doi.org/10.1007/978-3-642-45111-9_18
https://doi.org/10.1109/IEEESTD.2016.7479441
https://doi.org/10.1109/IEEESTD.2016.7479441
https://doi.org/10.1007/978-3-642-35488-5_2
https://doi.org/10.1007/978-3-642-35488-5_2
https://doi.org/10.1007/978-3-642-35488-5_2
https://doi.org/10.1007/978-3-642-35488-5_2
https://doi.org/10.1007/978-3-642-35488-5_2
https://www.py4j.org/
https://www.py4j.org/
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1016/S0020-7373(75)80002-2
https://doi.org/10.1016/S0020-7373(75)80002-2
https://doi.org/10.1016/S0020-7373(75)80002-2
https://doi.org/10.1109/TSMC.1985.6313399
https://doi.org/10.1109/TSMC.1985.6313399
https://doi.org/10.1109/TSMC.1985.6313399


1698 S. Spolaor et al. / International Journal of Computational Intelligence Systems 13(1) 1687–1698

[42] M.B. Elowitz, S. Leibler, A synthetic oscillatory network of tran-
scriptional regulators, Nature. 403 (2000), 335.

[43] C. Fuchs, S. Spolaor, M.S. Nobile, U. Kaymak, pyFUME: a Python
package for fuzzy model estimation, in 2020 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), IEEE, Glasgow, UK,
2020, pp. 1–8.

[44] C. Fuchs,A.Wilbik,U.Kaymak, Towardsmore specific estimation
of membership functions for data-driven fuzzy inference systems,
in 2018 IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE), IEEE, Rio de Janeiro, Brazil, 2018, pp. 1–8.

[45] M. Setnes, R. Babuska, U. Kaymak, H.R. van Nauta Lemke, Simi-
larity measures in fuzzy rule base simplification, IEEE Trans. Syst.
Man Cybern. Part B. 28 (1998), 376–386.

[46] U. Kaymak, R. Babuska, Compatible cluster merging for fuzzy
modelling, in Proceedings of 1995 IEEE International Confer-
ence on Fuzzy Systems, IEEE, Yokohama, Japan, 1995, vol. 2,
pp. 897–904.

[47] C. Fuchs, S. Spolaor, M.S. Nobile, U. Kaymak, A graph the-
ory approach to fuzzy rule base simplification, in: M.J. Lesot et
al. (Eds.), International Conference on Information Processing
and Management of Uncertainty in Knowledge-Based Systems,
Springer, Cham, Switzerland, 2020, pp. 387–401.

[48] M.S. Nobile, P. Cazzaniga, D. Besozzi, R. Colombo, G. Mauri, G.
Pasi, Fuzzy self-tuning PSO: a settings-free algorithm for global
optimization, Swarm Evol. Comput. 39 (2018), 70–85.

[49] F. Valdez, P. Melin, O. Castillo, A survey on nature-inspired
optimization algorithms with fuzzy logic for dynamic parameter
adaptation, Expert Syst. Appl. 41 (2014), 6459–6466.

[50] Y. Tsukamoto, An approach to fuzzy reasoning method, in: M.M.
Gupta, R.K. Ragade, R.R. Yager (Eds.), Advances in Fuzzy Set The-
ory and Applications, North-Holland Publishing Company, Ams-
terdam, Netherlands, 1979.

[51] P. Angelov, R. Yager, Simplified fuzzy rule-based systems using
non-parametric antecedents and relative data density, in 2011
IEEE Workshop on Evolving and Adaptive Intelligent Systems
(EAIS), IEEE, Paris, France, 2011, pp. 62–69.

[52] X. He, Weighted fuzzy logic and its applications, in Proceed-
ings COMPSAC 88: the Twelfth Annual International Computer
Software & Applications Conference, IEEE Computer Society,
Chicago, IL, USA, 1988, pp. 485–486.

[53] N.N. Karnik, J.M. Mendel, Q. Liang, Type-2 fuzzy logic systems,
IEEE Trans. Fuzzy Syst. 7 (1999), 643–658.

[54] J. van den Berg, U. Kaymak, W.-M. van den Bergh, Probabilistic
reasoning in fuzzy rule-based systems, in: P. Grzegorzewski, O.
Hryniewicz, M.Á. Gil (Eds.), Soft Methods in Probability, Statis-
tics and Data Analysis, Springer, Heidelberg, Germany, 2002, pp.
189–196.

https://doi.org/10.1038/35002125
https://doi.org/10.1038/35002125
https://doi.org/10.1109/FUZZ48607.2020.9177565
https://doi.org/10.1109/FUZZ48607.2020.9177565
https://doi.org/10.1109/FUZZ48607.2020.9177565
https://doi.org/10.1109/FUZZ48607.2020.9177565
https://doi.org/10.1109/FUZZ-IEEE.2018.8491524
https://doi.org/10.1109/FUZZ-IEEE.2018.8491524
https://doi.org/10.1109/FUZZ-IEEE.2018.8491524
https://doi.org/10.1109/FUZZ-IEEE.2018.8491524
https://doi.org/10.1109/3477.678632
https://doi.org/10.1109/3477.678632
https://doi.org/10.1109/3477.678632
https://doi.org/10.1109/FUZZY.1995.409789
https://doi.org/10.1109/FUZZY.1995.409789
https://doi.org/10.1109/FUZZY.1995.409789
https://doi.org/10.1109/FUZZY.1995.409789
https://doi.org/10.1007/978-3-030-50146-4_29
https://doi.org/10.1007/978-3-030-50146-4_29
https://doi.org/10.1007/978-3-030-50146-4_29
https://doi.org/10.1007/978-3-030-50146-4_29
https://doi.org/10.1007/978-3-030-50146-4_29
https://doi.org/10.1016/j.swevo.2017.09.001
https://doi.org/10.1016/j.swevo.2017.09.001
https://doi.org/10.1016/j.swevo.2017.09.001
https://doi.org/10.1016/j.eswa.2014.04.015
https://doi.org/10.1016/j.eswa.2014.04.015
https://doi.org/10.1016/j.eswa.2014.04.015
https://doi.org/10.1016/B978-1-4832-1450-4.50055-9
https://doi.org/10.1016/B978-1-4832-1450-4.50055-9
https://doi.org/10.1016/B978-1-4832-1450-4.50055-9
https://doi.org/10.1016/B978-1-4832-1450-4.50055-9
https://doi.org/10.1109/EAIS.2011.5945926
https://doi.org/10.1109/EAIS.2011.5945926
https://doi.org/10.1109/EAIS.2011.5945926
https://doi.org/10.1109/EAIS.2011.5945926
https://doi.org/10.1109/CMPSAC.1988.17224
https://doi.org/10.1109/CMPSAC.1988.17224
https://doi.org/10.1109/CMPSAC.1988.17224
https://doi.org/10.1109/CMPSAC.1988.17224
https://doi.org/10.1109/91.811231
https://doi.org/10.1109/91.811231
https://doi.org/10.1007/978-3-7908-1773-7_18
https://doi.org/10.1007/978-3-7908-1773-7_18
https://doi.org/10.1007/978-3-7908-1773-7_18
https://doi.org/10.1007/978-3-7908-1773-7_18
https://doi.org/10.1007/978-3-7908-1773-7_18

	Simpful: A User-Friendly Python Library for Fuzzy Logic
	1 INTRODUCTION
	2 RELATED WORK
	3 SOFTWARE DESCRIPTION
	4 ILLUSTRATIVE EXAMPLES
	4.1 Tipping Problem
	4.2 Clinical Decision Support for Sepsis
	4.3 Repressilator

	5 CONCLUSIONS


