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1. Introduction

A variety of models describing the evolution in time of real situations is obtained coupling simpler models
devoted to specific subsystems. In this paper we provide a framework where the well posedness of the “big”
model follows from that of its parts.

Predictive models consisting of couplings of evolution equations, possibly of different types, are very
common in the applications of mathematics. Here we only note that their use ranges, for instance, from
epidemiology [1-3], to traffic modeling [4,5], to several specific engineering applications [6,7].

In this manuscript, the core result is set in a metric space, so that linearity plays no role whatsoever. This
also allows the range of applicability of the general theorem to encompass, for instance, ordinary, partial

and measure differential equations. In each of these cases, we obtain stability estimates tuned to the metric
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structure typical of the specific evolution equation considered, which can be, for example, the Euclidean
norm in R”, the L' norm in spaces of BV functions or some Wasserstein type distance between measures.

At the abstract level, the starting point is provided by the framework of evolution equations in metric
spaces, see [8—13]. In this setting, an evolution equation is well posed as soon as it generates a Global Process,
i.e., a Lipschitz continuous solution operator, see Definition 2. In other words, global processes substitute,
in the time dependent case, semigroups that, in the autonomous case, have as trajectories the solutions to
evolution equations.

Assume that two evolution equations are given, each depending on a parameter and each generating a
global process, also depending on that parameter. We now let the parameter in an equation vary in time
according to the other equation: a coupling between the two models is thus obtained. Theorem 2 ensures
the well posedness of this coupled model, in the sense that it generates a new global process.

The assumptions required in this abstract construction are then verified in 5 sample situations: ordinary
differential equations, initial and boundary value problems for renewal equations, measure valued balance
laws and scalar conservation laws. Thus, we prove that any coupling of these equations results in a well
posed model. Indeed, in each of these cases, we provide a full set of detailed stability estimates compatible
with the abstract results. Note that assumptions ensuring global in time existence results are also provided.

Finally, we consider specific cases. First, we briefly show that Theorem 2 comprises the case of the traffic
model introduced in [5], where a scalar conservation law is coupled to an ordinary differential equation.

Then, we detail the case of a predator—prey model inspired by [14], namely
Op +dive (p V (t,2,p(t))) = —n (Ip(t) — z]) p(t, =) 1)

p="U(t,pp(t)) -

While we refer to Section 4.1 for a detailed explanation of the terms in (1), here we remark that in (1) the
coupling is not only in the source term of the partial differential equations, but also in the convective term,
where no nonlocal term is involved (V is a function defined for t € R, z € R™ and P(t) € R™).

Then, we apply the general construction to a recent epidemiological model presented in [3] whose well
posedness, to our knowledge, was not proved at the time of this writing. In this case, the coupling involves
a boundary value problem for a renewal equation, see Section 4.2.

For all basic results on evolution equations in metric spaces, we refer to the extended treatises [8,9,12],
whose wide bibliographies also give a detailed view on the whole field. Below, we follow the approach
outlined in [10,11,13]. The different frameworks differ in their approaches but offer similar results. Related
to Theorem 2 is, for instance, [12, Theorem 26]. However, here we follow a more quantitative approach to
the various stability estimates.

We expect that also other equations fit in the framework introduced in Section 2. Natural candidates are,
for instance, measure differential equations [15,16] and their coupling with ordinary differential equations as
considered in [17]. A further class of couplings is that in [6], consisting of ordinary and partial differential
equations similar to those comprised in Section 3.3. Very likely to comply with the present structure is also
the general class of traffic models presented in [18].

This work is organized as follows. Section 2, once the basic notation is introduced, presents the general
result. Each of the paragraphs in Section 3 is devoted to a particular evolution equation: its well posedness
is proved obtaining those estimates that allow the application of Theorem 2. Specific models are then dealt
with in Section 4. Finally, proofs are in the final Section 5. Further estimates and technical results of use in
this paper are similar to known methods: we do not include them here but, for completeness, we make them
publicly available in [19].
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2. Definitions and abstract results

Below we rely on the framework established in [10,11,13], see [8,9,12] for an alternative, essentially
equivalent, setting. Let (X, d) be a metric space and I be a real interval. First, a local flow on X provides a
sort of tangent vector field to X.

Definition 1 (/11, Definition 2.1]). Given ¢ > 0 and a closed set D C X, a local flow is a continuous map
F:[0,0] x I x D — X, such that F (0,t,) u = u for any (t,,u) € I x D and which is Lipschitz in its first and
third arguments uniformly in the second, i.e. there exists a Lip(F) > 0 such that for all 7,7 € [0,d] and
u, v’ € D

d(F(T,to)u, F(t' t,)u') < Lip(F) - (d(u,u') + |7 —7'|) . (2)

Given an evolution equation, a global process is a candidate for the solution operator, i.e., for the mapping
assigning to initial datum u at time ¢, and to time ¢ the solution evaluated at time ¢.

Definition 2 (/11, Definition 2.5]). Fix a family of sets D;, C D for all ¢, € I, and a set

A=A{(t,to,u):t > t,, to,t €I and u € Dy, }. (3)

A global process on X is a map P: A — X such that, for all u € Dy, and t,,t1,t2 € I with to > ¢1 > t,,

P(to,to)u =u (4)
P(tl, to)u S Dtl (5)
P(tg,tl) oP(tl,to)u = P(tg,to)u. (6)

In Theorem 1 below, a global process is constructed from a local flow by means of a suitable extension of
Euler Polygonals to metric spaces.

Definition 3 (/11, Definition 2.3]). Let F be a local flow. Fix u € D, t, € I, 7 € [0, 4] with ¢, + 7 € I. For
every € > 0, let k = |7/, where the symbol || denotes the integer part. An Euler e-polygonal is

k—1
Fe(r,to)u = F(1 — ke, to + ke)o O F(e,to + he)u (7)
h=0

whenever it is defined.

Above, we used the notation OF_,fn = fxo fe—10---0 f10 fo.
For a local flow F, its corresponding Euler e-polygonal F¢, and any ¢, € I, introduce the notation:
Fe3(13,to + 711 + 72) 0 F2(1o,t + 71) © 1 (T, t0)u
Df’o =< u€D:isin D for all e1,e9,e5 €]0,6] and all . (8)
T1,7T2,73 > 0such that t, +7 + 1w+ 713 €1

The next result provides the basis for our construction of solutions to coupled problems.

Theorem 1 ([11, Theorem 2.6]). Let (X,d) be a complete metric space and D be a closed subset of X.
Assume that for the local flow F:[0,0] x I x D — X there exist

w(r)

dT < +00 such that

1. a non decreasing map w:[0,d] — Ry with f(f
d(F(kt,to+7) 0 F(1,to)u, F (k+ 1)1, to) u) < k7 w(7) (9)

whenever T € [0,6], k € N and the left hand side above is well defined;
3
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2. a positive constant L such that
d(Fe(1,to)ur, FE(T,to)us) < L d(uy,us) (10)
whenever € € 10,6], uy,uzs € D, 7 >0, to,t, + 7 € I and the left hand side above is well defined.

Then, there exists a family of sets Dy, fort, € I, and a unique global process (as in Definition 2) P: A — X
with the following properties:

1. D} C Dy, foranyt, € I, with D} as defined in (8);
2. P is Lipschitz continuous with respect to (t,t,,u) € A;
3. P is tangent to F in the sense that for all (t, + 7,t,,u) € A, with 7 € ]0,9]:

% APty + 7, to)u, F(r, t)u) < 1]:(];) /OT “’(;) de | (11)

A general condition to ensure that A is non empty is [11, Condition (D)]. Below, in the examples we consider,
it explicitly stems out that A # 0.
We now head towards considering processes depending on parameters.

Definition 4. Let (U, dy) and (W, dyy) be metric spaces. A Lipschitz Process onU parametrized by w € W
is a family of maps P¥: Ay — U, with
T={(tts) eI xI:t>t,},
Ay = {(t,to,u): (t,t,) €T, ue DY},
DY cu,

such that for all w € W, P" is a Global Process in the sense of Definition 2 and there exist positive constants
Cy, Cy, C, such that

dy (P™(t,to)ur, P (t,to)ug) < e“et0) dy(uy, uy), (12)
du (Pw(tl, to)u, Pw (tg, to)u) S Ct |t2 — t1| 5 (13)
dug (P (t, b ) g, P2 (10 o) < Coy (E — to) dyy (w1, ws) . (14)

We equip the product space U x VW with the distance
d ((u/, w/)7 (uﬂv 'LUH)) = dU(u/a u,/) + dW(w/v w//)'
Theorem 2. Let (U,dy) and (W,dw) be complete. Let P¥: Ay — U be a Lipschitz Process on U

parametrized by w € W, and let P*: Ayy — W be a Lipschitz Process on W parametrized by U. Let C,,, Cy,
and Cy be constants that satisfy (12)—(13)—(14) for both processes. Then,

1. Introducing Ap = {(7‘7 to, (U, w)) :7 >0, to,to+7 €I, (u,w) € Df{i X Dl/:}, the map

F .AF — Uxmw (15)
(Tsto, (u,w)) = (PY(to +7,t0)u, P (to + 7, t0)w)
is a local flow on U x W.
2. F satisfies the assumptions of Theorem 1 with
L=eCutC)T  gnd  w(r)=CyCyut (16)

hence F' generates a unique global process P: A — U x W, for a suitable A C I x I xU x W, satisfying
properties 1, 2 and 3 in Theorem 1.
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3. Forallt, e I and T > 0 witht, + 1 > t,, we have
F(r,t,)(Df, x DY) € (DY . x D7) (17)
hence the process P is defined on A with

AD {(7to, (u,w) :7 >0, to,to+7 €L, (u,w) € DY x DY} . (18)

The proof is deferred to Section 5.1.

An analogous result can be proved defining the local flow F by means of local flows FY and FV, provided
these local flows satisfy the assumptions of Theorem 1 and have a Lipschitz continuous dependence on the
parameter.

Theorem 3. Consider two complete metric spaces (U, dy) and OV, dw). Let
FU:00,6) x IxDY U, and F“:[0,6] x I xDY =W,

be local flows parametrized by w € W and u € U, respectively, so that there exists L such that for all T € [0, ]

andtel,
dy (FV (1, t)u, F2 (T, t)u) L dy(wi,wy) uweDY  wi,wg €W

<
dyy (FU (1, )w, F*2 (1, t)w) < L dy(uy,us) ueDW  wuj,uselU
Then, setting D = DY x DV, the coupling

F oo [0,8]xIxD — Uxw
(1,8, (u,w)) = (FY(tto)u, F%(t,t,)w)

s a local flow in the sense of Definition 1. If moreover F* and F* satisfy assumptions 1 and 2 in Theorem 1,
then F' is tangent to the local flow F defined in (15) by means of the processes P* and P" defined through
Theorem 1.

As a direct consequence of Theorem 3, by means of [20, Theorem 2.9], we have that whenever Theorem 2
applies, if F generates a global process P, then P coincides with the process P constructed in Theorem 2.

3. General Cauchy problems

In the paragraphs below we consider differential equations depending on parameters that generate
parametrized Lipschitz processes in the sense of Definition 4. Thus, any coupling of the processes below
meets the requirements of Theorem 2 and generates a new Lipschitz process. Moreover, we verify that this
new process eventually yields solutions to the coupled problem.

Throughout, I is a real interval containing 0. If 2 € R”, ||z|| denotes its Euclidean norm, while lz|l,
is the norm of x in the Banach space V. The open, respectively closed, ball centered at = with radius r is

B(z,r), respectively B(z, ).
3.1. Ordinary differential equations

This brief paragraph mainly serves as a paradigm for the subsequent ones. All proofs are deferred to [19].
Indeed, we begin by considering the classical Cauchy problem for an ordinary differential equation

U:f(t,u,’UJ) tEf . T n n
{u(to)uo with  f:I xR" xW — R", (19)

where t, € f, u, € R™ and the parameter w is fixed in W.

5
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Definition 5. A map u:I — R™ is a solution to (19) if t, € I C I, u(t,) = uo, for ae. t € I, u is
differentiable at t and u(t) = f (¢, u(t),w).

The well posedness of (19) is an elementary result which we state below to allow subsequent couplings
of (19) with other equations within the framework of Theorem 2.

Proposition 1. Let R > 0. Define D = B(0,R) in R™ and consider the Cauchy problem (19) under the
assumptions

(ODE1) For allu € D and all w € W, the map t — f(t,u, w) is measurable.

(ODE2) There exist positive Fr,, Fo, such that for allt € f, uy, Uz € D and wy,wy € W
1t ur,w1) = f(t uz,wo) || < Fr (Jlur — w2l + dw (w1, w2)) ; (20)
sup Hf(7 '7w)||L00(f><1§;Rn) < Fs. (21)
wew

Then, there exists T > 0, such that [0,T] C f, and a Lipschitz process on R™ parametrized by VW in the sense
of Definition 4, whose orbits solve (19) according to Definition 5, with

T<R/(2F), Cu=Fy, Ci=F., C,=F, T,
Dy = B (0. R (T = 1) supcrp 1/ () o rpin) ) -

(22)

Long time existence is also available.

Corollary 1.  Assume supl = +oco and that, for every R > 0, (ODE1) and (ODE2) hold with
F = Fx(R) satisfying
lim sup Loo (R)
R—+o0o Rln(R)

Then, for all t, € I, the solution to (19) exists for everyt > t,.

< +00.

We now verify that Theorem 2 applies to the coupling of (19) with other Lipschitz Processes.

Proposition 2. Set U = R™. Assume that (ODE1)—(ODE2) hold. Let P* be a Lipschitz Process on W
parametrized by u € U. Call P: A — R™ x W, with P = (P1, P2), the Process constructed in Theorem 2
coupling P, generated by (19), and P*“. If ([to, T, to, to, w,) C A, then

w:fto, T] = R ) solves {u = f(tw) where f(t,u) = f (t,u, Po(t, to)(to, w,))

t — Pl (t7 to)(um Wo u(to) = Uo

in the sense of Definition 5.

3.2. The initial value problem for a renewal equation

We examine the following initial value problem for a first order partial differential equation

Ayu + divy (v(t, z, w)u) = m(t, z,w)u + q(t,z,w)  (t,x) el x R",
u(to, ) = uo(x), reR?

for u, € LY(R";R) and ¢, € I. Proofs are deferred until Section 5.2.
6
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Definition 6. For a fixed w € W, a function u € C° ([tO,T]; LI(R";R)), where [t,,T] C I, is a solution
o (23) if:

1. for any test function ¢ € CZ(Jt,, T[ x R™;R),

T
/t /n ( u(t, ) Opp(t, x) + ul(t, x) v(t,x,w) - Vop(t, )
+ (m(t, z, w) u(t,z) + q(t,z,w)) o(t, ) ) dz dt = 0;

2. u(ty, ) = uo(x) for a.e. x € R™.
Proposition 3. Let R > 0 and set U = L*(R™;R). Define
D = {ue LR R): max {|ullpa gy, lullpoe @nizy TV() } < R}

Consider the Cauchy problem (23) under the assumptions
(IP1) Forallw € W, v(-,-,w) € CO(I xR™;R™), v(t,-,w) € C2(R™;R™) for allt € I and there exist positive
constants V1, Vi, Voo such that for allt € I
||U(t7 '7w)||Lo<>(Rn;Rn) < Vo ||Vv(t, 'vw)“LOO(Rn;]Ran) <VL;
||vv ! ’U(t, '7w)||L1(]R”;Rn) V.

and, for all wy,ws € W and t € I,
||U(t, 'awl) - U(t7 '7w2)HL°°(]R";R’ﬂ) S VL dW(’LUl,’LUQ),
Hv . (’U(t7 '>w1) - U(t7 '7w2))”L1(R";R) <V dW(w17w2)‘

(IP2) For allw € W, m(-,-,w) € Co(f x R™; R) and there exist positive constants Moo, My, such that for
allt € I and for all w,wy,wy € W
||m(t7 " w)HLOO(]R”;]R) +TV (m(t7 '7 w)) < Mo

Hm(t7 '7w1) - m(t7 '7w2)||L1(]R”;]R) < Mg dW(wlvU}Q) .

(IP3) For allw € W, q(-,-,w) € L1 (f;L‘”(R";R)) and there exist positive constants Qo, Q1, Qr such
that for all t € I and for all w,wy,wes € W,

||Q(t’ ) w)HLOO(R";]R) + TV (q(tv ) w)) < QOO ;
la(t, - w)llp1 gnpy < Q1
la(t, -, w) — qt, 'aw2)||L1(]R”;]R) < Qr d(wy, wa).
Then, there exists T > 0, such that [0,T] C I, and a Lipschitz process on U parametrized by VW in the sense
of Definition 4, whose orbits solve (23) in the sense of Definition 6, with
Cu = My ’ Ct =Veo Re(MOO+2VL)T + Ql eMooT + (Moo + VL) Re(Moo+VL)T )
Cw =[VL2R+ Qo)1 + (Vi + Muo)T) 4+ (Qr + (M + Vi) (R4 Qoo T))] Moo VT

”uHLl(Rn;R) < o) (24)
Dt =< u€eD: ||u||L°°(Rn;R) < aOO(t) )
TV(u) < arv(t)

7
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where
ar(t) = Re M=) —Qy(T — t)eM=t,
Oolt) = Re(MetV)T=0) _ Q_ oMot VIU(T _ ),
25
aTV(t) _ Re_(MOO+VL)(T_t) (]_ — (Moo + Vl)(T — t)) ( )
QoM VD (14 (Moo + Vi) (T — 1)

Corollary 2. Assume [0,400) C I and that (IP1), (IP2), and (IP3) hold. Then the solution to (23) exists
for every t > t,.

Continuing now to the act of coupling this Lipschitz process with another.

Proposition 4. SetU = L1(R";R). Assume that (IP1)—(IP2)—(IP3) hold. Let P* be a Lipschitz process
on W, parametrized by u € U. Call P: A — LY (R™;R) x W, with P = (Py, P), the process generated in
Theorem 2 by the coupling of process P™, found in Proposition 3, with P*. If ([to, T, to, U, W) C A, then
the map
u:[te, T) — (LT N BV)(R"; R)
t = Pt o) (U, wo)

solves
Ou + divy (0(t, ) u) = m(t, x)u+ q(t,z) (¢, z) € [to, T) x R™,
ultor) = uo(), e R

in the sense of Definition (23), where

m(t,z) =m (t,z, Pa(t,t0) (o, o)), q(t,x) = q(t,x, Pa(t, to) (Uo, ws)) ,
o(t,x) = v (t,z, Pa(t, to) (Uo, Wo)) -

3.83. The boundary value problem for a linear balance law

Consider the model

Oyu ~+ 0y (v(t, x) u) = m(t, z,w)u+ q(t, z,w) (t,z)el xRy
u(t,0) = b(t) tel (26)
u(to, ) = uo(x) reER,.

where u, € LY(Ry;R), t, € I and w € W. Throughout, we choose left continuous representatives of BV
functions. Proofs are deferred to Section 5.3.

Definition 7. For a fixed w € W, a function u € C° ([tO,T];Ll(R+;R)), with [t,, T] C I, such that
u(t) € BV(R4;R) for a.e. t € [t,,T] is a solution to (26) if:

1. For all p € C(Jt,, T'] X I?&_HR)
T
/t /R (u(t, x) Orp(t, x) + v(t, z) u(t, x) Oxp(t, x)
+ (m(t, z,w)u(t,x) + q(t, z,w)) cp(t“”v)) dedt = 0.

2. For a.e. © € Ry, u(to, ) = uo(x).
3. For a.e. t € [to, T], limy_ 04 u(t, ) = b(t).
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Proposition 5. Let U = LY(R;R) and fiz b € BV(I;R). For R > 0, define
D= {u € U: max {||uHL1(R+;R), ull oo s,y TV () + |b(sup ) - u(O)’} < R} : (27)

Assume
(BP1) There exist strictly positive constants ¥,9,V1, Ve such that v € Co’l(f x Ry;[0,0]) and for all
(t,x) € I xRy
TV (v(2); ) + TV (u(t, ) < Vo,
TV (0z0(t, ) + |1020(t, )| poo (m, ) < Vi -

(BP2) For allw € W, m(-,-,w) € Co(f x Ry;R) and there exist Moo, M1, such that for all t € I,
w, wy, ws € W,

TV (m(tv 7w)> + ”m(ta '7w)HL°°(]R+;R) < MOO ’

||m(t7 '7w1) - m(t7 '7w2>||L1(]R+;R) < My dW(w17w2) .

(BP3) For allw € W, q(-,-,w) € C° (f;Ll(R+;R)) and there exist Q1, Qoo such that for allt € I and
w, w1, ws € W, and

la(t, - )l (v, m) < @1,
v (Q(tﬂ -,w)) + Hq(tv '7w)||L°°(R+;R) < Qoo s
Hq(ta %y wl) - q(ta %y w?)”Ll(RJr;]R) S QL dW('lUl,’U)Q) .

(BP4) b € (L' NL*® NBV)(I;R), is left continuous, and there exist positive constants By and Bso such
that

“b||L1(f;R) < Bla
TV(b) + ||b||L00(f;R) < Boo .

Then, there exists R,T > 0, such that [0,T] C f, and a Lipschitz process on U, parametrized by VW in the
sense of Definition 4, whose orbits solve (26) in the sense of Definition 7, with
Co=My, C;=[0(By+2R+ R(My +VL)T)+ MyR + Q1]eM=T |
Co=[BcMp+0QL+20Qoc M, T+ ML R+ Qp + 2 M, Qoo T| eMT', (28)
D, = r : Hu||L1(R+;R) < aa(t), ||UHL°°(R+;R) < axo(t),
TV(u) + [b(t) — u(0)| < ary(t)

where

ar(t) = Re Moo (T=t) _ (0Boo + Q1)(T — t)eMet
o (t) = Re Meo(T—1) _ Qoo (T —1t)
arv(t) = R(1 — (Mao 4+ VL )(T — t)) eMoctVL)(T=1)
—2Qu0 (14 (Moo + VL)) (T — t)eMootVL)t
—Boo (Moo + VL )(T — t)eMoe VL)t _ Ty (b; [t, T])eMoo VLIt

A result entirely analogous to Corollary 2 can be proved also in the case of (26).

9
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Proposition 6. SetU = L*(R;;R). Assume (BP1)—(BP2)—(BP3)—~(BP4). Let P* be a Lipschitz process
on W, parametrized byu € U. Set P: A — UXW, with P = (Py, P,), to be the process generated in Theorem 2
by the coupling of the process P, constructed in Proposition 5, with P*. If (¢, %o, (ue,w,)) € A, then

u:lte, T)— LY(R;R)

29
t s Pi(t o) (to, w0) (29)
is a solution to
Ou+ 0y (v(t,z)u) =m(t,x)u+ q(t,x) (t,z) € [to, T] x Ry
u(t,0) = b(t) t € [to, T (30)
u(to, &) = uo(x) reRy
in the sense of Definition 7, where
m(t,z) = m(t,z, Pa(t, to) (to,wo)) s  q(t,z) = q(t,x, Pa(t, to) (e, ws)) . (31)
3.4. Measure valued balance laws
Following [21], consider the following measure valued balance law
{ e+ 0 (b(t, ) p) + e, pow) p = [ (0t g, w)) (y) dply) t el (32)
1(to) = to

for 1, € MT(R,), the set of bounded, positive Radon measures on R, equipped with the following distance,
induced by the dual norm of WH (R ; R), see [21, § 2]:

da (g, pr2) = sup {/R @ d(p1 — p2):p € CHRy;R) and [|@lyyi00 < 1} . (33)
+

We refer to [22] for basic measure theoretic results. Below, if X is a Banach space, then BC(I; X) is the
space of bounded continuous functions with the supremum norm. BC** (I x M*(R,); X) is the space of
X valued functions which are bounded with respect to the ||-||y norm, Holder continuous with exponent «
with respect to time and Lipschitz continuous in the measure variable with respect to daq in (33). These
spaces are equipped with the norms

| f oz = s I F®]
tel

Il pnere o = st (Gl + Lip (7(60) + B
tel,pe M+ Ry

||fH(BCnWLOO)(RJr;MﬂL(RJr)) = IseuRll ||f(x)HM(R+) + Lip(f)

where, with a slight abuse of notation,

Lip (f(t,")) = sup (1f(t pa) = F( )l x /A (s p2))
MLMGJ\;‘"’(RJr)

H(f(,p) = sup ([f(s1,1) = fs2, 1)l x /51 = 52|7)

sl,szef

Lip(f) = sup (dam (f(21), f(22)) /llz2 — 21]]) -

r1,r9€R L
T #TO

10
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Definition 8. Given T € [ with T > t, and w € W, a function u:[t,,T] — Mt (Ry) is a weak
solution to (32) on the time interval [t,,T] if p is narrowly continuous with respect to time (i.e., for
every bounded function ¢p € C°(Ry;R), the map ¢ — fR+ P(x)dp(t, z) is continuous), and for all
v € (CNWL>°) ([t,, T] x Ry;R), the following equality holds:

T
[ / (Orplt, 2) + (b{t ) () Ducp(t, ) — (et i, w)) () ot 2)) dp (8, ) dt

+/tT /]R+ (/R+ o(t, ) d[n(t, p,w)(y)] (w)> dp (t,y) dt

= /R+ o(T, x) d,u(T,x)—/ P(to, ) dpo ().

Ry

Proposition 7. Let R > 0. Set Y = MT(R) and let D = {u € MT(R;): u(R4) < R}. Consider the
Cauchy problem (32) under the assumptions, for some positive constant ﬁ,

(MVBL1) For every w € W, b(-,-,w) € BCa’l(f x D; W (R ;R)). Further, for every w,wy,ws € W,
tel, and peD, b(t, u, w)(0) > 0, and, for some B > 0,

||b(t7#aw)le,00(R+;R) < B,
I1B(s s w1) = (-, s w2) [geiwoe sy < L dw(wr, wa).

(MVBL2) For every w € W, ¢(-,-,w) € BC*(I x D;WL(R_;R)). Further, there exists a positive
constant C > 0 such that, for all w,wi,we € W, u € D and t € I,

[[e(t, p, w) ||W1a00(R+;]R) <,

e pywr) — e :uvw2>||BC(f;W1a°°(]R+;]R)) < Lody(wy, wa).

(MVBL3) Forallw € W, n(-,-,w) € BC*! (f x D; (BCN WI’“)(RJF;M"’(RQ)). Further, there exists
an E > 0 such that, for all w,wy,ws € W, t € f, and u € D,

||n(t7lu7w)||(Banl,oo)(R+;M+(R+)) S E7

11, s wr) = h(s s w2)llBerBorwroo) @y mt @y )) < L dw(wr, we) .

Then, there exist T > 0, such that [0,T] C f, and a Lipschitz Process on M™(R™), parametrized by W in the
sense of Definition 4 whose orbits solve (32) in the sense of Definition 8, with

C,=3B+C+E), Ci= (B+C+E)62(B+C+E)TR,
Cw = C*(Tv B,C, E) RL ed(BHC+E)T , (34)
D; = {p € D: p(Ry) < Re 3BHCTET=0}

The proof is a direct consequence of [21, Theorem 2.10] and, hence, it is omitted. In particular, C* in (34)
is the constant defined in [21, Item (iv), Theorem 2.10].

Proposition 8. SetUd = M (R"). Fiz T > 0 and assume that (MVBL1)-(MVBL2)-(MVBL3) hold.
Let P* be a Lipschitz process on W, parametrized by u € U. Call P: A — R™ x W, with P = (Py, P»), the
Process constructed in Theorem 2 coupling P, found in Proposition 7, and P“. If ([to, T, to, U, w,) C A,

then the map
po [te, T] — M (R™)
t = Pitte) (s w)
11

(35)
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solves the measure valued balance law

o+ 05 (b(t, p) ) + et ) = fo (1, 1)) (y) dpaly) t €1
1(to) = po

in the sense of Definition 8, where

b(t, p) = b (t, p, Pa(t, to) (o, wo)) , c(t,p) = c(t, p, Pa(t, to)(to, wo)) ,
ﬁ<t7 :U’> =" (ta iy P2(t> to)(uo; wo)) .

The proof is deferred to Section 5.4.

3.5. Scalar nonlinear conservation laws

We now consider the following scalar nonlinear conservation law in one space dimension:

Ou+ 0pf(t,u,w) =0 (t,x) €I xR,
u(to, ) = uo(x) reR

for t, e I, u, € LY(R;R), w € W, with f: I xR x W — R a given function.

Definition 9. Fix w € W and [t,,T] C I. We say that a map u € C° ([to, T); L*(R;R)) is a solution to
problem (36) if it is a Kruzkov—Entropy solution, i.e.

T
/ / [lu— k| Osp + sign(u — k) (f(t, u,w) — f(t, k,w)) Orp]dadt
to JR
> / (T, 2) — k| o(T, ) dz — / o () — k| @ (to, 2) dz, (37)
R R
for all non-negative test functions ¢ € Cgo(f x R;R,), and for all £ € R.

Proposition 9. Let R > 0 and t,,T be such that [t,,T] C I. Choose U = LY(R;R) and define
D={ueclU:TV(u) < R}. Consider the Cauchy problem

Ou—+ 0y f(u,w) =0 (t,z) € [to, T) X R, (38)
u(to, ) = up(x) reR
under the assumptions

(CL1) For allw € W, the map u — f(u,w) is piecewise twice continuously differentiable.
(CL2) There exists a positive Fy, such that for all uy,us € R and all w,wy,ws € W

|f(u1,w) — f(uz,w)| < Fr [ur — us|
Lip (f(vwl) - f(va)) < L dW(wla w2)

Then, there exists a Lipschitz Process on LY(R;R), parametrized by W, whose orbits are solutions to (36) in
the sense of Definition 9, with constants in (12)—(13)—(14)

C,=0, C,=F.R, C,=F.R, D,=D.

The proof is classical and follows, for instance, from [23, Theorem 2.14 and Theorem 2.15].

12
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Remark 1. The present treatment is limited to homogeneous, i.e., with a flux independent of z, conservation
laws. Note that general 2 x 2 systems of conservation laws can not be approached by means of Theorem 2
while, for instance, we do comprehend a nonlocal coupling of the form

{atu—l—azf (u, [wdz) =0 {@w—i—&rg (w, [udz) =0
u(0,2) = uo(x) w(0,z) = we(x).

Proposition 10. Set U = L*(R;R). Assume that (CL1)~(CL2) hold. Let P* be a Lipschitz process on
W, parametrized by u € U. Call P: A — R™ x W, with P = (Py, P), the Process constructed in Theorem 2
coupling P¥, generated by (38), to P“. If ([to, T, to, Uo, wo) C A, then

wilto, T —» LY(R:R) wolves Byu+ 0, f(t,u) =0
t = Pt t,)(ue, wy) u(ty) = o,

in the sense of Definition 9, where f(t,u) = f (u, Pa(t, to)(to, ws)).
The proof is left until Section 5.5.

4. Specific coupled problems

The abstract framework developed in Section 2, thanks to the proofs in the subsequent paragraphs, allows
to prove the Lipschitz well posedness of several models.

As a first example, consider the model introduced in [5], where a large and slow vehicle positioned at
y = y(t) affects the overall traffic density p = p(t, z). The resulting model [5, Formula (2.1)] consists in the
coupling of the Lighthill-Whitham [24] and Richards [25] macroscopic model describing the evolution of p
coupled with an ordinary differential equation for y, that is

{atp"‘@acf(xay(t)’p) =0

g =w(p(t,y)) (39)

Clearly, this coupled problem fits in Theorem 2 thanks to Proposition 10 and Proposition 2, once the
functions f and w meet reasonable requirements.

In the next paragraphs, we consider in particular the case of a predator—prey system (Section 4.1) and
that of an epidemiological model (Section 4.2). To our knowledge, this latter well posedness is first proved
here.

4.1. Predators and prey

On the basis of the games introduced in [14] we consider the following predator—prey model:

{&p+&w0ﬂ4tLMUDnWMU$)Mt@ mee{PU@mm@D w0

p(0,2) = p(x) p(0)=p

We consider a specific example, letting p = p(t, z) be the density of some prey species moving in RY and
p = p(t) be the position in RY of a predator hunting it. To escape the predator, prey adopt a strategy
defined by the speed
Vit,o,p) = ——L— s (Ip - o) (41)
a+p— =
13
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-
where the term P 5 stands for the escape direction of the prey. The positive term « in the

a+|p—z|
denominator smooths the normalization. The function ¢ describes the relevance of the predator p to the

prey at x as a function of the distance |p — z||. The function n = 1 (||p — z||) describes the effect of the
feeding of the predator at p on the prey at x. On the other hand, the predator hunts moving towards the
region of highest (mean) prey density, i.e., with speed

U(t,p,p) = (Ve *p) (p), (42)

where ¢ is an averaging kernel.
Here, we show that (40) fits in the general framework presented in Section 2. Indeed, with reference
to Section 3.2, set

t7 b = Vt7 ) )
R s T T S S o) (43)
W — RV, w = p. m(t,z,w) = —-n(|lw—=z|),
q(t3x7w) = 07
while with reference to Section 3.1, set
u = RN, u = p,
tu,w) = Ut u,w). 44
W LR, e o S = Ul (44)

Proposition 11. Fiz positive o, 7,,7p, Ty and mollifiers

(V) Let V be as in (41) with ¢ € CZ(RY;R,), with sptyy C B(0,7,) and fB(o,rp) Ppdé =1.

(U) Let U be defined in (42) with ¢ € CZ(R;R), positive, with spty C [—rp,p] in (42).

(n) n € C(RY;R), positive, with sptn C B(0,7,).

Then, conditions (IP1)—(IP2)—(IP3) and (ODE1)-(ODE2) are all satisfied. Therefore, model (40) defines

a unique global process in the sense of Definition 2.

Proof. Consider first (IP1). By (41), V is a smooth function and the exponential factor ensures all the
required boundedness conditions. We also have that HVPV‘|LOO(R+XRN><RN-RNxN) is bounded, proving the
first Lipschitz requirement in (IP1). Prove now the latter inequality:

19 () = Vit o)) o

<

/ sup IV, Ve - V(t, 2 p)ldz [p2 — pill
B(pl7TP)UB(p2aTP) pGRN

proving also the latter requirement in (IP1).
To prove (IP2), compute:

||m(ta aw)HLOO(R",R) + TV (m(t7 7’(1])) = Br(%?‘r?;) |77| + ||n/||L1(B(O;Tn)5R) )

sup |/[[|wz — wi | dz

It 02) = (e, 02) s oy < [
B(wi,rn)UB(w2,ry) B(0,my)

< 0(1) ||77l||L<>O(B(0,Tn);R) ng — w1|| .

Clearly, due to (43), (IP3) is immediate.

14
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The regularity required in (ODE1) is immediate. Pass to the Lipschitz estimate:

||U(t7p17p1) - U(tap2ap2)||
< U, p1,p1) = Ut 1, p2)|| + UL, p1, p2) — Ut p2, p2) ||
< ||V<PHLoo(RN;RN) lp1 — p2HL1(]RN;]R) + HVQQO * pQHLOO(RN;RNxN) lp1 — P2l -

Finally, the latter boundedness in (ODE2) is proved as follows:
sup [[U(, )l < sup [Vl @vipny lollps @y ry
pEDy pED)

completing the proof by the definition of D,,.

By Proposition 3, the balance law in (40) defines a global process P;. Similarly, Proposition 1 ensures that
the ordinary differential equation in (40) generates a global process P». Now, Propositions 2 and 4 ensure
that the global process P obtained from P; and P, through Theorem 2 yields a solution to the coupled
problem (40). O

4.2. Modeling vaccination strategies

Consider the model presented in [3, § 2]:

S=—psIS—p(t)
OV +0,V=—p, IV
I=(psS+ [y py V) =91 —pl (45)
R=9I4+V(t,T.)
V(t,0)=p(t).

It describes a population consisting of susceptibles, S = S(¢), of infected that are also infective, I = I(t),
and recovered individuals, R = R(t). The vaccination rate is p = p(t) and vaccinated individuals need a
time T to get immunized. More precisely, V = V (¢, 7) is the number of individuals at time ¢ vaccinated at
time ¢ — 7, for 7 € [0, T\]. Thus, at time T}, vaccinated individual enter the R population.

The positive constants pg, ¥ and p quantify the infectivity rate, the recovery rate and the mortality rate,
respectively. The function py = py(7) describes the infectivity rate of individuals vaccinated after time 7
from being dosed.

Note that model (45) is triangular, in the sense that the evolution of the R population results from that
of the other ones, without affecting them.

Model (45), once the R population is omitted, fits in the abstract framework presented in Section 2.
Indeed, with reference to the notation used in Section 3.1, we pose

U=R?, W=LY0,T.JR), u= [ o ] L w=v,
—ps u1 uz — p(t) ] (46)
k)

f = [ (ps wit o pv(r)w(r)dr —9 - #) U2

while with reference to Section 3.3, we set

v(t,z)=1
U=L([0,T.];R) [ 5 } m(t,z, w) = —py(z) ws
z=71, u=V, w= , (47)
W:R2 I q(t,l‘,’IU):O
b(t) =p(t)

The well posedness of (45) now follows once we verify that Proposition 2 and Proposition 6 can be
applied.

15
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Proposition 12. Fiz positive r, T, ps and choose p € BV(R_;R), pyy € BV([0, T,];R). Then, problem (45)
defines a unique global process P, in the sense of Definition 2, defined on all initial data

SosIos Ro € [0,7] and  V, € LY([0, T.]; Ry) with TV(V,) + |V llpoo gy <7 (48)

P is Lipschitz continuous as a function of time and of the initial data, with respect to the Fuclidean norm in
(So, I, Ry) and to the LY norm in V.

Proof. Verifying (ODE1) is immediate. The Lipschitz continuity required in (ODE2) follows from the
boundedness u € Dy, which is a closed ball in & = R? and from the choice of py, see Section 3.1. Hence,
Proposition 1 applies.

Conditions (BP1) and (BP3) are immediate. The first requirement in (BP2) follows from the choice
of py and the boundedness of Dy;. The second is ensured by the linearity of m and the boundedness of py .
Since p has bounded variation, (BP4) is satisfied on any bounded time interval. Hence, also Proposition 5
can be applied.

Then, Proposition 2 and Proposition 6, through Theorem 2, ensure the well posedness of the coupled
system (46)—(47).

We now verify the well posedness of the R component. From (45), using (77), we have

Vo(T +to — t) exp (— ftto pv(s)I(s) ds) ift<r+t,,
p(t —T) exp (— ftt_T pv(s)I(s) ds) ift>7+t,.

This shows that the map ¢ — V(¢,Ty) is sufficiently regular for the equation for R, namely R = ¢ I(t) +
V(t,T), to be explicitly solved: R(t) = R, + fot (I(s) +V(s,Tx))ds. Thus, the full model (45) is well
posed. O

5. Technical details
5.1. Proofs for Section 2

Proof of Theorem 2. We begin by showing F' is a local flow in the sense of Definition 1. F' is continuous
as it is a pairing of two continuous functions. Further

F(0,t0)(u,w) = (P (to, to)u, P*(to, to)w) = (u,w).
We prove the Lipschitz continuity in time and with respect to initial conditions of F':

d (F(r1,t)(u1,wy), F(72,t0)(uz, wa))

< dy (P (to + 71, to)us, P (to + T, to)ua) + dy (P (to + 71, to)ug, P2 (to + 71, to)uz)
t+dy (P2 (t, + 71, to)ug, PY2(t, + To, to)uz)
+dy (P (to + 71, to)wi, P" (to + T1,to)wa) + dyy (P (to + 71, to)wa, P*2(t, + 71, t0)w2)
+dyy (P2 (t, + 71, to)wa, P2 (ty + To, to)wo)

< (€940 + Oy 8) d ((uy, wy), (ug, wa)) +2Cy |11 — 72| .

Thus F is indeed a local flow in the sense of Definition 1, with Lip(F) = e“® + C, § + 2C;.

16
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We now show that F' satisfies the assumptions of Theorem 1. Consider (9):

d(F(kt,to +7) 0 F(1,to)(u,w), F((k+ 1)7,t,) (u, w))
= dy (PP“<to+T»to>w(tO + (k4 1)7,to + 7)PY(7, to)u, P* (to + (k + 1)1, t,) u) (49)

+ dyy (PP”@OWOW(tO (k1) by + )P (to + 7, to)w, P (t + (k-+1)7, t,) w) . (50)
We consider only the term (49), since the latter is entirely similar. By (6), we have
PY(to+ (k+ 1)1, to)u= Pty + (k+1)7,to +7) PY(to + 7, t0)u,
hence, via (13) and (14),

dyg (PP“@tho)w(tO 4 (k4 D)t to + T)PY (ty + 7, to)u, P (to + (k + 1)7, 1) u)
< kT CiCyut. (51)

Combining (51) with the analogous estimate bounding (50), we end up with
d(F(kt,to +7) 0 F(7,t0)(u,w), F ((k+ 1)1, ) (u,w)) < kT w(7)

where w is as in (16). Thus (9) is satisfied.
We consider the second condition in Theorem 1, namely (10). Note that Euler polygonals for the local
flow F, see Definition 3, can be written recursively, as

Fe(1,t0)(u,w) = F(1 — ke, t, + ke) o F*(ke, to)(u, w).
For any 7 € [0,0] and for any (u,w), (u,w) in U x W, we have

d(F(7,to)(u,w), F(7,t,) (0, 0)) = dyy (P (to + 7, to)u, PP (te + T, o))
+dy (P (to + T, to)w, P (ty + 7, 1,)W) .

For the first of these summands, by the triangle inequality, we have
dyy (Pw(to + 7, to)u, P (t, + T, to)ﬂ) < Cut dy(u,u) + Cyp 7 dyy (w, w).
The second term is estimated analogously, leading to
d (F(7,to) (u,w), F(7,t,) (14, w)) < (e“*7 + Cyy 7) d ((u, w), (4, w)) . (52)
Estimate (52) is of use in the following:

d (F&(7,t0)(u, w), F*(1,t0)(u, w))
< (ecu“*’%) +Cy (1 — ka)) d (F= (ke, t,)(u, w), F* (ke, t,) (@, ©)) -
It remains to estimate the distance in the latter right hand side. We have for any k € N\ {0},
Fe(ke,to)(u,w) = F(e, t,) F€ ((k—1)e,t,) (u,w),

and thus using iteratively (52),

d (F& (ke, t) (u, w), F< (e, t,) (i, 1)) < (7% + Cye)" d ((u, w), (@, ) .

17
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Therefore,

d (F€(7'7 to)(u7 w)7 F€(7—> to)(a, ’lD))
< (eC”(T’kE) + Cy (T — ks)) (e“uE + Oy E)k d((u, w), (u, w)).

Hence, (10) is satisfied provided there exists a positive L such that for all ¢ > 0 and ¢ € [0, T
(=) 1 Gy (7 — ke) ) (7 + Cue)" < I,
where k = [ Z]. Indeed, since e* + b < e**? for all a,b € R, we have
(ecu(T—ke) 4 Cy(r — k5>) (e + C,, E)k < (CutCu)(7=ke) (e(cu+cw)e)k — (CutCu)r

so that I = e(CutCuw)d,

Finally, note that (17) directly follows from the definition (15) of F, together with the properties
P%(to 4+ 7,to)D¥ C DY, _, which holds for all w € W, and P“(t, + 7,t,)D}Y C D}, ., which holds for
all u € U. Therefore, with reference to (8), we have D} 2 (DY x D}V) and Condition 1. in Theorem 1
completes the proof of (18).

Proof of Theorem 3. The continuity of F' is immediate. The Lipschitz continuity follows from the triangle
inequality and a Lipschitz constant is Lip(F) = £ + max {Lip(F*), Lip(F“)}. Hence, F' is a local flow
according to Definition 1.

Concerning the tangency condition, compute

d (I\( 7t0)(u7 w)ﬂl (‘ 7t0)(u7 w)) dZ/{ (l w(‘ 7t0)u7] w(to 7t0)u)
T T
dW (l u(;7to)wal u(to 37to)w)
T

and the first order tangency condition (11) allows to complete the proof. [

5.2. Proofs for Section 3.2
With reference to (23) and (26), introduce for ¢,t € I and &,z € R, the characteristics

(53)

o ) '
t — X(t;t, ) solves {x = v(t,z,w) {t 1/v(t, 2, w)

o(f) = 7, and ¢t — T (z; Z,t) solves ) = 1,

and in the sequel we omit the dependence on w. The T characteristics are introduced now for completeness,
but used only in Section 5.3. As is well known, see for instance [26, Lemma 5] and the references therein,
the unique solution to (23) is

u(t, ) = uo (X(to;t,2)) Ewlto,t,x) —|—/t q (s, X(s;t,x),w) (s, t,x)ds (54)

where the characteristics X' are defined by (53) and

Ew(r t,x) = exp/ (m (s, X(s;t,x),w) —dive (s, X(s;t,2))) ds.

T

Below, we often use the substitution y <> x, where

to
y = X(t;t,,x) with Jacobian J(¢,y) = exp </ V-v(s, X(s;7,y)) ds) , (55)
¢

for more details see for instance [26, Proof of Proposition 3].
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Lemma 1. Assume (IP1) holds and use the notation (53). Letu € (LXNBV)(R™; R). Then, for allt,,t € I

/n lu (X (t;t0,2)) —u(z)|de < % (eVL‘t_tOI - 1) TV (u). (56)

This Lemma is an extension of [20, Lemma 2.3] to R™. For the proof, refer to [19].
Define the parametrized mapping P* by

P t tAu ):uz{t) where  u(t) is given by (54); (57)
Below, by (IP1) and (IP2), for all t,7 € I, 2 € R" and w € W, we use the uniform estimate

0 < E(r t,z) < eMootVillt=rl (58)
Lemma 2. For allw € W, P¥ in (57) is a global process according to Definition 2.

Proof of Lemma 2. That PY satisfies (4) is an immediate consequence of its definition (54). The
uniqueness of the solution ensures that (6) is satisfied.

Fix t,,t € I, with t, < t, and 1, € Dy, . It remains to show (5), that is, u(t) = P"(t,t,)u, € D; for each
weW.

1. We begin by showing that, if [[uolp1gng) < ailto), then [[u(?)llg1gngy < ou(t). Making use
of (IP2)—(IP3)—(25) —(54)—(55), see also [26, Proposition 3, (H3)],

w1 gn.x)

t
< (HUOHLl(Rn;R) + llq(, '7w)HL1([t0,t]><R";R)) exp (/t [[m(r, 'aw)HLOO(R";R) dT) (59)
< (o lto) + Qu(t —t,)) eMoelito)
< al(t)a

as required.
2. Assuming now that [[to||y,co gn gy < Qoo (to), we show that [[u(t)[|g,egnr) < Qoo(t), We use (25)-(54),
see also [26, Proposition 3, (H4)], together with (IP1), (IP2), (IP3) and (58). Then,

1) lloo gy < (HuoIILOO(Rn;R) + Qoolt — to)) (Moo V) (t=t0)
(oo (to) + Qoo (t — t5)) eMoc VL) (E—t0)
Oéoo(t) i

INIA

as required.
3. Finally, we show that, if u, € Dy, , then TV (u(t)) < aryv(t). We use (IP1)-(IP2)—(IP3)—(25)
—(54)—(55)—(58), see also [26, Formula (31)]:
¢
TV ((0) < [ TV0) + [ TV s w) ds (60)
to

t
; (|uo|Loo<Rn;R> [ s, ) ds)
to

¢
X / (TV (m(s,,w))+||VV - U(S)”Ll(R”;R”)) ds } (Moo +VL)|t=7]|
to
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Since u, € Dy, by (24), TV(u,) < arv(t,) and we have that (60) becomes
TV (u(t))
< [ arv(to) + Qoo(t — to)
- (Re*Moo*VL)(T*ta) — QooeMoetVilto (T 1) 4 Qoo (t — to)> (Moo +V1)(t — o)
oMot Vi) (t—t0)
< arv(t),

completing the proof of (5). O

Proof of Proposition 3. We define the mapping P* by (57). That this defines a process is a consequence
of Lemma 2.
It remains to show the three Lipschitz continuity estimates (12), (13), and (14).

1. Lipschitz continuity w.r.t initial data. By the linear structure of (23), from (59) we immediately have
||Pw(t,to)(uo - QO)HLl(Rn;R) < eMOO(t_tO) Huo - QOHLl(Rn;R)

which is compatible with the choice of C,, in (24).
2. Lipschitz continuity in time. By direct computations based on (54), for ¢ > t,:

[P (¢, to)uo — U0||L1(R+;]R)
< / [to (X (tost, ) — up(x)] Ew(to, t, z) da
Rn
t
+/ / lg (7, X(75t,2),w)| Ep (T, t, ) dT d +/ [uo(2)||Ew (to, t, ) — 1| dz
R™ Jto Rn
and we consider the latter three terms separately. First, use (58) and Lemma 1, for ¢t > t,,
/ o (Xt 1, 2)) — ()| € (to £ 2) dar < / o (X (to; 1, 2)) — ()| dar eMoetVLI(E—t0)
n ]Rn
< Vio TV (1) eMoeF2VE)E—to) (1 ¢y

To deal with the second term, after using the coordinates (55) and (IP2)—(IP3), one finds

¢
/ lg (m, X (73 t,2),w)| Ep (T, t,2)drdr < Q1 eMoo(t=to) (t—t,).
R

n Jt,

Finally, the third term follows by (58),
/ |to(2)] |Eu(tost, ) — 1| dx < (Moo + Vi) [[to]l 1 n gy €M TV (& — 1),
Rn

Adding up, we have

1P (t,t0)to — Uollr (g, m) < Voo TV(uo) e(Moot2VL)(t=to) (4 _ 4 )
+Qq Moot (1 — )
+(Moo + VL) HuOHLl(Rn;R) e(MOO+VL)(t_tO)(t — to)

which agrees with the choice of C; in (24).
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3. Lipschitz continuity w.r.t parameters. Thanks to (IP1), (IP2), and (IP3), the necessary computations
are a consequence of [26, (H5)].

4. Choice of T. The time T has to be chosen so that a1(0) > 0, ax(0) > 0 and aty(0) > 0. Clearly,
by (25), for T sufficiently small, these requirements are all met.

Proof of Corollary 2. Note that the constants defined in (IP1), (IP2), and (IP3) do not depend on R.
Moreover T has to be chosen such that a;(0) > 0, @s(0) > 0 and axyv(0) > 0, which are equivalent to

ReMeT _ QT >0

Re~MootVL)T _ QT >0
Re— (MootVL)T (1— (Moo +WV)T) — QT > 0.

The proof ends setting 7" = min { 5 Moi ) Mlor;(i)VL }, provided R is sufficiently big. O

Proof of Proposition 4. The Lipschitz continuity of P ensured by Theorem 2 shows that P; is
L'-Lipschitz continuous, and hence in CO([t,, T]; L1 (R™;R)) as required.

We focus our attention now on the first item in Definition 6, the second being immediate. To ease reading,
for any test function ¢ € C2°(Jt,, T x R™;R) we introduce the notation

Itp(u7w) = uat@ tuv-Vyp+ (m(7 '7w) u+ Q(', ,’LU)) ©- (61)

We want to prove that, for any ¢ € C°(Jt,, T[ x R™;R),

/n /tTLP (P(t,to) (g, w,)) dt da = 0.

We begin by discretizing the time domain. For a given £k € N\ {0} and ¢ = 0,...,k, introduce ¢; =
to+i(T —1t,)/k and (4;, w;) = P(ti—1,t0)(ue, w,). Splitting the integral then gives

T
/t /n T, (P(t,to)(to, w,)) da dt
koot
— Z /t /]Rn (Zy (P(t,ti—1) (T, ;) — Zp (F(t — tim1,ti—1) (G, W;))) da dt

k t;
+Z/ /R Ty (F(t —tiy,ti 1) (@, ;) da dt . (62)
i=17ti-1 /R

We compute the terms on the last two lines separately, our goal is to show that they both converge to zero
as k — oo.
For the first,

Ty (P(t,ti—1)(Us, ) — Ly (F(t — tiz1,ti—1) (s, ;)
= Op (Pr(t,tim1) (s, 0;) — F1(t — tima, tio1) (G4, @) (63)

+ ( Pr(t,tio1) (@, wi)v(t, , Po(t, ti—1) (@, @;))

—Fy(t — tim1, ti—1) (@, Wi)o(t, @, Fo(t — tim1, tim1) (@, @;)) ) -V
+ (m (¢, @, Pa(t, ti—y) (@, @;)) Pr(t, ti—) (@, @;)

—m (t, @, Fa(t — ti—1, ti—1) (@, @;)) Fi(t — ti—1, ti1) (@, @;) )
+(q(t, z, Pa(t, ti—1) (U, @;)) — q (8, z, Fo(t — ti—1, tim1) (i, 0;))) -
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Recall that the tangency condition (11) ensures

. 2L i=ti-1
| Pt tio1) (@, W) — Fi(t — ti—1, tic 1)(Uz,wz)||L1(]Rn R) < / &df

t—ti1 - n(2) Jo 3
1 o o 2L [T w(€)
P dyw (Pa(t, ti—1) (i, W), Fo(t — ti—1,ti—1) (4, ;) < m(2) /0 ¢ d¢

with L and w defined as in (16), so that, considering (63),

) (Pl(t,tl'_l)(ﬂi,ﬁ)i) — Fl(t — ti—lati—l)(ﬂi7wi)) dx dt

Rn
L ti—ti—1
< o 12wl o R R (65)
= ln(z) L ([0,T]xR™;R) \"2 z 0 6
Considering the next term (64),
t
/ / [Pu(t, ti1) (@, @i)v(t, @, Po(t, ti1)(t, @)
i—1 /R
— Fl(t — ti_l,ti_l)(ﬂi,ﬁ)i)v(t, Z‘,FQ(t - ti—hti—l)(aiawi))] . ngo dtdzx

t;
= / / [Py(t,tio1) (G, w;) — Fi(t — tim1, tio1) (@, W) (69)
xv(t, @, Py(t, t;—1)(l;, 0;)) - Vypdt da

/ / Fl t_tz 17 i— 1)(u’uwl)
ti—1 n

[ (t,x, Pg(t,ti_l)(ui,wi)) - ’U(t,IE,FQ(t - ti—lyti—l)(aiawi))] . Vmgodtdx . (70)

For (69), using (IP1) and the same approach as for (68), we get

123
/ [Pyt 1) (i, i) = Fy (t=ti—1, ti1) (@, @) [0(t, @, Po(t, ti1) (@, @) - Vg dt da

< L
~ In(2)

For the second term (70), using (IP1) again, we have,

Tl w(€)
Voo [IVapllLoe (0,11 xrnmny (i = ti71)2/0 a dg. (71)

t;
‘/ Fy(t = tio1, tioa) (@, 0;)
ti—1 JR?
X [U(t,l‘, Pg(t,ti_l)(ai,wi)) — U(t,l‘,FQ(t —ti—1,ti— 1)(111', ’II)Z))] . Vg;(pdtdx ’

ti—ti—1 w f
RHVJCQDHLoo([o,T]XR";R”)VL(ti - ti71)2/0 é )

<

L
~ In(2)
Pass to (65)—(66) and using again (63):

d¢. (72)

/ / m (t,x, Py(t, ti—1) (s, w;)) Pr(t, ti—1) (s, ;)
—m (t,x, Fa(t — i1, tio1) (@, @;)) FL(t — ti—1, tim1) (s, @;) ) @] dadt
t;
< / [m (t, -, Po(t, tio1) (@, @) — m (¢, -, Fo(t — tim1, tima) (@i, Wi)) |1 (gn )
t.

X || Py(t, tie1) (@i @3 ) || oo (mesm) 19| oo (rn iy
22



R.M. Colombo, M. Garavello and M. Tandy Nonlinear Analysis 232 (2023) 113290

t;
+/ ||m (ta ) FQ(t - ti—la ti—l)(ﬂh wi))”Loo(Rn;R)

ti—1

x| Pr(t, tie1) (@, @) — Fi(t — tim1, tio1) (@i, @)l g1 g my 10| oo (o gy dE

t;
< MLRHSOHLOO(Rn;R)/t dyy (Py(t, ti—1) (Wi, @;), Fo(t — tioy, tio1) (i, w;)) di

i—1

t
+Moo|\<P||Loo(Rn;R)/ [P (E, tim) (T, @) — Fr(t—tio1, tio1) (%, i)l 2 g gy At
ti—1
L ti—t;—1 w(g)
My, R+ M, oo gy (ti — tic1)? =2 d¢ . 73
gy (M1 R+ Mol ey (=t [ S8 ae (73)

<
Concerning (67), the tangency condition (11) implies
‘/ / t Z, P2 t tz 1)(1],12))) —q(t,x,Fg(t—ti_l,ti_l)(ﬂ,w))]gp(t)dxdt

ti—ti—1
< ()QLnsanmo N / ‘”f)dg. (74)

Computing the sum over all time intervals, we get:
k t;
S @ (Pl tia) @ 00) = T (F(E~ tioa, ), 0) de
i=1Yti—1 JR”

k
< IO F[T]+ [(72)] 4 [(73)] + [(74)]

=1

Lo [T ale) ) (Tt
s MC/O e
— 0,
k— 400

where C depends on the test function ¢ and the constants from (IP1)—(IP2)—(IP3).
Pass now to estimate (62). Temporarily, for ¢ = 0,..., k, define (u;(t), w;(t)) = F(t — t;—1,t;i—1) (@3, W;).
Then u;(t) = P%i(t, t;_1)i;, and thus it satisfies

t
/ / T (s (t), ) da dt = 0 Wi € C(ti 1, i x R™:R). (75)
ti—1 JR?

Then, each summand in (62) can be estimated as follows:

/ / tioa,tion) (i, 0;)) do dt
ti—1 JR"
/ / Iy (ui(t), w;) dz dt

1 JR?

l

/tZ
ti—1

k3

/., /R ) 002,000 it T

n

+

gg\

m(t, x,w;) — m(t, x,w;(t))) u; (t) + (q(t, z,w;) — q(t, z, wi(t)))}ap(t,x) dx dt

+

k3

_ 1
< / / T, (ui(t), w;) dz dt + Il(pHLoo([to’T]XRn;Rn)i(MLR+QL)C(ti —ti—1)?
i—1 /R™

1
+ HVLE()O”LOO([tO,T]XRn;Rn) 5 VL RC (tz - ti71)2 ) (76)
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where C is the Lipschitz constant of ¢t — w(t) and we used the equality w(¢;—1) = ;. The latter two
summands in (76) are treated as the terms above.
It can be shown that

/i / Lp(ui(t),u?i)dxdt:/ (ui(ti,x) o(tiyx) —ui(tim1,x) @(ti—1,2)) dedt.
ti—1 JR™ Rn

refer to [19] for more details.
Passing to the sum (62), and remembering that w;(t;—1,2) = @; = P (ti—1,t0) (4o, W),

k t; k—1 2L ti—t;1
Ol A AT D S R 3 A S ] M
i=1 i—1 =1

2L (T=to) [k ()
< m ||50||L00([t0,T];Rn;R) (T — to)/o ng
— 0,
k—+o00

as required. [

5.8. Proofs for Section 3.3

Similar to the previous sections, for each w € W the unique solution to (26) in the sense of Definition 7
is
Uo (X(to§ t, Z‘)) 5w(t07 t, 33)
t
+/ q (1, X(13t,2),w) Eu(T, t,x)dr x> X(t;to,0)
to

b(T(0;t,x)) Ew (T(0;t,2),t, )

t
+/ q(r, X (73t 2),w) Ey(r, t,x)dr x < X(t;to,0)
T(05t,z)

where now .

Ew(Tyt,x) = exp/ (m (s, X(s;t,2),w) — Opv (s, X(s;t,2)))ds . (78)

Working under the assumptions of Proposition 5, we define the parametrized mapping P", which we propose

is a process, by
pPw - A oY . .
(t,to, Uo) > u(t) where  wu(t) is given by (77); (79)

where A is generated by the sets D; as given by (28).

Lemma 3. The mapping PY as defined in (79) is a process in the sense of Definition 2.
The proof is in [19].

Proof of Proposition 5. The mapping P%, as given by (79), is a process for any w € W by Lemma 3.
It remains to show that P is a Lipschitz process on U parametrized by w € W, i.e., it satisfies (12), (13),
and (14), with C,,, C} and C,, given by (28).

1. Lipschitz Continuity w.r.t. Initial Data. Consider two initial data uy,us € D, t,,t € I with ¢, < ¢, and
w e W.
To begin, assume that « € [0,0(t)[. Then, it is easy to see from (77) that

|PY(t, to)ur — PY (¢, to)usz|(z) = 0,
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as b,q and m are independent of the choice of initial data u,. Similarly, for « € [o(t), +o0],
|PY(t, to)ur — PY(t, to)uz|(z) = |ug (X (to;t, ) — ua (X (to; t,x))| Ew(to, t, ).

Thus, using the substitution y = X (t,;t, x),

+oo
dy (PY(t,to)ur, P (¢, to)us) = / lur (X (to;t, @) — ua (X (to; t, ) |Ew (to, t, x) dz
o(t)

Moo=y (0) — un(0) 1 (s, 2 -

IN

2. Lipschitz Continuity w.r.t. Time. Consider u, € D, t,,t € I, and w € W.
We have
dy (P (t,to)uo, o) < [P (t,to)tto = tollya (0,02

w 80
P (t o) to — UollL1 (o (1) ool ) - (80)
Focusing on the first term of (80), using (77), (BP1), (BP2), (BP3), (BP4), and that u, € D,
[Pt to)to — UollL1 (0,0 ()R )
o(t)
< / |6(T(0;t,2))E0(T(05t, ), t,x) — up(z)| dz
0
o(t) ot
[ st 0t o)l drds
0 T(05t,x)
< BB + ol sy + QU)EM=0) (1 — 1,)
t t t
m(s,X(s;y,0),w)ds Ozv(s,X(s5y, s
4 [ o0t leh T, dere i g
to
< O(B1 4 R+ Q1)eMeT(t — o) + 0R(Muo + Vi) (t — t,)2eMoctVL)(t—to)
For the second term of (80), once again from (77),
[P (¢, t0)tto = Uoll L1 ([ (1), 400l )
+oo +oo t
< [ it ) Eultortin) ~ wo@) do [ [ Jalr (i), w)leu(r ) drda
o (t) o(t) Jto
< [PV (o Ry) + Mecllto s o, ) + Q1 €07t ~ 1)
< DR+ Mo R+ Qq] eM=lte) (¢ —,)
where we used the BV estimates in [19].
Concluding, we thus have
dy (P (t,t6) o, o) < [0(B1 + 2R + R(Mao + V)T) + Moo R + Q1] eMo=T (¢t — t,).
3. Lipschitz Continuity w.r.t. Parameters. Consider u, € D, t,,t € I and w,ws € W.
We have
du (P (t,to)to, PU2 (8, o)1) < [|P™ (£, to)tto — P2 (t, to ol 1 (0, i) (81)

+ 1P (0 )uo — P2 (t, to)toll L1 (o (1) 4 00m )
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For the first term of (81),
||P'LU1 (t7 to)uo — pw2 (t7 tO)uO||L1([O,U(t)[;R+)

o(t)
< / (T (03¢, 2))| |Ew, (T (058, 2),t,2) — Ewy (T (038, 2),t,2)| dz
0
o(t
w0 ] lan Xt w) - alr X it @) )| € (1t 0) do
T(05t,x)

a(t)
+/ / lg(T, X(T5t, ), wa)| |Ewy (T, 8, ) — Euy (7,8, )| da .
T(05t,x)

Focussing first on (82), we use (BP2), and get
o(t)
/ [b(T(0;t,2))| [Ewy (T(05t,2),t,2) — Euy (T (03¢, 2), ¢, )| da
0
t ot
< BooeM““‘t")/ / v(y, 0)m(s, X(s;9,0),w1) — m(s, X(s;y,0),wz)| ds dy
to Jy
< BOOMLeMoo(t_tO)(t — to)dw(wl, UJQ) .
For (83), using (BP3),
) gt
[ et Xt o) — afn X3 t0). )| €0, (o t,0) dr
0st,x
< Qo eM=Ut) dyy (wy, wy).

Finally, for (84), we have

o(t) ot
/ / la(r, X (738, 2),02)] |y (7 £, 7) — Euny (7.1, 2) | d7
0;t,x)

t po(r) pt
< QuoeM(tto) / [ [ s 0.0) = mis. X(si ). w)| dsagar

X(s‘rO)
< QooeM‘x’(t_t")/ / / m(s,y,w1) —m(s,y,ws)|dsdydr

Sto;

< QOOMLeMOO(t_tO)§(t — to)2dw (w1, ws) .

Thus,
||Pw1 (t7to)uo _ pw2 (t,to)u0||L1(J1;R+)

A 1 _
< |:BooML +0Qr + iQooML(t — to) 6M°°(t to)(t — to)dw(wl, ’LU2) .
Focusing now on the second term of (81), we have
||P'LU1 (t7 to)uo — pw2 (t7 tO)uO||L1([U(t),+oo[;R)

+oo
< / [to (X (to;t, 2))||Ewy (tos t, ) — Ewy (Lo, t, )| da
o(t)

+/ / lg(T, X(15t, ), w1) — q(7, X (73, ), w2)|Ewy, (7, t, ) dT d

/ / lg(m, X (75 t, ), w2)||Ewy (T, 8, &) — Ewy (T, ¢, )| dT d.
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Looking at term (86),

/+ 1 (X (tos £, 2))] €y (For b, 2) — Euy (o t,2)| dir

o(t) . \

< ||U0||L°°(1R+;R)6M00(tito) /0 \ Im(s, X(s;to,y), w1) —m(s, X(s;to,y), w2)|dsdz
< MLReMoo(t_to)(t — to)dw(wl, U}Q) .

Next, for the term (87),

/ |q T, X(T5t,x),w) — q(7, X (75 t, ), w2)|Ew, (7, ¢, ) dT da
(t) Jto

+oo
< Moot to)// q(1,y,w1) — q(7,y,wo)| dy dr
to
< Q eMoo(t to) t—t )dW(w17w2)

Finally, for term (88),

“+o0 t
/ (g(r, X (73, 2), w2) |y (7, £,2) — Euy (£, )] dr diz
(t) Jto

IA

Q eMoo(t to)/ /() / |m s, X 3 T, f) wl) <S7X(S;T,€),1U2)|d8d€d7'
t

= §MLQ sc€Moe(t7t0) (1 — 1) 2dyy (w1, wo) .

Thus, combining these estimates together we have

(| Pt (¢, to)u, — PV2(t, to)Uo||L1(J1;R+)

(89
< [MLR+Qp+ SMpQoo(t — to)] eMeelt=to)dyy (wy, ws) . )

Due to the assumption u, € D, we have Huo\|L1(R+;R) < R. Hence, substituting (85) and (89) into (81), and
as (t —t,) < T, we get

dz,{ (Pwl (t, to)um pv2 (t, to)uo) < Cw (t - to)dw (wl, ’wg) (90)
where Cy, is as in (28), as required. [

Proof of Proposition 6. For fixed ¢, € I, u, € U, and w € W, define by I, u, w,) : {(5,50) € [to, T]?
5> 8of x U — U to be the process with s = II(, v, w,) (S, 50)po being the solution of

Op + 0y (v(t,x) p) = m(t,z) p+ q(t, x) (t,z) € [s0,T] x Ry
p(t,0) = bo(1) { € [50,T] (91)
(S0, ) = po(z) reRy

with m and ¢ the given by (31). For notational simplicity, we write II(;, y,w,) = II when the (t,,uo,w,)
when no confusion arises.

The mapping I7 is Lipschitz continuous with respect to time and initial data, for some constant £ > 0,
as m and ¢ satisfy correspondingly (BP2) and (BP3), which do not explicitly depend on w.

By this construction, ¢+ ITs, v, w,)(t, to)uo is the solution of (30).
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From [20, Theorem 2.9], we have

HU( H(to Umwo)(t t uo"Ll(R+,R)
< L »/;,o lim infh_>0+ h HU' T+ h) H(tmumwo}(T + h‘ T HLl (R4;R) dr
= L[ iminfyoor §|Po(T+ by T)P(T o) (o, wo) = it ugang) (T + B T)u(T) || L1 g, gy A7

Thus it suffices to show, for any 0 < t, < 7 € [0,T], that

I%LrglnffH]ﬂ (T4 h, 7)P(T,t0) (U0, wo) — H(to Uo, wo)(7+h T ||L1(]R+ iR) =0.

The tangency condition (11) ensures that

i _ pPa(7,to)(uo,wo) g @
=[P+ ) - R (7 + hyu(r) . 0(1)/0 dé =0

£

as h — 0.
Further, it can be shown, using formula (77), that

HPPQ(T’t°)(“°’w")(T + T u(r) = ity upw0) (T + B 7)“(7)‘ <omn,

L1(R4R)

with the constant O(1) depending on the constants laid out in (BP1)-(BP4), R and T'. Thus this also
converges to zero as h — 0, completing our proof. [J

5.4. Proofs for Section 3.4
Lemma 4. The mapping p defined by (35) in Proposition 8 is narrowly continuous.
The proof is in [19].
Proof of Proposition 8. The Narrow Continuity: This is a consequence of Lemma 4.
Distributional Solution: To simplify calculations we define, for a test function ¢ € (C* VW) ([t,, T] x

R;R),

Icp(lu“v ’LU) = /]R (at(p('v 1‘) =+ b(’ Hy w)(:c)@xgp(, $) - C('r 122 ’LU)(ZE)(,O(, .17)) d:u('v ZC)

+/]R+ </R+ @('7x)d[77('aﬂ7w)(y)](x)> du(-,y).

By a density argument, it suffices to check the integral equality in Definition 8 for ¢ € CL([t,, T] x Ry;R).
We discretize the time domain. For a spacing k& € N, and ¢ = 0,...,k, we introduce the grid points
t; =to + Z(T to) and the associated (fii, ;) = P(ti—1,10)(Uo, w,). We then split the integral,

T
/t T, (P(t. 1) (o w,)) dt

kot
> /t (2 (P(t, tim1) (i, @) — T (F(E — i, i) (s, @0)) ]t (92)
- Aq,i(t)
koo
+Z/t Ty (F(t—tim1,ti—1)(fla, w;)) dt . -

Ag i (t)
28
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Our first goal is to demonstrate that (92) vanishes in the limit k& — oo. Focusing on A; ;, we split the

integral to get

Aq i (2)
=/ Ovp(t, ) d(Pr(t, ti1) (i, i) — Fi(t — tio, tio1) (fli, wi)) (@)
+ A b(t, P(t,ti—1)(fii, w;)) (2)0up(t, x) dP1(t, tim1)(fli, Wi) ()

—/ b(t, F(t — ti—1,ti—1)(fLs, ;))(2)Opo(t, ) dFL(t — ti_1,ti—1)(fis, Ws) ()

+ [ elt, F(t —ti—y, tio1) (i, w3)) (2)@(t, @) A (t — ti—1, ti—1) (fis, W;) ()

Ry
/R c(t, P(t, ti—1) (g, w;))(z)p(t, ) APy (¢, ti—1) (i, ;) ()
+/R+ (/ ) dln(t, P(t,ti—1)(jis, ws))(y)] (96)> APy (t,ti_1)(fig, ;) (y)

- (/ o(t,x) dn(t, F(t — ti1, tim1) (i, i) (y)] ($)>
Ry \JR,
dFy (= tio1, tio1) (fi, W) (y) -
We now deal with each of these terms separately. To simplify the notation we will set

Pi(t) = (ni,p(t),wip(t) = Pt ti—1)(fis, W),
Fi(t) = (ni,r(t),wir(t) = F(t—ti—1,ti—1)(jis, W)

We will make extensive use of the relation (11), which gives

21 it (g
APO.F0) < pgt—to) [ S

for L as in (16). For (94),

Ovp(t, ) d(pi,p(t) — pir(t)) (z)

A < N0ellwr.oo r ry@m (i, p(t), i, (1))
+

QL t—t; 1 w 5
S HatSDHWI,oo(R_’_;R)E(t *ti_l)A ?dg .

Next, for (95), calling Ly = supco,r),wew LiP(b(t, -, w)),

/}R b(t, Pi()) (2)uip(t ) dsi p(t) () — / b(t, Fi(1))(@)Bsp(t, ) dps (1) ()

Ry

/R [b(t, Pi(t))(x) = b(t, F'(t,ti1) (s, ) ()] Dp(t, ) dpsi p(t) ()

+ b(t, Fi(1))(z)0xp(t, ) d (pi,p(t) — pi,r(t)) (z)

Ry

~ 2L t=ti—1 , ¢
< 10x@llwr.oo gy ) (R Ly +RL+B)E(75 —ti—1)/0 é)df .

29



R.M. Colombo, M. Garavello and M. Tandy Nonlinear Analysis 232 (2023) 113290

Repeat the same calculations for (96) and set L. = sup,¢o, 1),wew LiP (c¢(t, -, w)),

/R (b, Fi(0) (@)p(t, ) dws p(t)() — / (b, P(0) (@)p(t ) dps p(£) ()

Ry
2D it ()
< lellwnwqu, o (RLe+ RE+ ) pgtt—tin) [ 28 ae.

Finally, for the term (97), we find

/R ( / o(t, ) d[n(t,m))(y)](m)) dpsa.p (D) (1)

- / ( / o(t,2) d[n(tFi(t))(y)](x)) dwi,w)(y)\
w()

) R 2L t—t;—1
§||<PHWI,°0(R+;R)R sup Lip(n(t,-,w))+ L+ FE m(t_ti_l)/o N d¢.

tef0,T]
weW

Combining these four estimates together, we have for a constant C, independent of k,

k t;
Z/ Ay () dt
i=1“ti—1

<c§_;(t;1)/o © 9 e 0 as ko oo

§
Now,
Ao i(t) =Ly (F(t — tiz1,tio1)(fi, 0i))
=Ty (pi,r(t), w;)
Jr/]R (b(t, pi,p(t), wi,r (1)) () — b, i, (1), 0:)(2))0up(t, ) dpi,r(t)(x)
+/ (c(t, pi,r (), Wi)(x) — c(t, pi,m (t), wi m (8)(2))p(t, ) duir(t)(7)
Ry

«/ ( [ et dinte e ). () 0) - n(t,ui,ﬂw,wi)(y)ux)) dp, (1) ()

and hence

A27i(t) < I@ (,ui’F(t), IT}Z')
2L w(§)

~ t—t;_1
+ LR (2l gtoo. 20 + 1008l gy, ) g (= i) / Tede (o0)

The second term will thus converge to zero in the summation. Hence we concentrate on the summation of
the first term.
In the next calculation, we will use the fact

/R (T, 2) A (T) — Py (T, 1) (100 0,)) ()

= /]R (p(T7 .T) d(F1 (T — tkfl, tkfl)P(tkfl, to)(um ’LUO) — P1 (T, tkfl)P(tkfl, to)(um ’LUO)) (.’L‘)

T—t,
QLT —t, [TF  w()
< ||80(T)le,oo(R+;R)E A /0 T dé — 0, as k — oc.
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Focusing on the summation of the first term in (100)

Z / (o (1), 00) dt (/Mso(ti,x)dm,fw(ti)(z)— A+w<ti_1,x>dai<x>>
P(T.2) dur (D)) = [ oto2) duola)

Ry

I
E

=1

Ry

k
3 ( / ot ) d(ps p(t:) — ml)(x))
— / (T, ) d(Py (T 1) (119, 10,)) (&) — / o(tor z) do(z),

k—4oc0 R+

where we use that

’f ) oL [TF w(e)
Z (/R+ o(ti, o) d(pi,r(ti) — Mz‘+1)($)> < llellwa, 1% (R4 5R) IHZT/O e dg k_)_+>oo 0,

i=1

completing the proof. O

5.5. Proofs for Section 3.5

Proof of Proposition 10. We assume for simplicity that both processes P and P" share the same
constants Cy,, Cyy,, Cy in (12)—(13)—(14).

The properties of P ensured by Theorem 2 show that P, € CO([t,,T];L*(R";R)) as required by
Definition 9.

Introduce the following notation. For any k € R and ¢ € Cgo(f x R;R, ), denote

T () = / [ — k] o + a1 (1 w) Doip] d
R

Qk(ua w) = Sign(u - k) (f(u7w) - f(kvw)) .
Fix N € N\ {0} and, for every i € {0,..., N}, define t; = t, + i1 and, for t € [t;_1,T],

) (1, ;) = P(ti—1,t0)(Uo, wo) ,
Pi(t,z) = (uip(t,2),wip(t) = P(t ti—1)(@; ,ﬁ) (@), (101)
Fi(t,x) = (up(t,e),wir(t) = (P (ttio1)@i(z), PY (t,ti-1) @) -

We now prove in 2 steps that

/t Ty (P (b t0) (10, 0,)) dt > / Py (T 1,) (0, w0) — k| (T, ) d

(102)
/ luo(x) — K| (0, 2) da
Step 1: We prove the inequality
T N t;
/ T, k(P (t10) (t0rw0)) dt > limsup 3 / T (e (£), ;) dt (103)
to N—too i3 Jt;

To this aim, write

T
/t Lo k(P (t,t0) (o, w,)) dt —/t /|P1 (t,to) (o, wo) () — K|Oyp(t,x)dx dt  (104)
/ /qk (t,t0) (Uo, wo)(x)) Opp(t, x) da dt (105)
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We proceed towards the estimate of (104). For every ¢ € {1,..., N} and k € R, using (11) with
L and w given by (16), we have

[lui,p(t, x) — k|Owp(t, ) — |ui p(t, ) — k|Ovp(t, z)] da dt

ti—1

t
< / / s, p (£, 7) — i, (t, 2)|Briplt, @) da b
ti—1 JR

T—to

N w(©)

L (T—t,)°
n(2) T"aﬁDHLW([tO,T]X]R;R)/O

de.

Therefore, the term (104) is estimated as:
T
/ / |P1 (t, to) (um wo)(x) - k‘ 6t<,0(t, Z‘) dz dt
to JR
N .
= Z/ / |us,p(t, ©) — k| Oip(t, x) do dt
i=17ti-1 /R
N t;
> Z / / |ui,p(t, ) — k| Opp(t, x) do dt]
i—=1 ti—1 /R

- T—tg
L (T—t,)? w(©)
“W@) N 106l 00 (10,71 x R5R) /0 N dg

and the last term converges to 0 as N — 4o00. Thus, the term (104) is estimated as follows:

[(104)] > lim sup / / luim(t,x) — k| Opp(t, x) dz dt . (106)
N~>+ooi 1 ti1

We pass now to the term (105). For every ¢ € {1,...,N} and k € R, since g; is Lipschitz
continuous [27, Lemma 3] and using (11), Ly from (CL2), L and w from (16),

/Z 1/% (t, @) Opp(t, ) da dt—/ /Qk wi.p(t, ), ;) Opp(t, ) dz dt

2L )
Lfl ( ) H iE(pHL”(m,, ]XRR)/ (t_ti—l)/ f df dt

ti_1 0

—|—Lf/ / |ui,p(t, ) — k| - dy(w; p(t), w;) - |0pe(t, x)| do dt
t; R
' T—t,

N

2L w(8) 4o | T —to)’
||83?<)0HL°°([150,T]><R;]R) (Lf Ot(R+ k) + 1n(2) /0 3 df) N2 ’

<

Ly
2
Therefore, (105) is estimated as
T
[ [ (P ltste) (o) ) Brip(t ) s
to JR
N t;
> Z/ / qr(us p(t, ), W;) Opp(t, x) da dt
i=1/ti-1 /R

Lf 2L N
- 7||8$50||L°°([to,T]><R;R) (Lf Ct(R+ k) + 111(2) /0
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and the last term converges to 0 as N — +oo. Thus,

[(105)] > hmbupZ/ /qk ui,p(t, ), w;) Opp(t, x) de dt .

N—+o00 i=1

Combining (106) and (107), the proof of Step 1, namely (103), is completed.
Step 2: Now we prove that

Sy g

> [ 1P t0) 0, 100) () = H AT, ) do = [ fuo(a) = bl (8 2) d

(107)

(108)

Fix ¢ € {1,...,N}. For ¢ > 0 sufficiently small, consider x. € C&° (Jt;—1,t;[; [0,1]) such that x.(¢t) = 1 for
t € [ti—1+e,t; —¢] and define . = ¢ xc. Then, by Definition 9 and the choice of ., we have that for every

€ > 0 sufficiently small, .
/ I%’k(ui,p(t,x),wi)dtz 0
ti—1

This implies that

t; t
/ T (s (1), i) dt > / To (g (1), i) dt

ti—1 ti—1

t;
- / / s p (£, 2) — K|Os (0 — ) (t,0) da dt
ti—1 JR

t;
#[ [t (t). @) 0.0 - po(t0) do
ti—1 JR
for every € > 0 sufficiently small. Moreover the continuity in time of u; 7 implies that

lim [(109)] = / lwi,p (6, ) — k| o(t;, ) do — / |us, p(tiz1, ) — klo(ti—1,z) do,
R R

e—0t

while, by the Dominated Convergence Theorem, we deduce that

e—0t e—0t

lim [(110)] = lim / /q;c (us, p(t, ), W;) Ox (0 — @e)(t,x) dz dt = 0.

Therefore, we get

t;
/ I%k(ui_p(t),ﬁ}i) dt

ti—1

Z / |ui}F(ti,a:) —k’l(p(ti,.ﬁ)d.’lﬁ—/|ui)F(ti,1,.’13) —k|g0(ti,17.’17) d$
R

R
Summing over i, we obtain that

N t;

Z / T (e (£), 0,) dt
> Z/|U1F (tiyx) — k| p(t;, ) dx— /|ulp i-1,2) — k|l o(ti—1,2) dz
— [ lux.p(T2) = k(T ) do - / () — k] (t,2) da

R R

N—-1
£y / (e (b1, 2) — K] — Jugsn p(t @) — ) ot ) de
i=1 /R

33
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We now estimate the first term in (111):
[ v (T) = b p(Tx) do = [ PT ) 0 10,)(0) — bl (T, )
R R
= / (T = tn -1y tv ) (an -1, On 1) (@) = k| = | Po(T) to) (o, wo) () — k) (T, ) d
R

and, using L and w as in (16), we get

/R (LT = tn 1y tn 1) (@ -1, D) (@) = K[=[PL(T o) (U0, wo) (x) — k) (T, ) da

IN

/R IFu(T — tr, Ex ) Pty 1, o) (ti0r w0) (2)
—Pi(T,tn-1)P(tn—1,t0)(to, ws)(T) ‘(p(T, x) dx

O T—t, [N w(€)
W@ N S o€

—0 as N — +oco.

We now estimate (112) using (101) and (11)
N-1
> [ lueltis) = bl = fuise(tin) = Hl| olts, ) da
i=1 /R

N—1
< 3 [ i (tno) — v elts )] ot ) do
i=1 VR

N-1

< lelleee oo rixrm) Z | P (bt )it — Pl(ti;ti—l)aiHLl(R;R)
i=1
2L (T_to)/N w(T)
< EH@”Lm([tmT]Xﬂg;R)(T—to)/o TdT

—0 as N — +o0.

The obtained estimates for (111) and (112), as N — 400, proved Step 2, namely (108). O
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