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Abstract

With the recent success of artificial intelligence in neuroscience, a number

of deep learning (DL) models were proposed for classification, anomaly detec-

tion, and pattern recognition tasks in electroencephalography (EEG). EEG is a

multi-channel time-series that provides information about the individual brain

activity for diagnostics, neuro-rehabilitation, and other applications (including

emotions recognition). Two main issues challenge the existing DL-based model-

ing methods for EEG: the high variability between subjects and the low signal-

to-noise ratio making it difficult to ensure a good quality in the EEG data. In

this paper, we propose two variational autoencoder models, namely vEEGNet-

ver3 and hvEEGNet, to target the problem of high-fidelity EEG reconstruction.

We properly designed their architectures using the blocks of the well-known

EEGNet as the encoder, and proposed a loss function based on dynamic time

warping. We tested the models on the public Dataset 2a - BCI Competition

IV, where EEG was collected from 9 subjects and 22 channels. hvEEGNet

was found to reconstruct the EEG data with very high-fidelity, outperforming

most previous solutions (including our vEEGNet-ver3 ). Furthermore, this was

consistent across all subjects. Interestingly, hvEEGNet made it possible to dis-
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cover that this popular dataset includes a number of corrupted EEG recordings

that might have influenced previous literature results. We also investigated the

training behaviour of our models and related it with the quality and the size

of the input EEG dataset, aiming at opening a new research debate on this

relationship. In the future, hvEEGNet could be used as anomaly (e.g., artefact)

detector in large EEG datasets to support the domain experts, but also the

latent representations it provides could be used in other classification problems

and EEG data generation.

Keywords: EEG, VAE, variational autoencoder, latent representation, motor

imagery

Highlights

• dynamic time warping helps variational autoencoders learn time-series

• hierarchical VAE allows for high-fidelity reconstruction of EEG data

• hvEEGNet effectively learns latent representations of multi-channel EEG

data

• input data, including quality and individual variability, affects model’s

training

• dataset 2a is corrupted by acquisition problems, causing models’ failures

1. Introduction

The first quantitative analysis of an electroencephalography (EEG) signal

dates back to the pioneering work of Hans Berger that, in the late Twenties

(1929), took a Fourier transform of an EEG signal to quantify the spectral

distribution of the brain activity under different physiological and stimulation

conditions [Berger (1929)]. Since then, a vast literature flourished and obtained

very successful achievements in the modeling and classification of EEG data for

different clinical and research applications [Teplan et al. (2002)]. From the very
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first quantitative Berger’s analyses, a number of different methods were pro-

posed, with machine learning (ML)-based models reaching the highest popular-

ity for, e.g., pattern recognition, classification, and compression tasks [Hosseini

et al. (2020)]. Among many others, the classification of motor imagery (MI),

i.e., the brain activity corresponding to the imagination of moving one specific

body segment, has been largely used in basic neuroscience to understand brain

mechanisms [Kaiser et al. (2012)], as well as to drive brain–computer interface

(BCI) systems [Kodama et al. (2023)] and robots [Beraldo et al. (2022)] to

support neuro-rehabilitation.

Despite the large body of literature already produced, EEG modelling still

suffers from three major issues: (1) this particular time-series has a very fast

dynamics (in the range of milliseconds) making it prone to interferences from

many possible sources of noise, (2) it displays a high inter-subject as well as an

inherent within-subject variability, and (3) when used in more ecological envi-

ronments, poor reliability is often a problem. Standard ML models proved to

be relatively good in several tasks [Hosseini et al. (2020)], but they still lack the

flexibility to generalize over different subjects or sessions, due to the rigid fea-

ture extraction step which is typically performed based on a-priori knowledge of

the domain experts, or some simple (first or second-order) statistical description

of the data. Also, there is still no gold-standard pre-processing to be applied.

Finally, when models are embedded on portable and lower-quality EEG devices

for usage in more ecological settings, e.g., in new Internet of things scenar-

ios [Munari et al. (2023)] for continuous monitoring, their performance rapidly

degrade [Anders & Arnrich (2022)]. Nonetheless, the state-of-the-art (SOTA)

solutions for several processing tasks in EEG are still based on standard ML.

More recently, deep learning (DL)-based models have been increasingly em-

ployed and could often outperform the SOTA methods. As an example, in the

case of MI, filter-bank common spatial pattern (FBCSP) has been employed as

a reference method for years [Ang et al. (2008)]. However, the so-called EEG-

Net DL-based architecture, proposed in 2016 [Lawhern et al. (2016)] and its

later variants were able to achieve higher performance, with less pre-processing
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effort and no a-priori knowledge needed [Zancanaro et al. (2021)]. Nevertheless,

the investigation on the potentialities of new architectures is still open [Lotte

et al. (2018)]. A critical issue in these methods is the dependency on the train-

ing set, as Gyori et al. (2022) recently pointed out in the domain of magnetic

resonance imaging data: a training dataset of poor quality, as well as a train-

ing set distributed in a non-representative way might induce biases in the final

model and, consequently, to poor results in the task the model is expected to

perform e.g., classification or anomaly detection. At the same time, in the neu-

roscience domain it is fairly difficult to certainly exclude the above-mentioned

conditions [Pion-Tonachini et al. (2019)].

Then, to enhance models’ capability in classifying, recognising anomalies

as well as automatically denoising large EEG datasets, training a DL model to

optimally reconstruct EEG data and to provide an effective latent representation

has been recently recognized by the literature as an effective pre-processing step.

In this paper, we propose vEEGNet version 3 (vEEGNet-ver3) and hier-

archical vEEGNet (hvEEGNet), two DL-based models consisting of a varia-

tional autoencoder (VAE) architecture that aims at reconstructing the EEG

data with high-fidelity. In this process, a latent representation is obtained,

which could then be used, e.g., to train a classifier or to generate new data

samples. More specifically, vEEGNet-ver3 is an improvement over our previous

architectures [Zancanaro et al. (2023, under review)] with a significant modifica-

tion of the loss function, while hvEEGNet represents our best model consisting

in a hierarchical version of the VAE which allowed us to achieve almost perfect

reconstruction of the EEG data.

2. State of the art

To contextualize our study, we report here that related work that addressed

both the reconstruction of EEG signals via DL, with the extraction of a latent

representation for this kind of data, and those which proposed autoencoder

models to detect anomalies in EEG data.
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One of the most interesting works on the topic is Bethge et al. (2022), where

the authors proposed EEG2VEC, i.e., a VAE-based architecture developed to

encode emotions-related EEG signals in the latent space of the VAE. The au-

thors succeeded in reconstructing low-frequency components of the original EEG

signals by using the VAE latent representations. Unfortunately, the higher fre-

quency components could not be reconstructed. Moreover, the reconstructed

signals appeared to be largely attenuated (with amplitudes often in the or-

der of half the original one). According to the authors’ explanation, this can

be due to the particular design of the decoder which might have introduced

aliasing and artefacts. These results are in line with those we found in our

previous work [Zancanaro et al. (2023)]: we proposed a new DL-based archi-

tecture named vEEGNet-ver1, where we used EEGNet (a popular architecture

that has tailored a convolutional neural networks (CNN) to specifically process

EEG data [Lawhern et al. (2016)]), as an encoder and its mirrored architecture

as decoder in a VAE model. We evaluated its classification and reconstruc-

tion performance on a public dataset (containing MI-related EEG data) and

found that only low-frequency components could be recovered, while achieving

state-of-the-art performance in classification. In contrast with Bethge et al.

(2022), we were able to explain this sub-optimal behaviour as the clear effect

of the filters applied at the first block of the architecture: they simply have

the effect of smoothing the signal, so that the information related to higher

frequency components is not further propagated along the DL network, thus

making them not available anymore for the reconstruction. Nevertheless, we

recognized the reconstructed low-frequency component as the motor related cor-

tical potential (MRCP), a well-known neurophysiological behaviour associated

with movements initiation [Bressan et al. (2021); Ofner et al. (2019)]. In Al-

Marridi et al. (2018), the authors implemented a convolutional autoencoder to

compress and reconstruct MI-EEG signals (from two public datasets, including

the one used in our own work). They evaluated the trade-off between the com-

pression ratio, computed as the ratio between the size of the raw signal and the

size of the autoencoder latent representation, and the reconstruction quality,
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measured in terms of percent root mean square distortion (PRD). The authors

proved the good ability of the convolutional autoencoder to reconstruct single

channel EEG signals with a relatively high compression ratio, e.g., compression

ratio up to 98% with PRD of 1.33%. However, the authors did not discuss about

the quality of the dataset and reported representative performance, only. Thus,

no further insights on the relationship between model training, reconstruction

performance and input data quality can be retrieved. Dasan & Gnanaraj (2022)

proposed a multi-branch denoising autoencoder to jointly compress EEG-ECG-

EMG signals, assuming them acquired in a mobile-health scenario with the aim

to ensure continual learning, i.e., continuous fine tuning using incoming data

during real-time health monitoring. Each signal modality (EEG, ECG, EMG)

was independently pre-processed, and then a joint latent representation was

obtained to compress the signals. The authors showed the trade-off between

compression ratio and reconstruction quality using three (independent) public

datasets. They provided an example of reconstructed EEG, EMG, and ECG

signal, where the reconstruction appeared to be very reliable. However, the

targeted EEG signal was acquired from one only sensor using a portable device,

i.e., the signal was of low quality and poorly variable, thus most probably mak-

ing the reconstruction easier. Finally, they used different metrics to quantify

the quality of the reconstructed signal, e.g., the reconstruction quality index.

However, it was defined w.r.t. the compression ratio, thus not applicable to

other reconstruction-targeting scenarios. Khan et al. (2023) used a shallow au-

toencoder to obtain an encoded representation with low dimensionality (8 to 64)

of a single-channel EEG data to be used in the classification of epileptic versus

healthy EEG data (using a k-nearest neighbors (kNN) and a support vector ma-

chine (SVM) classifier and a public dataset [Tran et al. (2022)]). They achieved

very high values for the accuracy (over 97%), with very high sensitivity (mostly

over 96%) as well as specificity (over 96%). Also, the reconstruction quality

was showed in two representative EEG signals, with very high fidelity. Unfor-

tunately, the authors did not report the power spectrum of the original EEG

signals, thus making it difficult to fully ensure a reproducibility of these good
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performance on other, more complex (i.e., with larger bandwidth), EEG data.

Also, the proposed architecture was proved to be very efficient in a channel-wise

reconstruction: nevertheless, in many applications, multiple channels should be

processed altogether. Then, further investigations should be needed to explore

a more compact solution to obtain an encoded representation from all available

EEG channels.

Moreover, autoencoders offer the inherent possibility to be used as anomaly

detectors [Pang et al. (2021)]: in fact, they are trained, in an unsupervised way,

to learn the distribution of the normal data that corresponds to the optimal

reconstruction performance. After training, the model is used to reconstruct any

new sample: when the latter is sufficiently out of the expected distribution, the

model shows a large reconstruction error, signalling an anomaly. Autoencoders-

based anomaly detection has been proved effective also for EEG data, when the

latter are affected by different kinds of pathologies. In Emami et al. (2019a),

an autoencoder was used to detect epileptic seizures on a private dataset with

24 subjects [Emami et al. (2019b)]. To identify anomalies they set a threshold

on the reconstruction error and the EEG samples exceeding it were labelled

as anomalous. A 100% accuracy in seizure detection could be obtained in 22

subjects out of 24. In Ortiz et al. (2020), the authors used an autoencoder-based

architecture to detect dyslexia on a public dataset [De Vos et al. (2017)]. They

first extracted a number of EEG features (in time and frequency domain), and

then trained an autoencoder to reconstruct the time-series of such features. The

difference, i.e., the residual, between the input and the reconstructed time-series

was used as to feed an SVM classifier, aimed at distinguishing between healthy

and dyslexic individuals. This solution achieved an accuracy of 96%, sensitivity

of 86%, specificity of 100%, area under the curve (AUC) of 92%. In both cases,

the model training relied only on data from healthy and clean EEG data. After

training, the EEG samples corresponding to the largest reconstruction error

values were labelled as anomalous.

However, in the case of EEG data, the definition of normality can be very

challenging: it is fairly difficult to have a certified clean dataset, even though the
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subjects are healthy. In fact, an EEG sample could be considered as anomalous

both for the presence of a pathology, but also because of any noise and interfer-

ence that might occur during recordings (e.g., the so-called artefacts) [Gabardi

et al. (2023)]. Therefore, it would be more realistic to train an autoencoder

model on a mixture of clean and noisy data, in line with some other literature

(not necessarily addressing biological data). For instance, in Zhou & Paffen-

roth (2017), the authors proposed a robust autoencoder, i.e., a combination of

a robust PCA (RPCA) and an autoencoder, where the autoencoder was used

for data projection in the (reduced) principal components space (in place of the

usual linear projection). Unfortunately, there is a limited literature on this kind

of autoencoders, as confirmed by a recent survey [Al-amri et al. (2021)]. In Xing

et al. (2020), the authors proposed a combination of an evolving spiking neural

network and a Boltzmann machine to identify anomalies in a multimedia data

stream. The proposed training algorithm was able to localize and ignore any

random noise that could corrupt the training data. Wambura et al. (2020) sug-

gested to jointly use a CNN and a long-short term memory (LSTM) to forecast

future trends and reconstruct past trends of different types of data stream. They

were able to accurately predict time-series related to three real-world scenarios,

i.e., web traffic in Wikipedia, price trends of the avocado fruit, and temperature

series in a city. In Dong & Japkowicz (2018), a model composed by an ensem-

ble of autoencoders was employed to identify anomalies in data streams. The

authors claimed that the training algorithm made the presence of noisy samples

in the training data not statistically significant, thus ensuring model’s robust-

ness to noise. In Qiu et al. (2019), an architecture made by the sequence of a

CNN, an LSTM, a feed-forward neural network (FFNN), and a softmax layer

was proposed to identify anomalies. Interestingly, a VAE was preliminarily used

to over-sample the dataset, before training the classifier (i.e., the FFNN with

the softmax layer). The model was tested on the AIOps-KPI public dataset [Li

et al. (2022)], achieving an accuracy of 77% (KP1), 75% (KP2), 83% (KP3),

and 75% (KP4).

Nevertheless, to the best of our knowledge, this kind of approaches has never
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been applied to EEG data, yet.

Another body of literature presents DL architectures that are not specifically

targeted to reconstruct EEG data, but to extract, via autoencoders, the most

relevant features to improve classification. In Qiu et al. (2018), the authors

proposed a denoising sparse autoencoder, i.e., an autoencoder that imposes a

sparsity condition on the latent space, as a feature learner and then used the

learnt representation as the input of a linear regression model to detect different

types of epileptic seizures. They successfully tested their solution on a public

dataset [Andrzejak et al. (2002)] to classify either two EEG classes, i.e., healthy

vs epileptic, or three classes, i.e., healthy, ictal and inter-ictal EEG data (in both

cases, the reported accuracy was 100%). In Wang et al. (2020), an EEGNet-

based autoencoder was employed as a feature extractor from a high-density

EEG device aimed at acquiring evoked potentials [Lascano et al. (2017)] during

a repeated pain stimulation with a laser at different energy levels. Here, the

authors opted for an intense pre-processing which included a filtering step in

the frequency range 1 to 30 Hz, segmentation in 1.5 s-epochs, each one taken

from 0.5 s before the stimuls until 1 s after it, baseline correction (using the

pre-stimulus period as the baseline), independent component analysis (ICA)

decomposition to remove eye-movement related artifacts, and down-sampling

from 1000 to 250 Hz. The features extracted from the autoencoder fed four dif-

ferent ML classifiers, i.e., a kNN, a SVM, a linear discriminant analysis (LDA),

and a logistic regression model, with the aim of detecting 10 levels of pain.

Interestingly, several latent space sizes were tested, and the size of 64, used

with a logistic regression classifier, resulted as the best solution. An accuracy

of 74.6± 11.2% was obtained (with a chance level of 10%), thus largely outper-

forming the alternative solution using principal component analysis (PCA) as

feature extractor (accuracy equal to 59.9±19%). In Liu et al. (2020), a CNN was

used as feature extractor from EEG, i.e., the output of the network was used

to feed an autoencoder with the goal of compressing and reconstructing the

original EEG data. The CNN and the autoencoder were trained together, with

the autoencoder forcing the CNN to extract the most significant features. After
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training, the obtained features were fed to a FFNN that acted as a classifier

and it was separately trained. They tested the model on the DEAP [Koelstra

et al. (2012)] and the SEED [Zheng & Lu (2015)] public emotions-related EEG

datasets. In the DEAP dataset, they achieved an accuracy of 89.49% in the

valence category and an accuracy of 92.86% in the arousal one (each category

has 2 labels, high and low). For the SEED dataset, they achieved an accuracy

96.77%, on the 3 classes of the dataset (positive, neutral, negative).

Thus, some fundamental challenges still emerge from the SOTA review to

be solved including (1) high reconstruction error or generation of traces that

are not faithful to the original signal, (2) lack of focus on the reconstruction

even if the architecture have the capacity to favor classification taks, and (3)

no dedicated investigations on the impact of the input EEG data quality on the

training of DL models.

3. Materials and Methods

In this section, we present the basic modules as well as the overall architec-

ture of our proposed models, i.e., vEEGNet-ver3 and hvEEGNet. Furthermore,

we describe the metrics and the methodologies we employed to evaluate our

models.

Variational autoencoder

The common overall architecture of our both models is the VAE.

Unlike traditional autoencoders, i.e., producing a deterministic encoding for

each input, VAE is able to learn a probabilistic mapping between the input

data and a latent space, which is additionally learned as a structured latent

representation [Kingma & Welling (2013, 2019)]. Given the observed data x

and assuming z to be the latent variables, with a proper training, a VAE learns

the variational distribution qϕ(z|x) as well as the generative distribution pθ(x|z),

using a pair of (deep) neural networks (acting as the encoder and the decoder),

parametrized by ϕ and θ, respectively [Blei et al. (2017)]. The training loss
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function, denoted as LV AE , accounts for the sum of two different contributions:

the Kullback-Leibler divergence between the variational distribution qϕ(z|x)

and the posterior distribution pθ(x|z), denoted as LKL, and the reconstruction

error, denoted as LR, which forces the decoded samples to approximate the

initial inputs. Thus, the loss function adopted for the VAE is

LV AE = LKL + LR = −KL[qϕ(z|x)||p(z)] + Eq(pθ(x|z)) (1)

where µi and σ2
i are the predicted mean and variance values of the corresponding

i-th latent component of z. Assuming normal distribution as a prior for the

sample distribution in the latent space, it is possible to rewrite eq. 1 as follows

LV AE = −1

2

d∑
i=1

(σ2
i + µ2

i − 1− log(σ2
i )) + Eq(pθ(x|z)) (2)

where µi and σ2
i are the predicted mean and variance values of the correspond-

ing i-th latent component of z.

In this work, we adopted this basic architecture to propose vEEGNet-ver3.

The details characterizing our specific VAE are reported in Section 3.1.

Hierarchical VAE

A hierarchical VAE [Vahdat & Kautz (2021)] is the evolution of a standard

VAE enriched by a hierarchical latent space, i.e., multiple layers implementing

a latent space each. In fact, standard VAEs suffer from the lack of accuracy in

details reconstruction, given by the trade-off between the reconstruction loss and

the Kullback-Leibler divergence contributions, thus generating the tendency to

generate slightly approximated data (e.g., blurred images), only. Hierarchical

VAEs attempt to solve this problem by using multiple latent spaces, where each

of them is trained to encode different levels of detail in the input data. Assuming

a model with L latent spaces, its loss function can be written as

LHVAE = LKL + LR (3)

where

LKL = −KL[qϕ(z1|x)||p(z1)]−
L∑

l=2

KL[qϕ(zl|x, z<l)||p(zl|z<l)], (4)
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with qϕ(zl|, z<l) =
∏l−1

i=1 qϕ(zl|x, z<i) as the approximate posterior up to the

(l−1) level and the conditional in each prior p(zl|z<l) and approximate posterior

qϕ(zl|x, z<i) is represented as a factorial normal distribution. The symbol z<i

is taken from the original paper [Vahdat & Kautz (2021)] and it means that the

random variable is conditioned by the output of all latent spaces from 1 to i.

In this work, we adopted this basic architecture to propose hvEEGNet. The

details characterizing our specific hierarchical VAE are reported in Section 3.2.

3.1. vEEGNet - ver3

Fig. 1 represents the schematic architecture of this simple VAE model. As

any conventional VAE, it consists of an encoder, a latent space, and a decoder.

Figure 1: Schematic architecture of our model called vEEGNet-ver3. The encoder block is

formed by three blue diamonds representing three different processing layers: i.e., Te stands

for temporal convolution, Sp stands for spatial convolution, and SC stands for separable con-

volution. The decoder block includes three green diamonds representing the same operations,

in the reverse order. z0 represents the latent space.

However, inspired by the work of Lawhern et al. (2016), we designed the

encoder as the popular EEGNet architecture, i.e., with the three processing

blocks: in the first block, a horizontal convolution (that imitates the conven-

tional temporal filtering) is followed by a batch normalization. In the second

block, a vertical convolution, acting as a spatial filter, is applied. This operation

is then followed by an activation and an average pooling step. The third, and

last, block performs a separable convolution with a horizontal kernel, followed

by an activation and an average pooling step. We always used, as in Lawhern
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et al. (2016), the exponential linear unit (ELU) activation function. At the out-

put of the third block, the obtained D×C×T tensor is further transformed by

means of a sampling layer which applies a convolution with a 1× 1 kernel, thus

doubling its depth size, resulting in a 2D × C × T tensor. Finally, the latter is

projected onto the latent space (i.e., of dimension N = D · C · T ). In line with

other previous works [Zancanaro et al. (2023); Kingma & Welling (2013)], the

first N elements of the depth map were intended as the marginal means (µ) and

the second N elements as the marginal log-variances (σ) of the Gaussian distri-

bution represented in the latent space. Then, to reconstruct the EEG data, the

latent space z0 is sampled using the reparametrization trick, as follows:

z0 = µ+ σ · N (0,1),

where N (0,1) is standard multivariate Gaussian noise (with dimension N =

D · C · T ).

To note, this architecture is very similar to other previous architectures

proposed by the authors in Zancanaro et al. (2023) and in Zancanaro et al.

(under review). However, it introduces a few significant novelties that leads

this new model to perform much better than the older ones. The most relevant

novelty is that the reconstruction error LR of the VAE loss function expressed

by eq. 1 was here quantified by the dynamic time warping (DTW) similarity

score [Sakoe & Chiba (1978)], i.e., replacing the more standard mean square

error (MSE). DTW leads to a more suitable measure of the similarity between

two time-series [Bankó & Abonyi (2012)], thus allowing the model better learn

to reconstruct EEG data. In fact, DTW is known to be more robust to non-

linear transformations of time-series [Huang & Jansen (1985)], thus capturing

the similarity between two time-series even in presence of time shrinkage or

dilatation, i.e., warpings. This cannot be achieved by MSE, which is highly

sensitive to noise, i.e., the error computed by MSE rapidly increases when small

modifications are applied to time-series.

In brief, given two time-series a(i) and b(j), where i, j = 1, 2, ..., T (i.e., for

simplicity, we consider two series with the same length), DTW is a time-series
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alignment algorithm that extensively searches for the best match between them,

by following a five-step procedure:

1. The cost matrix W is initialized, with each row i associated with the

corresponding amplitude value of the first time-series a(T − i+ 1), while

each column j associated with the corresponding amplitude value of the

second time-series b(j).

2. Starting from position W(0, 0), the value of each matrix element is com-

puted asW(i, j) = |a(i)−b(j)|+min[W(i−1, j−1),W(i, j−1),W(i−1, j)],

if i, j > 0, otherwise W(i, j) = |a(i)− b(j)|.

3. The optimal warping path is identified as the minimum cost path in W,

starting from the element W(1, T ), i.e., the upper right corner, ending to

the element W(T, 1).

4. the array d is formed by taking the values of W included in the optimal

warping path. Note that d might have a different (i.e., typically longer)

length compared to the two original time-series, as a single element of one

series could be associated with multiple elements of the other.

5. Finally, the normalized DTW score is computed as

score =

∑K
k=1 d(k)

K

where K is the length of the array d. To note, normalization was not

applied during the models’ training (to keep this contribution in the range

of the other loss function contributions). Whereas, during the performance

evaluation, we used the normalized score. Nevertheless, this difference did

not induce criticisms, as all segments share the same length.

Finally, the projection onto the latent space was also modified w.r.t. our

previous implementations: earlier, the tensor obtained by the convolutional

layers was flattened into a vector and projected through a FFNN into a 2N -size

vector, with N the dimension of the latent space. Then, the first N elements

were interpreted as mean values and the second N elements as the log-variance

values, respectively, of the distribution encoded in the latent space. Now, we
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apply a 1× 1 convolution to the output of the encoder, thus obtaining a depth

map whose first half is taken as the mean and the second half as the log-variance

of the distribution of the latent space.

3.2. hvEEGNet

As we observed sub-optimal reconstruction results with vEEGNet-ver3 and

in line with other literature on computer vision [Vahdat & Kautz (2021)], we de-

veloped a new architecture, called hvEEGNet, to overcome the remaining issues

of vEEGNet-ver3. The most relevant change in hvEEGNet w.r.t. vEEGNet-

ver3 is its hierarchical architecture with three different latent spaces, namely

z1, z2, and z3, with z1 being the deepest one. Each of them is located at the

output of each main block of the encoder, i.e., after the temporal convolution

(Te) block (z3), after the spatial convolution (Sp) block (z2), and after the sep-

arable convolution (SC) block (z1). The input to the decoder’s Sp block is now

given by the linear combination (i.e., the sum) of the SC block’s output and the

sampled data from z2. Similarly, the input to the decoder’s Te block is obtained

by the sum of the Sp block’s output and the sampled data from z3. Incidentally,

but significantly, it is worth noting that we kept here using the DTW algorithm

to compute the reconstruction loss LR (with reference to eq. 5). The main

structure of the model is depicted in Fig. 2.

Figure 2: Schematic architecture of our model called hvEEGNet. The encoder block is formed

by the same three processing layers (i.e., blue diamonds) as in vEEGNet-ver3 (Fig.1). The

decoder block includes three green diamonds representing the same operations, in the reverse

order. z1, z2, and z3 represent the latent spaces obtained at the three different processing

levels.
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Table 1 reports the details of both vEEGNet-ver3 and hvEEGNet architec-

tures.

vEEGNet-ver3 hvEEGNet
Parameters name

Kernel In. dep. Out. dep. Notes Kernel In. dep. Out. dep. Notes

Convolution 2d (1, 128) 1 8 Depth-wise convolution (1, 128) 1 8 Depth-wise convolutionFirst block

(temporal filter) Batch Norm 2d - - - Default parameters - - - Default parameters

Convolution 2d (1, 22) 8 16 Depth-wise convolution (1, 22) 8 16 Depth-wise convolution

Batch Norm 2d - - - Default Parameters - - - Default Parameters

Activation - - - ELU - - - ELU

Average

pooling
(1, 4) - - - - - - No pooling used

Second block

(spatial filter)

Dropout - - - p = 0.5 - - - p = 0.5

Convolution 2d (1, 32) 16 16 Depth-wise convolution (1, 32) 16 16 Depth-wise convolution

Convolution 2d (1, 1) 16 16 Pointwise convolution (1, 1) 16 16 Pointwise convolution

Batch Norm 2d Default parameters Default parameters

Activation - - - ELU - - - ELU

Average

pooling
(1, 8) - - - (1, 10) - - -

Third Block

(Separable Convolutoin)

Dropout - - - p = 0.5 - - - p = 0.5

Sample layer Convolution 2d (1,1) 16 32 Pointwise convolution (1,1) 16 32 Pointwise convolution

Table 1: Parameters’ values of the vEEGNet-ver3’s and hvEEGNet’s encoder, respectively.

In. dep. = Input depth. Out. dep. = Output depth.

3.3. Outlier identification

As our architectures implement completely self-supervised models, we have

the opportunity to use them as anomaly detectors. In line with the vast major-

ity of related work (as introduced in Section 2), in the present study, we define

as an outlier any sample (i.e., EEG segment) that is very poorly reconstructed.

This, in turn, is verified by large values of the DTW similarity score between the

reconstructed EEG sample and the original one. To identify such samples, we

decided to use the kNN algorithm [Cover & Hart (1967)]. kNN is an unsuper-

vised ML algorithm that computes the distance between every sample and its

k-th nearest neighbour (with k properly chosen). All samples in the dataset are

sorted w.r.t. increasing values of such distance. Those points whose distance

(from their k-th nearest neighbour) exceeds a user-defined threshold are labelled

as outliers.

In this study, we used our hvEEGNet model, only, to identify the outliers.

Before applying kNN, we performed two pre-processing steps: we computed the

DTW similarity score for the EEG segment (i.e., channel- and repetition-wise).
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vEEGNet-ver3 hvEEGNet
Parameters name

Kernel In. dep. Out. dep. Notes Kernel In. dep. Out. Dep. Notes

Dropout - - - p = 0.5 - - - p = 0.5

Upsample (1, 8) - - - (1, 10) - - -

Activation - - - ELU - - - ELU

Batch Norm 2d Default parameters Default parameters

Transpose

Convolution 2d
(1, 1) 16 16 Pointwise convolution (1, 1) 16 16 Pointwise convolution

Third Block

(Separable Convolutoin)

Transpose

Convolution 2d
(1, 32) 16 16 Depth-wise convolution (1, 32) 16 16 Depth-wise convolution

Dropout - - - p = 0.5 - - - p = 0.5

Upsample (1, 4) - - - - - - No pooling used

Activation - - - ELU - - - ELU

Batch Norm 2d - - - Default parameters - - - Default parameters

Second block

(spatial filter)

Transpose

Convolution 2d
(1, 22) 8 16 Depth-wise convolution (1, 22) 8 16 Depth-wise convolution

Batch Norm 2d - - - Default parameters - - - Default parameters
First block

(temporal filter)
Transpose

Convolution 2d
(1, 128) 1 8 Depth-wise convolution (1, 128) 1 8 Depth-wise convolution

Table 2: Parameters’ values of the vEEGNet-ver3’s and hvEEGNet’s decoder, respectively.

In. dep. = Input depth. Out. dep. = Output depth.

To note, by definition (see eq. 5), the score is normalized by the number of time

points in the series (even though all time-series have fixed length in this work).

For each training run, we built the following matrix E:

E(t) =


e11(t) e12(t) · · · e1C(t)

e21(t)
. . . · · ·

...
...

...
. . .

...

eR1(t) · · · · · · eRC(t)

 (5)

with t = 1, 2, ..., T , given T the number of training runs, r = 1, 2, ..., R, with R

the number of segments (i.e., task repetitions), and c = 1, 2, ..., C, with C the

number of EEG channels. Then, erc(t) represents the normalized DTW value

obtained from the reconstruction of the r-th segment at the c-th channel after

training the hvEEGNet model in the t-th training run. Finally, the matrices

E(t), with t = 1, 2, ..., T are averaged to obtain E, and then kNN is applied. Also

note that kNN took every sample of the dataset as defined by a C-dimensional

EEG segment (i.e., one row in matrix E). This allowed us to identify two types

of outliers: (1) repetitions where all (or, the majority of the) channels were

affected by some mild to severe problem, or (2) repetitions where only one (or,

a few) channel was highly anomalous. Both are very common situations that
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might occur during neuroscience experiments [Teplan et al. (2002)].

Implementation

We employed PyTorch to implement all pre-processing steps and to design

and train our models.

To implement the newly proposed loss function, i.e., including the DTW

computation, we exploited the soft-DTW loss function CUDA time-efficient im-

plementation1 [Maghoumi (2020); Maghoumi et al. (2021)]. In fact, the original

DTW algorithm is quite time-consuming and employs a minimum function that

is non-differentiable. Then, in Cuturi & Blondel (2017), a modification of the

original algorithm was proposed to specifically be used in DL models, i.e., to

be differentiable, thus suitable as a loss function. Then, CUDA was employed

to make it time-efficient, too. Also, it is worth noting that DTW works with

1D time-series. However, our models aimed to reconstruct multi-channel EEG

time-series. Then, during training, we computed the channel-wise DTW sim-

ilarity score between the original and the reconstructed EEG segment. Then,

in the loss function, we added the contribution coming from the sum of all

channel-wise DTW scores.

The models were trained using the free cloud service offered by Google Colab,

based on Nvidia Tesla T4 GPU. The hyperparameters were set as follows: batch

size to 30, learning rate to 0.01, the number of epochs to 80, an exponential

learning rate scheduler with γ set to 0.999. 20 training runs for each subject,

were performed, in order to better evaluate the stability of the models training

and the error trend along the epochs. The total number of parameters of the

vEEGNet-ver3 is 4992 and the state dictionary (i.e., including all parameter

weights) is 40 kB-weight. The total number of parameters of the hvEEGNet

model is 8224, with 5456 of them to define the encoder, and the remaining 2768

for the decoder. Note that the higher number of parameters in the decoder is

due to the sampling layers that operate on the three different latent spaces. The

1Available at: https://github.com/Maghoumi/pytorch-softdtw-cuda
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state dictionary of the parameter weights is about 56 kB.

Finally, for the kNN algorithm for outliers detection (see Section 3.3), we

employed the well-known knee method in the implementation given by the kneed

python package [Satopaa et al. (2011)] to find the threshold distance to actually

mark some samples as outliers.

To foster an open science approach to scientific research, we made our code

available on GitHub 2.

3.4. Performance evaluation

In this work, we evaluated our models in a within-subject scenario [Zanca-

naro et al. (2021)], only. Cross-subject evaluations, even though possible, are left

for future developments as they deserve an entire new campaign of experiments

and analyses.

The evaluation was carried on based on two different approaches: first, visual

inspection of the reconstructed data in both the time and frequency domains

(with the most convenient frequency range selected figure by figure); second, the

quantification of the average reconstruction quality using the normalized DTW

similarity score, as defined in eq. 5.

For visual inspection, we compared in a single plot the time domain repre-

sentations of the original EEG segment and its corresponding reconstructed one.

Also, we computed the Welch’s spectrogram [Welch (1967)] (in the implemen-

tation provided by the Python Scipy package3) with the following parameters:

Hann’s window of 500 time points with 250 time points overlap between con-

secutive segments.

Then, to train and test our models (both vEEGNet-ver3 and hvEEGNet),

we inherited the same split proposed by Blankertz et al. (2007): for every sub-

ject, 50% data were used for the training and the remaining 50% (i.e., a later

2Available at: https://github.com/jesus-333/Variational-Autoencoder-for-EEG-analysis
3Available at: https://docs.scipy.org/doc/scipy/reference/generated/scipy.

signal.welch.html
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experimental session) for the test. Furthermore, we applied cross-validation us-

ing 90% of the training data for the actual models’ training and 10% for the

validation. With the aim of investigating the training behaviour of our models

w.r.t. the particular input dataset, we repeated 20 training runs for each subject

(i.e., each run started from a different random seed, thus ensuring a different

training/validation split in the overall training set). This allowed us to provide

a more robust evaluation of the training curve along the training epochs. We

reported the models’ performance in terms of descriptive statistics (mean and

standard deviation across multiple training runs) of the reconstruction error

along the training epochs (i.e., in other words, the training time). To note, in

some rare cases where the loss function’s gradient could not be minimized, we

excluded those training runs from our final evaluation and training visualization.

Finally, the reconstruction ability of our models, after proper training (i.e.,

80 epochs), was evaluated on the test set, too, by means of the same normalized

DTW similarity score.

4. Results and Discussion

4.1. Dataset

To validate our model we used the Dataset 2a of BCI Competition IV [Blankertz

et al. (2007)]. The dataset was downloaded using the MOABB tool [Jayaram

& Barachant (2018)] and it is composed by the 22-channel EEG recordings of 9

subjects while they repeatedly performed four different MI tasks: imagining the

movement of the right hand, left hand, feet or tongue. Each repetition consists

of about 2 s fixation cross task, where a white cross appeared on a black screen

and the subject needed to fix it and relax (as much as possible). Then, a 1.25 s

cue allowed the subject to start imagining the required movement. The cue

was displayed as an arrow pointing either left, right, up, or down, to indicate

the corresponding task to perform, i.e., either left hand, right hand, tongue, or

feet MI. MI was mantained until the fixation cross disappeared from the screen

(for 3 s). A random inter-trial interval of a few seconds was applied (to avoid
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Figure 3: The timeline of the experimental paradigm (modified from Blankertz et al. (2007)).

subjects habituation and expectation). Then, several repetitions of each type

of MI were required to be performed. The order to repeat the different MI

tasks was randomized to avoid habituation. The timeline of the experimental

paradigm is depicted in Fig. 3. A total number of 576 trials (or, repetitions) was

collected from each individual subject and made available as a public dataset,

namely the Dataset 2a of BCI Competition IV. The EEG data were recorded

with a sampling frequency of 250Hz and the authors filtered the data with a

0.5− 100Hz band-pass filter and a notch filter at 50Hz (accordingly to the ex-

perimental records associated with the public dataset). We kept these settings

as they were, to be in line with the literature [Lawhern et al. (2016)] and to

be consistent with our previous studies [Zancanaro et al. (2021, 2023, under

review)].

As explained in Section 3.4, we adopted the pre-defined 50/50 training/test

split on the dataset and thus, for each subject, we obtained 260 EEG segments

for the training set, 28 for the validation set, and 288 for the test set. To note,

the dataset was perfectly balanced in terms of stratification of the different

subjects in all splits.

We performed segmentation and, for each MI repetition, we extracted a 4 s

(22-channel) EEG segment. The piece of EEG was selected in the most active

MI part of the repetition, i.e., from 2 to 6 s, in order to isolate the most apparent

brain behaviour related to the MI process. Fig. 4 shows an example of two raw

EEG signals, represented both in the time domain and in the frequency domain
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(with the frequency range limited to 50 Hz for visualization purposes). To

note, to improve visualization in the time domain, the signals are shown in the

limited time range from 2 to 4 s. However, in the frequency domain, the entire

4 s segment was used to compute the power spectrum (via Welch method, as

described in Section 3.4). Then, a total of 1000 time points are included in each

EEG segment.

(a) Segment no.1, ch. C4, left hand movement.

(b) Segment no.10, ch. Fz, tongue movement.

Figure 4: Two representative EEG segments from the Dataset 2a from S3 (time range limited

from 2 s to 4 s, frequency range limited to 50Hz). Left panels: time domain representation.

Right panels: frequency domain representation.

4.2. Reconstruction performance

In this section we show the performance of vEEGNet-ver3 and hvEEGNet,

and we discuss to what extent the new loss function (with the DTW contri-

bution) and the hierarchical architecture influenced the reconstruction perfor-

mance.
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First, we visually inspect the output from our two models. Fig. 5 shows a

representative example of one EEG segment as reconstructed by vEEGNet-ver3

and hvEEGNet, respectively, in both the time and the frequency domain (with

the frequency range extended to 80 Hz for visualization purposes). As it can

(a) Reconstruction via vEEGNet-ver3.

(b) Reconstruction via hvEEGNet.

(c) Frequency domain vEEGNet-ver3. (d) Frequency domain hvEEGNet.

Figure 5: Comparison of the reconstruction performance in the time and frequency domain

(in the test phase) in a representative subject (S3), task repetition (no.1, corresponding to

left hand (LH) MI), channel (C3). Time range was limited from 2 s to 3 s, frequency range

extended to 80Hz.
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be observed, hvEEGNet is much better in reconstructing the EEG segment,

and this can be very clearly appreciated in both domains. However, it is worth

mentioning that vEEGNet-ver3 brought a large improvement w.r.t. its previous

versions (i.e., vEEGNet-1 [Zancanaro et al. (2023)] and vEEGNet-2 [Zancanaro

et al. (under review)]) as well as to other recently proposed architectures in the

literature [Bethge et al. (2022)]. In fact, from our previous work [Zancanaro

et al. (2023)], we noticed that the model trained with a reconstruction error

based on MSE was capable of reconstructing slow components, only, while now

with vEEGNet-ver3 the reconstructed signal has a much broader spectrum, with

higher frequency components. Therefore, we can conclude that our choice to

train the models using a loss function where the reconstruction error is quantified

by the DTW made a significant improvement. Nevertheless, we can also infer

that the hierarchical architecture has a relevant influence in the ability of the

model to reconstruct the signal with high-fidelity, as one might expect from

the literature on VAEs as applied to reduce blurry effects in the reconstructed

images [Vahdat & Kautz (2021)].

To more systematically compare the results from the two architectures, we

filled Table 3 with all subject-wise performance of both models, after training

(i.e., at the 80-th epoch) and in the test phase. Here, the mean values represent

the average across channels and repetitions of the normalized DTW similarity

score between every original EEG segment and its corresponding reconstructed

one. Whereas, the standard deviation values were computed as the standard

deviation of all mean values obtained by averaging across repetitions, only. The

grand -average and the grand -standard deviation (i.e., the last two rows of the

Table 3) are the mean and the standard deviation, respectively, taken across

(the mean values of) all 9 subjects. As we can observe, hvEEGNet largely

outperforms vEEGNet-ver3 in all subjects, both during training and during

test. It is worth noting that the data coming from two individuals, i.e., S2 and

S5, resulted as particularly difficult to be reconstructed for both architectures.

Later, we will deepen the investigation of these two cases providing a reasonable

explanation for this problem.
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vEEGNet-ver3 hvEEGNet
Subject id.

Train Test Train Test

1 18.41±6.26 22.99±22.52 1.16±0.36 2.3±1.84

2 18.06±8.88 128.05±162.16 1.7±0.81 60.81±65.84

3 48.34±14.19 41.35±34.16 1.87±0.62 4.96±5.81

4 18.1±21.66 18.01±12.51 3.59±7.44 1.51±1.13

5 17.38±15.16 49.09±9.92 1.01±0.45 15.67±3.95

6 32.92±13.28 29.01±12.49 1.76±0.72 1.87±0.61

7 13.49±3.67 12.37±2.85 1.02±0.28 0.9±0.33

8 42.13±21.19 48.5±12.36 4.07±1.61 5.46±1.65

9 36.45±21.33 33.87±8.12 2.01±1.23 1.91±0.57

AVG 27.25 42.58 2.02 10.6

STD 13.96 30.79 1.5 9.08

Table 3: Average (± standard deviation) reconstruction error for vEEGNet-ver3 and hvEEG-

Net, as expressed in terms of normalized DTW similarity score.

Computer vision literature has already shown that the hierarchical architec-

ture made the VAE models able to generate more detailed images, i.e., more

effective in learning and generating high frequency components [Razavi et al.

(2019); Prost et al. (2022)]. Here, the use of more than one latent space seemed

to have similarly allowed hvEEGNet to better learn the underlying distribution

of the data, and consequently greatly improved the reconstruction performance.

This is also confirmed by Fig. 6, where it is possible to see how the contributions

of the three different latent spaces influenced the reconstruction performance of

the model. As it can be observed, the deepest latent space (z1) can quite fol-

low the original signal, has a similar dynamics (check also the power spectrum

in Fig. 6), but suffers from some time shifts and amplitude mismatches. Still,

this result is better than the vEEGNet-ver3 output, even though sampling from

z1 in hvEEGNet could have similarities with sampling from z0 in vEEGNet-

ver3 (e.g., much faster components can be recovered from z1, but not from z0).

Then, sampling from more superficial (i.e., detailed) latent spaces produces an

increasingly better reconstruction quality: when sampling from z2 (including
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(a) Time-domain reconstruction at the output of z1.

(b) Time-domain reconstruction at the output of z2 (including information from z1).

(c) Time-domain reconstruction at the output of z3 (including information from z2 and z1).

(d) Output from z1. (e) Output from z2. (f) Output from z3.

Figure 6: Reconstruction as obtained at different points of the hierarchy both in time and

frequency domains for one representative subject (S3), task repetition (no.1, corresponding

to left hand MI), and channel (C3), i.e., the same as in Fig. 5. The first three rows represent

time domain reconstructions, the last row reports power spectra in the three different points

of the hierarchy.
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the effect from the deepest latent space z1), amplitude mismatches are less fre-

quent compared to the previous case, and the power spectrum is very similar to

the original one. Finally, when sampling from z2, the reconstruction is almost

perfect, with minimal amplitude incongruences and time shifts.

However, we found cases where hvEEGNet dramatically failed in recon-

structing the original EEG data. Also, there were cases in which the same

number of training epochs was not enough for the hvEEGNet model to recon-

struct a particular subject. These two issues are discussed in the following, with

additional investigations.

4.3. Training behaviour vs training set: investigations on hvEEGNet

hvEEGNet should be trained until the DTW is small enough to guarantee

optimal reconstruction. We performed multiple (about 20) training runs with

80 epochs each, to evaluate the statistical behaviour of the model’s training in

different subjects. We also computed the average normalized DTW similarity

score and its standard deviation across multiple runs and could show, for each

subject, separately, the number of epochs at which that average is low enough

and the standard deviation stabilizes, at the same time. Fig. 7 displays the

average (and standard deviation) DTW-based error for an increasing number of

epochs for each subject during training. We can observe that the DTW-based

error clearly decreases as the number of epochs increases, as expected. Then,

for all subjects, 80 epochs are enough to obtain almost perfect reconstruction.

However, we also clearly noted that the time (no. epochs) needed to reach

that point highly varies from subject to subject. For example, S3 reaches an

optimal model very rapidly, in about 15 epochs: we can see that the training

of an hvEEGNet model starts with an average DTW error of 38 and a large

standard deviation of 12, then it fastly decreases in its mean and variability,

reaching a stable average of 5 and a very small standard deviation in 15 epochs.

A completely different case is represented by S9: here, the average beginning

error is smaller than the S3’s one, but the standard deviation is much larger.

Also, it takes much more - on average - to the model to adapt to this subject
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and reach a stable and optimal model (at about 60 epochs). Therefore, we

Figure 7: Reconstruction error (within-subject, across-EEG channels). Box markers show the

average across multiple training runs, bars represent the standard deviation. Grey is used to

show results obtained with all training runs, while black is when unsuccessful training runs (a

few for three subjects out of nine, only) were removed from the analysis. Note that, for the

sake of a better visualization, y-axes might have different ranges.

have just empirically proved that there is a relationship between the training

time (i.e., the number of epochs needed to reach an optimal model) and the

distribution of the input training set that cannot be overlooked [Gyori et al.

(2022)].

Another relevant case to discuss is the dramatic fail of the hvEEGNet model

in reconstructing some - rare - specific EEG segments. We found four anomalous
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training runs where the model failed, i.e., two for S4, one for S5, and another

for S8. We further analyzed all segments in these three subjects and discovered

that the model fail was due to problems of saturation that happened during the

acquisition step of the EEG data (those segments had not been removed from the

public available dataset). This, in turn, led the DTW score to assume extremely

high values, i.e., the model to significantly fail the reconstruction. Fig. 8 shows

one example of EEG segment for each subject (S4, S5, and S8) where signal

saturation was identified during the hvEEGNet model training. No matter

where saturation occurs, i.e., soon or later in the segment, its effect on the

model training is to dramatically increase the DTW-based error. These events,

in turn, are responsible for that sudden increase of the standard deviation, as it

can be noticed at epochs 25 and 40 for S4, at epoch 45 for S5, and at epoch 20 for

S8. On the other hand, we also checked that the vast majority of the other S4,

S5, and S8’s segments led to DTW score values in a range similar to the other

subjects. Thus, we decided to exclude those training runs where the hvEEGNet

model suffered from the disruptive effect of acquisition saturation problems,

namely unsuccessful training runs. For this reason, for S4, S5, and S8, Fig. 7

shows the model training behaviour along the epochs both with and without

the unsuccessful training runs (grey and black line, respectively). Nonetheless,

we cannot assess that saturation during acquisition is the only possible cause of

training inaccuracy for the hvEEGNet model.

However, we provided some further insights that there is a correspondence

between the training behaviour and the quality of the input training set, thus

highlighting the importance to preliminary evaluate the quality and the dis-

tribution of the input dataset. More importantly, we should also remind that

the vast majority of the related work uses this dataset as it is, as input to a

wide variety of DL models with no questions on the quality and distribution of

the input dataset [Schirrmeister et al. (2017); Lawhern et al. (2016); Sakhavi

et al. (2018); Li et al. (2019); Riyad et al. (2021)]. All of them have shown a

large variability in the classification results (i.e., classification of the different

MI tasks), but there is no study - as far as the authors know - reporting a sys-
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(a) S4, segment no. 180, ch. C3.

(b) S5, segment no. 221, ch. Cz.

(c) S8, segment no. 82, ch. CP4.

Figure 8: Example of saturated trials in the training set leading to very high DTW values.

Left panels: time domain representation. Right panels: frequency domain representation.
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tematic investigation of the relationship between the models training and the

characteristics of the input data.

In the following, we investigate the performance of the hvEEGNet model,

when sufficiently trained (i.e., for a number of epochs that varies from subject

to subject), and we explore its ability to identify other anomalies as well as

reconstructing clean EEG segments.

4.4. hvEEGNet as anomaly detector

Once the hvEEGNet model is properly trained, we can look into its ability

to identify outliers. To be conservative, for all subjects, we searched for outliers

in the test set with the hvEEGNet model trained for 80 epochs. As described in

Section 3.3, we employed the kNN algorithm on the matrix E given by all values

obtained by averaging the normalized DTW scores across the training runs for

each pair task repetition-channel (subject-wise). Here, E is a 288× 22 matrix.

Then, we applied kNN over E to find out any possible outliers. We implemented

the algorithm using the scikit-learn Python package [Pedregosa et al. (2011)],

with default settings and the number of nearest neighbours (k) equal to 15.

We empirically found that 15 was a good trade-off between the stability of the

results and the expected proximity among all samples in the dataset. Also, note

that each sample of this matrix is characterized by 22 dimensions, and the kNN

algorithm worked in such high-dimensional space to find proximity among points

as well as outliers. Fig. 9 shows three representative examples of EEG segments

that were marked as outliers by our extensively trained model. By visually

inspecting them (in both time and frequency domain) and based on previous

expertise [Cisotto et al. (2015)] as well as well-established literature [Durka

et al. (2003); Gao et al. (2010)], we can easily confirm that those segments have

a frequency characterization similar to a muscular artefact or eye blink activity.

However, Fig. 7 has shown that the hvEEGNet model can reach very low

average errors (with very small standard deviations) in a number of epochs

typically lower than 80. Moreover, this time highly depends on the specific

subject to analyze. To systematically investigate the relationship between the
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(a) S2, segment no.1, ch. FC3.

(b) S4, segment no.146, ch. C5.

(c) S9, segment no.251, ch. C1.

Figure 9: Three representative examples of EEG segments (belonging to the test set) marked

as outlier by the hvEEGNet model extensively trained. Left panels: time domain representa-

tion. Right panels: frequency domain representation.
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training effectiveness and the outliers identification ability w.r.t. individual

subjects, we plotted Fig. 10, where the global average error of the whole training

set, the number of detected outliers, and the average error exclusively due to the

outliers are reported for every subject, separately, at each 5-epoch step during

training.

Figure 10: Relationship between training effectiveness and outliers identification ability w.r.t.

individual subjects. Each panel reports the number of outliers (red line), the average error

exclusively due to the outliers (dark green line), and the global average error of the whole

training set (black line) for each subject (specified on the left y-axis), at each 5-epoch step

during training.

In all panels, i.e., for all subjects, from Fig. 10 we can easily distinguish two

phases in the training behaviour: in the first part of the training, as expected,

the average reconstruction error is progressively reduced (black line). This typ-

ically corresponds to a few outliers (red line) significantly contributing to the

global average error (dark green line). In the second phase, i.e., after the model
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has reached a stable performance (in terms of average reconstruction error), the

number of outliers starts to vary with the average global error and the outliers

average error remaining quite small. This can be intuitively explained by the

fact that the EEG segments are generally well reconstructed and small varia-

tions on the error are enough to make the corresponding EEG segment to be

considered an outlier by the kNN algorithm.

Therefore, we decided to deepen the investigation on the transition point to

check if a subject-independent characterization of the training behaviour can

be obtained, and to verify the opportunity to stop the training at that point.

First, we empirically defined the transition point as the number of epochs where

the global average error showed the maximal slope (an elbow point), with low

standard deviation, and the number of identified outliers was about to suddenly

increase. For example, for S1 the transition point was identified at 30 epochs,

while for S9 at 40 epochs. To note, the earliest transition point was found in

S3 and S5 at 20 epochs, while the latest transition point was found in S4 at 45

epochs. Second, we re-evaluated the performance of our hvEEGNet model on

the test set with the training stopped at the transition point. Table 4 reports

the average (and standard deviation) reconstruction error at the subject-specific

transition point. We can observe that the reconstruction performance are similar

to the performance obtained for an extensively trained model (see Table 3 for

the comparison). Thus, we can conclude that our hvEEGNet model could reach

very high-fidelity reconstruction in a short time, lower than 30 minutes (approx.

time needed to train the model for 50 epochs, as reported in Section 4.5).

Usually, as already discussed in Section 2, when using autoencoder archi-

tectures to identify outliers, the model is trained on normal data [Ortiz et al.

(2020)] and anomalies result from the model’s largest errors [Pang et al. (2021)].

Anyway, in more ecological acquisition scenarios [Muharemi et al. (2019)] and,

frequently, when the human is in-the-loop [Straetmans et al. (2022)], anomaly

detectors can be successfully trained on a mixture of clean and noisy data,

too [Al-amri et al. (2021)]. Anyway, for EEG data, normality cannot be eas-

ily defined and it is quite challenging to ensure a dataset to be anomaly-free.
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Reconstruction error
Subject id.

Transition point

[epoch no.] Train Test

1 30 3.0±0.81 4.68±3.55

2 45 1.73±0.82 60.01±65.89

3 20 2.79±0.79 3.58±1.53

4 45 2.18±1.76 2.19±1.71

5 20 5.97±2.5 36.29±6.44

6 25 2.01±0.95 3.37±1.02

7 30 1.86±0.68 1.42±0.43

8 30 5.06±1.92 6.49±1.82

9 40 4.51±6.1 3.58±0.8

Table 4: Average (± standard deviation) reconstruction error for hvEEGNet in the test set,

with the model training stopped at the subject-dependent transition point.

For example, this public dataset was supposed to be fully normal, including

a group of 9 healthy subjects, acquired via a research-grade EEG equipment,

thus providing high data quality. Therefore, one might have expected to be

able to build a robust anomaly detector based on this dataset. However, we

showed that other kinds of anomaly are present and have been found by our

hvEEGNet model: e.g., artefactual data, that affect the training set and the

test set in different rates, thus making challenging the design of a traditional

anomaly detector on these data. To support our claim and to deepen the in-

vestigation on those subjects having an out-of-normality distribution (i.e., S2

and S5, as already mentioned in Section 4.2), we provide Fig. 11. It shows the

average power spectra for the training set and the test set, separately, for three

subjects at channel Cz. By inspecting this figure (and all other power spectra,

not reported for space compactness), we realized how S2 and S5 are the only

two individuals whose test sets were significantly different from all other data

of this dataset. More specifically, we found out that the test set of S2 and of

S5 (but not their training sets) are highly corrupted by noise and (muscular)
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artefacts. In fact, it is well-known [Buzsaki & Draguhn (2004)] that the typi-

cal power spectrum of a clean EEG acquired from a healthy subject follows a

1/f shape, with other relevant components (contributing as visible peaks) at

the center of band of the α band (approx. 10 Hz) and of the β band (approx.

20 Hz, generally less visible). In its upper panels, Fig. 11 shows an example of

clean dataset (from S1). Whereas, the lower panels report the power spectra

of S2 and S5. It was decisive to visualize these spectra to realize that S2 has a

normal (average) power spectrum in his/her training set, while a highly noisy

power spectrum in his/her test set. Furthermore, it could be easily recognized

that the large power contribution in other frequency ranges (e.g., higher than

50 Hz) is possibly be due to muscular activity that was simultaneously recorded

by the EEG electrodes during the test session [Chen et al. (2019)]. A similar

situation was found for S5: again, all data coming from the test set were clearly

corrupted by the 50 Hz power supply. We might only guess that, for some rea-

son, the notch filter at 50 Hz (see Section 4.1) was not actually applied for this

subject during the second recording session, i.e., the test session.

This finally explained why our hvEEGNet model dramatically failed at re-

constructing S2 and S5 in their test sets, while keeping very satisfactory per-

formance in the training phase. Furthermore, this might also motivate why the

large majority of the related work classifying (i.e., with DL models, at least) this

public dataset found the worst results on S2 and S5 [Zancanaro et al. (2023)].

4.5. Computational complexity

Finally, we provide some reference measurements of the time spent in train-

ing and inference by our hvEEGNet model. We measured a training time, for

each subject, of approximately 5 minutes for 10 epochs, on hardware freely avail-

able on Google Colab. This implies that a training run of 80 epochs for a single

subject approximately takes 40 minutes. Note that the DTW is computationally

heavier than MSE, thus increasing the training times. On the other hand, we

proved that a DTW-based loss function leads to a significantly lower number

of epochs needed for the training. Future improvements of our model might
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Figure 11: Average power spectra for training set (panels on the left side) and test set (panels

on the right side) for three subjects (S1, S2, and S5) at channel Cz.
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include the approximation of the DTW function itself with a neural network,

as recently proposed by Lerogeron et al. (2023a,b).

Table 5 shows the inference time, i.e. the time the model used to encode

and reconstruct 1, 10, 100, or 288 (all) EEG segments, respectively, using four

different machines, namely CPU 1, GPU 1, CPU 2, and GPU 2. The details of

the four machines are reported in the table’s description. Results refer to the

average (and standard deviation) time needed to perform 20 training runs.

.
Batch size

[no. of EEG segments]

CPU 1

[s]

GPU 1

[ms]

CPU 2

[s]

GPU 2

[ms]

1 0.13 ± 0.05 8 ± 0.9 0.05 ± 0.003 3.24 ± 0.26

10 0.83 ± 0.13 23.3 ± 17.2 0.33 ± 0.03 10.45 ±1.58

100 5.91 ± 1.45 63.7 ± 10.3 5.02 ± 0.49 62.15 ± 4.95

288 (all) 10.69 ± 1.87 182.7 ± 30.1 14.73 ± 0.44 179.16 ± 18.22

Table 5: hvEEGNet inference time on four different machines. CPU 1: Intel(R) Core(TM)

i7-10750H CPU 2.60GHz (DELL G15 Laptop, 2020). GPU 1: NVIDIA GeForce RTX 2070

(DELL G15 Laptop, 2020). CPU 2: Intel(R) Xeon(R) CPU 2.20GHz (Google Colab). GPU 2:

NVIDIA Tesla T4 (Google Colab).

The present work still suffers from a number of limitations, e.g., the inves-

tigation of the balance between the different components of the training loss

and their impact of the training course and quality. Their investigation and

solution have been left to further studies in favor of a few relevant take-home

messages that can be robustly supported by the results available so far. As one

of many possible future perspectives, hvEEGNet will be tested on different EEG

datasets, including different types of anomalies, to prove its generalizability and

the extent to which it can identify either artefactual or pathological EEG data.

5. Conclusions

In this paper, we targeted the problem of EEG reconstruction using two

VAE-based models, which inherently provide a latent representation of the data

that could then be used to enhance other DL-based models for classication or
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anomaly detection tasks. Specifically, we proposed vEEGNet-ver3 and hvEEG-

Net where we used a new loss function based on the DTW similarity score which

allowed us to significant improve over previous models based on the standard

MSE loss function. Furthermore, with hvEEGNet, we provided a VAE model

which encodes the multi-channel EEG data using a CNN (i.e., the architecture

of the popular EEGNet) and a hierarchical structure where three different latent

spaces capture complementary information of the data.

We tested our models on the public, and very popular, Dataset 2a - BCI

Competition IV, where a 22-channel EEG dataset was collected from 9 sub-

jects repeatedly performing MI of the right hand, the left hand, the feet, and

the tongue. Our results showed that hvEEGNet brings to a very high-fidelity

reconstruction, outperforming our previous solutions as well as the other state-

of-the-art models. This outcome was also consistent across all subjects and rep-

etitions. Furthermore, we deeply investigated the reconstruction fidelity across

every individual subject of the dataset, and found that hvEEGNet failed to

reconstruct some EEG data belonging to the test sessions of S2 and S5. How-

ever, we realized that this failure could not be addressed to the poorness of

the model, but rather to the input data quality. Interestingly, we were able to

identify specific EEG segments and channels where the raw EEG data were cor-

rupted (e.g., by saturation during the acquisition phase). Therefore, hvEEGNet

could be effectively employed as an automatic detector for noisy (e.g., artefac-

tual) EEG segments, thus supporting the domain experts. Also, with this deep

investigation, we have finally provided an explanation for the high variability

of classification results that are regularly found in the literature, when any ML

and DL-based models are applied to this dataset.

This work opens new fundamental research questions, i.e., regarding the re-

lationship between the DL-based models training (including its effectiveness and

possible biases) and the quality of the input data, still very poorly investigated

in this application domain. This approach intends to adhere to the best scien-

tific methodological practises of new AI methods applied to the medical domain,

in line with Cabitza & Campagner (2021). In the future, hvEEGNet and the
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proposed investigation methods could be applied to other EEG datasets and

to other multi-channel time-series to help in the modeling of complex dynamic

systems, possibly not limited to neuroscience.
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