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We obtain the brane setup describing 3d N ¼ 2 dualities for USpð2NcÞ and UðNcÞ SQCD with
monopole superpotentials. This classification follows from a complete analysis of affine and twisted affine
compactifications from 4d. The analysis leads to a new duality for the unitary case that has previously been
overlooked in the literature. We check this by matching the three-sphere partition function of the two sides
of this new duality and find a perfect agreement. Furthermore, we use the partition function to predict new
3d N ¼ 2 dualities for SQCD with monopole superpotentials and tensorial matter.
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I. INTRODUCTION

In the recent past there has been remarkable progress in the
understanding of 3d dualities with and without supersym-
metry. One of themain roles in the discovery of new dualities
and in the appearance of new phenomena such as symmetry
enhancements has been played by monopole operators. The
reason is that these operators can be used to modify the path
integral and to constrain the global symmetries. These
constraints give raise to nontrivial IR relations, deforming
old dualities and generating new ones. For example, this
phenomenon has been largely studied in 3d N ¼ 2 SQCD
with linear and quadratic monopole superpotentials.
These constructions have led to a series of new results in

the last decade. For example, linear monopole superpoten-
tials were used in [1] to explain how to reduce 4d Seiberg
duality to 3d (see also [2] for an earlier attempt). This
construction was then generalized to theories with more
sophisticated gauge and field content in [3–7]. Moreover,
the string theory interpretation of this reduction was
obtained in [8–11], by engineering the linear monopole
superpotential in terms of D1 branes, along the lines of the
construction of [12–15].

A similar construction was provided in [16] to explain
the dimensional reduction of 4dN ¼ 1 SUð2Þ SQCD with
eight fundamentals. The presence of a monopole super-
potential was crucial in explaining the enhancement of the
SUð8Þ global symmetry to E7. By real mass flow it was
then shown that there are more general types of monopole
superpotentials forUð1Þ theories. The generalization of this
phenomenon to USpð2NcÞ with an antisymmetric and
eight fundamentals was recently discussed in [17–19].
TheUðNcÞ generalization of the superpotentials introduced
in [16] for the Uð1Þ models was obtained in [20,21]. This
construction was then used in [22–25] to dimensionally
reduce the 4d N ¼ 1 “Argyres-Douglas Lagrangians”
discovered in [26–30]. Moreover, monopole superpoten-
tials have allowed the physical interpretation of many
mathematical identities among hyperbolic hypergeometric
integrals [31]. Such identities indeed represent the match-
ing of the three-sphere partition function between models
with monopole superpotentials turned on. Other interesting
results involving monopole superpotentials have been
discussed in [32–36].
Furthermore, some other dualities, originally conjectured

in [21], involve deformations with quadratic monopole
operators. These dualities have been studied extensively in
[37], also for the case of real gauge groups. In this paper we
further investigate such dualities, providing twomain results:

(i) We provide the D-brane engineering of the dualities
discussed in [21,37] involving quadratic monopole
superpotentials. As a bonus we obtain a new duality
previously overlooked in the literature.

(ii) We find new dualities with quadratic monopole
superpotentials for UðNcÞ SQCD with and adjoint
and USpð2NcÞ SQCD with an antisymmetric.
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A. D-brane engineering

The first part of the paper focuses on the study of
D-brane setups that reproduce the 3d dualities with linear
and quadratic monopole superpotentials for SQCD with
unitary and symplectic gauge groups.
Our construction is based on [8]: we consider a brane

setup that engineers a 4d theory, with a compact spacelike
direction. Typically there are D4-, D6- and NS-branes in
such setups. In addition O4 and O6 planes are added, in
order to extend the analysis to the cases with real gauge
groups and/or tensorial matter. We perform T-duality along
the compact direction and study the effective 3d models in
the T-dual configuration. The 3d dualities follow from the
transition through infinite coupling obtained after an
opportune move among the NS-branes [12]. Such moves
modify the number of D3-branes that engineer the gauge
sectors of the effective 3d models. A common configura-
tion corresponds to having stacks of D3-branes separated
along the compact direction. This separation is associated
with the presence of D1-branes that engineer the presence
of interactions involving monopole operators. The simplest
cases correspond, at the algebraic level, to affine Dynkin
diagrams, and the affine root is associated with a linear
monopole superpotential, usually referred to as the Kaluza-
Klein monopole superpotential. The construction has been
shown in [10] to also reproduce the linear monopole
superpotentials introduced in [16] for Uð1Þ models and
then extended in [21] to the UðNcÞ case.
Here we introduce in this description a new ingredient, in

order to also reproduce the dualities with quadratic monop-
ole superpotentials discussed in [37]. It consists in con-
sidering compactifications with a twist by an outer
automorphism of the gauge algebra. Eventually we observe
that D-branes provide a classification principle for the 3d
N ¼ 2 dualities with monopole superpotentials.
The general setup is introduced in Sec. II, where we

discuss general aspects of the affine and the twisted affine
algebras. In Sec. III we discuss the dualities with real gauge
groups. We observe that by considering the affine and the
twisted affine compactifications we can reproduce the
various dualities obtained in [1,37,38] forUSpð2NcÞ gauge
theories involving monopole superpotentials. In Sec. IV we
consider the case of UðNcÞ gauge groups. In this case we
reproduce all the known dualities studied in [21,37].
Furthermore, we obtain a model that has previously been
overlooked in the literature. This corresponds to SQCD
with a linear (quadratic) monopole plus a quadratic (linear)
antimonopole superpotential. As a check we provide the
matching of the partition function along the two sides of
this duality.

1. Dualities with tensorial matter

In the second part of the paper, corresponding to Sec. V,
we study new 3d N ¼ 2 dualities for UðNcÞ SQCD with
one adjoint and USpð2NcÞ SQCD with one antisymmetric

traceless matter field and quadratic monopole superpoten-
tial. In these cases the tensorial matter fields have a power
law superpotential, which truncates the chiral ring.
Moreover, we show that the quadratic monopole super-
potentials are necessarily dressed by powers of the tensorial
matter fields. We construct the new dualities by modifying
the parent dualities obtained in [37,39] for the unitary case
and in [6] for the symplectic one. The deformation
corresponds to a quadratic monopole superpotential in
the electric and in the magnetic phase. This deformation
constrains the real masses and the R-charges. By studying
the effect of this constraint on the equality relating the
partition functions of the parent theories, we arrive at a new
IR identity. This new identity corresponds to the matching
of the partition functions between the models with a
quadratic monopole superpotential, which provides a con-
sistency check of the new duality.

II. THE SETUP

A. Twisted compactification and KK monopoles

Let us consider the reduction of 4d SYM with gauge
groupG (whose Lie algebra is g) on a circle with radius r. If
the boundary condition of the gauge field Aμ around the
circle (say, in the direction x4) is trivial, namely

Aμðx0; x1; x2; x4 þ 2πrÞ ¼ Aμðx0; x1; x2; x4Þ; ð2:1Þ

then the expansion of the gauge field into Fourier modes
forms the untwisted affine Lie algebra gð1Þ [15]. More
generally, one may consider the boundary condition (see
[40] for an extensive discussion)

Aμðx0; x1; x2; x4 þ 2πrÞ ¼ σðAμðx0; x1; x2; x4ÞÞ ð2:2Þ

where σ is an outer automorphism of the Lie algebra g. For
the Lie algebras g ¼ AN;DN; E6, the element σ can be of
order L ¼ 2, and for g ¼ D4, σ can be of order L ¼ 3. The
Lie algebra g can be decomposed into the direct sum of
the eigenspaces Gn (with n ¼ 0;…; L − 1) associated with
the eigenvalues e2πin=L of σ:

σðhÞ ¼ e2πin=Lh; for h ∈ Gn: ð2:3Þ

The mode expansion of Aμ can be written as [40]

Ai
μðx4ÞTi ¼

X
m∈Z

XL−1
n¼0

Ai;ðm;nÞ
μ exp

�
−i

x4

r

�
mþ n

L

��
Ti

¼
X
m∈Z

XL−1
n¼0

Ai;ðm;nÞ
μ Ti

mþn
L

ð2:4Þ

where Ti (with i ¼ 1;…; dim g) are the Lie algebra gen-
erators, and we define
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Ti
mþn

L
≔ exp

�
−i

x4

r

�
mþ n

L

��
Ti: ð2:5Þ

If σ is trivial, then Ta
m form a set of the generators of the

untwisted affine Lie algebra gð1Þ; we refer to this case as an
untwisted compactification. However, if σ is nontrivial and
is of order L ¼ 2, 3, then Ti

mþn
L
form a set of the generators

of the twisted affine Lie algebra gðLÞ; we refer to this case as
a twisted compactification. In the following discussion, we
focus only on the case of L ¼ 2, with the twisted affine Lie

algebras Að2Þ
2N−1, A

ð2Þ
2N , and Dð2Þ

Nþ1.
In the three-dimensional limit where r → 0, the gauge

algebra g reduces to a smaller Lie algebra G0 since in this
case we do not have a Kaluza-Klein mass term. The rank r0
of G0 can be smaller than that of G. The simple roots βa
(with a ¼ 1;…; r0) of G0, together with the lowest negative
weight β0 of G1, form the Dynkin diagram of the twisted
affine Lie algebra gðLÞ.
An instanton on R3 × S1 can be regarded as a composite

that contains fundamental monopoles as constituents [41–
47]. Each of the fundamental monopoles consists of four
zero modes—namely, three associated with its position and
one associated with the phase—and is labeled by the coroot
β�a (with a ¼ 0;…; r0). Any other monopole configuration
is a composite of such fundamental monopoles. The
aforementioned instanton configuration is characterized
by a set of non-negative integers na (with a ¼ 0;…; r0)
which count the magnetic charge of each fundamental
monopole β�a. Such an instanton can contribute nontrivially
to the effective potential of the theory. For example, for the
N ¼ 1� supersymmetric theory on R3 × S1 with a twisted

boundary condition, the instanton contribution to the
holomorphic superpotential is given by [40]

W ¼ 2

β20
ηe

4πiτ
Lβ2

0

þβ�
0
·X þ

Xr0
a¼1

2

β2a
eβ

�
a·X ð2:6Þ

where X is the adjoint chiral field in the theory and τ is the
holomorphic coupling of the theory.

B. Brane configurations

From the string theory perspective, the instanton con-
figuration discussed above can be realized from the brane
system containing D0- and D4-branes, possibly with the
presence of the orientifold four-plane, where four-branes
span R3 × S1. Upon using T duality along the S1 direction,
we obtain the system consisting of D1-branes stretching
between D3-branes, possibly with the presence of orienti-
fold three-planes. The T-dual radius is R ¼ α0

r . The effect of
T-duality on various types of orientifold four-planes is
tabulated below.

Orientifold T-dualityfO4− O3− & fO3−
O4þ O3þ & O3þ

O4− O3− & O3−fO4þ fO3þ & O3þ

ð2:7Þ

The brane configurations that give rise to the untwisted
affine Dynkin diagrams as quiver gauge theories on the D1-
branes are tabulated below [47] (see also [48]). The affine
node is denoted in black.

g Untwisted affine Dynkin diagram of gð1Þ Brane setup

AN

BN

(Table continued)
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(Table Continued)

g Untwisted affine Dynkin diagram of gð1Þ Brane setup

CN

DN

It is worth noting the relation between the “boundary” of the Dynkin diagram and the type of the orientifold planes [47].
In particular,

(i) the bifurcation corresponds to O3−;
(ii) the double arrow going into the main body of the quiver corresponds to O3þ; and
(iii) the double arrow going out of the main body of the quiver corresponds to fO3−.
For the twisted case, we only focus on the twisted affine Lie algebras Að2Þ

2N−1, A
ð2Þ
2N , andD

ð2Þ
Nþ1. Their Dynkin diagrams can

be realized on the world volume of the D1-branes in the following brane setup [47]. Observe that the types of orientifold
three-planes are in accordance with the rules stated above.

g Twisted affine Dynkin diagram of gð2Þ Brane setup

A2N−1

A2N

DNþ1
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As pointed out in [47], in the twisted affine cases,
we need to turn on the Wilson line in the compact
direction of the world volume of the D4-branes in order
to enhance the algebra G0 to the full twisted Lie
algebra gðLÞ.

III. DUALITIES FOR SYMPLECTIC
GAUGE GROUPS

In this section we discuss the 3d dualities for USpð2NcÞ
SQCD obtained by compactifications of 4d theories on S1

in the presence of orientifolds. We study both the affine and
the twisted affine configurations. We recover the various
models discussed in the literature, namely, Aharony
duality and dualities with linear and quadratic monopole
superpotentials.

In order to fix the notations and the geometric setup, we
consider in 4d an NS-brane extended along x0;1;2;3;4;5 and
an NS’-brane extended along x0;1;2;3;8;9. The two five-
branes are separated along x6. They are connected along
this directions by a stack of D4-branes. These last ones are
finite along x6, and they fill x0;1;2;3. The flavor is obtained
by adding to the picture a stack of D6-branes extended
along x0;1;2;3;7;8;9. T-duality is performed along x3. In this
way the NS-branes are compact along x3, while the D4- and
D6-branes become D3 and D5, respectively; they are not
extended anymore along x3. To this picture we can add a
pair of orientifolds, as discussed above.
Our brane description distinguishes three possible 3d

N ¼ 2 gauge theories with symplectic gauge group and
fundamental matter. They are summarized in the table
below. Let us study these three cases separately.

Gele Gmag Wele Wmag Orientifolds

USpð2NcÞ USpð2Nf − 2Nc − 2Þ W ¼ 0 W ¼ Mqq þ yY

USpð2NcÞ USpð2Nf − 2Nc − 4Þ W ¼ Y W ¼ Mqq þ y

USpð2NcÞ USpð2Nf − 2Nc − 2Þ W ¼ Y2 W ¼ Mqq þ y2

A. USpð2NcÞ with W = 0

This case corresponds to the original Aharony duality
discussed in [38]. In the brane picture it corresponds to the
setup with an O3þ plane at x3 ¼ 0 and an O3− at x3 ¼ πR.
Such an orientifold boundary condition corresponds to the

twisted affine algebra Að2Þ
2Nc−1:

ð3:1Þ

Observe that there is also a configuration with the two
orientifolds exchanged. Such a configuration corresponds
to turning on opportune Wilson lines in the 4d setup.
In this brane setup we consider Nc D3 and Nf D5 on top

of O3þ at x3 ¼ 0, while we do not have any further brane at

x3 ¼ πR. This gives rise to the USpð2NcÞ gauge theory
with 2Nf fundamentals.
Let us now discuss the brane configuration after the

transition through infinite coupling. At x3 ¼ 0, where O3þ
is located, we haveNf − Nc − 1 physical D3-branes, where
−1 is there to cancel the charge of the O3þ plane. On the
other hand, at x3 ¼ πR, where O3− is located, we have one
physical D3-brane to cancel the charge of O3−. This
configuration gives rise to a USpð2ðNf − Nc − 1ÞÞ gauge
theory with 2Nf chirals at x3 ¼ 0, and a pure SOð2Þ gauge
sector at x3 ¼ πR. There is also an interaction1

1A monopole Y is identified here with a Coulomb branch
coordinate Σ. On the Coulomb branch the latter are holomorphic
combinations Σ≡ iφþ σ

g2 of the dual photon φ and of the real
scalar σ in the vector multiplet, where g represents the gauge
coupling.
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W ¼ eΣ−Σ1 ð3:2Þ

between the monopole y ¼ e−Σ1 of the dual USpð2ðNf −
Nc − 1ÞÞ gauge group and the monopole Y ¼ eΣ of the
SOð2Þ sector.
Observe that in this case, in the absence of D-branes in

the electric sector we can consider the large T-dual radius
limit, describing a pure 3d gauge theory. On the magnetic
side we can dualize the SOð2Þ gauge sector, and indeed we
keep the singlet Y, acting with the superpotential (3.2),
corresponding to the interaction W ¼ yY of the Aharony
duality.

B. USpð2NcÞ with W =Y

This case corresponds to the affine Cð1Þ
Nc

case, corre-
sponding to the circle compactification of the 4d
USpð2NcÞ theory and of its Intriligator-Pouliot dual
description, whose affine Dynkin diagram is

∘ ⇒ ∘ − � � � − ∘|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Nc−1 nodes

⇐∘ ð3:3Þ

In terms of branes, we have an O3þ plane at x3 ¼ 0 and
an O3þ at x3 ¼ πR. In this brane setup we consider Nc D3
andNf − 1D5 at x3 ¼ 0 (with their images), while we have
one D5 x3 ¼ πR (with its image). This system gives rise to
the USpð2NcÞ gauge theory with 2Nf fundamentals with
W ¼ Y, where the monopole superpotential can be read
from the brane configuration at x3 ¼ πR.
Let us now discuss the brane configuration after the

transition through infinite coupling. At x3 ¼ 0, where one
of the O3þ planes is located, we have ðNf − 1Þ − Nc − 1

physical D3-branes, where the last −1 is there to cancel the
charge of O3þ. This gives rise to a USpð2ðNf − Nc − 2ÞÞ
gauge theory with 2Nf fundamentals. At x3 ¼ πR, where
the other O3þ is located, we have ð1 − 0Þ − 1 ¼ 0 D3-
branes, where 1 and 0 denote numbers of D5- and D3-
branes before the transition and the last−1 is there to cancel
the charge of O3þ. The absence of D3-branes at x3 ¼ πR
for both the electric and the magnetic descriptions allows us
to place the extra D5-branes from this position to x3 ¼ 0.
This system gives rise to the dual theory, which is the
USpð2ðNf − Nc − 2ÞÞ gauge theory with 2Nf fundamen-
tals, singlets M and W ¼ Mqqþ y, where the monopole
superpotential can be read from the brane configuration
at x3 ¼ πR.

C. USpð2NcÞ with W =Y2

This case corresponds to another twisted affine com-
pactification. At the geometric level we have an O3þ plane

at x3 ¼ 0 and an fO3− at x3 ¼ πR. Such an orientifold
boundary condition corresponds to the twisted affine

algebra Að2Þ
2Nc

:

∘⇐∘ − ∘ − � � � − ∘ − ∘|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðNc−1Þ nodes

⇐∘: ð3:4Þ

Observe that there is also a configuration with the
two orientifolds exchanged. Such a configuration corre-
sponds to turning on opportune Wilson lines in the
4d setup.
In this brane setup we consider Nc D3 and Nf D5 (with

their images), along with O3þ, at x3 ¼ 0, while we have a
half-physical D3-brane stuck on the fO3− plane at x3 ¼ πR.
This gives rise to the USpð2NcÞ gauge theory with
2Nf fundamentals and W ¼ Y2, where the monopole
superpotential can be read off from the configuration
at x3 ¼ πR.
After the transition through infinite coupling we are left

with Nf − Nc − 1 D3-branes at x3 ¼ 0, where −1 is there
to cancel the charge of O3þ. There is a half-physical D3-
brane stuck on fO3− at x3 ¼ πR. This system gives rise to
the dual theory, namely, the USpð2ðNf − Nc − 1ÞÞ gauge
theory with 2Nf fundamentals, singlets M and the super-
potential W ¼ Mqqþ y2.
As a final remark, it is worth mentioning that the duality

discussed in this section can be obtained from that
discussed in Sec. III A as follows. One may deform the
electric theory in Sec. III A by adding the term Y2 to
the superpotential. Upon using the duality discussed in
Sec. III A, we obtain the superpotential Mqqþ yY þ Y2 in
the magnetic theory, where Y is now an elementary
field that can be integrated out, which leads to the super-
potential Mqq − 1

4
y2. The factor −1=4 can be easily

absorbed into y by a field redefinition of y. We therefore
obtain the superpotential discussed in the preceding para-
graph. This argument has in fact also been used in Sec. 5.2
of [37].

IV. DUALITIES FOR UNITARY
GAUGE GROUPS

In this section we study unitary gauge groups, corre-
sponding to placing Nc D3-branes and Nf D5-branes at
x3 ¼ π

2
R. Depending on the choice of the orientifolds we

also place other D3- or D5-branes at x3 ¼ 0 and x3 ¼ πR.
By exchanging the position of the NS-branes we generate
the dual description. We can summarize the results of this
section in the following table.

AMARITI, CASSIA, GAROZZO, and MEKAREEYA PHYS. REV. D 100, 046001 (2019)

046001-6



Gele Gmag Wele Wmag Orientifolds

UðNcÞ UðNf − NcÞ W ¼ 0 W ¼ Mqq̃þ Tþtþ þ T−t−

UðNcÞ UðNf − Nc − 2Þ W ¼ Tþ þ T− W ¼ Mqq̃þ tþ þ t−

UðNcÞ UðNf − Nc − 1Þ W ¼ Tþ W ¼ Mqq̃þ t− þ T−tþ

UðNcÞ UðNf − NcÞ W ¼ T2þ þ T2− W ¼ Mqq̃þ t2þ þ t2−

UðNcÞ UðNf − NcÞ W ¼ T2þ W ¼ Mqq̃þ t2− þ T−tþ

UðNcÞ UðNf − Nc − 1Þ W − T2þ þ T− W ¼ Mqq̃þ t2− þ tþ

As already anticipated in the Introduction, most of the
models have already been discussed in the literature.
However, there is a new case, so far overlooked, correspond-
ing toUðNcÞ SQCDwithW ¼ T2þ þ T−. Observe that a full
classification should have nine inequivalent cases. The other
three cases that we did not discuss here correspond to the
pairs ðO3−; fO3−Þ, ðO3−;O3þÞ and ðO3þ; fO3−Þ. These cases
can be obtained by charge conjugation on ðfO3−;O3−Þ,
ðO3þ;O3−Þ and ðfO3þ;O3þÞ, respectively.
In the following we discuss the various cases separately,

showing how to construct the 3d dualities from the brane
picture in each case.

A. UðNcÞ with W = 0: Aharony duality

Aharony duality can be constructed by reducing a 4d
SOð2NÞ gauge theory with Nf flavors on S1 and consid-
ering the vacuum corresponding to Nc D3 and Nf D5 at
x3 ¼ π

2
R. The corresponding 4d theory on S1 has a

monopole superpotential W ¼ ηZ, where Z is the KK
monopole operator2 [3].
Since we do not have any extra D3 or D5 at x3 ¼ 0; πR, it

signals the fact that we can send the radius and the
monopole superpotential to zero. This is in agreement
with the discussion below (5.2) of [3]. The resulting theory
is thus a 3d UðNcÞ gauge theory with Nf flavors and zero
superpotential.

In the dual picture we have Nf − Nc D3 and Nf D5 at
x3 ¼ π

2
R. Moreover, we have a D3 and its image at x3 ¼ 0

and at x3 ¼ πR. In this case we have to dualize these
SOð2Þ ¼ Uð1Þ gauge theories. In the dual picture the
monopole corresponds to a singlet, and it can be identified
with the electric monopole acting as a singlet in this dual
phase. This is compatible with the claim that this brane
picture represents the dual phase of Aharony duality.

B. UðNcÞ with W =T + +T −
This duality has already been studied in [21], and it

corresponds to the reduction of a 4dUSpð2NcÞ SQCDwith
2Nf fundamentals. Upon putting this theory on S1, a
superpotential W ¼ ηY is generated. In the electric theory
one needs to consider a vacuum with Nc D3 and Nf − 2 D5
at x3 ¼ π

2
R. Moreover, there is a pair of one D5-brane and

its image at both x3 ¼ 0 and x3 ¼ πR.
The dual picture has Nf − Nc − 2 D3 and Nf − 2 D5 at

x3 ¼ π
2
R. and again a pair of one D5-brane and its image at

both x3 ¼ 0 and x3 ¼ πR. The absence of D3-branes at
x3 ¼ 0 and x3 ¼ πR in both phases allows us to recollect all
the D5 at x3 ¼ π

2
R in both phases. Furthermore, the

monopole superpotential can be read from the spectrum
of D1-branes connecting the stack of D3-branes at the
orientifolds.

C. UðNcÞ with W =T +

We start by reducing the 4d USpð2NcÞ gauge theory
with 2Nf fundamentals and its dual on a circle. The brane

2Semiclassically, this corresponds to Z ∼ eΣ1þΣ2 in the notation
of [3].
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system consists of an O3þ plane at x3 ¼ 0 and an O3−

plane at x3 ¼ πR. The electric theory on S1 has a super-
potential W ¼ ηY, and the dual theory has gauge group
USpð2Nf − 2Nc − 4Þ. Such an orientifold boundary con-

dition corresponds to the twisted affine algebra Að2Þ
2Nc−1:

ð4:1Þ

For our aims the configuration with the two orientifolds
exchanged is completely equivalent, and it corresponds to
turning on opportune Wilson lines in the 4d setup.
In the electric theory we have Nc D3 and Nf − 1 D5 at

x3 ¼ π
2
R. We also consider one D5-brane and its image at

x3 ¼ 0, while we do not have any D-brane at x3 ¼ πR.
In the dual model we have Nf − Nc − 1 D3 and Nf − 1

D5 at x3 ¼ π
2
R, along with one D5 and its image at x3 ¼ 0

and one D3 and its image at x3 ¼ πR. We are free to
connect all the D5 at x3 ¼ π

2
R in both phases and to dualize

the SOð2Þ gauge theory into a scalar. The final duality
relates a UðNcÞ gauge theory with Nf pairs of fundamen-
tals and antifundamentals with monopole superpotential
W ¼ Tþ with a UðNf − Nc − 1Þ gauge theory with Nf

pairs of dual fundamentals and antifundamentals, with
superpotential W ¼ Mqq̃þ t− þ tþT− where M corre-
sponds to the meson of the electric theory and T− is the
dual photon of the SOð2Þ gauge theory and has the same
quantum numbers of the antimonopole of the electric
theory.
Let us end this subsection by mentioning a puzzle

regarding the twisted compactification in this case. As
we mentioned at the beginning, we start from the
USpð2NcÞ gauge theory on S1. There are two options to
obtain such a gauge algebra from 4d, namely,
(1) A2l ¼ suð2lþ 1Þ → Cl ¼ uspð2lÞ; or
(2) Dlþ1 ¼ soð2lþ 2Þ → Cl ¼ uspð2lÞ.

For option 1, the 4d Seiberg duality between an
SUð2Nc þ 1Þ gauge theory with 2Nf flavors and an
SUð2Nf − 2Nc − 1Þ gauge theory with 2Nf flavors
becomes a duality between a USpð2NcÞ gauge theory
and a USpð2Nf − 2Nc − 2Þ gauge theory; however, the
latter is not USpð2Nf − 2Nc − 4Þ as expected. For option
2, the 4d Seiberg duality between an SUð2Nc þ 2Þ gauge
theory with 2Nf flavors and an SUð2Nf − 2Nc − 2þ 4Þ ¼
SUð2Nf − 2Nc þ 2Þ gauge theory with 2Nf flavors
becomes a duality between a USpð2NcÞ gauge theory
and aUSpð2Nf − 2NcÞ gauge theory; however, the latter is
not USpð2Nf − 2Nc − 4Þ as expected. One possibility to
resolve this puzzle is that in this brane setup there is a
Wilson line that could break the USpð2Nf − 2Nc − 2Þ
gauge group to the USpð2Nf − 2Nc − 4Þ gauge group

[or from the USpð2Nf − 2NcÞ gauge group to the
USpð2Nf − 2Nc − 4Þ gauge group]. We leave this for
future work.

D. UðNcÞ with W =T2
+ +T2−

The 3d duality in this case can be realized by starting
from the following 4d theories on S1 with a special
orthogonal gauge algebra. The latter can be obtained from
4d Seiberg duality by twisted compactification as follows.
Let us use the nontrivial outer-automorphism of the
A2l−1 ¼ suð2lÞ algebra to twist and obtain the Bl ¼
soð2lþ 1Þ algebra: The Seiberg duality between the
SUð2lÞ gauge theory with 2Nf

flavors and the SUð2Nf − 2lÞ gauge theory with 2Nf

flavors and singlets then becomes a duality between a
theory with the soð2lþ 1Þ gauge algebra and a theory with
the soð2Nf − 2lþ 1Þ gauge algebra after twisting. In this
paper, we do not go into any further detail of the duality
between theories with the orthogonal gauge algebra.
The brane system of such theories with the B-type

orthogonal gauge algebras contains a pair of fO3− planes,
one at x3 ¼ 0 and the other at x3 ¼ πR. Recall that on each
Õ3− plane, there is a half D3-brane stuck there. The
orientifold boundary condition corresponds to the twisted

affine algebra Dð2Þ
Ncþ1:

∘⇐∘ − ∘ − � � � − ∘ − ∘ ⇒ ∘|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðNcþ1Þ nodes

: ð4:2Þ

In the electric theory we have Nc D3 and Nf D5 at
x3 ¼ π

2
R: the gauge theory corresponds to UðNcÞ with Nf

pairs of fundamentals and antifundamentals and super-
potential W ¼ T2þ þ T2

− corresponding to the spectrum of
D1-branes connecting the D3-branes at the orientifold and
the D3-branes on the stack.
In the dual configuration we have Nf − Nc D3 and Nf

D5 at x3 ¼ π
2
R, a single D3 at x3 ¼ 0 and another at

x3 ¼ πR. The gauge theory corresponds to UðNf − NcÞ
with Nf pairs of fundamentals and antifundamentals and
superpotential W ¼ Mqq̃þ t2þ þ t2−.
It is worth noting that the duality discussed in this section

can also be obtained from that in Sec. IVA by a similar
deformation as discussed in Sec. III C.

E. UðNcÞ with W =T2
+

This duality can be constructed by reducing a 4d model
with soð2Nc þ 1Þ gauge algebra and 2Nf vectors on S1.
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The brane setup contains an fO3− at x3 ¼ 0 where there is a
half D3-brane stuck there, together with an O3− at
x3 ¼ πR. We consider the vacuum corresponding to Nc
D3 and Nf D5 at x3 ¼ π

2
R. This electric theory corresponds

to a UðNcÞ model with Nf pairs of fundamentals and
antifundamentals and superpotential W ¼ Tþ. As dis-
cussed above we consider a decoupling limit without the
generation of any monopole superpotential arising from the
O3− plane.
The dual model is obtained by exchanging the position

of the NS-branes, and it corresponds to considering
Nf − Nc D3-branes and Nf D5-branes at x3 ¼ π

2
R and

again a half D3 stuck on fO3− at x3 ¼ 0. Furthermore, we
have one D3-brane and its image at x3 ¼ πR on the O3−

plane. The total amount of D3-branes in this setup
corresponds to the total amount of D4 in the 4d theory,
as it should. Indeed the dual 4d model corresponds to a
theory with algebra soð2Nf − 2Nc þ 3Þ; this is because we
can recollect all Nf − Nc þ 1 D3-branes on the fO3− plane.
The SOð2Þ gauge theory at x3 ¼ πR can be dualized to a
scalar, and this scalar corresponds to the electric monopole
acting as a singlet in the dual phase. All in all, the dual
model corresponds to a UðNf − NcÞ gauge theory with Nf

pairs of fundamentals and antifundamentals and super-
potential W ¼ t2− þ T−tþ, with T− the singlet obtained by
dualizing the SOð2Þ gauge theory.

F. UðNcÞ with W =T2
+ +T −

The 3d duality in this case can be realized by starting
from the following 4d theories on S1 with a symplectic
gauge algebra and a quadratic monopole superpotential:

ðAÞ∶ USpð2NcÞSQCD with 2Nf chirals and W ¼ Y2:

ðBÞ∶ USpð2Nf − 2Nc − 2ÞSQCD with 2Nf chirals;

singletsM andW ¼Mqqþ Ŷ2: ð4:3Þ

We may obtain such a duality from 4d Seiberg duality by
twisted compactification as follows. Let us use the non-
trivial outer-automorphism of the A2l ¼ suð2lþ 1Þ alge-
bra to twist and obtain the Cl ¼ uspð2lÞ algebra. The
Seiberg duality between the SUð2Nc þ 1Þ gauge theory
with 2Nf flavors and the SUð2Nf − 2Nc − 1Þ gauge
theory with 2Nf flavors and singlets then becomes a
duality between the USpð2NcÞ gauge theory and the
USpð2Nf − 2Nc − 2Þ gauge theory after twisting. These
are indeed the gauge groups in (4.3), as required.
The brane system contains an O3þ at x3 ¼ 0 (or at

x3 ¼ πR) and an fO3− at x3 ¼ πR (or at x3 ¼ 0). In the
presence of D3-branes this gives rise to the superpotential
W ¼ T2þ þ T− (or W ¼ T2

− þ Tþ). This case is interesting
because it has been overlooked so far in the literature, while
it seems a natural possibility to investigate it in the brane

setup. The orientifold boundary condition corresponds to

the twisted affine algebra Að2Þ
2Nc

:

∘⇐∘ − ∘ − � � � − ∘ − ∘|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðNc−2Þ nodes

⇐∘: ð4:4Þ

For definiteness, let us fix O3þ to be at x3 ¼ 0 and fO3−
to be at x3 ¼ πR. In this case, we put Nc D3 and Nf − 1 D5
at x3 ¼ π

2
R. Moreover, we have one D5-brane (and its

image) at x3 ¼ 0, as well as a half-physical D3-brane stuck
on the fO3− plane at x3 ¼ πR.
In the dual configuration we have Nf − Nc − 1 D3 and

Nf − 1 D5 at x3 ¼ πR. We also have one D5-brane (and its

image) at x3 ¼ 0 and a half-physical D3-brane stuck at fO3−
at x3 ¼ πR. We can furthermore reconnect the D5-brane
at x3 ¼ π

2
R, and the final configuration represents a

UðNf − Nc − 1Þ gauge theory with Nf pairs of fundamen-
tals and antifundamentals and superpotential W ¼
Mqq̃þ t2− þ tþ.
Finally, we remark that the duality discussed in this

section can also be obtained from that in Sec. IV C by a
similar deformation as discussed in Sec. III C.

1. A further argument: The S3 partition function

We can provide a further argument for the validity of the
duality just proposed by studying the three-sphere partition
function. We can indeed prove analytically the integral
identity between the electric and the magnetic side. The
partition function for a UðNcÞ gauge theory with Nf pairs
of fundamentals can be read from formula (A2) in the
Appendix, by setting τ ¼ ω:

ZUðNcÞðμ; ν; ηÞ≡ ZUðNcÞðμ; ν;ω; ηÞ: ð4:5Þ
At this point we can consider the duality between UðNcÞ
with Nf pairs of fundamentals and antifundamentals and
superpotentialW ¼ Tþ and UðNf − Nc − 1Þ with Nf pairs
of fundamentals and antifundamentals and superpoten-
tial W ¼ Mqq̃þ t− þ tþT−.
The matching between the electric and the magnetic

partition functions has been proven for this case by [21].
The identity is

ZUðNcÞðμ;ν;η− 2ωÞ ¼ e
iπ
2

PNf
a¼1

ðμ2a−ν2aÞΓhðηÞ
YNf

a;b¼1

Γhðμaþ νbÞ

×ZUðNf−Nc−1Þðω−μ;ω− ν;ηÞ
ð4:6Þ

where the parameters μ, ν and η are constrained by

1

2

XNf

a¼1

ðμa þ νaÞ þ
η

2
¼ ωðNf − NcÞ: ð4:7Þ
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Following the mathematical literature, from now on, we
refer to this and similar types of identities between the
parameters entering in the partition function as balancing
conditions. From (4.6) one can now prove the identity for
the case at hand.
This can be understood by a field theoretical analysis as

follows: deforming the electric side of the duality by adding
a superpotential term proportional to T2

−, we impose the
balancing conditions

η ¼ ω;
XNf

a¼1

ðμa þ νaÞ ¼ 2ω

�
Nf − Nc −

1

2

�
: ð4:8Þ

By plugging (4.8) into the identity (4.6) and by using the
fact that ΓhðωÞ ¼ 1, one arrives at the identity

ZUðNcÞðμ; ν;−ωÞ ¼ e
iπ
2

PNf
a¼1

ðμ2a−ν2aÞ
YNf

a;b¼1

Γhðμa þ νbÞ

× ZUðNf−Nc−1Þðω − μ;ω − ν;ωÞ ð4:9Þ

with the balancing conditions (4.8), which provide the
equality between the partition functions that we are looking
for. Furthermore, the brane picture suggests a RG flow
interpolating between USpð2NcÞ with 2Nf fundamentals
andW ¼ Y2 and UðNcÞ with Nf pairs of fundamentals and
antifundamentals and W ¼ Tþ þ T2

− (or W ¼ T− þ T2þ).
Moreover, this flow should interpolate between the two
dualities involving symplectic and unitary groups, respec-
tively. Here, we check these expectations against the
partition function. This provides a further argument in
favor of the new duality for unitary theories and monopole
superpotential W ¼ Tþ þ T2

− (or W ¼ T− þ T2þ).

G. The electric flow

The partition function for USpð2NcÞ with 2Nf funda-
mentals can be read from formula (A3) in the Appendix by
setting τ ¼ ω. We have

ZUSpð2NcÞðmÞ≡ ZUSpð2NcÞðm;ωÞ: ð4:10Þ

On the electric side we then consider the partition function
Zele ¼ ZUSpð2NcÞðmÞ. The quadratic monopole superpoten-
tial imposes the balancing condition

X2Nf

a¼1

ma ¼ ωð2Nf − 2Nc − 1Þ: ð4:11Þ

We then consider the Higgs flow triggered by the shift3

σa → σa − s; a ¼ 1;…; Nc ð4:12Þ

and the real mass flow triggered by

mi → μi þ s; miþNf
→ νi − s i ¼ 1;…; Nf: ð4:13Þ

By plugging (4.17) and (4.13) into ZUSpð2NcÞðmÞ and
by computing the large s limit using formula (A4), we
arrive at the partition function of the UðNcÞ gauge theory
with Nf pairs of fundamentals and antifundamentals and
W ¼ Tþ þ T2

−,

Zele ¼
e
iπ
2
ðAsþBÞ

Nc!
ZUðNcÞðμ; ν;−ωÞ ð4:14Þ

where

A ¼ −4N2
cω;

B ¼ Nc

�XNf

i¼1

ðμ2i − ν2i Þ − 2ω
XNf

i¼1

ðμi − νiÞ
�
: ð4:15Þ

H. The magnetic flow

On the magnetic side the partition function is

Zmag ¼
Y

1≤a<b≤2Nf

Γhðmi þmjÞZUSpð2ÑcÞðm̃iÞ ð4:16Þ

with Ñc ¼ Nf − Nc − 1 and m̃j ¼ ω −mj. The dual Higgs
flow is triggered by

σa → σa þ s; a ¼ 1;…; Ñc ð4:17Þ

while the real mass flow can be read by using the duality
map from the electric one. In the large s limit we arrive at
the partition function of the UðÑcÞ gauge theory with Nf

pairs of fundamentals and antifundamentals, N2
f singlets

Mij (with i; j ¼ 1;…; Nf) and W ¼ Mqq̃þ t− þ t2þ,

Zmag ¼ eÃsþB̃
YNf

i;j¼1

Γhðμi þ νjÞZUðÑcÞðμ̃; ν̃;ωÞ ð4:18Þ

where μ̃ ¼ ω − μ, ν̃ ¼ ω − ν and

Ã¼A;

B̃¼ðNc−1Þ
XNf

i¼1

ðμ2i −ν2i Þ−ωð2Nc−1Þ
XNf

i¼1

ðμi−νiÞ: ð4:19Þ

Moreover, using the fact that
P

μi ¼
P

νi we can equate
(4.14) and (4.18), and we are left with the identity (4.9) as
expected.

3We could have chosen the opposite signs for s. This choice
corresponds to W ¼ Tþ þ T2

−, while the opposite choice corre-
sponds to W ¼ T− þ T2þ
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V. DUALITIES WITH TENSORIAL MATTER

In this section we study 3d N ¼ 2 dualities in the
presence of tensorial matter fields and a quadratic monop-
ole superpotential. The analysis is inspired from the
discussion in Sec. 4.1.1 in [37] and here in (IV F 1). The
idea consists in deforming an electric duality by a quadratic
monopole superpotential and finding the dual deformation
on the magnetic side. These superpotentials impose a set of
constraints on the complex combinations of real masses and
R-charges appearing as parameters in the partition function.
After fixing these constraints, the identities relating the
partition functions of the parent dualities become new
identities among the partition functions of the new dual-
ities. In this last step some singlets may disappear from the
identity because they contribute as fields with holomorphic
masses; i.e., their partition function is equal to one.

A. UðNcÞ gauge group

We start our analysis by considering SQCD with UðNcÞ
gauge groups,Nf fundamentalsQ and antifundamentals Q̃,
and one adjoint matter field with superpotential

Wele ¼ trXkþ1: ð5:1Þ

This theory is dual to UðkNf − NcÞ SQCD with Nf

dual fundamentals q and antifundamentals q̃, k mesons
Mj ¼ QXjQ̃, j ¼ 0;…; k − 1, and an adjoint Y with
superpotential

Wmag ¼ trYkþ1 þ
Xk−1
j¼0

MjqYk−1−jq̃

þ
Xk−1
j¼0

ðTjtk−1−j þ T̃jt̃k−1−jÞ ð5:2Þ

where Tj¼T0trXj, T̃j¼ T̃0trXj, tj¼ t0trYj, and t̃j¼ t̃0trYj,
and T0, T̃0, t0 and t̃0 are the bare monopoles and
antimonopoles of the electric and of the magnetic theory,
respectively. This duality, known as Kim-Park duality [39],
can be modified into a duality involving quadratic monop-
oles. There are two possibilities, depending on k being even
or odd.

(i) For even k we add to the electric theory the
monopole superpotential

ΔWele ¼ T2
k
2

þ T̃2
k
2
−1; ð5:3Þ

or equivalently

ΔWele ¼ T2
k
2
−1 þ T̃2

k
2

: ð5:4Þ

This corresponds to adding the following super-
potential to the magnetic theory:

ΔWmag ¼ t2k
2

þ t̃2k
2
−1; ð5:5Þ

or equivalently

ΔWmag ¼ t2k
2
−1 þ t̃2k

2

: ð5:6Þ

(ii) For odd kwe add to the electric theory the monopole
superpotential

ΔWele ¼ T2
k−1
2

þ T̃2
k−1
2

: ð5:7Þ

This corresponds to adding the following super-
potential to the magnetic theory:

ΔWmag ¼ t2k−1
2

þ t̃2k−1
2

: ð5:8Þ

From now on we discuss only the case of odd k and then
comment on the other case at the end. By adding the
superpotential (5.7) we constrain the R-charges of the
monopoles and, as a consequence, the one of the matter
fields. We are left with the constraint

Nfð1 − ΔÞ −
�
Nc − 1 −

k − 1

2

�
2

kþ 1
¼ 1 ð5:9Þ

where R½Q� ¼ R½Q̃� ¼ Δ. Observe that if we add the same
superpotential in the dual theory, the constraint is

Nf

�
1 −

�
2

kþ 1
− Δ

��
−
�
Ñc − 1 −

k − 1

2

�
2

kþ 1
¼ 1

ð5:10Þ

and, at the level of the charges, this is consistent with the
duality only if Ñc ¼ kNf − Nc. This fact can be confirmed
by looking at the partition function. The identity for the
Kim-Park duality is

ZUðNcÞðμ; ν; τ; ηÞ

¼
Yk−1
j¼0

Γh

�
� η

2
þ ωNf þ ðj − Nc þ 1Þτ −

XNf

a¼1

μa þ νa
2

�

×
YNf

a;b¼1

Γhðjτ þ μa þ νbÞZUðÑcÞðμ̃; ν̃; τ;−ηÞ ð5:11Þ

where we refer to the Appendix for the various notations.
By adding the superpotential (5.7) we introduce a

balancing condition

ωNf þ
�
k − 1

2
− Nc þ 1

�
τ −

XNf

a¼1

μa þ νa
2

¼ ω: ð5:12Þ

Since
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τ ¼ ωΔA ¼ 2

kþ 1
ω ð5:13Þ

this simplifies to

XNf

a¼1

ðμa þ νaÞ ¼ 2ðωNf − τNcÞ: ð5:14Þ

Furthermore, we set η ¼ 0. In each of the first and second
lines of (5.11), the terms in the product can be paired
between j ¼ m and j ¼ ðk − 1Þ −m, with 0 ≤ m ≤ k − 1.
In each of these two lines, there is also an unpaired term for
j ¼ 1

2
ðk − 1Þ. Using the identity Γhð2ω − xÞΓhðxÞ ¼ 1, it

can be seen that the contributions of each pair cancel
precisely, and the unpaired term gives ΓhðωÞ ¼ 1. Hence,
we have proven that

ZUðNcÞðμ; ν; τ; 0Þ

¼
YNf

a;b¼1

Γhðjτ þ μa þ νbÞZUðÑcÞðμ̃; ν̃; τ; 0Þ ð5:15Þ

with the duality map μ̃ ¼ τ − μ and ν̃ ¼ τ − ν and the
balancing condition (5.14). Observe that the even cases
work in a similar manner, essentially because they leave the
balancing condition (5.14) unchanged.

1. More general monopole superpotentials

The above discussion can be generalized in the case
in which we add, to the electric theory, the monopole
superpotential

ΔWele ¼ T2
q þ T̃2

k−1−q ð5:16Þ

and similarly, to the magnetic theory, the monopole
superpotential

ΔWmag ¼ t2q þ t̃2k−1−q: ð5:17Þ

Let us first analyze the electric theory. It can be easily
seen that the basic monopole operators T0 and T̃0 have
different R-charges if q ≠ ðk − 1Þ=2. Moreover, the Uð1ÞT
topological symmetry and the Uð1ÞR R-symmetry are
broken to a diagonal subgroup. Let us refer to the latter
as Uð1ÞR0 ¼ Uð1ÞR − αUð1ÞT . Therefore,

R0½T0� ¼ R − α; R0½T̃0� ¼ Rþ α; ð5:18Þ

with

R ¼ Nfð1 − ΔÞ þ ðNc − 1Þð1 − ΔAÞ − ðNc − 1Þ;

ΔA ¼ 2

kþ 1
: ð5:19Þ

The R0-charges of Tq and T̃k−1−q can be written as
follows:

R0½Tq� ¼ 1 ¼ R − αþ qΔA;

R0½T̃k−1−q� ¼ 1 ¼ Rþ αþ ðk − 1 − qÞΔA: ð5:20Þ

Solving these equations yields

α ¼ ðqþ 1ÞΔA − 1 ¼ 2q − ðk − 1Þ
kþ 1

: ð5:21Þ

This is in agreement with the above analyses for q ¼
ðk − 1Þ=2 with k odd, and for q ¼ k=2 with k even.
Similarly for the magnetic theory, we have

R0½t0� ¼ R̂ − α; R0½t̃0� ¼ R̂þ α; ð5:22Þ

with

R̂ ¼ Nf½1 − ðΔA − ΔÞ� þ ðÑc − 1Þð1 − ΔAÞ
− ðÑc − 1Þ; ð5:23Þ

and

R0½tq� ¼ 1 ¼ R̂ − αþ qΔA;

R0½t̃k−1−q� ¼ 1 ¼ R̂þ αþ ðk − 1 − qÞΔA: ð5:24Þ

Solving these equations, we obtain

Ñc ¼ kNf − Nc: ð5:25Þ

We see that the sum of the equations in (5.20) gives rise
to the same balancing condition as (5.14), which is
independent of q. It should be emphasized that for
q ≠ k−1

2
, the FI parameter ξ in (5.11) can be nonzero (in

contrast to q ¼ k−1
2
). In this case, we can pair the terms

j ¼ m in the first line with j ¼ ðk − 1Þ −m in the second
line, for 0 ≤ m ≤ k − 1. Upon using the identity
Γhð2ω − xÞΓhðxÞ ¼ 1, we see that the contribution from
each pair cancels precisely. We thus arrive at a similar
relation to (5.15):

ZUðNcÞðμ; ν; τ; ηÞ

¼
YNf

a;b¼1

Γhðjτ þ μa þ νbÞZUðÑcÞðμ̃; ν̃; τ − ηÞ: ð5:26Þ

Thus, the same duality holds with the addition of (5.16) and
(5.17) for any 0 ≤ q ≤ k − 1, with a nonzero FI parameter
in the partition function.
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B. UðNcÞ with a single quadratic monopole
superpotential

Here we discuss a duality between
(i) UðNcÞ adjoint SQCD with

W ¼ Xkþ1 þ T̃2
k−1
2

ð5:27Þ

and k even, and
(ii) UðkNf − NcÞ adjoint SQCD with

W ¼ Ykþ1 þ t2k−1
2

þ
Xk−1
j¼0

MjqYk−1−jq̃þ
Xk−1
j¼1

Tjt̃k−1−j:

ð5:28Þ
Observe that a more general duality can be constructed by
considering a monopole superpotential W ∼ T̃2

q with
0 ≤ q ≤ k − 1. Such a duality can be defined for both
even and odd k, and it just requires more care in the choice
of the FI [see the discussion at the end of Sec. (VA)]. We
will not discuss this generalization further, and we leave the
details to the interested reader.
Here we show that the duality for even k summarized

above can be obtained from the duality with a quadratic
monopole superpotential discussed in Sec. (VA). We
consider the case with Nf þ 1 fundamentals and trigger
a real mass flow on the partition function by considering the
large s limit in the relations

μNfþ1 →
η

2
þ s; νNfþ1 →

η

2
− s: ð5:29Þ

The balancing condition (5.14) is modified as

XNf

a¼1

ðμa þ νaÞ þ ηþ 2Ncτ ¼ 2ωðNf þ 1Þ: ð5:30Þ

In the dual side we further consider the Higgs flow in
the gauge sector, breaking the gauge symmetry as
UðkðNf þ 1Þ − NcÞ → UðkNf − NcÞ ×UðkÞ.
By performing the large s limit in the identity (5.15), we

are left with the identity between two finite quantities, after
we simplify the divergent pieces. The subsequent analysis
is very similar to that presented in Sec. 4.1.1 of [37].
On the electric side we have the partition function of

UðNcÞ adjoint SQCD with superpotential (5.39) and
effective FI equal to ðη

2
− ωÞ. The presence of the quadratic

monopole superpotential in (5.39) is captured by the
balancing condition (5.30). On the magnetic side we
have two gauge sectors. The first one corresponds to
UðkNf − NcÞ adjoint SQCD, and it captures the first three
terms in the superpotential (5.40). The last term in (5.40)
(i.e., the contribution of the electric dressed monopoles T̃j

acting as singlets in the dual phase) is captured by the
second integral. In addition there are j contributions from

the ðNf þ 1Þth components of the original dressed mesons,
which are massless in this dual phase, after triggering the
real mass flow as in (5.29). The contribution of the singlets
Tj can be seen explicitly by studying the partition function
associated to this extra gauge sector and these j singlets
arising from the original meson. We have

Yk−1
j¼0

Γhðηþ jτÞ
Z Yk

c¼1

dσceiπðη−2ωÞΓh

�
τ −

η

2
� σc

�

×
Y
c<d

Γhð�ðσc − σdÞ þ τÞ
Γhð�ðσc − σdÞÞ

¼
Yk−1
j¼0

Γhðηþ jτÞΓhðη − ðjþ 1ÞτÞΓhð2ω − ðjþ 1ÞτÞ

× Γhðð2 − jÞτ − ηÞ

¼
Yk−1
j¼0

Γhðη − ðjþ 1ÞτÞ ¼
Yk−1
j¼0

Γhðη − ðk − jÞτÞ ð5:31Þ

where we have evaluated this integral by using
Theorem 5.6.8 of [31]. We can show that (5.31) corre-
sponds to the electric monopole by applying the balancing
condition (5.30):

η − ðk − jÞτ ¼
�
η

2
− ω

�
þ ½j − k − Nc�τ þ ωðNf þ 2Þ

−
1

2

XNf

a¼1

ðμa þ νaÞ: ð5:32Þ

In order to see that this combination captures the global
charges of the dressed monopoles Tj acting as singlets in
the last sum of the superpotential (5.40), we have to shift
the effective FI as η → ηþ 2ω. In this way the FI is chosen
canonically, and we can simply read the global charges
from the combination of the real masses in (5.32). After the
shift and some rearranging, the rhs of (5.32) becomes

η

2
þ ωNf − ðNc − j − 1Þτ − 1

2

XNf

a¼1

ðμa þ νaÞ: ð5:33Þ

From this relation we can see that this field has topological
charge þ1, axial mass −Nf and R-charge

Δj ¼ Nfð1 − ΔQÞ − ΔXðNc − j − 1Þ ð5:34Þ

where ΔQ are the charges of the electric fundamentals Q
and antifundamentals Q̃ (with ΔQ ¼ ΔQ̃) and ΔX is the
R-charge of the electric adjoint field X. This shows that the
expression in (5.33) is the combination of masses and
charges expected for the (dressed) electric monopoles.
Observe that from this duality we can further flow to

the identity (5.11) by triggering a further real mass flow.
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This provides a further consistency check of the duality. We
leave the details of this calculation to the interested reader.

C. UðNcÞκ with quadratic monopole superpotentials

It is also possible to study a RG flow leading to a duality
involving CS matter theories. This is done by turning on the
real masses for the fundamentals and shifting the scalars σi
and the FI as

μa → μa − κs a ¼ 1;…; Nf − κ

μa → μa þ ð2Nf − κÞs a ¼ Nf − κ þ 1;…; Nf

νa → νa þ κs a ¼ 1;…; Nf

η → η − 2Nfκs

σi → σi þ κs i ¼ 1;…; Nc

σ̃i → σi − κs i ¼ 1;…; Ñc ð5:35Þ

where σ̃i is the shift of the scalar in the dual vector
multiplet. The real masses in the dual theory can be read
from the duality map as usual. We can study the real mass
flow by computing the large s limit on the partition
function. We find the following identity:

ZUðNcÞκ
2

ðμ; ν; τ; ηeleÞ ¼ e
iπ
2
ϕ
YNf−κ

a¼1

YNf

b¼1

Yk−1
j¼0

Γhðμa þ νb þ jτÞ

× ZUðkNf−NcÞ−κ
2

ðτ − μ; τ − ν; τ; ηmagÞ
ð5:36Þ

where the electric and the magnetic FI in (5.36) are

ηele ¼−2
�XNf−κ

a¼1

μa−
XNf

b¼1

νbþη−ωðκþ2Þ
�
;

ηmag ¼−2
�XNf−κ

a¼1

μa−
XNf

b¼1

νbþη− κτþωðκ−2Þ
�

ð5:37Þ

and the phase ϕ in (5.36) is

ϕ ¼ k

�
κ
XNf

b¼1

ν2b − 2

�XNf

b¼1

νb −
XNf−κ

a¼1

μa

�

×

�XNf

b¼1

νb þ τNc − ωNf

�
− 2κτ

XNf

b¼1

νb

�

−
1

3
kðκτð3τNc þ ðk − 4ÞωNfÞ − τωþ 13ω2Þ

− kη2 þ 4ηkω: ð5:38Þ

This is compatible with a duality between
(i) UðNcÞκ

2
adjoint SQCD with Nf − κ fundamentals

and Nf antifundamentals and superpotential

W ¼ Xkþ1 þ T̃2
k−1
2

ð5:39Þ

and k even, and
(ii) UðkNf − NcÞ−κ

2
adjoint SQCD with Nf − κ funda-

mentals and Nf antifundamentals and superpotential

W ¼ Ykþ1 þ t2k−1
2

þ
Xk−1
j¼0

MjqYk−1−jq̃: ð5:40Þ

This duality generalizes that of Sec. 8.1 of [21] for the
linear monopole superpotential and that of Sec. 3.2.3 of
[37] for the quadratic monopole superpotential.

D. UðNcÞ with linear and quadratic
monopole superpotentials

Here we discuss a duality between
(i) UðNcÞ adjoint SQCD with

W ¼ Xkþ1 þ T̃2
k−1
2

þ T0 ð5:41Þ

and k even, and
(ii) UðkðNf − 1Þ − NcÞ adjoint SQCD with

W ¼ Ykþ1 þ
Xk−1
j¼0

MjqYk−1−jq̃þ t̃2k−1
2

þ t0: ð5:42Þ

Again a more general duality can be constructed, including
also the k odd case, by considering a monopole super-
potential W ∼ T̃2

q (or W ∼ T2
q) with 0 ≤ q ≤ k − 1. We will

not further discuss this generalization here.
Here we provide evidence of this duality, showing

that it can be obtained from a duality discussed in [17]
involving UðNcÞ adjoint SQCD with W ¼ Xkþ1 þ T0

and UðkðNf − 1Þ − NcÞ adjoint SQCD with W ¼ Ykþ1 þP
k−1
j¼1MjqYk−1−jq̃þ t0.
Our argument will be based on the matching of the

partition functions. We start from the relation derived
in [17],

ZUðNcÞðμ; ν; τ;ω − ηÞ

¼
Yk−1
j¼0

Γhð2ηþ τjÞ
YNf

a;b¼1

Γhðμa þ νb þ jτÞ

× ZUðkðNf−1Þ−NcÞðτ − μ; τ − ν; τ; τ − ω − ηÞ: ð5:43Þ

Note that in the UðNcÞ theory the FI parameter is taken to
be ω − η. This identity is valid provided the condition

XNf

a¼1

ðμa þ νaÞ þ η ¼ ωðNf − 1Þ − τðNc − 1Þ ð5:44Þ
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on the parameters is imposed. Next we add the quadratic
superpotentialW ∼ T̃2

k−1
2

on the electric side of the duality. It

corresponds to fixing η ¼ τ
2
, due to the fact that

1 ¼ R½T̃k−1
2
� ¼ R½T̃0� þ

�
k − 1

2

�
ΔA

¼ R½T̃0� þ ð1 − ΔAÞ: ð5:45Þ

On the magnetic side the effect of this deformation can be
argued by looking at the partition function (5.43). The net
effect consists of giving a holomorphic mass to the singlets
associated to the monopoles of the electric theory:

Yk−1
j¼0

Γhð2ηþ τjÞ ¼
Yk−1
j¼0

Γhðτðjþ 1ÞÞ

¼ ΓhðτÞ…ΓhðkτÞ ¼ 1: ð5:46Þ

We are then left with the identity

ZUðNcÞ

�
μ; ν; τ;ω −

τ

2

�

¼
Yk−1
j¼0

YNf

a;b¼1

Γhðμa þ νb þ jτÞ

× ZUðkðNf−1Þ−NcÞ

�
τ − μ; τ − ν; τ;

τ

2
− ω

�
ð5:47Þ

with the balancing condition

XNf

a¼1

ðμa þ νaÞ ¼ ωðNf − 1Þ − τ

�
Nc −

1

2

�
: ð5:48Þ

The relation (5.47) together with the balancing condition
(5.48) represents the matching of the partition function for
the duality summarized at the beginning of this subsection.
Observe that the presence of the quadratic monopole in the
magnetic superpotential, W ∼ t̃2k−1

2

, can be argued because it

is consistent with the constraints on the global charges
given by (5.48).

E. USpð2NcÞ gauge group

The above duality can easily be generalized to theories
with symplectic gauge groups. We propose the duality
between the following theories:

1. Theory A

The USpð2NcÞ gauge theory with 2Nf fundamentals
Qa, an antisymmetric traceless chiral multiplet A, and a
superpotential

W ¼ trAkþ1 þ T2
q; ð5:49Þ

where Tq is the dressed monopole operator

Tq ¼ YtrðAqÞ ð5:50Þ

with q an integer and Y the basic monopole operator of
theory A.

2. Theory B

The USpð2ÑcÞ gauge theory with 2Nf fundamentals,
an antisymmetric traceless chiral multiplet a, singlets
Mj ¼ QaYjQb (j ¼ 0;…; 2k), singlets Tj ¼ T0trXj, and
a superpotential

W ¼ trakþ1 þ
Xk−1
j¼0

Mk−j−1qajqþ t2q ð5:51Þ

where tq is the dressed monopole operator

tq ¼ ỸtrðaqÞ ð5:52Þ

with Ỹ the basic monopole operator of theory B.
We see that the duality holds provided that

Ñc ¼ ðNf − 1Þk − Nc; q ¼ 1

2
ðk − 1Þ: ð5:53Þ

In order for q to be an integer, k has to be odd. However, if k
is even, q is half-odd-integral, and we need to redefine the
dressed monopole operators Tq and tq. One possibility is to
define4

Tq ¼ YðdetAÞ q
2Nc ; tq ¼ Ỹðdet aÞ q

2Ñc ð5:54Þ

for q either integral or half-odd-integral.
From the superpotentials, we see that the R-charges of A

and a are equal to

ΔA ¼ 2

kþ 1
: ð5:55Þ

In order to see the first equality of (5.53), we consider the
R-charges of the monopole operators Tq and tq:

1¼R½Tq� ¼ 2Nfð1−rÞþqΔAþð1−ΔAÞ2ðNc−1Þ−2Nc;

1¼R½tq� ¼ 2Nfð1− ðΔA− rÞÞþqΔA

þð1−ΔAÞ2ðÑc−1Þ−2Ñc: ð5:56Þ

4The determinant of A is related to the trace of a power of A by
Newton’s identities. Note that since A is an antisymmetric matrix,
the trace of an odd power of A is zero. Thus, for example, if A is a
two-by-two matrix, we have detA ¼ − 1

2
trðA2Þ; and if A is a four-

by-four matrix, we have detA ¼ 1
8
ðtrðA2ÞÞ2 − 1

4
trðA4Þ.
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Solving these equations, we obtain

Ñc ¼ ðNf − 1Þk − Nc þ
�
q −

1

2
ðk − 1Þ

�
: ð5:57Þ

The monopole superpotential in theory A gives rise to the
balancing condition:

2ωNf þ ½q − 2ðNc − 1Þ�τ −
X2Nf

a¼1

μa ¼ 3ω: ð5:58Þ

The identity for the duality without monopole super-
potentials is given by [see Eq. (5.5) of [6] ]

ZUSpð2NcÞðμ;τÞ

¼
Yk−1
j¼0

Y
a<b

Γhðμaþμbþ jτÞZUSpð2ÑcÞðτ−μ;τÞ

×
Yk−1
j¼0

Γh

�
−2ωþ 2ωNf þ ½j− 2ðNc− 1Þ�τ−

X2Nf

a¼1

μa

�
:

ð5:59Þ

Let us assume that k is odd. We see that the terms
in the product in the second line of the above equation
can be paired between j ¼ m and j ¼ ðk − 1Þ −m, with
0 ≤ m ≤ k − 1. There is an unpaired term for j ¼
1
2
ðk − 1Þ. The argument of Γh for each pair adds up to

−4ωþ4ωNfþ2

�
1

2
ðk−1Þ−2ðNc−1Þ

�
τ−2

X2Nf

a¼1

μa: ð5:60Þ

Upon using the balancing condition (5.58), with q ¼
1
2
ðk − 1Þ, the above expression becomes 2ω. We can then

use the identity Γhð2ω − xÞΓðxÞ ¼ 1 to cancel the contri-
bution of each pair. On the other hand, the argument of Γh
for the unpaired term is

−2ωþ 2ωNf þ
�
1

2
ðk − 1Þ − 2ðNc − 1Þ

�
τ −

X2Nf

a¼1

μa ¼ ω;

ð5:61Þ

where we have used again the balancing condition (5.58),
with q ¼ 1

2
ðk − 1Þ. Since ΓhðωÞ ¼ 1, we obtain

ZUSpð2NcÞðμ;τÞ¼
Yk−1
j¼0

Y
a<b

ΓhðμaþμbþjτÞZUSpð2ÑcÞðτ−μ;τÞ;

q¼1

2
ðk−1Þ: ð5:62Þ

We thus establish the duality between theories A andB, with
the parameters q¼ 1

2
ðk−1Þ and thus Ñc¼ðNf−1Þk−Nc,

along with the duality map μ̃ ¼ τ − μ, ν̃ ¼ τ − ν.
In the case in which k is even, we see that there is no

unpaired term and the contributions from each pair cancel
precisely. However, in this case, q takes a half-odd-integral
value, so the dressed monopole operators have to be
redefined as, for example, in (5.54).

VI. CONCLUSIONS

In this paper we discussed 3d N ¼ 2 dualities in the
presence of quadratic monopole superpotentials. In the first
part of the paper we provided a brane picture of such
dualities for SQCD with symplectic and unitary gauge
groups. The basic observation is that these dualities can be
obtained by T-duality on the 4d picture in the presence of
orientifolds, as discussed in [8–11]. The new ingredient that
allowed us to generalize the construction to the cases with
quadratic monopole superpotentials corresponds to also
considering twisted affine compactifications. The twist is
due to an outer automorphism of the gauge algebra, and it
implies that after T-duality we can have all the possible
pairs involving O3−, O3þ and fO3−, acting on the compact
direction. This provides a classification scheme for the 3d
N ¼ 2. In this way we also obtain a new duality for the
unitary case, with a linear and a quadratic monopole
superpotential. This duality has been checked against the
partition function as well. In the second part of the paper we
used similar arguments on the partition function to con-
struct new dual pairs for dualities with tensorial matter,
adjoint for the unitary case and antisymmetric for the
symplectic one.
In the analysis we left some open question on which we

would like to come back in the future. First, we did not
discuss the orthogonal case. This corresponds to consid-
ering the gauge theory living on O3− and on fO3− planes.
The monopole superpotential in these cases has a more
intricate structure because it involves the monopole YSpin or
the monopole Y ∝ eΣ1 . The two are related as Y2 ¼ YSpin

and, while YSpin exists for both SOðNcÞ and SpinðNcÞ
gauge groups, the monopole Y can be defined only for
SOðNcÞ. It is then necessary to further study these models
from the perspective of their global properties.
In the analysis of the unitary theories there is a caveat,

due to the presence of two different boundary conditions at
the positions of the orientifolds. More concretely, the
boundary condition corresponding to the O3− at x3 ¼
πR gives rise to a term in the superpotential that is not
sensitive to the radius of the circle and can be sent to zero
upon shrinking the radius of the circle. However, the other
boundary condition O3þ at x3 ¼ 0 gives rise to a term in
the superpotential that is sensitive to the radius of the circle.
It should be interesting to elaborate further on this
difference.
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Another interesting analysis that we did not perform
consists in reproducing the dualities studied in Sec. V from
the brane picture. In such cases there will be singular
configurations, based on the presence of stacks ofNS branes.
These configurations were studied in [9] for the reduction of
4d dualities to 3d. It should be possible to reproduce on such
brane configurations the quadraticmonopole superpotentials
and the dualities discussed here in Sec. V.
Our analysis may also be generalized by considering

UðNcÞ SQCDwith two adjoints. The duality was derived in
[7], inspired by the 4d duality of [49]. It should be possible
to see if a quadratic monopole deformation can be added to
this duality and if it gives rise to a new IR duality. Other
generalizations to the dualities with tensorial matter studied
in [9] are expected as well.
We would like to conclude by observing a problem that

appears in the unitary case with Nf ¼ Nc ¼ 1. In this case
the quadratic monopole deformation gives rise to a diver-
gent partition function. This seems to be the case also when
deforming the SQCDA/XYZ duality discussed in [50], by
adding the deformations (5.3), (5.4) or (5.7). This corre-
sponds to a flat direction in the Coulomb branch, and the
partition function argument cannot be used in such cases.
Further checks of the duality are necessary in this case.

ACKNOWLEDGMENTS

We thank Domenico Orlando, Sergio Benvenuti, and
Susanne Reffert for valuable comments. The work of L. C.
is supported in part byVetenskapsrådet underGrantNo. 2014-
5517, by the STINT grant, and by the grant “Geometry and
Physics” from the Knut and Alice Wallenberg Foundation.

APPENDIX: THREE-SPHERE
PARTITION FUNCTIONS

In this Appendix we provide some useful formulas for
the 3d N ¼ 2 partition function on a squashed three-
sphere, used in the body of the paper. We refer to [51–54]
for the original derivation in localization.
The partition function of a gauge theory is an integral

over the Cartan of the gauge group. This is parametrized by
the real scalars σ, representing the dynamical real scalar in
the N ¼ 2 vector multiplet. There are classical contribu-
tions, corresponding to the FI and to the CS terms in the
action, and quantum contributions, represented by the one-
loop determinants of the gauge and matter fields. These
one-loop determinants can be formulated in terms of
hyperbolic Gamma functions Γh (see [31] for a definition
and [55] for a physical interpretation),

Γhðz;ω1;ω2Þ≡ ΓhðzÞ

≡ e
iπ

2ω1ω2
ððz−ωÞ2−ω2

1
þω2

2
12

Þ Y∞
α¼0

1 − e
2πi
ω1
ðω2−zÞe

2πiω2α
ω1

1 − e−
2πi
ω2
ze−

2πiω1α
ω2

;

ðA1Þ

where the argument z can be further refined by adding the
contributions of the scalars in the background vector
multiplets. The purely imaginary parameters ω1 ≡ ib and
ω2 ≡ ib−1 are defined in terms of the real squashing
parameter b of the ellipsoid S3b, and 2ω≡ ω1 þ ω2.
There are two types of background symmetries, flavor

and R-symmetries. We can turn on a collective background
scalar μ for the first and Δ for the second, where Δ is the
R-charge, equivalent to the mass dimension in three
dimensions. We then define a holomorphic combination
μþ ωΔ. In other words, we can count the contribution of
the R-symmetry by turning on an imaginary part for the
real masses. We now restrict ourselves to the partition
functions of interest in the paper, which are UðNcÞ SQCD
with an adjoint and USpð2NcÞ SQCD with a traceless
antisymmetric.
In the first case the partition function can be written as

ZUðNcÞκðμ; ν; τ; ηÞ

¼ 1

jWj
Z YNc

i¼1

dσieiπκσ
2
iþiπησi

YNf

a¼1

Γhðμa þ σi; νa − σiÞ

×
Y

1≤i<j≤Nc

Γhð�ðσi − σjÞ þ τÞ
Γhð�ðσi − σjÞÞ

ðA2Þ

where we used the shorthand notations Γhðx� yÞ≡
Γhðxþ yÞΓhðx − yÞ and Γhðx; yÞ ¼ ΓhðxÞΓhðyÞ. The argu-
ments in the lhs of (A2) refer, respectively, to the real
masses of the fundamentals (μ), of the antifundamentals
(ν), of the adjoint (τ) and of the FI (η). Note that jWj is the
order of the Weyl group ofUðNcÞ. We also introduced a CS
level κ in (A2). When considering cases with vanishing CS,
we omit the κ-dependence.
For USpð2NcÞ with an antisymmetric we have

ZUSpð2NcÞðμ; τÞ

¼ 1

jWj
Z YNc

i¼1

dσi
Y2Nf

a¼1

Γhð�μa þ σiÞ

×
Y

1≤i<j≤Nc

Γhð�σi � σj þ τÞ
Γhð�σi � σjÞÞ

YNc

i¼1

1

Γhð�2σiÞ
; ðA3Þ

where the arguments in the lhs of (A3) refer, respectively, to
the real masses of the fundamentals (μ) and of the
antisymmetric (τ). In this case we omitted possible CS
terms in (A3) because they do not play any relevant role in
our discussion.
The real mass flows discussed on the field theory side

correspond to the limit

lim
x→∞

ΓhðxÞ ¼ e
iπ
2
ðx−ωÞ2 : ðA4Þ
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A real mass flow interpolating two dualities can be studied
on the partition function by computing the limit (A4) on
both sides of an identity between the partition functions of

the dual phases. In order to reproduce the IR duality one has
to focus on canceling the divergent contributions among the
two sides of the identity.
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