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Abstract. In the last decades, many problems involving equilibria, arising from engineering,
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Keywords. Merit functions, gap functions, variational inequalities, equilibrium problems, descent
methods.

1 Introduction

Optimization is a widespread mathematical technique in many engineering and economic applica-
tions. However, in many real-world problems, an objective function to be optimized is missing and
the concept of equilibrium becomes crucial. Roughly speaking, if optimization takes care of the
system utility function, the equilibrium takes into account the mutual interaction between users.
In recent years, the interest in equilibrium problems has widely grown. The main applications
are concerned with traffic over telecommunication networks or over public roads, oligopolistic and
spatial price markets, financial markets, risk management, climate competition, migration prob-
lems, power allocation in radio systems, internet advertising, cloud computing (see, e.g., Altman
and Wynter (2004); Ardagna et al (2011, 2013); Bigi et al (2009); Bigi and Passacantando (2012);
Dafermos (1980); Drouet et al (2008); Ferris and Pang (1997); Forgó et al (2005); Konnov (2007,
2008a,b); Liu and Nagurney (2007); Miller and Ruszczyński (2008); Mordukhovich et al (2007);
Nagurney (1993, 2010); Patriksson (1994); Pang et al (2010); Scutari et al (2010); Wardrop (1952);
Zhao and Nagurney (2008) and references therein).

All these problems have been formulated in the literature through variational mathematical
models as complementarity problems, variational inequalities, quasi-variational inequalities, and
Nash equilibrium problems among others. Variational inequalities (VIs) are one of the most known
variational models. They were introduced by Hartman and Stampacchia (1966) as a tool for study-
ing partial differential equations in infinite dimensional spaces arising from mechanics (free-obstacle
problem, friction problem, etc.). Later, their applications to contact problems in mechanical struc-
tures provided a vaste source of finite dimensional problems.

A finite-dimensional VI is defined as follows:

find x∗ ∈ C such that ⟨F (x∗), y − x∗⟩ ≥ 0, for all y ∈ C, (VI)
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where F : Rn → Rn, C is a closed and convex subset of Rn and ⟨·, ·⟩ is the scalar product in Rn.
Several kinds of numerical methods to solve VIs have been proposed (see, e.g., Facchinei and

Pang (2003); Harker and Pang (1990) and references therein). One popular approach is based on
the reformulation of (VI) as an optimization problem through suitable merit functions.

A function p : Rn → R is called merit function for (VI) if there exists a set Ω ⊆ Rn such that:

• p is nonnegative on Ω,

• x∗ is a solution to (VI) if and only if x∗ ∈ Ω and p(x∗) = 0.

If the set Ω coincides with the feasible set C of (VI), a merit function is also known in the literature
as a gap function. Hence, if (VI) has at least a solution, then it is equivalent to the optimization
problem

min
x∈Ω

p(x).

Therefore, merit functions are the key concept to build a bridge between VIs and optimization.
In this paper we aim at reviewing the state of the art concerning the merit function approach for

VIs and two interesting generalization of VIs: quasi-variational inequalities and abstract equilibrium
problems. This is an updated version of the previous review from Pappalardo et al (2014).

The rest of the paper is organized as follows: Section 2 is devoted to the preliminary concepts
that will be used in the paper. Section 3 deals with both constrained and unconstrained optimiza-
tion reformulations of (VI). In particular, we will describe continuity and differentiability properties
of merit functions, conditions under which merit functions are convex or their stationary points
solve (VI) and error bound results, i.e., how the distance between an arbitrary point x and the
solution set of (VI) can be estimated in terms of the merit function value at x. Furthermore, ad-hoc
descent methods for minimizing merit functions will be shown. Sections 4 and 5 are devoted to the
results about merit functions for quasi-variational inequalities and abstract equilibrium problems,
respectively. Examples of applications of the presented models are provided in Sections 3, 4 and 5.
Some concluding remarks and suggestions for future research are collected in Section 6. We hope
that this paper may stimulate further interest in merit functions and may be the basis to obtain
new results.

2 Preliminaries

In this section, we show two classic particular cases of (VI), and we recall the main definitions and
preliminary results that will be used throughout the paper. We make the blanket assumptions that
the feasible set C of (VI) is closed and convex and the operator F is continuous on C.

Optimality conditions. As first particular case, let us consider the problem of finding a
local minimum x∗ of a differentiable function ψ : Rn → R over the set C. The classic first order
necessary optimality condition states that the directional derivative of ψ at x∗ in any feasible
direction is nonnegative, i.e.

⟨∇ψ(x∗), y − x∗⟩ ≥ 0, ∀ y ∈ C.

This condition is a particular case of (VI) where F (x) = ∇ψ(x).
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Complementarity problems. Another example of (VI) is provided by a complementarity
problem described as follows: given a closed convex cone C ⊆ Rn and a mapping F : Rn → Rn,
the complementarity problem asks to determine a point x∗ ∈ C such that

⟨F (x∗), x∗⟩ = 0 and F (x∗) ∈ C∗,

where C∗ denotes the dual cone of C, i.e.

C∗ := {d ∈ Rn : ⟨d, y⟩ ≥ 0 for all y ∈ C}.

Solving the complementarity problem amounts to solving (VI). In fact, if x∗ solves the complemen-
tarity problem, then for any y ∈ C we have

⟨F (x∗), y − x∗⟩ = ⟨F (x∗), y⟩ ≥ 0,

hence x∗ solves (VI); vice versa, if x∗ solves (VI), then setting y = 0 and y = 2x∗ (which belong to
C because C is a cone) we obtain ⟨F (x∗), x∗⟩ = 0 and hence F (x∗) ∈ C∗, that is x∗ is a solution to
the complementarity problem. Note that if we define

p(x) := ⟨F (x), x⟩, Ω := {x ∈ C : F (x) ∈ C∗}, (1)

then p(x) ≥ 0 for any x ∈ Ω and x∗ solves the complementarity problem if and only if x∗ ∈ Ω and
p(x∗) = 0, i.e., p is a merit function for the complementarity problem.

Monotonicity definitions. Monotonicity is a key assumption to establish existence of solu-
tions, convergence results for algorithms and to provide error bounds for (VI). We now recall the
main monotonicity properties that will be exploited in the paper. F is said monotone on C if

⟨F (x)− F (y), x− y⟩ ≥ 0, ∀ x, y ∈ C;

the corresponding concept of strict monotonicity is analogously defined just requiring strict in-
equality to hold for any x, y ∈ C with x ̸= y; F is said strongly monotone on C with modulus µ
if

⟨F (x)− F (y), x− y⟩ ≥ µ∥x− y∥2, ∀ x, y ∈ C,

for some µ > 0; F is said pseudomonotone on C if for any x, y ∈ C one has

⟨F (y), x− y⟩ ≥ 0 =⇒ ⟨F (x), x− y⟩ ≥ 0.

In the particular case where F (x) = ∇ψ(x), monotonicity and strong monotonicity of F on C
are equivalent to convexity and strong convexity of ψ on C, respectively.

Existence results. We now recall two basic results concerning the existence of a solution
to (VI). For the sake of simplicity, we will not consider the sharpest possible assumptions. The
solution set of (VI) is nonempty if either the feasible set C is bounded (Hartman and Stampacchia,
1966) or the following coercivity condition holds: there exists a point y ∈ C such that

lim
∥x∥→∞,x∈C

⟨F (x), y − x⟩ = −∞. (2)

In particular, condition (2) holds if F is strongly monotone on C. Moreover, the strong monotonicity
of F ensures that (VI) has a unique solution.
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Fixed point problem reformulation. If we denote by πC the Euclidean projection operator
on C, i.e.,

πC(x) := argmin
y∈C

∥y − x∥,

then it is well-known that (VI) is equivalent to finding a fixed point of the operator x 7→ πC(x−F (x))
(see, e.g., Facchinei and Pang (2003)).

Complementarity problem reformulation. Assuming

C := {x ∈ Rn : gi(x) ≤ 0, i = 1, . . . ,m}, (3)

where the functions gi are differentiable and convex for all i = 1, . . . ,m, it is possible to derive the
Karush-Kuhn-Tucker (KKT) conditions for (VI). In fact, x∗ is a solution to (VI) if and only if it is
a global minimum of the following convex optimization problem:

min
y∈C

⟨F (x∗), y⟩.

Under some constraint qualification, the following KKT conditions
F (x∗) +

m∑
i=1

λ∗i∇gi(x∗) = 0,

λ∗i gi(x
∗) = 0, i = 1, . . . ,m,

λ∗i ≥ 0, gi(x
∗) ≤ 0, i = 1, . . . ,m,

(4)

are necessary and sufficient for optimality and, in turn, for the existence of solutions to (VI). It is
well-known that KKT system (4) is equivalent to a complementarity problem.

3 Merit functions for variational inequalities

In this section, we summarize several approaches in order to express (VI) as a constrained or
unconstrained optimization problem by means of different merit functions.

A first merit function can be defined by exploiting the fixed point reformulation stated in
Section 2. In fact, the function x 7→ ∥x − πC(x − F (x))∥ is a gap function for (VI) (see Eaves
(1971)).

A further merit function for (VI) can be obtained by means of the complementarity reformula-
tion (4), which in turn can be associated with the merit function (1). Further examples of merit
functions associated with a complementarity problem can be found in Fischer and Jiang (2000).

3.1 Constrained optimization reformulations

This section is devoted to gap functions for (VI).

3.1.1 Auslender gap function

A first example of gap function was given in Auslender (1976), where the following function was
introduced:

p(x) := sup
y∈C

⟨F (x), x− y⟩. (5)
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It is trivial to prove that p is a gap function for (VI). Since the supremum in (5) can be infinite
or not attained in a unique point, this function is in general neither finite, nor differentiable, nor
convex. However, when C is bounded and F is continuously differentiable, it is finite and admits
directional derivatives p′(x; d) at any point x ∈ C in any direction d. Moreover, if F is monotone,
any stationary point x∗ of p on C, i.e.

p′(x∗; y − x∗) ≥ 0, ∀ y ∈ C,

is a solution to (VI). In the particular case of monotone affine VIs, i.e., if F (x) = Ax+ b where A
is a positive semidefinite matrix, p also turns out to be convex (Marcotte, 1985). If F is strongly
monotone with modulus µ and x∗ is the unique solution to (VI), then p provides the following error
bound:

∥x− x∗∥ ≤
√
p(x)/µ, ∀ x ∈ C.

A descent method based on the function p has been proposed in Marcotte and Dussault (1989) in
the case where C is a bounded polyhedron. At each iteration, the descent direction is obtained
by minimizing a linearization of a further gap function. If F is monotone, then the algorithm is
globally convergent1 to a solution to (VI). Moreover, the convergence is quadratic2 if F is strongly
monotone and the termination is achieved in a finite number of iterations if F is affine. Under a
so-called “geometric stability condition”, it is shown that p also provides an error bound for (VI).

3.1.2 Regularized gap functions

Many efforts of the research have been directed to the study of differentiable gap functions in order
to simplify the computational aspects of the problem. Important results in this sense have been
obtained in Fukushima (1992); Larsson and Patriksson (1994); Wu et al (1993); Zhu and Marcotte
(1994).

First, Auchmuty (1989) proposed a scheme in order to define a general class of gap functions:

pA(x) := sup
y∈C

[⟨F (x), x− y⟩+ f(x)− f(y)− ⟨∇f(x), x− y⟩] , (6)

where f : Rn → R is convex and continuously differentiable. It was proved that if (x∗, y∗) is a
saddle point of the function

L(x, y) := ⟨F (x), x− y⟩+ f(x)− f(y)− ⟨∇f(x), x− y⟩

on C × C, i.e.,
L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗), ∀ (x, y) ∈ C × C,

then x∗ is a solution to (VI) and pA is a gap function. We observe that if f is strongly convex on
C and F is differentiable, then the function pA is finite and differentiable.

1The convergence is said global if it does not depend on the choice of the starting point.
2A sequence {xk} is said to be convergent to x̄ with rate of convergence equal to r if

lim sup
k→+∞

∥xk+1 − x̄∥
∥xk − x̄∥r = γ ∈ (0,+∞).

If r = 1 and γ ∈ (0, 1), then the convergence is said to be linear, if r > 1, then the convergence is said to be
superlinear, and, in particular, if r = 2, the convergence is said to be quadratic.
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Later, Fukushima (1992) introduced a gap function which is a special case of (6), setting
f(x) = ⟨x,Mx⟩/2, where M is a symmetric and positive definite matrix . It is defined by

pF (x) := max
y∈C

[
⟨F (x), x− y⟩ − 1

2
⟨x− y,M (x− y)⟩

]
. (7)

Note that the maximum in (7) is always attained in a unique point y(x) since the objective function
is strongly concave with respect to the variable y, hence pF is always finite. If F is continuously
differentiable, then also pF is so (Danskin, 1966) and

∇pF (x) = F (x)− [(∇F (x))T −M ](y(x)− x).

Moreover, if x∗ is a stationary point of pF on C, i.e.

⟨∇pF (x∗), y − x∗⟩ ≥ 0, ∀ y ∈ C,

and the Jacobian matrix ∇F (x∗) is positive definite, then x∗ is a solution to (VI). In the special
case of strongly monotone affine VIs, i.e., F (x) = Ax+ b with A positive definite, pF turns out to
be convex (strongly convex) provided that the matrix A+AT −M is positive semidefinite (positive
definite) (see Larsson and Patriksson (1994)).

A descent algorithm for minimizing pF has been proposed in Fukushima (1992): given any
starting point x0 ∈ C, the sequence {xk} is generated by the iterations

xk+1 = xk + tkd
k, (8)

where the search direction dk = y(xk)− xk and the stepsize tk ∈ (0, 1] is such that

pF (xk + tkd
k) = min

t∈(0,1]
pF (xk + tdk). (9)

Under the assumptions that C is bounded, F is continuously differentiable on C and ∇F (x) is
positive definite for all x ∈ C, the sequence {xk} belongs to C and converges to the unique solution
to (VI). This algorithm converges also employing an inexact line search rule, provided that F is
strongly monotone on C and ∇F is Lipschitz continuous on C.

A variant of the above method which does not require the strong monotonicity of F has been
proposed in Zhu and Marcotte (1993), setting the matrix M = αI, where I is the identity matrix
and α > 0. In fact, the monotonicity of F paired with the boundedness of C guarantees that at
any point x ∈ C the vector y(x) − x, which depends on the matrix M and hence depends on α,
is a descent direction for pF , provided that α is small enough. The method performs a line search
at the current iterate xk if y(xk) − xk is a descent direction for pF ; otherwise the value of α is
decreased. The method is globally convergent if C is bounded and F is continuously differentiable
and monotone on C. This algorithm has been extended to nonsmooth VIs in Panicucci et al (2009).

Marcotte and Dussault (1987) and Taji et al (1993) propose a modified Newton method: at
each iteration it finds the solution to the linearized (VI) at x, i.e.,

find z(x) ∈ C s.t. ⟨F (x) +∇F (x)[z(x)− x], y − z(x)⟩ ≥ 0, ∀ y ∈ C. (10)

In the hypothesis of strong monotonicity of F , problem (10) admits a unique solution z(x) such
that d = z(x) − x is a descent direction for the gap functions pA and pF : the function pA has
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been considered in Marcotte and Dussault (1987), while pF in Taji et al (1993). By employing a
line search strategy, the method is shown to be quadratically convergent under suitable additional
assumptions.

When the feasible set C, defined as in (3), is not a polyhedron, the evaluation of the regularized
gap function pF at a given point x could be computationally expensive. In order to overcome this
drawback, the following gap function has been proposed in Taji and Fukushima (1996):

pTF (x) := max
y∈T (x)

[
⟨F (x), x− y⟩ − 1

2
⟨x− y,M(x− y)⟩

]
, (11)

where
T (x) := {y ∈ Rn : gi(x) + ⟨∇gi(x), y − x⟩ ≤ 0, i = 1, . . . ,m} (12)

is an outer polyhedral approximation of C at x. If F is continuously differentiable, gi’s are contin-
uously differentiable and a constraint qualification holds, then pTF is directionally differentiable.
Furthermore, if ∇F is positive definite and gi’s are twice continuously differentiable, then any sta-
tionary point of pTF on C is a solution to (VI). A successive quadratic programming algorithm
based on the minimization of an exact penalty function associated with pTF has been proposed
in Taji and Fukushima (1996).

A generalization of the gap function introduced by Fukushima has been proposed in Wu et al
(1993); Zhu and Marcotte (1994) by replacing in (7) the regularizing term ⟨x−y,M(x−y)⟩/2 with
a general bifunction G : Rn × Rn → R such that:

G(x, y) ≥ 0 for all (x, y) ∈ Rn × Rn,
G is continuously differentiable,
G(x, ·) is strongly convex on C for all x ∈ C,
G(x, x) = ∇yG(x, x) = 0 for all x ∈ C.

(13)

For any α > 0, the function

pα(x) := max
y∈C

[⟨F (x), x− y⟩ − αG(x, y)] (14)

turns out to be a gap function, which is continuously differentiable, if F is so, with

∇pα(x) = F (x)− (∇F (x))T (yα(x)− x)− α∇xG(x, yα(x)), (15)

where yα(x) is the unique solution to problem (14). Note that when F is only locally Lipschitz
continuous, the function pα is also locally Lipschitz and its Clarke generalized gradient satisfies a
formula similar to (15) (see Ng and Tan (2007b)). Moreover, if x∗ is a stationary point of pα on
C and ∇F (x∗) is positive definite, then x∗ solves (VI). A further important feature of pα is that,
under the assumption that F is strongly monotone and ∇yG(x, ·) is Lipschitz continuous on C, for
every x ∈ C, it provides an error bound (see Zhu and Marcotte (1994)), i.e., there exists M > 0
such that

∥x− x∗∥ ≤M
√
pα(x), ∀ x ∈ C, (16)

where x∗ is the unique solution to (VI). In particular, (16) implies the boundedness of the sublevel
sets of pα, which is of crucial importance in the convergence of the minimization algorithms.

The descent methods developed in Fukushima (1992) have been generalized to a more general
framework exploiting several classes of gap functions defined by (14) (see Zhu and Marcotte (1994)).
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Given a continuous mapping Γ : C × C → Rn, such that Γ(x, ·) is strongly monotone on C for
any x ∈ C, the following auxiliary variational inequality is considered at a given point x ∈ C: find
y∗ ∈ C such that

⟨Γ(x, y∗)− Γ(x, x) + F (x), y − y∗⟩ ≥ 0, ∀ y ∈ C. (AVI(x))

Having denoted by w(x) the unique solution to (AVI(x)), one can prove that the mapping w : C → C
is continuous and x∗ is a solution to (VI) if and only if x∗ = w(x∗). In view of this result the following
iterative method is proposed. Given xk ∈ C, compute w(xk): if w(xk) = xk, then xk is a solution to
(VI), otherwise find xk+1 performing an Armijo3 inexact line search for the gap function pα along
the direction dk := w(xk)− xk.

Each combination of G and Γ generates a different descent algorithm, which is globally conver-
gent to the unique solution to (VI) under the assumption of continuous differentiability and strong
monotonicity of F and suitable additional assumptions on G and Γ (Zhu and Marcotte, 1994).
Note that the algorithm (8)–(9) previously described is recovered by setting Γ(x, y) =M(y − x).

The analysis of the convergence properties of the descent methods based on the regularized gap
functions pF and pα in the case where the operator F is nondifferentiable has been considered in Ng
and Tan (2007a); Tan (2007).

3.1.3 Minty (dual) gap functions

The Minty (or dual) variational inequality was introduced in Minty (1967) and consists in finding
x∗ ∈ C such that

⟨F (y), y − x∗⟩ ≥ 0, ∀ y ∈ C. (MVI)

Its relevance to applications was pointed out in Giannessi (1998); Pappalardo and Passacantando
(2002, 2004). In particular, Minty states the equivalence between (VI) and (MVI) when F is
pseudomonotone on C (Minty, 1967).

In parallel with the Auslender gap function, it can be shown that

pM (x) := sup
y∈C

⟨F (y), x− y⟩ (17)

is a gap function for (MVI) and hence it is a gap function for (VI) provided that F is pseudomono-
tone on C.

The most important feature of this function, known in the literature as Minty (or dual) gap
function, is its convexity. However, it is in general nondifferentiable; subdifferentiability and related
properties have been analysed in Marcotte and Dussault (1987); Marcotte and Zhu (1999); Nguyen
and Dupuis (1984); Yamashita and Fukushima (1997); Zhang et al (2003). Furthermore, it can be
difficult to evaluate pM since the optimization problem in (17) is generally not convex.

A cutting plane method for minimizing pM has been proposed in Nguyen and Dupuis (1984):
at each iteration it solves a linear programming problem, provided that C is a polyhedron, and it
converges to a solution to (VI) if F is strictly monotone. Later, this method has been combined
with the Tikhonov regularization technique in order to deal with monotone VIs (Bigi and Panicucci,
2010).

3The Armijo inexact line search along the direction dk consists in finding the smallest non negative integer m such
that

pα(x
k + βmdk) ≤ pα(x

k)− σ βm∥dk∥2,
where β, σ ∈ (0, 1) are parameters, and then setting xk+1 := xk + βmdk.
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Following the scheme described before for (VI), it is possible to regularize the function pM

exploiting a bifunction G which satisfies conditions (13). In fact, the function

pMG (x) := sup
y∈C

[⟨F (y), x− y⟩ −G(x, y)] (18)

is a gap function for (MVI) (see Mastroeni (1999)). Moreover, if the optimization problem in (18)
has a unique solution y(x), then pMG is continuously differentiable and its gradient is given by

∇pMG (x) = F (y(x))−∇xG(x, y(x)).

In parallel with the analysis developed for (VI), a descent method for the function pMG has been
proposed in Mastroeni (1999). Given any starting point x0 ∈ C, any sequence {xk} generated by an
exact line search algorithm with descent direction given by y(x)−x converges to the unique solution
to (VI), provided that C is compact, F is continuously differentiable, ∇F is positive definite on C
and

∇xG(x, y) +∇yG(x, y) = 0, ∀ x, y ∈ C.

Observe that the latter condition is fulfilled, for instance, by

G(x, y) =
1

2
⟨x− y,M(x− y)⟩.

This algorithm has been extended in Mastroeni (2005) employing an inexact line search rule and
replacing the assumption that ∇F (x) is positive definite for x ∈ C with the strong monotonicity
of F on C.

A different regularization of the gap function pM has been proposed in Yamashita and Fukushima
(1997), where the following function is considered:

pMβ (x) := sup
y∈C

[⟨F (y), x− y⟩+ β∥x− y∥2], (19)

where β is a positive parameter. This function is convex and lower semicontinuous as the original
pM . It is continuously differentiable provided that F is so and the supremum in (19) is attained in
a unique point. Moreover, if F is strongly monotone on C with modulus µ, and β ∈ (0, µ], it is a
gap function for (VI) and provides an error bound, i.e.,

∥x− x∗∥ ≤
√
pMβ (x)/β, ∀ x ∈ C, (20)

where x∗ is the unique solution to (VI).

3.1.4 Gap functions based on conjugate duality

Given a convex function f : Rn → R and a concave function g : Rn → R, we recall that

f∗(y) := sup
x∈Rn

[⟨y, x⟩ − f(x)], g∗(y) := inf
x∈Rn

[⟨y, x⟩ − g(x)]

are the Fenchel conjugate, in convex and concave sense respectively, of f and g (see, e.g., Rockafellar
(1970)). Moreover, the Fenchel dual of the problem

inf
x∈Rn

[f(x)− g(x)]
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is defined as
sup
y∈Rn

[g∗(y)− f∗(y)].

Note that the Fenchel dual of the constrained problem

inf
x∈C

f(x)

can be obtained defining g(x) = −δC(x), where δC is the indicator4 function of the set C, so that

inf
x∈C

f(x) = inf
x∈Rn

[f(x)− (−δC(x))],

and the associated Fenchel dual turns out to be

sup
y∈Rn

[−f∗(y) + inf
x∈C

⟨y, x⟩].

When the feasible set C is explicitly defined by convex constraints as in (3), the value of the
Auslender gap function p at a given point x coincides (see Altangerel et al (2007); Larsson and
Patriksson (1994)) with the opposite of the optimal value of the Fenchel dual of the problem

inf
y∈C

⟨F (x), y − x⟩. (P (x))

Moreover, the opposite of the optimal value of the so called Lagrangian dual and the Fenchel-
Lagrange dual associated with P (x) leads to define a further gap function that coincides with

pL(x) := inf
λ≥0

sup
y∈Rn

[⟨F (x), x− y⟩ − ⟨λ, g(y)⟩], (21)

which has been proposed in Giannessi (1995).
Similarly, considering the opposite of the optimal values of the Lagrange and of the Fenchel

dual associated with the problem
inf
y∈C

⟨F (y), y − x⟩,

which is equivalent to the one which appears in the right-hand side of (17), the following gap
functions for (MVI) are defined (Altangerel et al, 2007):

pML(x) := inf
λ≥0

sup
y∈Rn

[⟨F (y), x− y⟩ − ⟨λ, g(y)⟩] , (22)

pMF (x) := inf
p∈Rn

{
sup
y∈Rn

[⟨F (y), x− y⟩+ ⟨p, y⟩] + δ∗C(−p)

}
, (23)

where δ∗C(x) = supy∈C⟨x, y⟩ is the support function to the set C.
The proposed gap functions are all convex if F is an affine monotone map.

3.2 Unconstrained optimization reformulations

In this section, we review merit functions which allow to reformulate (VI) as an unconstrained
optimization problem.

4δC is defined as follows: δC(x) = 0 if x ∈ C and δC(x) = +∞ otherwise.
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3.2.1 D-gap functions

The difference of two regularized gap functions

pαβ(x) := pα(x)− pβ(x), (24)

where pα and pβ are defined by (14) with 0 < α < β, is called D-gap function (where D stands for
“difference”). This function is nonnegative on the whole space Rn and pαβ(x

∗) = 0 if and only if
x∗ is a solution to (VI) (Yamashita et al, 1997). Therefore, solving (VI) is equivalent to finding the
optimal solutions of the problem

min
x∈Rn

pαβ(x). (25)

When (VI) is a nonlinear complementarity problem, the D-gap function with β = 1/α and α ∈ (0, 1)
coincides with the implicit Lagrangian proposed and studied in Mangasarian and Solodov (1993);
Peng (1997); Peng and Yuan (1997).

Clearly, the D-gap function inherits the differentiability properties of pα and pβ, i.e., if F is
differentiable, the function pαβ is also differentiable and

∇pαβ(x) = (∇F (x))T [yβ(x)− yα(x)] + β∇xG(x, yβ(x))− α∇xG(x, yα(x)), (26)

where yα(x) and yβ(x) are the solutions of the optimization problem (14) with α and β respectively.
When the mapping F is locally Lipschitz continuous, the D-gap function is also locally Lipschitz
and the Clarke generalized gradient of pαβ satisfies a formula similar to (26) (see Ng and Tan
(2007a)).

The D-gap function is not convex in general and the stationary points of (25) may not be global
minima. However, if x∗ is a stationary point, i.e., ∇pαβ(x∗) = 0, and the Jacobian matrix ∇F (x∗)
is positive definite, then x∗ is a solution to (VI) (see Yamashita et al (1997)). Notice that the
positive definiteness of ∇F (x∗) can not be replaced by the strict monotonicity assumption on F
(see the counterexample in Yamashita et al (1997)). When the feasible set C is a box, it is sufficient
to assume that ∇F (x∗) is a P -matrix (i.e. its principal minors are all positive) to obtain the same
conclusion (Kanzow and Fukushima, 1998b). In the special case of strongly monotone affine VIs,
the D-gap function is convex (strongly convex) provided that the parameters α and β are chosen
so that the matrix

A+AT − αI − β−1AT A (27)

is positive semidefinite (positive definite) (Peng and Fukushima, 1999).
Since the D-gap functions allow to reformulate (VI) as an unconstrained problem, the bounded-

ness of their level sets is an important issue in order to develop minimization algorithms for solving
problem (25). The level sets of the D-gap function, denoted by

L(c) := {x ∈ Rn : pαβ(x) ≤ c},

are bounded for all c ≥ 0 if either C is bounded (Kanzow and Fukushima, 1998b) or F is strongly
monotone (Peng and Fukushima, 1999; Qu et al, 2003). Recently, it has been proved in Li and Ng
(2009) that the strong monotonicity assumption on F can be replaced by a coercivity condition
stronger than (2).

If F is strongly monotone on Rn and either F is Lipschitz continuous on Rn or C is bounded,
then

√
pαβ provides an error bound for (VI), i.e. there exists a constant M > 0 such that

∥x− x∗∥ ≤M
√
pαβ(x), ∀ x ∈ Rn,
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(see Yamashita et al (1997)). Notice that when C is unbounded, the strong monotonicity on F ,
without the Lipschitz continuity assumption, is not sufficient to guarantee the same result (see
the counterexample in Huang and Ng (2005)). However, when F is strongly monotone, (VI) has
a unique solution and hence it is possible to reformulate the problem by replacing the set C by
its intersection with a sphere large enough to contain the solution. In the special case where C is
a box, the strong monotonicity of F can be replaced by the assumption that F is a uniform P -
function (Kanzow and Fukushima, 1998b). Recently, new global error bounds have been proposed
in Li et al (2010).

On the other hand, the strong monotonicity on F only guarantees a local error bound on the
level sets of the D-gap function (Qu et al, 2003), that is for any c ≥ 0 there exists M > 0 such that

∥x− x∗∥ ≤M
√
pαβ(x), ∀ x ∈ L(c).

Recently, this result has been extended to locally ξ-monotone and coercive mappings (Li et al,
2010) and to general nonmonotone mappings (Li and Ng, 2009).

There are several solution methods for VIs based on the minimization of D-gap functions. A
descent method with Armijo-type line search has been proposed in Yamashita et al (1997): at each
iteration it exploits the search direction d = r(x) + ρ s(x), where r(x) = yα(x) − yβ(x), s(x) =
α∇xG(x, yα(x))−β∇xG(x, yβ(x)) and ρ > 0 is a sufficiently small constant. This method converges
to the solution to (VI) if F is strongly monotone on Rn and either F is Lipschitz continuous on
Rn or C is bounded. Another descent method was developed in Solodov and Tseng (2000) for
solving monotone VIs with bounded feasible set. It is similar to the method proposed in Zhu
and Marcotte (1993) based on the Fukushima’s regularized gap function: at each iteration it uses
d = yα(x) − yβ(x) as search direction along with a suitable update of the parameters α and β. A
descent method for solving nonmonotone VIs, which is based on the minimization of the function√
pαβ, has been presented recently in Li and Ng (2009).
A hybrid Newton method has been proposed in Peng and Fukushima (1999): at each iteration, it

finds the solution z(x) to the linearized VI (10) at x and it uses the direction d = z(x)−x whenever
it provides a sufficient decrease in the D-gap function pαβ; otherwise the direction d = −∇pαβ(x)
is used. Then, an inexact line search is performed to get the next iterate. The generated sequence
converges superlinearly to the unique solution x∗ to (VI) if F is continuously differentiable and
strongly monotone on Rn. Furthermore, the convergence is quadratic if ∇F is Lipschitz continuous
around x∗. A variant of this method has been proposed in Peng et al (1999) for box constrained
VIs.

In Kanzow and Fukushima (1998b) a nonsmooth Gauss-Newton type method for solving box
constrained VIs has been presented. At each iteration, it solves a linear system of equations
involving the generalized Hessian of the D-gap function and uses this vector as search direction if
a descent condition is satisfied; otherwise the direction d = −∇pαβ(x) is used. Then an inexact
line search is performed. The algorithm is globally and superlinearly convergent under suitable
assumptions. A similar Gauss-Newton strategy has also been adopted in a trust region method for
minimizing the D-gap function (Sun et al, 1997).

Another Newton type method for the solution of box constrained VIs is based on the reformu-
lation of (VI) as a system of nonsmooth and nonlinear equations involving the natural residual.
This method, based on the minimization of the D-gap function, is globally and superlinearly con-
vergent (Kanzow and Fukushima, 1998a).
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3.2.2 Merit functions via the Moreau-Yosida regularization

Another approach to get unconstrained optimization reformulations of (VI) is based on the Moreau-
Yosida regularization of some gap functions (Yamashita and Fukushima, 1997).

The function

pMY
αλ (x) := inf

z∈C

{
sup
y∈C

[
⟨F (z), z − y⟩ − α ∥y − z∥2

]
+ λ ∥z − x∥2

}
, (28)

with α ≥ 0 and λ > 0, is derived from the Moreau-Yosida regularization of the regularized gap
function pF , with M = α I. It is nonnegative on the whole space Rn and pMY

αλ (x∗) = 0 if and only
if x∗ solves (VI).

Notice that this merit function may not be easy to evaluate in practice unless (VI) has a certain
special structure (e.g., F is affine and C is a polyhedron (see Yamashita and Fukushima (1997))).
However, it enjoys some nice theoretical properties that other merit functions do not have. For
instance, if the infimum in (28) is uniquely attained in zαλ(x) for each x ∈ Rn, then pMY

αλ is
differentiable on Rn and

∇pMY
αλ (x) = 2λ [x− zαλ(x)],

even if F is not differentiable.
In general, the function pMY

αλ is not convex. However, if the gap function p is convex, then pMY
0λ

is differentiable and convex on Rn for any λ > 0; while if the regularized gap function pF , with
M = α I, is convex then pMY

αλ is differentiable and convex on Rn for any λ > 0.
The function pMY

αλ provides also a global error bound under the strong monotonicity of F
(without assuming Lipschitz continuity as is the case for the D-gap functions). In fact, if F is
strongly monotone on C with modulus µ, α ∈ [0, µ) and λ > 0, then

1

2
min{µ− α, λ}∥x− x∗∥2 ≤ pMY

αλ (x) ≤ λ ∥x− x∗∥2, ∀ x ∈ Rn,

i.e., the growth rate of pMY
αλ is in the order of the squared distance from the unique solution x∗ to

(VI).
When F satisfies suitable monotonicity assumptions, further merit functions for (VI) can be

obtained by the Moreau-Yosida regularization of Minty gap functions. The function

pMβλ(x) := inf
z∈C

{
sup
y∈C

[
⟨F (y), z − y⟩+ β ∥y − z∥2

]
+ λ ∥z − x∥2

}
, (29)

with β ≥ 0 and λ > 0, is the Moreau-Yosida regularization of the Minty gap function pM (when
β = 0) and the regularized Minty gap function pMβ (when β > 0). If F is pseudomonotone on C,

then pM0λ turns out to be a merit function for (VI) for any λ > 0, because it is nonnegative on Rn

and pM0λ(x
∗) = 0 if and only if x∗ solves (VI). Furthermore, if F is strongly monotone with modulus

µ, then the same happens for pMβλ provided that β ∈ [0, µ].

Note that also pMβλ may not be easy to evaluate in practice, but some nice theoretical properties
hold. In fact, it is differentiable and convex on Rn for any β ≥ 0 and λ > 0, without making any
additional assumption on F . Moreover, if F is strongly monotone on C with modulus µ, β ∈ (0, µ]
and λ > 0, then the quadratic growth rate of pMβλ is ensured, i.e.,

1

2
min{β, λ}∥x− x∗∥2 ≤ pMβλ(x) ≤ λ ∥x− x∗∥2, ∀ x ∈ Rn,
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where x∗ is the unique solution to (VI).

3.3 An application to traffic network equilibrium problems

A traffic network consists of a set of nodes N, a set of arcs A ⊆ N×N and a set of origin/destination
pairs W ⊆ N × N. For each O/D pair w, a traffic demand dw has to be distributed among the
paths connecting w. We denote Pw the set of all paths connecting w, xp the flow on path p and
x = (xp)p∈Pw,w∈W the vector of all path flows. The set of feasible path flows is given by

X =

x ≥ 0 :
∑
p∈Pw

xp = dw, ∀ w ∈ W

 .

The flow fa on each arc a is the sum of all flows on paths to which the arc belongs, hence the arc
flow vector f = (fa)a∈A can be written as f = ∆x, where ∆ is the arc-path incidence matrix:

∆a,p =

{
1 if a ∈ p,

0 otherwise.

For each arc a, there is a nonnegative cost function ta(f), which represents the travel time associated
with arc a and depends on the arc flow vector f . The corresponding path cost function is assumed
to be additive, i.e., the travel time Tp(x) on path p is the sum of the travel times of the arcs
belonging to p:

Tp(x) =
∑
a∈p

ta(∆x).

According to the Wardrop equilibrium principle (Wardrop, 1952), a path flow x∗ ∈ X is called
a network equilibrium if it is positive only on minimum cost paths, i.e., the following implication

x∗p > 0 =⇒ Tp(x
∗) = min

q∈Pw

Tq(x
∗)

holds for any O/D pair w ∈ W and path p ∈ Pw.
It is well-known (Dafermos, 1980) that the problem of finding network equilibria is equivalent

to solving the following variational inequality:

find x∗ ∈ X such that ⟨T (x∗), y − x∗⟩ ≥ 0, for all y ∈ X. (30)

Next example shows how the merit function approach for VIs can be applied to network equi-
libria.
Example 1. Consider the network in Fig. 1 with two O/D pairs: w1 = (1, 4) with demand
d1 = 4 and w2 = (1, 5) with d2 = 6. Each O/D pair is connected by two paths: Pw1 =
{(1, 2), (2, 4); (1, 3), (3, 4)} and Pw2 = {(1, 2), (2, 5); (1, 3), (3, 5)}. We denote the flow on paths as
x1, . . . , x4, respectively. Hence the set of feasible path flows is given by

X = {x ∈ R4
+ : x1 + x2 = 4, x3 + x4 = 6}.
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Figure 1: Traffic network in Example 1.

Assume that the arc cost functions are defined as follows:

t12 := f12 + 1 = x1 + x3 + 1,
t13 := 3 f13 + 2 = 3 (x2 + x4) + 2,
t24 := 2 f24 + f34 + 1 = 2x1 + x2 + 1,
t25 := 2 f25 + f35 + 3 = 2x3 + x4 + 3,
t34 := f34 + 2 = x2 + 2,
t35 := 4 f35 + 1 = 4x4 + 1,

thus the corresponding path costs are
T1 = t12 + t24 = 3x1 + x2 + x3 + 2,
T2 = t13 + t34 = 4x2 + 3x4 + 4,
T3 = t12 + t25 = x1 + 3x3 + x4 + 4,
T4 = t13 + t35 = 3x2 + 7x4 + 3,

i.e., the operator of VI (30) is T (x) = Ax+ b, with

A =


3 1 1 0
0 4 0 3
1 0 3 1
0 3 0 7

 , b =


2
4
4
3

 .

Note that the matrix A is positive definite, thus the mapping T is strongly monotone and there
exists a unique solution of VI (30), i.e., a unique network equilibrium.

We now consider the Fukushima’s regularized gap function (7) with M = I, i.e.,

pF (x) = max
y∈X

[
⟨T (x), x− y⟩ − 1

2
∥x− y∥2

]
.

This function is continuously differentiable and strongly convex since the matrix A + AT − I is
positive definite. In Fig. 2 we show the graph of pF defined on the 2-dimensional space (x1, x3),
with x1 ∈ [0, 4] and x3 ∈ [0, 6] (the demand constraints allow to express variables x2 and x4 as
function of x1 and x3, respectively).
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Figure 2: The regularized gap function pF with M = I in Example 1.

Iteration x1 x2 x3 x4 pF (x)

0 4.000000 0 6.000000 0 1.5000 e+02
1 2.679622 1.320378 4.019434 1.980566 8.8840 e–03
2 2.631471 1.368529 4.052452 1.947548 1.5178 e–06
3 2.631587 1.368413 4.052626 1.947374 2.5929 e–10
4 2.631579 1.368421 4.052632 1.947368 2.8747 e–14

Table 1: Numerical results of the descent algorithm (8)-(9) applied to Example 1.
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The descent algorithm (8)-(9) applied to pF can be exploited to compute the network equilib-
rium. Table 1 reports the first four iterations of the algorithm (implemented in MATLAB) starting
from the feasible flow (4, 0, 6, 0).

Note that the path costs corresponding to the equilibrium solution

x∗ = (2.6316, 1.3684, 4.0526, 1.9474)

are
T (x∗) = (15.3158, 15.3158, 20.7368, 20.7368),

i.e., the two paths connecting each O/D pair have the same cost. Furthermore, the Lagrange
multipliers λ∗ associated with x∗ in the KKT conditions (4) coincide with the equilibrium costs,
i.e., λ∗ = (15.3158, 20.7368).

Figure 3 shows the graph of the D-gap function pαβ, with α = 1, β = 2 and G(x, y) = ∥x−y∥2/2,
defined on the space (x1, x3). Note that this function is always nonnegative (even in unfeasible
points) and its global minimum is x∗.

Figure 3: The D-gap function pαβ with α = 1, β = 2 and G(x, y) = ∥x− y∥2/2 in Example 1.

4 Merit functions for quasi-variational inequalities

In this section we consider the merit function approach for quasi-variational inequalities (QVIs),
i.e., VIs in which the feasible region depends on the variable x. Given a vector-valued mapping
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F : Rn → Rn and a set-valued mapping C : Rn ⇒ Rn, such that C(x) are closed and convex sets
for any x ∈ Rn, the QVI is defined as follows:

find x∗ ∈ C(x∗) such that ⟨F (x∗), y − x∗⟩ ≥ 0, for all y ∈ C(x∗). (QVI)

When all the sets C(x) coincide with the same set C, (QVI) collapses to (VI). The set of fixed
points of the mapping C, i.e.

X := {x ∈ Rn : x ∈ C(x)},

is the feasible region of (QVI). In the following we suppose that sets C(x) are defined by constraints,
i.e.,

C(x) := {y ∈ Rn : gi(x, y) ≤ 0, i = 1, . . . ,m},

where the functions gi : Rn × Rn → R are assumed to be continuous and gi(x, ·) convex for any
fixed x ∈ Rn. Furthermore, in order to guarantee the convexity of the set X, we assume that the
functions x 7→ gi(x, x) are convex for all i = 1, . . . ,m.

QVIs were introduced in Bensoussan et al (1973); Bensoussan and Lions (1973) and subsequently
exploited to model several finite and infinite-dimensional problems (see Baiocchi and Capelo (1984);
Chan and Pang (1982); Facchinei et al (2014, 2013) and references therein).

Some merit functions have been proposed in the literature extending to QVIs similar ideas
developed for VIs. Similarly to VIs, the reformulation of (QVI) as a fixed point problem leads to
define a merit function. In fact, it follows from the definition that x solves (QVI) if and only if
x = πC(x)(x− F (x)), thus ∥x− πC(x)(x− F (x))∥ is a merit function for (QVI). Another approach
is based on reformulating (QVI), under suitable constraint qualifications, as a complementarity
problem via the following KKT conditions:

F (x) +
m∑
i=1

λi∇ygi(x, x) = 0,

λi gi(x, x) = 0, i = 1, . . . ,m,

λi ≥ 0, gi(x, x) ≤ 0, i = 1, . . . ,m.

Recently, a solution method based on these conditions has been proposed in Facchinei et al (2014).
A straightforward extension of the gap function (5) to QVIs is defined as follows (Giannessi,

1995):
p(x) := sup

y∈C(x)
⟨F (x), x− y⟩. (31)

This function is nonnegative on the set X and x∗ solves (QVI) if and only if x∗ ∈ X and p(x∗) = 0.
However, the gap function p is nondifferentiable and it may occur that p(x) = +∞ for some point
in X.

The regularized gap function (7) has been extended to QVIs in Fukushima (2007) and is defined
by

pα(x) := max
y∈C(x)

[
⟨F (x), x− y⟩ − α

2
∥x− y∥2

]
. (32)

This function is a gap function, it is finite and the maximum in (32) is attained in a unique point
yα(x), provided that the set C(x) is nonempty. Actually, it is possible to define pα replacing the
regularization term α∥x− y∥2/2 and the set C(x) with more general expressions satisfying suitable
conditions (Fukushima, 2007; Taji, 2008).
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In contrast to VIs, this function is nondifferentiable even if F is so (see examples in Harms et al
(2014b)). If F and gi are continuously differentiable and a constraint qualification holds, then pα is
directionally differentiable everywhere and its directional derivative at x along direction d is given
by

p′α(x; d) = min
λ∈Λα(x)

⟨F (x)− [(∇F (x))T − α I][yα(x)− x]−
m∑
i=1

λi∇xgi(x, yα(x)), d⟩,

where Λα(x) is the set of Lagrange multipliers associated with yα(x), i.e.,

Λα(x) = {λ ∈ Rm
+ : F (x) + α[yα(x)− x] +

∑m
i=1 λi∇ygi(x, yα(x)) = 0,

λi gi(x, yα(x)) = 0, i = 1, . . . ,m},

(see Fukushima (2007)). Furthermore, pα turns out to be continuously differentiable in the special
case of QVI with ‘moving sets’, i.e., when C(x) = Q + c(x), where Q is a closed and convex set
and c : Rn → Rn, provided that mappings F and c are continuously differentiable (Dietrich, 2001).
Recently, this latter result has been extended to QVIs with generalized moving sets (Harms et al,
2014b).

Similarly to VIs, the regularized gap function pα is nonconvex in general. In Taji (2008) it is
proved that, whenever pα is directionally differentiable, a stationary point x∗ of pα on X, i.e.,

p′α(x
∗; y − x∗) ≥ 0, ∀ y ∈ X,

is a solution to (QVI) provided that the matrix ∇F (x∗) is positive definite and

λi ⟨∇xgi(x
∗, yα(x

∗)), yα(x
∗)− x∗⟩ ≥ 0, for all i = 1, . . . ,m and λ ∈ Λα(x).

Notice that in Taji (2008) the key assumption yα(x
∗) ∈ X is not explicitly stated in the statement,

but it is exploited in the proof and must be therefore considered as hypothesis.
An unconstrained minimization reformulation of (QVI) can be obtained via the D-gap functions,

i.e., the difference of two regularized gap functions. In fact, given 0 < α < β, the function

pαβ(x) := pα(x)− pβ(x)

is nonnegative on Rn and pαβ(x
∗) = 0 if and only if x∗ solves (QVI). The directional differentiability

of pαβ directly follows from that of pα and pβ. Recently, extending an idea of Dietrich (see Dietrich
(1999)), another unconstrained optimization reformulation has been obtained in Harms et al (2014a)
by making use of Toland’s and Singer’s duality theory.

The functions
√
pα and

√
pαβ provide error bound results for (QVI) provided that F is strongly

monotone and Lipschitz continuous on Rn and an additional technical assumption on the Euclidean
projection on the sets C(x) is fulfilled (Gupta and Mehra, 2012). Another error bound result based
on the function

√
pα has been proved in Aussel et al (2011).

4.1 Application to generalized Nash equilibrium problems

Let us consider a noncooperative game with N players, in which each player i controls a set of
variables xi ∈ Rni . The vector of all players strategies is denoted by x = (x1, . . . , xN ) ∈ Rn, with
n = n1 + . . . , nN ; the vector x is also denoted by x = (xi, x−i), where x−i denotes the strategy
vector of all the players different from player i. Each player i has a cost function θi : Rn → R, which
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possibly depends on all players strategies x, and a feasible set Xi(x−i) ⊆ Rni , possibly depending
on the rival players’ strategies x−i.

A generalized Nash equilibrium (GNE) of the game is a vector

x∗ = (x∗1, . . . , x
∗
N ) ∈ X1(x

∗
−1)× · · · ×XN (x∗−N )

such that, for any i = 1, . . . , N , x∗i is an optimal solution of the following optimization problem:

min
xi

θi(xi, x
∗
−i) subject to xi ∈ Xi(x

∗
−i).

In other words, x∗ is a GNE if no player can improve its own cost function by unilaterally changing
its strategy.

It is well-known (see, e.g., Facchinei and Kanzow (2010)) that under the following assumptions:

• θi is continuously differentiable for any i = 1, . . . , N ,

• θi(·, x−i) is convex for any x−i and i = 1, . . . , N ,

• the feasible sets Xi(x−i) are closed and convex for all x ∈ Rn and i = 1, . . . , N ,

the problem of finding GNE is equivalent to solving the QVI with operator

F (x) = (∇x1θ1(x), . . . ,∇xN θN (x))

and set-valued mapping
C(x) = X1(x−1)× . . . XN (x−N ).

Example 2. (Cavazzuti et al, 2002) Consider a two-person noncooperative game, in which player
i selects the coordinate xi ∈ R subject to a individual constraint xi ≤ 0 and a shared constraint
x1 + x2 ≤ −1. The aim of player i is to minimize the (squared) distance between (x1, x2) and his
favourite goal Pi ∈ R2, with P1 = (1, 0) and P2 = (0, 1). Thus the optimization problems of the
two players are defined as follows:

Player 1:


min
x1

(x1 − 1)2 + x22

x1 ≤ 0
x1 + x2 ≤ −1

Player 2:


min
x2

x21 + (x2 − 1)2

x2 ≤ 0
x1 + x2 ≤ −1

The set of GNE of the game coincides with the solution set of the QVI given by F (x) = (2x1 −
2, 2x2 − 2) and

C(x) = (−∞,min{0,−1− x2}]× (−∞,min{0,−1− x1}].

The feasible region of the QVI, i.e. the set of fixed point of the set-valued mapping C, is

X = {x ∈ R2 : x1 ≤ 0, x2 ≤ 0, x1 + x2 ≤ −1}.

It is easy to check that the solution set of the QVI is the segment connecting (−1, 0) and (0,−1).
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The value of the gap function (31) can be explicitly computed:

p(x) = sup
y∈C(x)

⟨F (x), x− y⟩

= sup
y∈C(x)

[2 (x1 − 1) (x1 − y1) + 2 (x2 − 1) (x2 − y2)]

= 2x1 (x1 − 1) + 2x2 (x2 − 1) + sup
y1≤min{0,−1−x2}

2 (1− x1) y1

+ sup
y2≤min{0,−1−x1}

2 (1− x2) y2

=


2x1 (x1 − 1) + 2x2 (x2 − 1)+

+2 (1− x1) min{0,−1− x2}+
+2 (1− x2) min{0,−1− x1}, if x1 ≤ 1 and x2 ≤ 1,

+∞, otherwise.

This function is equal to zero on the solution set, but is not finite everywhere on R2 and it is not
differentiable on the half-lines {−1} × (−∞, 1] and (−∞, 1]× {−1}.

Figures 4 and 5 show the graphs of the regularized gap function pα, with α = 5, and the D-gap
function pαβ, with α = 5 and β = 10, respectively. Note that both functions are finite on R2

and equal to zero in the solution set; pα is negative in points not belonging to X, while pαβ is
nonnegative on the whole space R2.

Figure 4: The regularized gap function pα with α = 5 in Example 2.
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Figure 5: The D-gap function pαβ with α = 5 and β = 10 in Example 2.

5 Merit functions for abstract equilibrium problems

The abstract equilibrium problem is a general mathematical model which includes optimization,
multi-objective optimization, variational inequalities, fixed point and complementarity problems,
Nash equilibria in noncooperative games and inverse optimization as special cases (see Bigi et al
(2013); Blum and Oettli (1994)). It is defined as follows:

find x∗ ∈ C such that f(x∗, y) ≥ 0, for all y ∈ C, (EP)

where C is a closed and convex subset of Rn and f : Rn ×Rn → R is a bifunction such that f(x, ·)
is convex and satisfies f(x, x) = 0 for all x ∈ C. Setting f(x, y) = ⟨F (x), y − x⟩ we obtain (VI).

In the last decade, several merit functions for (EP) have been introduced in the literature.
These functions often extend to (EP) those originally conceived for VIs. For instance, a direct
extension of the gap function (5) from VIs to (EP) is defined as follows (Mastroeni, 2003):

p(x) := sup
y∈C

[−f(x, y)] .

This function is nonnegative on C and x∗ solves (EP) if and only if x∗ ∈ C and p(x∗) = 0. However,
p has the same disadvantages of function (5), i.e., it is in general neither finite, nor differentiable
nor convex. For these reasons, the regularized gap function has been proposed (Mastroeni, 2003):

pα(x) := max
y∈C

[
−f(x, y)− α

2
∥x− y∥2

]
. (33)

It allows to reformulate (EP) as the problem of minimizing pα on C, it is continuously differentiable,
if the bifunction f is so, and

∇pα(x) = −∇xf(x, yα(x))− α[x− yα(x)],
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where yα(x) is the unique maximizer of problem (33). Note that the regularization term ∥y − x∥2
can be replaced by a more general bifunction G satisfying condition (13) (see Mastroeni (2003)).
Similarly to VIs, the regularized gap function is nonconvex in general. However, if x∗ is a stationary
point of pα on C, i.e.,

⟨∇pα(x
∗), y − x∗⟩ ≥ 0, ∀ y ∈ C,

and f is strictly ∇-monotone on C, i.e.,

⟨∇xf(x, y) +∇yf(x, y), y − x⟩ > 0, ∀ x, y ∈ C with x ̸= y,

then x∗ is a solution to (EP). The strict ∇-monotonicity of f plays a role similar to those of positive
definiteness of ∇F for VIs. In fact, it guarantees, in addition to the above “stationarity” property,
that yα(x)−x is a descent direction for pα at any non-stationary point x. Solution methods based
on the minimization of pα along this direction have been developed in Chadli et al (2004); Mastroeni
(2003). An inexact version of these methods has been proposed in Di Lorenzo et al (2014).

A descent method which does not require the strict ∇-monotonicity of f has been introduced
in Bigi et al (2009). It is similar to that developed in Zhu and Marcotte (1993) for VIs: at any
iteration it performs a line search if yα(x)−x is a descent direction for pα at x, otherwise the value
of α is reduced. Convergence is guaranteed provided that C is bounded and f is c-monotone on C,
i.e.,

f(x, y) + ⟨∇xf(x, y), y − x⟩ ≥ 0, ∀ x, y ∈ C. (34)

The latter condition is neither stronger nor weaker than strict ∇-monotonicity and it is satisfied if
f(·, y) is concave for all y ∈ C (see Bigi et al (2009); Bigi and Passacantando (2015c)).

Similarly to VIs, function
√
pα provides error bound results under suitable monotonicity as-

sumptions on f (see Chadli et al (2004); Konnov and Pinyagina (2003b); Mastroeni (2003)).
Since the evaluation of the regularized gap function pα could be computationally expensive if

C is defined as in (3) by nonlinear constraints, a variant of function pα can be exploited as in the
case of VIs. In Bigi and Passacantando (2012) the following function has been introduced:

pBP
α (x) := max

y∈T (x)

[
−f(x, y)− α

2
∥x− y∥2

]
,

where T (x) is the outer polyhedral approximation of C at x defined as in (12). This function
turns out to be a locally Lipschitz gap function for (EP). Furthermore, if gi’s are continuously
differentiable and a constraint qualification holds, then pBP

α is directionally differentiable. Solution
methods for (EP) exploiting this merit function have been proposed in Bigi and Passacantando
(2012, 2015b).

D-gap functions have been extended from VIs to (EP) as well. Indeed, the difference of two
regularized gap functions

pαβ(x) := pα(x)− pβ(x), (35)

with 0 < α < β, is nonnegative on Rn and pαβ(x
∗) = 0 if and only if x∗ solves (EP). Thus,

the global minima of pαβ on Rn coincide with the solutions to (EP) (see Konnov and Pinyagina
(2003a); Zhang and Han (2009)). The D-gap function inherits the differentiability properties of pα

and pβ but in general is not convex. Stationary points of pαβ coincide with the solutions to (EP)
if the mappings ∇xf(x, ·)+∇yf(x, ·) are strictly monotone on Rn for any x ∈ Rn (Zhang and Han,
2009). Similarly to VIs, function

√
pαβ provides error bound results under suitable monotonicity

assumptions on f (Cherugondi, 2013; Zhang and Wu, 2009).
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Several solution methods for (EP) are based on D-gap functions. Descent methods exploiting
the direction d = r(x) + ρs(x), where r(x) = yα(x) − yβ(x), s(x) = α[x − yα(x)] − β[x − yβ(x)]
and ρ > 0 is small enough, have been introduced in Cherugondi (2013); Konnov and Pinyagina
(2003a). A descent method, which is similar to that proposed in Solodov and Tseng (2000) for
VIs, is based on direction d = yα(x)− yβ(x) and suitable updates of parameters α and β (Bigi and
Passacantando, 2015a). Another descent method relies on the same direction d = yα(x)− x which
is exploited by the solution methods for pα (Zhang and Wu, 2009).

The regularized Minty gap function (19) has been extended to (EP) in Quoc and Muu (2012)
and it has been used to develop an iterative method for solving strongly monotone equilibrium
problems, while gap functions based on conjugate duality have been extended to (EP) in Altangerel
et al (2006).

5.1 Application to a class of Nash-Cournot equilibrium problems

We now describe a problem of production competition over a network between several firms which
produce the same commodity. We consider a modification of the oligopolistic model originally
proposed in Marcotte (1987). Given a transportation network (N,A), where N is the set of nodes
and A the set of arcs, the firms and the markets are located at some subsets of nodes I and
J , respectively. Each firm i ∈ I chooses the quantity xij to supply to each market j ∈ J and

the quantities via to be sent on each arc a ∈ A. These variables are subject to flow-conservation
constraints, i.e., for any i ∈ I and k ∈ N we have

(E vi)k =


−
∑
j∈J

xij if k = i,

0 if k /∈ J,
xik if k ∈ J,

(36)

where E is the node-arc incidence matrix of the network and vi = (via)a∈A. Moreover, qi denotes
the maximum quantity that firm i may produce, i.e.,∑

j∈J
xij ≤ qi. (37)

The goal of the firm i is to maximize its profit given by

∑
j∈J

xij pj

(∑
ℓ∈I

xℓj

)
−
∑
a∈A

sa v
i
a − πi

∑
j∈J

xij

 , (38)

where pj : R+ → R+ is the inverse demand function for market j, that is pj(z) denotes the unitary
price at which the market j requires a total quantity z, sa is the unitary transportation cost on
arc a and πi : R+ → R+ is the production cost function of firm i. Note that the first term of (38)
depends on the quantities xℓj chosen by all the firms ℓ ∈ I.

We say that an equilibrium state is reached when the flows and the quantities produced by the
firms are such that no firm would increase its profit by changing its own choices while the other
firms keep their own. This equilibrium definition coincides with the concept of Nash equilibrium
in a noncooperative game where firms are the players and (38) are their payoff functions. Setting
x = (xij)i∈I,j∈J , v = (vi)i∈I and analogously y and w, Nash equilibria of this game are the solutions

24



of the abstract equilibrium problem (EP), where the bifunction f is the Nikaidô-Isoda function
associated with the game (Nikaidô and Isoda, 1955), that is:

f((x, v), (y, w)) =
∑
i∈I

[∑
j∈J

xij pj

(∑
ℓ∈I

xℓj

)
−
∑
j∈J

yij pj

(
yij +

∑
ℓ∈I,ℓ ̸=i

xℓj

)

+
∑
a∈A

sa (w
i
a − via) + πi

(∑
j∈J

yij

)
− πi

(∑
j∈J

xij

)]
and the feasible set C is defined by constraints (36) and (37).
Example 3. Let us consider the transportation network in Fig. 6, where I = {1, 2}, J = {6, 7}
and the number associated with each arc a denotes the unitary transportation cost sa.
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Figure 6: Transportation network in Example 3.

We assume that the production bounds are q1 = 70 and q2 = 40; that both markets have the
same inverse demand function:

pj(z) = p(z) := ρ1/τ (z + σ)−1/τ , j ∈ J,

with ρ = 5000, τ = 1.1 and σ = 0.01 (see, e.g., Murphy et al (1982)), and that the production cost
functions have the form

πi(z) := γi z + (1 + δi)
−1K−δi

i z1+δi , i ∈ I,

where parameters γi, δi and Ki are reported in Table 2.

i γi δi Ki

1 10 5/6 5
2 6 1 5

Table 2: Parameters of cost functions πi in Example 3.

Since the functions p and πi are convex and differentiable, the function z 7→ z p(z) is concave
and the bifunction f(·, (y, w)) is concave for any (y, w). Therefore, condition (34) is fulfilled and
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the convergence of the modified descent algorithm proposed in Bigi et al (2009) is guaranteed.
We implemented this algorithm in MATLAB exploiting the built-in function fmincon from the
Optimization Toolbox to evaluate the regularized gap function pα and to compute the search
direction yα(x)−x. Table 3 reports the quantities supplied by each firm to each market in the first
10 iterations of the algorithm starting from a zero total production.

Iteration x16 x17 x26 x27 pα(x)

0 0.0000 0.0000 0.0000 0.0000 1.0553e+04
1 11.5969 10.1858 11.3801 13.1382 1.1763e+03
2 29.5006 27.9329 19.5714 20.4286 8.7228e+00
3 32.6601 29.7497 18.8909 21.1091 8.6960e-02
4 32.5906 29.8771 18.6625 21.3375 2.5378e-03
5 32.5766 29.8855 18.6660 21.3340 1.5252e-03
6 32.5660 29.8917 18.6692 21.3308 9.1849e-04
7 32.5605 29.8950 18.6712 21.3288 6.5303e-04
8 32.5560 29.8977 18.6730 21.3270 4.6451e-04
9 32.5534 29.8992 18.6742 21.3258 3.6820e-04
10 32.5511 29.9006 18.6753 21.3247 2.9189e-04

Table 3: Numerical results of the modified descent algorithm proposed in Bigi et al (2009) applied
to Example 3.

6 Concluding remarks

Merit functions have been introduced for a number of variational mathematical models. In this
paper, we focused on three of the most important ones: variational inequalities, quasi-variational
inequalities and abstract equilibrium problems. Among other relevant models we recall set-valued
variational inequalities, vector variational inequalities and generalized Nash equilibrium problems.

The merit function approach has been extensively developed for VIs in the last two decades,
while it is still at a quite early stage for more general problems. We believe that this is partially due
to the complexity of these problems, but above all because many real-world applications of these
problems have arisen recently. Therefore, there are still many challenging open problems regarding
merit functions which are worthy of being investigated.

Merit functions for QVIs need to be further investigated: for instance, the general condition
under which the stationary points of the regularized gap function are solutions to (QVI) should be
deepened for different classes of problems according to the set-valued mapping defining the feasible
region. Furthermore, to the best of our knowledge, no ad-hoc descent method based on merit
functions has been developed so far.

Regarding abstract equilibrium problems, the convergence of descent methods is usually based
on differentiability assumptions. We think that some efforts should be devoted to develop algorithms
for nonsmooth problems, which include nonsmooth Nash equilibrium problems as special cases.
Moreover, it would be interesting to extend the Moreau-Yosida regularization to merit functions
for abstract equilibrium problems. Finally, we believe that new merit functions could be developed
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without assuming the convexity of f(x, ·): this might allow to extend the merit function approach
to nonconvex Nash equilibrium problems.
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Altangerel L, Boţ RI, Wanka G (2006) On gap functions for equilibrium problems via Fenchel
duality. Pac J Optim 2(3):667–678
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