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Abstract: The so-called material distribution methods for topology optimization cast the governing
equation as an extended or fictitious domain problem, in which a coefficient field represents the
design. In practice, the finite element method is typically used to approximate that kind of governing
equations by using a large number of elements to discretize the design domain, and an element-
wise constant function approximates the coefficient field in that domain. This paper presents a
spectral analysis of the coefficient matrices associated with the linear systems stemming from the
finite element discretization of a linearly elastic problem for an arbitrary coefficient field in three
spatial dimensions. The given theoretical analysis is used for designing and studying an optimal
multigrid method in the sense that the (arithmetic) cost for solving the problem, up to a fixed desired
accuracy, is linear in the corresponding matrix size. Few selected numerical examples are presented
and discussed in connection with the theoretical findings.

Keywords: matrix sequences; spectral analysis; finite element approximations

1. Introduction

In our previous paper [1], we applied the theory of generalized locally Toeplitz (GLT)
sequences to compute and analyze the asymptotic spectral distribution of the sequence
of stiffness matrices {Kn}n, with Kn being the finite element (FE) approximation of the
considered one spatial dimension topology optimization problem, for a given fineness
parameter associated to n. In a later contribution [2], we extended the analysis to the
two-dimensional setting using so-called multilevel block GLT sequences. In this paper, we
further expand the theory to cover the three-dimensional case.

Since the first material distribution method for topology design was introduced in the
late 1980s [3], topology optimization [4,5], a well-known computational tool for finding the
optimal distribution of material within a given design domain, has been studied extensively.
The material distribution topology optimization has contributed to the development of sev-
eral areas, such as electromagnetic [6–8], fluid–structure interaction [9,10], acoustics [11,12],
additive manufacturing [13], and especially (non-)linear elasticity [14–16]. For problems in
linear elasticity, which motivates the study in this paper, the most common method to solve
this type of problem is the so-called density-based or material distribution approach. In this
approach, a so-called material indicator function α(x)—typically referred to as the density
or the physical design—models the presence/absence of material; α = 1 where material is
present, else α = 0. However, the binary design problem is computationally intractable. A
standard approach to make the problem computationally feasible is employing a combi-
nation of relaxation, penalization, and filtering, in which the physical density is defined
as ρ(x) = α + (1− α)g

(
F (α)(x)

)
by ρ ≥ 0, which is a constant, the penalization operator
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is g, and the filtering procedure is F . In this approach, the finite element method (FEM)
is the standard choice for generating numerical solutions of a linearly elastic boundary
value problem. In practice, the physical design is typically represented as an element-wise
constant function. Moreover, a combination of allowing intermediate values of the design,
filtering, and penalization has been crucial for the success of these methods. In this paper,
we limit our attention to studying the linear system that stems from the FE discretization of
the governing equation and its solution. From a high performance computing perspective,
this limitation is natural since the computational effort in solving topology optimization
problems is dominated by the cost of solving the discretized governing equations—a fact
that is particularly prominent when studying three-dimensional problems. Over the last
decades, there has been significant work in improving the efficiency of topology optimiza-
tion, aiming at solving large-scale design problems [17–21]. Although our study is directly
motivated by the material-distribution or density-based approach to topology optimization,
the work is relevant for other design descriptions, such as level sets [22,23] or moving
morphable components [24–27], provided that the physics description uses the so-called
ersatz material approach, which in some cases can be justified rigorously [4].

The theory of multilevel block GLT sequences [28,29] is a generalization of the GLT
sequences theory [30,31] that is typically used for computing/analyzing the spectral distri-
bution of matrix sequences arising from, for example, the numerical discretization, such
as the FE approximation of partial differential equations (PDEs) with proper boundary
conditions. In the considered matrix sequences, the size of the given linear systems dn
increases with n, in which dn tends to infinity as n→ ∞. In this paper, the entire sequence
of linear systems with increasing size arising from the three spatial dimension problems
is the primary consideration. Under mild conditions, essentially relying on regularity
assumptions on the meshes, we show that the sequence of discretization matrices has
an asymptotic spectral distribution. By leveraging the theory of multilevel block GLT
sequences, we now extend our previous works [1,2] further to perform a detailed spectral
analysis of the linear systems associated with the FE discretization of the governing equa-
tion in the three-dimensional setting. Similar to our previous work [2], we also make use of
the information obtained from the spectral symbol f to design a fast, multigrid solver in
three dimensions for optimizing the (arithmetic) cost to solve the related linear systems
up to a fixed desired accuracy, which is proportional to the matrix–vector cost, which is
linear in the corresponding matrix size. This solver is also verified and comes up with very
satisfying numerical results, in terms of the linear cost and number of iterations, which are
bounded independently of the matrix size and mildly depending on the desired accuracy.

In the following sections, we will go into detail on the problem description, spectral
analysis, multigrid method, and a brief conclusion. The description of the continuous prob-
lem and the resulting coefficient matrices arising from our FE approximation is delivered in
Sections 2 and 3 is devoted to the spectral analysis of the FE matrices from the perspective
of the GLT theory. In Section 4, a brief account of multigrid methods with special attention
to the block case encountered in the present context is given, and the spectral information is
a core component in the development of the multigrid proposal for our specific 3D setting
presented in Section 5. Eventually, the conclusions are reported in Section 6, and some
relevant model information is explained in Appendice A and B.

2. Problem Description

We consider a linearly elastic structure that occupies (part of) the hyper-rectangular
domain Ω ⊂ R3. In particular, we are interested in the setting used in material distribution
based topology optimization, where a function, typically denoted as the physical density,
ρ : Ω→ [0, 1], describes the layout of the unloaded structure. We assume that the structure
is clamped along the boundary portion ΓD ⊂ ∂Ω. Moreover, we let b ∈ L2(Ω)3 be a
given body load (a volume force) in Ω, t ∈ L2(ΓF)

3 be the surface traction acting on the
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non-clamped boundary ΓF ⊂ ∂Ω of the solid, and u denote the resulting equilibrium
displacement, which solves the following problem.

Find u ∈ U such that a(u, v; ρ) = `(v) ∀v ∈ U , (1)

where the set of all kinematically admissible displacements of the structure is

U =
{

u ∈ H1(Ω)3 | u|ΓD ≡ 0
}

.

The energy bilinear form a and the load linear form ` are defined as

a(u, v; ρ) =
∫
Ω

ρ
(
Ecε(u)

)
: ε(v),

`(v) =
∫
ΓF

t · v +
∫
Ω

b · v,

where ε(u) =
(
∇u +∇uT )/2 is the strain tensor of u. The colon “:” denotes the full

contraction between the two tensors; when using the standard basis, the full contraction of
the two matrices is their Frobenius scalar product. Ec is a constant fourth-order elasticity
tensor. In this paper, we study an FE discretization of problem (1), in which the physical
density is approximated by an element-wise constant function, which is typical in material
distribution based topology optimization. The domain Ω is discretized into n trilinear
hexahedral elements and then applying FE approximation, the variational problem (1) is
reduced to the linear system

Kn(ρ)u = f ,

where u and f are the nodal displacement and load vector, respectively, and Kn(ρ) is the
stiffness matrix of element-wise constant physical density function ρ—the entries of the
vector ρ = [ρ1, ρ2, . . . , ρn] are the element values of ρ; that is, ρi is the value of ρ in the ith
element in the FE mesh. The stiffness matrix Kn is typically assembled by looping over
each element so that

Kn(ρ) =
n

∑
i=1

ρiK
(i)
e ,

where K(i)
e is the element stiffness matrix. We emphasize that the formal expression of

the relevant matrices is a key ingredient for applying the multilevel block GLT theory
to produce a global spectral description of the matrix sequences under consideration.
More precisely, the non-zero blocks of three-dimensional element stiffness matrix can be
expressed as

Ke =
h
2

E0

1 + ν



K1 K2 K3 K4 K5 K6 K7 K8
K9 K10 K11 K12 K13 K14 K7

K15 K16 K17 K18 K13 K6
K19 K20 K17 K12 K5

K19 K16 K11 K4
sym. K15 K10 K3

K9 K2
K1


(2)

where each Ki block has size 3× 3 and is associated with one node on a so-called reference
element, E0 is Young’s modulus, and ν is Poisson’s ratio. More details are provided in
Appendix A for the explicit expressions for the element stiffness matrix and in Appendix B
for the stress–strain relation and various bounds. With regard to Equation (2), the lower
part of the matrix is not explicitly given because the matrix is globally real symmetric
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and so is every block Kl , l = 1, . . . , 20, whose expressions are reported in Appendix A,
Equation (A1).

3. Spectral Analysis

The current section is devoted to the spectral analysis of the FE coefficient matrices
derived in the previous section and is complemented by a selection of numerical tests that
confirm the theoretical analysis (more numerical experiments have been performed but here
we report only a selection for the sake of brevity). We limit our focus to isotropic materials;
for more information about various bounds, see the discussion in Appendix B. From a
mathematics perspective, this means that we limit our attention to when the Poisson’s ratio
ν is in the range [0, 0.5). In particular, Section 3.1 contains the minimal set of preliminary
concepts and tools, while Sections 3.2 and 3.3 are focused on the specific study in 3D in the
constant and variable coefficient cases, respectively.

3.1. Premises

The premises include the formal definition of the eigenvalue and singular value
distribution, the notion of multi-indexing, the concepts of multilevel block Toeplitz matrices,
multilevel block sampling matrices, and multilevel block GLT matrix sequences.

3.1.1. Singular Value/Eigenvalue Distributions

We first give the formal definitions, and then we briefly discuss their informal and
practical meaning.

Definition 1. Let r, t be two positive integers. Let {An}n be a sequence of matrices, with An of size
dn with eigenvalues λ1(An), . . . , λdn(An) and singular values σ1(An), . . . , σdn(An). Furthermore,
let f : D ⊂ Rt → Cr×r be a measurable function defined on a set D with 0 < µt(D) < ∞, and
with µt(·) denoting the Lebesgue measure on Ct.

• We say that {An}n has a (asymptotic) singular value distribution described by f , and we
write {An}n ∼σ f , if

lim
n→∞

1
dn

dn

∑
i=1

F(σi(An)) =
1

µt(D)

∫
D

∑r
i=1 F(σi( f (x)))

r
dx, ∀ F ∈ Cc(R), (3)

with σ1( f ), . . . , σr( f ) being the singular values of f , each of them being a measurable function
non-negative almost everywhere.

• We say that {An}n has a (asymptotic) spectral (or eigenvalue) distribution described by f ,
and we write {An}n ∼λ f , if

lim
n→∞

1
dn

dn

∑
i=1

F(λi(An)) =
1

µt(D)

∫
D

∑r
i=1 F(λi( f (x)))

r
dx, ∀ F ∈ Cc(C), (4)

with λ1( f ), . . . , λr( f ) being the eigenvalues of f , each of them being a complex-valued mea-
surable function.

If {An}n has both a singular value and an eigenvalue distribution described by f , we write
{An}n ∼σ,λ f . (In practice, in the Toeplitz setting and often in the GLT setting, the parameter r
can be read at a matrix level as the size of the elementary blocks which form the global matrix An, as
it will be clear both in our stiffness matrices in Sections 3.2 and 3.3, and in the block Toeplitz/block
diagonal sampling structures in Section 3.1.2.)

The symbol f contains spectral/singular value information briefly described infor-
mally as follows. With reference to relation (4), the eigenvalues of Kn are partitioned into r
subsets of the same cardinality, except possibly for a small number of outliers, such that
the ith subset is approximately formed by the samples of λi( f ) over a uniform grid in D,
i = 1, . . . , r. Thus, provided that n is large enough, the symbol f provides a ’compact’ and
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quite accurate description of the spectrum of the matrices Kn. Similarly, relation (3) has the
same meaning when talking of the singular values of Kn and by replacing λi( f ) with σi( f ),
i = 1, . . . , r.

3.1.2. Multilevel Block Toeplitz Matrices, Multilevel Block Diagonal Sampling Matrices,
and Multilevel Block GLT Sequences

The present section is specifically devoted to matrix-theoretic notations and definitions,
which are essential when dealing with multi-dimensional problems and with the related
sequences of matrices.

Definition 2. A multi-index i ∈ Zd, also called a d-index, is a (row) vector in Zd, whose compo-
nents are denoted by i1, . . . , id.

• 0, 1, 2, . . . are the vectors of all zeros, all ones, all twos, . . . (their size will be clear from the
context).

• For any d-index m ∈ Nd
+, we set N(m) = ∏d

j=1 mj and we write m → ∞ to indicate that
min(m)→ ∞.

• If h, k are d-indices, h ≤ k means that hr ≤ kr for all r = 1, . . . , d.
• If h, k are d-indices such that h ≤ k, the multi-index range [h, . . . , k] is the set {j ∈ Zd :

h ≤ j ≤ k}. The standard lexicographic ordering is assumed uniformly[
. . .
[
[ (j1, . . . , jd) ]jd=hd ,...,kd

]
jd−1=hd−1,...,kd−1

. . .
]

j1=h1,...,k1

.

With regard to the previous definition, in the case d = 2, the lexicographic ordering is
the following: (h1, h2), (h1, h2 + 1), . . . , (h1, k2), (h1 + 1, h2),(h1 + 1, h2 + 1), . . . (h1 + 1, k2),
. . . (k1, h1), (k1, h1 + 1), . . . , (k1, k2). Notice that, in general, a multi-index range [h, . . . , k],
h ≤ k is used with h = 0 or with h = 1.

Definition 3 ((Multilevel) Block Toeplitz Matrices). Given n ∈ Nd, a matrix of the form

[Ai−j]
n
i,j=e ∈ CN(n)r×N(n)r

with e vector of all ones, with blocks Ak ∈ Cr×r, k = −(n− e), . . . , n− e, is called a multilevel
block Toeplitz matrix, or, more precisely, a d-level r-block Toeplitz matrix. Let φ : [−π, π]d → Cr×r

be a matrix-valued function in which each entry belongs to L1([−π, π]d). We denote the Fourier
coefficients of the generating function φ as

f̂k =
1

(2π)d

∫
[−π,π]d

φ(θ)e−ı̂(k,θ)dθ ∈ Cr×r, k ∈ Zd,

where the integrals are computed componentwise, ı̂2 = −1, and (k, θ) = k1θ1 + . . . + kdθd. For
every n ∈ Nd, the nth Toeplitz matrix associated with φ is defined as

Tn(φ) := [ f̂i−j]
n
i,j=e

or, equivalently, as

Tn(φ) = ∑
|j1|<n1

. . . ∑
|jd |<nd

[J(j1)
n1 ⊗ . . . J(jd)

nd ]⊗ f̂(j1,...,jd),

where⊗ denotes the (Kronecker) tensor product of matrices, while J(l)m is the matrix of order m whose
(i, j) entry equals 1 if i− j = l and zero otherwise. We call {Tn(φ)}n∈Nd the family of (multilevel
block) Toeplitz matrices associated with φ, which, in turn, is called the generating function of
{Tn(φ)}n∈Nd .
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Definition 4 ((Multilevel) Block Diagonal Sampling Matrices). For n ∈ N and a : [0, 1] →
Cr×r, we define the block diagonal sampling matrix Dn(a) as the diagonal matrix

Dn(a) = diag
i=1,...,n

a
( i

n

)
=


a( 1

n )
a( 2

n )
. . .

a(1)

 ∈ Crn×rn.

For n ∈ Nd and a : [0, 1]d → Cr×r, we define the multilevel block diagonal sampling matrix
Dn(a) as the block diagonal matrix

Dn(a) = diag
i=1,...,n

a
( i

n

)
∈ CrN(n)×rN(n),

with the lexicographical ordering discussed at the beginning of Section 3.1.2.

Definition 5 (Zero-Distributed Sequences of Matrices). According to Definition 1, a sequence
of matrices {Zn}n such that

{Zn}n ∼σ 0

is referred to as a zero-distributed sequence. Note that, for any r ≥ 1, {Zn}n ∼σ 0 is equivalent
to {Zn}n ∼σ Or (notice that Om and Im denote the m×m zero matrix and the m×m identity
matrix, respectively).

Proposition 1 provides an important characterization of zero-distributed sequences
together with a useful sufficient condition for detecting such sequences. Throughout this
paper, we use the natural convention 1/∞ = 0.

Proposition 1. [30] Let {Zn}n be a sequence of matrices, with Zn of size dn, and let ‖ · ‖ be the
standard spectral matrix norm (the one induced by the Euclidean vector norm).

• {Zn}n is zero distributed if and only if Zn = Rn + Nn with rank(Rn)/dn → 0 and
‖Nn‖ → 0 as n→ ∞.

• {Zn}n is zero distributed if there exists a p ∈ [1, ∞] such that ‖Zn‖p/(dn)1/p → 0 as
n→ ∞.

(Multilevel) Block GLT Matrix Sequences. Now, we give a very concise and operational
description of the multilevel block GLT sequences, from which it will be clear that the
multilevel block Toeplitz structures, the zero-distributed matrix sequences, and the multi-
level block diagonal sampling matrices represent the basic building components. All the
material is taken from the books [30,31] and from the papers [28,32].

Let d, r ≥ 1 be fixed positive integers. A multilevel r-block GLT sequence (or simply a
GLT sequence if d, r can be inferred from the context or we do not need/want to specify
them) is a special r-block matrix sequence {An}n equipped with a measurable function
κ : [0, 1]d × [−π, π]d → Cr×r, the so-called symbol. We use the notation {An}n ∼GLT κ to
indicate that {An}n is a GLT sequence with symbol κ. The symbol of a GLT sequence is
unique in the sense that if {An}n ∼GLT κ and {An}n ∼GLT ς then κ = ς a.e. in [0, 1]d ×
[−π, π]d. The main properties of r-block GLT sequences proved in [28] are listed below. If A
is a matrix, we denote by A† the Moore–Penrose pseudoinverse of A (recall that A† = A−1

whenever A is invertible).

GLT 1 If {An}n ∼GLT κ then {An}n ∼σ κ. If moreover each An is Hermitian, then
{An}n ∼λ κ.

GLT 2 We have the following:

• {Tn(φ)}n ∼GLT κ(x, θ) = φ(θ) if φ : [−π, π]d → Cr×r is in L1([−π, π]d);
• {Dn(a)}n ∼GLT κ(x, θ) = a(x) if a : [0, 1]d → Cr×r is Riemann integrable;
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• {Zn}n ∼GLT κ(x, θ) = Or if and only if {Zn}n ∼σ 0 (zero-distributed sequences
coincide exactly with the GLT sequences having GLT symbol equal to Or a.e.).

GLT 3 If {An}n ∼GLT κ and {Bn}n ∼GLT ς, then

• {A∗n}n ∼GLT κ∗;
• {αAn + βBn}n ∼GLT ακ + βς for all α, β ∈ C;
• {AnBn}n ∼GLT κς;
• {A†

n}n ∼GLT κ−1 provided that κ is invertible a.e.

3.2. Constant Coefficient Case ρ ≡ 1

In the current section, we report the derivation and the formal expression of the
symbol for the matrix sequences in the constant coefficient setting ρ ≡ 1, according to the
standard notion of generating function in the Toeplitz theory (see Section 3.1.2 and the
paper by Garoni et al. [29] for more details) and according to the notion of symbol reported
in Definition 1.

3.2.1. Symbol Definition

Recall that the computational domain Ω is a hyper-rectangular domain in 3D, and the
boundary of Ω comprises six sides. Let An(1, DN5) be the stiffness matrix obtained with a
Q1 FE approximation with proper boundary conditions, Dirichlet ‘D’ on one of Ω’s sides
and Neumann ‘N’ in the other five sides of Ω (and hence the formal notation An(1, DN5)),
where we have chosen a uniform meshing with n intervals in the x1 direction, n intervals in
the x2 direction, and n intervals in the x3 direction. According to the previously considered
ordering of the nodes, the matrix An(1, DN5) is a three-level block tridiagonal structure
of size n with two-level tridiagonal blocks of size n + 1, with tridiagonal blocks of size
n + 1, whose elements are small matrices of size 3. We notice that the size is dictated by all
the meshpoints, including those in the boundaries when considering Neumann boundary
conditions, while only the internal meshpoints are involved when the Dirichlet boundary
conditions are enforced.

In accordance with the 2D case [2], if all the boundary conditions are of the Dirichlet
type, then we obtain a matrix An(1, D6), which is a three-level block Toeplitz structure with
elementary blocks of size 3, having global dimension 3(n− 1)3, since all the nodes on the
boundaries are not unknowns. More precisely, we obtain

An(1, D6) =


a0 a−1
a1 a0 a−1

. . . . . . . . .
a1 a0 a−1

a1 a0

 = tridiag (ai)i=−1,0,1,

and, for i = −1, 0, 1, we have

ai =


ai0 ai−1
ai1 ai0 ai−1

. . . . . . . . .
ai1 ai0 ai−1

ai1 ai0

 = tridiag(aij)j=−1,0,1,
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while, for i, j = −1, 0, 1, the following block tridiagonal matrices are defined:

aij =


aij0 aij−1
aij1 aij0 aij−1

. . . . . . . . .
aij1 aij0 aij−1

aij1 aij0

 = tridiag(aijk)k=−1,0,1.

By reading the entries of An(1, D6), analogously to the process in the 2D setting as
in [2], we can compute explicitly the related generating function, following the rules given
in Definition 3:

fQ1(θ1, θ2, θ3) = fa0(θ1, θ2) + fa−1(θ1, θ2)e−ı̂θ3 + fa1(θ1, θ2)eı̂θ3

=
(

fa00(θ1) + fa0−1(θ1)e−ı̂θ2 + fa01(θ1)eı̂θ2
)

+
(

fa−10(θ1) + fa−1−1(θ1)e−ı̂θ2 + fa−11(θ1)eı̂θ2
)

e−ı̂θ3

+
(

fa10(θ1) + fa1−1(θ1)e−ı̂θ2 + fa11(θ1)eı̂θ2
)

eı̂θ3

=
(

a000 + a00−1e−ı̂θ1 + a001eı̂θ1
)
+
(

a0−10 + a0−1−1e−ı̂θ1 + a0−11eı̂θ1
)

e−ı̂θ2

+
(

a010 + a01−1e−ı̂θ1 + a011eı̂θ1
)

eı̂θ2

+

[(
a−100 + a−10−1e−ı̂θ1 + a−101eı̂θ1

)
+
(

a−1−10 + a−1−1−1e−ı̂θ1 + a−1−11eı̂θ1
)

e−ı̂θ2

+
(

a−110 + a−11−1e−ı̂θ1 + a−111eı̂θ1
)

eı̂θ2

]
e−ı̂θ3

+

[(
a100 + a10−1e−ı̂θ1 + a101eı̂θ1

)
+
(

a1−10 + a1−1−1e−ı̂θ1 + a1−11eı̂θ1
)

e−ı̂θ2

+
(

a110 + a11−1e−ı̂θ1 + a111eı̂θ1
)

eı̂θ2

]
eı̂θ3 ,

where every arst, r, s, t ∈ {−1, 0, 1} is a 3× 3 matrix because three degrees of freedom
are associated to each node of the mesh. Each arst is a sum of the building blocks of the
elementary matrix (2). More precisely, in terms of the block matrices Ki, cf. definition (A1)
in Appendix A, we can write

a000 = 2
(

K1 + K9 + K15 + K19

)
, a001 = a00−1 = 2

(
K2 + K16

)
,

a010 = a0−10 = 2
(

K3 + K11

)
, a011 = a0−1−1 = 2K4,

a01−1 = a0−11 = 2K10, a100 = a−100 = 2
(

K5 + 2K13

)
,

a101 = a−10−1 = 2K6, a10−1 = a−101 = 2K12,

a110 = a−1−10 = 2K7, a1−10 = a−110 = 2K17,

a111 = a−1−1−1 = K8, a11−1 = a−1−11 = K14,

a1−11 = a−11−1 = K18, a−111 = a1−1−1 = K20.
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Thus, we have

fQ1(θ1, θ2, θ3) =

 f11(θ1, θ2, θ3) f12(θ1, θ2, θ3) f13(θ1, θ2, θ3)
f12(θ1, θ2, θ3) f22(θ1, θ2, θ3) f23(θ1, θ2, θ3)
f13(θ1, θ2, θ3) f23(θ1, θ2, θ3) f33(θ1, θ2, θ3)

, (5)

where

f11(θ1, θ2, θ3) = 8k1 + 8k3 cos(θ1) + 2 cos(θ2)
(
4k3 + 4k5 cos(x)

)
+ 2 cos(θ3)

(
4k6 + 2 cos(θ2)

(
2k7 + 2k9 cos(θ1)

)
+ 4k7 cos(θ1)

)
,

f12(θ1, θ2, θ3) = 4k2 + 4k8 + 4 cos(θ1)
(
k4 + k10)

+ 2e−iθ3
(

eiθ2
(
k2 + k4 cos(θ1)

)
+ e−iθ2

(
k8 + k10 cos(θ1)

))
+ 2eiθ3

(
eiθ2
(
k8 + k10 cos(θ1)

)
+ e−iθ2

(
k2 + k4 cos(θ1)

))
,

f13(θ1, θ2, θ3) = 4k2 + 4k8 + 8k0 cos(θ1) + 4 cos(θ2)
(
k4 + k10 + 2k0 cos(θ1)

)
+ 2e−iθ3

(
k2eiθ1 + k8e−iθ1 +

(
k4eiθ1 + k10e−iθ1

)
cos(θ2)

)
+ 2eiθ3

(
k2e−iθ1 + k8eiθ1 +

(
k4e−iθ1 + k10eiθ1

)
cos(θ2)

)
,

f22(θ1, θ2, θ3) = 8k1 + 8k3 cos(θ1) + 8 cos(θ2)
(
k6 + k7 cos(θ1)

)
+ 8 cos(θ3)

(
k3 + k5 cos(θ1) + cos(θ2)

(
k7 + k9 cos(θ1)

))
,

f23(θ1, θ2, θ3) = 4k2 + 4k8 + 2e−iθ2
(
k2eiθ1 + k8e−iθ1

)
+ 2eiθ2(k2e−iθ1 + k8eiθ1)

+ 2 cos(θ3)
(

2k4 + 2k10 + 4k0 cos(θ1) + 4k0 cos(θ2)

+ e−iθ2
(
k4eiθ1 + k10e−iθ1

)
+ eiθ2

(
k4e−iθ1 + k10eiθ1

))
,

f33(θ1, θ2, θ3) = 8k1 + 8k6 cos(θ1) + 8 cos(θ2)
(
k3 + k7 cos(θ1)

)
+ 8 cos(θ3)

(
k3 + k7 cos(θ1) + cos(θ2

)
(k5 + k9 cos(θ1)

))
.

Finally, by expanding the kis according to expressions (A2), we deduce the formal
expression of the generating functions

f11(θ1, θ2, θ3) = 2 cos(θ3)

[
cos(θ2)

(
2ν

3(2ν− 1)
+ 2 cos(θ1)

(
ν

3(2ν− 1)
− 1

9

)
− 4

9

)
+ cos(θ1)

(
2ν

3(2ν− 1
− 4

9

)
− 8

9

]
+

8
9

cos(θ1)−
16ν

3(2ν− 1)

+ cos(θ2)

(
2 cos(θ1)

(
2ν

3(2ν− 1)
+

2
9

)
+

8
9

)
+

16
9

,

f22(θ1, θ2, θ3) = 8 cos(θ3)

[
cos(θ2)

(
ν

6(2ν− 1)
+ cos(θ1)

(
ν

6(2ν− 1)
− 1

18

)
− 1

9

)
+ cos(θ1)

(
ν

6(2ν− 1)
+

1
18

)
+

1
9

]
+

8
9

cos(θ1)−
16ν

3(2ν− 1)

+ 8 cos(θ2)

(
cos(θ1)

(
ν

6(2ν− 1)
− 1

9

)
− 2

9

)
+

16
9

,
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f33(θ1, θ2, θ3) = 8 cos(θ3)

[
cos(θ2)

(
ν

6(2ν− 1)
+ cos(θ1)

(
ν

6(2ν− 1)
− 1

18

)
+

1
18

)
+ cos(θ1)

(
ν

6(2ν− 1)
− 1

9

)
+

1
9

]
− 16ν

3(2ν− 1)
− 16

9
cos(θ1) +

16
9

+ 8 cos(θ2)

(
cos(θ1)

(
ν

6(2ν− 1)
− 1

9

)
+

1
9

)
,

f12(θ1, θ2, θ3) = −
4

3(2ν− 1)

(
ν sin(θ2) sin(θ3)

(
cos(θ1

)
+ 2)

)
,

f13(θ1, θ2, θ3) = −
4

3(2ν− 1)

(
ν sin(θ1) sin(θ3)

(
cos(θ2) + 2

))
,

f23(θ1, θ2, θ3) = −
4

3(2ν− 1)

(
ν sin(θ1) sin(θ2)

(
cos(θ3) + 2

))
.

The following proposition links in a precise way the involved Toeplitz structures and
matrices An(1, D6) and An(1, DN5).

Proposition 2. Let fQ1(θ1, θ2, θ3) be the symbol defined in the previous lines; see (5). Let us
consider a uniform meshing in all the three directions with n subintervals. Then we have the
following relationships:

An(1, D6) = Tn( fQ1), n = (n1, n2, n3), n1 = n2 = n3 = n− 1,

An(1, DN5) = Tn( fQ1) + Rn, n = (n1, n2), n1 = n, n2 = n3 = n + 1,

where Rn has rank of order n2 = o(size(Rn)), with size(Rn) = size(An(1, DN5)) = n1n2n3.
If the more general setting is considered with n1 subintervals in the x1 direction, n2 subintervals

in the x2 direction, and n3 intervals in the x3 direction, then the analogous is true:

An(1, D6) = Tn( fQ1), n = (n1 − 1, n2 − 1, n3 − 1),

An(1, DN5) = Tn( fQ1) + Rn, n = (n1, n2 + 1, n3 + 1),

where Rn has a rank proportional to n1n2 + n1n3 + n2n3 = o(size(Rn)), with size(Rn) =
size(An(1, DN5)) = n1n2n3.

Proof. Since the grid points in a cube are n1n2n3, if we consider Dirichlet boundary condi-
tions in a facet orthogonal, for example, to the direction x1, then the number of points and
equations which are affected by the Neumann boundary conditions on the other 5 facets
are 2l3n1n2 + 2l2n1n3 + l1n2n3, where typically l3 = l2 = l1 = 2 if the standard linear FEs
are employed. Hence, the rank correction induced by the matrix Rn is proportional, as
claimed to n1n2 + n1n3 + n2n3 = o(size(Rn)).

In the following section, we prove that the function fQ1 is the eigenvalue symbol, in
the sense of Definition 1, of the matrix sequences {An(1, D6)}n and {An(1, DN5)}n.

3.2.2. Symbol Spectral Analysis in 3D: Distribution, Extremal Eigenvalues,
and Conditioning

We study the spectral distribution, extremal eigenvalues, and conditioning of our
matrix sequences in 3D. All the results are based on the symbol and on its analytical features.
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Proposition 3. Let fQ1(θ1, θ2, θ3) be the symbol defined in Section 3.2.1 According to the no-
tation in Proposition 2, all the matrix sequences {Tn( fQ1)}n, {An(1, D6)}n, {An(1, D6)}n,
{An(1, DN5)}n, {An(1, DN5)}n are spectrally distributed as fQ1 in the sense of Definition 1.

Proof. For the multilevel block Toeplitz sequences {Tn( fQ1)}n, {An(1,D6)}n, and {An(1,D6)}n
refer to Item GLT 2., part 1, and Item GLT 1., part 2 in Section 3.1.2. For the sequences
{An(1, DN5)}n, {An(1, DN5)}n first observe that the matrix sequence {Rn}n defined in Propo-
sition 2 is zero distributed, thanks to Proposition 1 and Proposition 2 since rank(Rn)/size(Rn)
→ 0, as n → ∞. Then the claim follows thanks to the ∗-algebra structure of the GLT
sequences and more specifically thanks to Item GLT 3., part 2, Item GLT 2., part 1, and Item
GLT 1., part 2.

Now, we identify a few key analytical features of the spectral symbol which are shared
by all the matrix sequences mentioned in Proposition 3. Theorem 1 is crucial for the study
of the extremal eigenvalues and of the conditioning of the same matrix sequences and, in
Section 5, it is the main ingredient for designing ad hoc multigrid solvers when dealing
with the associated large linear systems.

Theorem 1. Let fQ1(θ1, θ2, θ3) be the symbol defined in (5). The following statements hold true:

1. fQ1(0, 0, 0)e = 0, e = [1, 1, 1]T ;
2. All three eigenvalues of fQ1 have a zero of order 2 at (0, 0, 0).

Proof. Claim 1. The function fQ1 evaluated at (0, 0, 0) equals

fQ1(0, 0, 0) =

α β β
β α β
β β α


with α = 8(k1 + 2k3 + k5 + k6 + 2k7 + k9) and β = 8(4k0 + k2 + k4 + k8 + k10), whose
row-sum α + 2β = 0 according to (A2).

Claim 2. It is just a direct check. Indeed, it is enough to check that the quantities

tr( fQ1(θ1, θ2, θ3)) and det( fQ1(θ1, θ2, θ3))

have a zero of orders two and six, respectively, by considering the Taylor expansion centered
at (0, 0, 0).

In accordance to what was proven in the 2D setting, the minimal eigenvalue of the
symbol fQ1(θ1, θ2, θ3) has a unique zero of order two at (θ1, θ2, θ3) = (0, 0, 0). In fact, the
symbol fQ1 is positive semi-definite, and all the eigenvalues of the symbol fQ1(θ1, θ2, θ3)
have a unique zero of order two at (θ1, θ2, θ3) = (0, 0, 0), that is, there exist positive
constants c(j), C(j), j = 1, 2, 3 such that

c(j)‖(θ1, θ2, θ3)
T‖2 ≤ λj( fQ1(θ1, θ2, θ3)) ≤ C(j)‖(θ1, θ2, θ3)

T‖2

uniformly in a proper neighborhood of (0, 0, 0).
Therefore, we can infer important information on the extremal eigenvalues and on the

conditioning of the corresponding matrix sequences.
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Proposition 4. Let fQ1(θ1, θ2, θ3) be the symbol defined in (5). Let us consider a uniform meshing
in all the directions with n subintervals. Then we have the following relationships:

λmin(An(1, D6)) ∼ n−2,

max fQ1 − λmax(An(1, D6)) ∼ n−2,

µ(An(1, D6)) ∼ n2,

An(1, D6) = Tn( fQ1), n = (n1, n2, n3), n1 = n2 = n3 = n− 1

and

λmin(An(1, DN5)) ∼ n−2,

max fQ1 − λmax(An(1, DN5)) ∼ n−2,

µ(An(1, DN5)) ∼ n2,

An(1, DN5) = Tn( fQ1) + Rn, n = (n1, n2, n3), n1 = n, n2 = n3 = n + 1,

with Rn as in Proposition 2 and µ(·) denoting the condition number in spectral norm (the one
induced by the Euclidean vector norm).

If the more general setting is considered with n1 subintervals in the x1 direction, n2 subintervals
in the x2 direction, and n3 subintervals in the x3 direction, then analogous relations are true:

λmin(An(1, D6)) ∼ [min nj]
−2,

max fQ1 − λmax(An(1, D6)) ∼ [min nj]
−2,

µ(An(1, D6)) ∼ n2,

An(1, D6) = Tn( fQ1), n = (n1 − 1, n2 − 1, n3 − 1)

and

λmin(An(1, DN5)) ∼ [min nj]
−2,

max fQ1 − λmax(An(1, DN5)) ∼ [min nj]
−2,

µ(An(1, DN5)) ∼ [min nj]
2,

An(1, DN5) = Tn( fQ1) + Rn, n = (n1, n2 + 1, n3 + 1),

with Rn as in Proposition 2.

3.3. Non-Constant Coefficient ρ Case—3D

It should be observed that the natural extension of the previous analysis refers to the
case of a non-constant coefficient ρ. According to a standard assembling procedure in FEs,
given the triangulation T made by all the basic elements τ, we write the stiffness matrix as

An(ρ) = ∑
τ∈T

ρτ AEl
n,τ , (6)

where AEl
n,τ is the elementary matrix Kn in (2) (possibly properly cut when nodes on the

boundary are involved), but widened to size N(n) according to the chosen global ordering
of nodes. Here, n = (n− 1, n− 1, n− 1) in the case of the Dirichlet boundary conditions and
n subintervals in all the directions such that An(ρ) = An(ρ, D6), while n = (n, n + 1, n + 1)
in the case of Dirichlet boundary conditions on one-side Neumann boundary conditions in
the remaining ones with n subintervals in all the directions so that An(ρ) = An(ρ, DN5).
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Clearly, the elementary matrix Ke is positive semi-definite for 0 ≤ ν < 1/2. More
precisely, the not zero eigenvalues are

1 (double),
(1− ν)

3(1− 2ν)
(triple),

2ν

(1− 2ν)
(triple),

ν

3(1− 2ν)
(double),

4ν

3(1− 2ν)
(simple),

(ν + 1)
(1− 2ν)

(simple),
(ν + 1)

3(1− 2ν)
(triple),

(ν + 1)
9(1− 2ν)

(triple).

In addition, every elementary matrix, which has been cut due to nodes on the boundary,
is positive semi-definite as well since it is a principal submatrix of Ke in (2).

Thus, on the basis of (6) and by applying the Courant–Fisher theorem, we can
claim again

ρminλmin(An(1)) ≤ λmin(An(ρ)) ≤ ρmaxλmin(An(1)),

ρminλmax(An(1)) ≤ λmax(An(ρ)) ≤ ρmaxλmax(An(1)).

with ρmin and ρmax minimum and maximum of ρ, respectively (see Figure 1 for an upper-
bound of the maximal eigenvalues of An(1) as a function of ν).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
100

101

102

103

1
2
3

Figure 1. Maxima of eigenvalue surfaces of the symbol fQ1 vs. ν.

By combining the above inequalities and Proposition 4, we infer that the extremal
eigenvalues and the conditioning have the same asymptotical behavior as in the constant
coefficient setting.

The whole eigenvalues distribution is sketched below by referring to the basics of
the GLT theory [29] reported in Section 3.1.2. Let Dn(ρ) be a multilevel block diagonal
sampling matrix according to the notions introduced in Section 3.1.2 and let An(1) be the
multilevel block Toeplitz matrix Tn( fQ1) if the Dirichlet boundary conditions are used or
Tn( fQ1) + Rn in the other case. Then the following facts hold:

Fact 1 {Dn(ρ)}n ∼GLT ρ according to Item GLT 2.

Fact 2 {Rn}n ∼GLT 0 according to Proposition 2, Proposition 1, and Item GLT 2.

Fact 3 {Tn( fQ1)}n ∼GLT fQ1 according to Item GLT 2.

Fact 4 {An(1)}n ∼GLT fQ1 according to Fact 2, Fact 3, and to the ∗-algebra structure of GLT
sequences that is Item GLT 3.

Fact 5 given ∆n = An(ρ)− Dn(ρ)An(1) a simple check shows that {∆n}n ∼GLT 0, using
Proposition 1.

Fact 6 {An(ρ)}n ∼GLT ρ fQ1 as a consequence of Fact5, Fact 1, Fact 4, and of the ∗-
algebra structure of GLT sequences that is Item GLT 3.; moreover since the matrix
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sequence {An(ρ)}n is made up by Hermitian matrices, by Item GLT 1. it follows that
{An(ρ)}n ∼σ,λ ρ fQ1 .

We stress that a unique notation has been employed for the sake of notational com-
pactness. However, the main statement, Fact 6, holds for all the matrix sequences reported
in Proposition 3 in the case of a variable ρ.

Finally, it is worth noticing that non-square domains can be treated as well, using
the reduced GLT theory (see pages 398–399 in [33], Section 3.1.4 in [34], and the recent
analysis [35]): here, we do not go in the details and this will be the subject of future
investigations.

4. Two-Grid and Multigrid Methods

In this section, we concisely report few relevant results concerning the convergence
theory of algebraic multigrid methods with special attention of the case of multilevel block
Toeplitz structures generated by a matrix-valued symbol f .

We start by taking into consideration the generic linear system Amxm = bm with large
dimension m, where Am ∈ Cm×m is a Hermitian positive definite matrix and xm, bm ∈ Cm.
Let m0 = m > m1 > . . . > ms > . . . > msmin and let Ps+1

s ∈ Cms+1×ms be a full-rank matrix
for any s. At last, let us denote by Vs a class of stationary iterative methods for given linear
systems of dimension ms.

In accordance with [36], the algebraic two-grid method (TGM) can be easily seen as a
stationary iterative method whose generic steps are reported below.

xout
s = TGM(s, xin

s , bs)

xpre
s = Vνpre

s,pre(xin
s , bs) Pre-smoothing iterations

rs = Asxpre
s − bs

rs+1 = Pms+1
ms rs

As+1 = Pms+1
ms As(Pms+1

ms )H

Solve As+1ys+1 = rs+1
x̂s = xpre

s − (Pms+1
ms )Hys+1

Exact coarse grid correction (CGC)

xout
s = Vνpost

s,post(x̂s, bs) Post-smoothing iterations

Here, we refer to the dimension ms by means of its subscript s.
In the first and last steps, a pre-smoothing iteration and a post-smoothing iteration are

applied νpre times and νpost times, respectively, taking into account the considered stationary
iterative method in the class Vs. Furthermore, the intermediate steps define the exact coarse
grid correction operator, which is dependent on the considered projector operator Ps

s+1. The
resulting iteration matrix of the TGM is then defined as

TGMs = V
νpost
s,postCGCsV

νpre
s,pre,

CGCs = I(s) − (Pms+1
ms )H A−1

s+1Pms+1
ms As

As+1 = Pms+1
ms As(Pms+1

ms )H ,

where Vs,pre and Vs,post represent the pre-smoothing and post-smoothing iteration matrices,
respectively, and I(s) is the identity matrix at the sth level.

By employing a recursive procedure, the TGM leads to a multigrid method (MGM).
Indeed, the standard V-cycle can be expressed in the following way:



Math. Comput. Appl. 2022, 27, 78 15 of 22

xout
s = MGM(s, xin

s , bs)

if s ≤ smin then

Solve Asxout
s = bs Exact solution

else

xpre
s = Vνpre

s,pre(xin
s , bs) Pre-smoothing iterations

rs = Asxpre
s − bs

rs+1 = Pms+1
ms rs

ys+1 = MGM(s + 1, 0s+1, rs+1)
x̂s = xpre

s − (Pms+1
ms )Hys+1

Coarse grid correction

xout
s = Vνpost

s,post(x̂s, bs) Post-smoothing iterations

From a computational viewpoint, to reduce the related costs, it is more efficient that
the matrices As+1 = Ps+1

s As(Ps+1
s )H are computed in the so-called setup phase.

According to the previous setting, the global iteration matrix of the MGM is recursively
defined as

MGMsmin = O ∈ Csmin×smin ,

MGMs = V
νpost
s,post

[
I(s) − (Pms+1

ms )H
(

I(s+1) −MGMs+1

)
A−1

s+1Pms+1
ms As

]
V

νpre
s,pre,

s = smin − 1, . . . , 0.

Lastly, the W-cycle is just a variation of the previous V-cycle considering two recursive
calls in the coarse grid correction as follows:

xout
s = MGMW(s, xin

s , bs)

if s ≤ smin then

Solve Asxout
s = bs Exact solution

else

xpre
s = Vνpre

s,pre(xin
s , bs) Pre-smoothing iterations

rs = Asxpre
s − bs

rs+1 = Pms+1
ms rs

y(0)s+1 = 0s+1
for µ = 1 : 2

y(µ)s+1 = MGMW(s + 1, y(µ−1)
s+1 , rs+1)

x̂s = xpre
s − (Pms+1

ms )Hy(2)s+1

Coarse grid correction

xout
s = Vνpost

s,post(x̂s, bs) Post-smoothing iterations

In the following remark, we emphasize the relevant computational properties of the
considered methods.

Remark 1. The first part of the current remark concerns the computational cost. In the V-cycle,
there is just one recursive call, while in the W-cycle, there are two recursive calls, which in principle,
is more expensive. Let us analyze the related costs. Since our matrices are sparse and they remain
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sparse at the lower levels, the number of arithmetic operations in the V-cycle and W-cycle algorithms
is of the type

CV(m) ≤ CV(m/q) + αm, CW(m) ≤ 2CW(m/q) + αm,

where m = m0 and ms+1 = ms/q. Now in the one-dimensional setting q = 2 and CV(m) = O(m),
while CW(m) = O(m log m) and thus the W-cycle is asymptotically more expensive. Conversely,
in a d-dimensional setting with d ≥ 2, we have q = 2d and, as a consequence of the recursive
relations, both CV(m) and CW(m) are linear in the matrix-size m. To be precise, we have

CV(m) ≤ 2d

2d − 1
αm, CW(m) ≤ 2d−1

2d−1 − 1
αm,

so that, in the current three-dimensional setting, the bounds of the V-cycle and W-cycle complexity
are very close, i.e.,

CV(m) ≤ 8
7

αm, CW(m) ≤ 4
3

αm.

Another issue to be considered is the case where the discretization matrices appear in checker-
board fashion (see, for example, [37] and the references therein). We emphasize that our analysis,
which is based on the Toeplitz generating function, is not directly applicable since we lose the Toeplitz
character of the approximation matrices when a checkerboard (called also red–black) ordering is used.
However, this is just a matter of a similarity transformation by a permutation matrix. Hence, with a
careful work and without increasing the complexity analyzed in the previous lines, the algorithm
discussed here and the related theoretical analysis can be adapted to the checkerboard context.

Remark 2. In the relevant literature (see, for instance, [38]), the convergence analysis of the TGM
splits into checking two separate conditions: the smoothing property and the approximation property.
Regarding the latter and regarding scalar structured matrices [38,39], the TGM optimality is given
in terms of choosing the proper conditions that the symbol p of a family of projection operators has
to fulfill. Indeed, let Tn( f ) with n = (2t − 1), where f is a non-negative trigonometric polynomial.
Let θ0 be the unique zero of f . Then the TGM optimality applied to Tn( f ) is guaranteed if we choose
the symbol p of the family of projection operators such that

lim sup
θ→θ0

|p(η)|2
f (θ)

< ∞, η ∈ M(θ),

∑
η∈Ω(θ)

|p(η)|2 > 0,
(7)

where, for d = 1, the sets Ω(θ) andM(θ) are the following corner and mirror points

Ω(θ) = {η ∈ {θ, θ + π}}, M(θ) = Ω(θ) \ {θ},

respectively. In the general case of d > 1, we have

Ω(θ) = {η ∈ {θ+ πs}, s = (s1, . . . , sd), sj ∈ {0, 1}, j = 1, . . . , d}

withM(θ) = Ω(θ) \ {θ}, so that the cardinality of Ω(θ) andM(θ) is 2d and 2d− 1, respectively.

Informally, for d = 1, it means that the optimality of the two-grid method is ob-
tained by choosing the family of projection operators associated to a symbol p such that
|p|2(ϑ) + |p|2(ϑ + π) does not have zeros and |p|2(ϑ + π)/ f (ϑ) is bounded (if we require
the optimality of the V-cycle, then the second condition is a bit stronger); see [38]. For
approximation of an elliptic differential operator of order 2α by local methods (e.g., finite
differences, FEs, and isogeometric analysis), the previous conditions mean that p has a
unique zero of order at least α at ϑ = π whenever f has a unique zero at θ0 = 0 of order 2α.
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In our specific block setting, by interpreting the analysis given in [40], all the involved
symbols are matrix valued, and the conditions which generalize (7) and are sufficient for
the TGM convergence and optimality are the following:

(A) Zero of order 2 at all the mirror points of the eigenvalue functions of the symbol of the
projector for our matrix sequences having common symbol fQ1 (mirror point theory
[38,39]);

(B) Positive definiteness of ∑η∈Ω(θ) ppH(η);

(C) Commutativity of all p(η) for η varying in the corner points.

Even if the theoretical extension to the V-cycle and W-cycle convergence and optimality
is not given, in the subsequent section, we propose specific choices of the projection
operators numerically showing how this leads to two-grid, V-cycle, and W-cycle procedures
converging optimally or quasi-optimally with respect to all the relevant parameters (size,
dimensionality, and polynomial degree k).

Our choices are in agreement with the mathematical conditions set in items (A), (B),
and (C). We remark that the violation of condition C) is discussed by Donatelli et al. [40], in
their conclusion section.

5. Multigrid Proposals

Based on the theory in Section 4, we define the prolongation operator as

Ph
2h = P⊗ P⊗ P⊗ I3/

√
2

in the case of matrices An(1, D6), and

Ph
2h = Pc ⊗ Pt ⊗ Pt ⊗ I3/

√
2

in the case of matrices An(1, DN5). In the expressions above,

P =



1
2

1
1
2

1
2

1

1
2

. . . 1
2

1
1
2


, Pt =



1
1
2

1
2

1
1
2

1
2

1

1
2

. . . 1
2

1
1
2

1
2

1



, and Pc =



1
2

1
1
2

1
2

1

1
2

. . . 1
2

1
1
2

1
2

1


.

Note that A2h = PT AhP equals the same FEM approximation on the coarse mesh in
both cases, independently of the boundary conditions.

Independently of the boundary conditions, we observe that the symbol of the prolon-
gation operator is a 3× 3 matrix-valued function as the symbol of the coefficient matrix
sequence of the linear systems to be solved: more precisely we define

p(θ1, θ2, θ3) =
√

2−1(1 + cos(θ1)(1 + cos(θ2)(1 + cos(θ3)I3.

Since the matrix-valued function p(θ1, θ2, θ3) is a scalar function times the identity,
it automatically follows that the difficult condition (C) is satisfied. Moreover, taking into
account Theorem 1, since the scalar function 1 + cos(θ) has a zero of order 2 at θ = π, also
condition (A) holds, while the positive definiteness of ∑η∈Ω(θ) ppH(η) is verified as well,
so that also condition (B) is met.
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Finally, we choose one iteration of Gauss–Seidel as the pre and post smoother. Given
the analysis reported in the previous section, we expect that our multigrid method is
convergent in an optimal way, that is, with a convergence speed independent of the matrix
size. In Table 1, we find a plain confirmation of our theoretical expectations, which holds not
only for a constant ρ, but also in the variable coefficient setting as long as ρ remains positive.

Table 1. Number of iteration for matrices An(1, D6) and An(1, DN5) of increasing dimension N(n),
with the numeric precision ε = 10−4, 10−6, 10−8, respectively.

An(1, D6) An(1, DN5)

ν = 0.1

N(n) Twogrid Vcycle Wcycle N(n) Twogrid Vcycle Wcycle

81 5 7 10 - - - - - - 300 7 13 18 - - - - - -
1029 7 10 15 7 10 15 7 10 15 1944 8 12 17 8 12 17 8 12 17
10125 8 13 18 8 13 18 8 13 18 13872 8 13 18 9 14 19 8 13 18

ν = 0.2

N(n) Twogrid Vcycle Wcycle N(n) Twogrid Vcycle Wcycle

81 4 5 7 - - - - - - 300 5 8 11 - - - - - -
1029 5 7 9 5 7 9 5 7 9 1944 6 8 11 6 8 11 6 8 11
10125 6 8 11 6 8 11 6 8 11 13872 8 10 12 8 10 12 8 10 12

ν = 0.4

N(n) Twogrid Vcycle Wcycle N(n) Twogrid Vcycle Wcycle

81 3 4 6 - - - - - - 300 6 10 14 - - - - - -
1029 4 7 9 4 7 9 4 7 9 1944 7 11 15 7 11 15 7 11 15
10125 4 7 11 5 8 12 4 7 11 13872 6 11 15 8 14 19 7 11 15

6. Conclusions

We provided a quite complete spectral analysis of the (large) coefficient matrices
associated with the linear systems stemming from the FE discretization of a linearly elastic
problem for an arbitrary element-wise constant coefficient field. Our interest in this problem
stems from the fact that in the material distribution method for topology optimization,
such a problem is solved at each iteration. The solution for these linear systems typically
dominates the computational effort required to solve the topology optimization problems.
Based on the spectral information, we proposed a specialized multigrid method, which
turned out to be optimal in the sense that the (arithmetic) cost for solving the related
linear systems, up to a fixed desired accuracy, is proportional to the computational cost
of matrix–vector products, which is linear in the corresponding matrix size and mildly
depending on the given accuracy. The method was tested, and the preliminary numerical
results are very satisfactory and promising, in terms of having a linear cost and a number
of iterations that is bounded by a constant independent of the matrix size and only lightly
influenced by the desired accuracy.

Finally, we mention future lines of research:

• The present analysis was performed also with variable coefficients, but with the
restriction that the domain is Cartesian: this limitation can be easily overcome, but the
computations are not trivial using the notion of reduced GLT sequences of matrices
(see [35] for a recent very complete work and [33,34] for examples of applications and
for the initial idea).

• The use of higher order FEs is another direction to explore: for more standard problems,
we refer to [41,42] whose analysis can be the starting point for adapting the techniques
to the present context.

• In the direction of more general approaches, we remind that the GLT machinery was
used also in connection with finite differences, finite volumes, isogeometric analysis
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of high order and intermediate regularity (see [30,31] and references therein). Hence,
we are convinced that such extensions can be formally obtained, also in the case of the
current topology optimization problem.
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Appendix A. Explicit Expressions for the Element Stiffness Matrix

Recall that for the studied problem, the three-dimensional element stiffness matrix is

Kn =
h
2

E0

1 + ν



K1 K2 K3 K4 K5 K6 K7 K8
K9 K10 K11 K12 K13 K14 K7

K15 K16 K17 K18 K13 K6
K19 K20 K17 K12 K5

K19 K16 K11 K4
K15 K10 K3

K9 K2
K1


where

K1 =

k1 k2 k2
k1 k2

k1

, K2 =

k3 k4 0
k3 0

k6

, K3 =

k3 0 k4
k6 0

k3

, K4 =

k5 0 0
k7 k8

k7

,

K5 =

k6 0 0
k3 k4

k3

, K6 =

k7 0 k8
k5 0

k7

, K7 =

k7 k8 0
k7 0

k5

, K8 =

k9 k10 k10
k9 k10

k9

,

K9 =

k1 k2 k8
k1 k8

k1

, K10 =

k5 0 0
k7 k2

k7

, K11 =

k3 0 k10
k6 0

k3

, K12 =

k7 0 k2
k5 0

k7

,

K13 =

k6 0 0
k3 k10

k3

, K14 =

k9 k10 k4
k9 k4

k9

, K15 =

k1 k8 k2
k1 k8

k1

, K16 =

k3 k10 0
k3 0

k6

,

K17 =

k7 k2 0
k7 0

k5

, K18 =

k9 k4 k10
k9 k4

k9

, K19 =

k1 k8 k8
k1 k2

k1

, K20 =

k9 k4 k4
k3 k10

k9

.

(A1)

We stress that all the 3× 3 blocks mentioned before are real symmetric and hence
the lower part is defined accordingly; see Section 3.2.1 for the use of these blocks in the
definition of the GLT symbol. We observe that the quantity hE0/2(1 + ν) is a multiplicative
term that will be neglected in the spectral analysis since it will be simplified and included
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in the right-hand vector when solving the related large linear systems). An analytical
evaluation of the entries of the stiffness matrix is reported in the following lines:

k1 =
2λ̂

3
+

4µ̂

9
, k2 =

λ̂

3
, k3 =

2µ̂

9
, k4 =

λ̂

6
, k5 =

µ̂

9
− λ̂

6
,

k6 =
−4µ̂

9
, k7 =

−λ̂

6
− 2µ̂

9
, k8 = − λ̂

3
, k9 = − λ̂

6
− µ̂

9
, k10 = − λ̂

6
,

(A2)

where
λ̂ =

ν

(1− 2ν)
, µ̂ =

1
2

.

Note that λ̂ and µ̂ in (A2) do not represent the Lamé parameters because they have
been modified to facilitate the spectral analysis conducted in Section 3. In fact, in this article,
λ = λ̂ E0

1+ν and µ = µ̂ E0
1+ν are the actual Lamé parameters.

Appendix B. Stress–Strain Relation and Various Bounds

In the three-dimensional setting, there are six independent strain components in total
at a point in an element, and they are written as a vector

ε = [ε11 ε22 ε33 2ε12 2ε23 2ε31]
T .

Similarly, corresponding to the six strain components above, there are also six inde-
pendent stress components written in vector form as

σ = [σ11 σ22 σ33 σ12 σ23 σ31]
T .

By the generalized Hooke’s law, the most general linear relation among components
of the stress and strain tensor can then be written as

σ = Eε, (A3)

where E is a matrix that corresponds to the constant fourth-order elasticity tensor Ec. The
relationship between stresses and strains is

ε11 =
1

E0

(
σ11 − ν(σ22 + σ33)

)
, ε12 =

σ12

2G
, ε13 =

σ13

2G
,

ε22 =
1

E0

(
σ22 − ν(σ11 + σ33)

)
, ε23 =

σ23

2G
, ε33 =

1
E0

(
σ33 − ν(σ11 + σ22)

)
,

(A4)

where ν is Poisson’s ratio, E0 is Young’s modulus, and the shear modulus G is

G =
E0

2 + 2ν
. (A5)

The relationships above can be rewritten in matrix form as

ε =
1

E0



1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)

σ. (A6)
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Furthermore, the equation system (A6) can be inverted to obtain Hooke’s law (A3) with

E =



λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 λ 0 0
0 0 0 0 λ 0
0 0 0 0 0 λ

 (A7)

where
λ =

E0ν

(1 + ν)(1− 2ν)
,

µ =
E0

2(1 + ν)
.

(A8)

In this case, the bulk modulus K can be expressed as

K =
(σ11 + σ22 + σ33)/3

ε11 + ε22 + ε33
=

E0

3(1− 2ν)
. (A9)

The Young’s (E0), shear (G), and bulk (K) moduli need to be positive. Thus, Equations (A5)
and (A9) imply that the Poisson’s ratio in three dimensions must satisfy −1 < ν < 0.5.

Remark A1. Physically, there are no known isotropic materials with a negative Poisson’s ratio.
Therefore, from a practical perspective [43], we can limit our study to ν, satisfying the inequalities
0 ≤ ν < 0.5. Furthermore, in some more delicate circumstances, the Poisson ratio lies in the interval
0.2 ≤ ν < 0.5, as proved experimentally in view of the elastic properties of real materials [44].
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