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1 Introduction

Quantum field theory (QFT) is home to many mysterious phenomena. One example is
the phenomenon of duality, where a single quantum field theory system can be represented
in two different ways. There are several slightly different contexts where such a relation
can manifest. One notable example is where the two dual descriptions emerge on different
points of the same conformal manifold, that is the two descriptions differ by marginal
deformations. Another notable example is where two different UV theories flow to the
same IR theory. From the IR viewpoint then, the two describe different possible UV
theories, that is they differ by irrelevant deformations.

Another example of peculiar QFT phenomena is enhancement of symmetry, where the
global symmetry of the IR theory is bigger than that apparent from the underlying UV de-
scription. The additional symmetry is usually referred to as accidental symmetry, highlight-
ing its unexpected nature. From the low energy viewpoint, it is manifested as a symmetry
broken only by irrelevant deformations, and as such is expected to reemerge in the deep IR.

An interesting question is whether we can find some principle explaining such mys-
terious phenomena. One approach to tackling this is through the concept of dimensional
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reduction. The idea is to realize the theory through the compactification of a higher di-
mensional theory. An interesting feature in such a construction is that the resulting low
energy theory generally depends only on certain properties of the surface, like its topology
or complex structure, but is insensitive to other properties, usually geometric properties of
the surface. The former properties then manifest as relevant or marginal deformations at
low energies, while the latter appear as irrelevant ones.

This feature naturally makes dimensional reduction useful to understanding the phe-
nomena described above. For instance, consider the dimensional reduction on two different
surfaces. If the surfaces differ only through the properties that do not affect the IR theory,
then the resulting low energy theories should differ only through irrelevant operators, that
is they would be dual of the second type described above. If they, however, differ by prop-
erties associated with marginal operators, then we get a duality of the first type discussed.
Similarly, we can consider compactification surfaces where a global symmetry is broken
only by properties that do not affect the IR theory. This should then lead to a low energy
theory where this symmetry is broken by irrelevant terms, that is this symmetry would
appear accidental from the lower dimensional viewpoint, even though it is quite natural
from the higher dimensional viewpoint.

This property of dimensional reduction makes it extremely interesting to study and
develop, and indeed it has been studied in a variety of different contexts. Out of the
possible compactifications, reduction on 2d surfaces seems the most appealing. This is
because they sit at the sweet spot where the geometry is sufficiently rich to allow multiple
possibilities, while remaining rather straightforward and well-understood. The study of
such compactifications was done mostly in the context of reductions of 6d SCFTs, for both
(2, 0) [1–4] and (1, 0) supersymmetry [5–29] (see also [30] for a recent review). Despite the
great progress on the study of compactifications in the 6d case, surface compactifications
in other dimensions remains relatively unexplored. In the rest of this paper we shall be
concerned with compactifications of 5d theories, specifically 5d SCFTs.1

Recently, progress was made also in understanding the compactification of 5d SCFTs
to 3d N = 2 theories. Specifically, by relying on techniques that proved useful in tackling
the reduction of 6d (1, 0) SCFTs, compactifications of 5d SCFTs on tori with flux have been
relatively understood. This includes both the case of the Seiberg rank 1 ENf +1 theories [38],
as well as their higher rank generalizations based on UV completions of 5d SU type gauge
theories [39]. Nevertheless, so far only compactifications on tori were considered. The pur-
pose of this paper is to extend this progress to compactifications on higher genus Riemann
surfaces. The strategy we adopt is to again rely on the recent progress in understanding
compactifications of 6d SCFTs to also understand similar compactifications of 5d SCFTs.

Specifically, to understand compactifications on generic Riemann surfaces, we would
need to understand theories associated with the compactification on three punctured
spheres, the so-called trinion theories. From these, generic Riemann surfaces can be built
by exploiting their pair-of-pants decomposition. Here, we shall consider trinion theories for

1Besides 6d and 5d, there are also some results on the surface compactifications of 4d [31–36] and 3d [37]
theories.
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5d SCFTs resulting from the circle compactification of 6d SCFTs followed by mass defor-
mations, for which trinion theories are already understood [22, 23]. We can then hope that
the compactification order commutes and opt to understand the trinions for the 5d SCFTs
using the circle reduction of the 4d trinion theories of the associated 6d SCFTs. Alterna-
tively, we can try to mimic the methods of [20, 23], used to determine the 4d trinions, and
apply them to conjecture 3d trinions for the selected 5d SCFTs. As we shall show, both
methods lead to the same set of 3d trinion theories.

Once we have a guess for the 3d trinions, we can glue them together to build higher
genus Riemann surfaces. If our conjecture is correct, that is the resulting theories describe
the compactification of the 5d SCFTs on higher genus Riemann surfaces, then they should
inherit various properties. These properties include the manifestation of the global symme-
try expected from 5d, as well as the presence of various operators descending from special
multiplets in the parent 5d SCFT. This allows us to check said conjectural trinions by test-
ing for the presence of these properties. In particular, as mentioned the 3d theory should
inherit the global symmetry of the 5d SCFT. However, in many cases it is not manifest at
the Lagrangian level, and only arises at the IR. In addition to providing consistency checks
for this proposal, these exhibit the application of the higher dimensional approach to the
study of symmetry enhancement.

The structure of this article is as follows. We begin in section 2 with a short review
on the compactifications of 5d SCFTs on tori and tubes. This will briefly introduce some
known results regarding the compactifications of 5d SCFTs that will be used throughout
this article. Section 3 deals with the derivation of the trinion theory for the Seiberg rank 1
ENf +1 SCFTs. Once we acquire a conjecture for the trinion theory, we can try to test it by
building 3d theories associated with the compactification on genus g > 1 Riemann surfaces
without punctures. This is carried out in sections 4, for cases without global symmetry
fluxes, and 5 for cases with ones. We end the paper with a short discussion.

2 Review of tubes and tori compactifications of 5d SCFTs

In this section we briefly review some of the results [38, 39] on the compactification of
certain 5d SCFTs on two punctured spheres, i.e. tubes, and tori with flux. This serves two
purposes: the first one is to introduce the reader to some of the concepts that are key in
studying compactifications of 5d SCFTs to 3d, and the second one is to review some results
that we will then use in the next section to derive the trinion theory.

2.1 Basic tube for the rank 1 ENf +1 SCFTs

We start by considering the compactification of the rank 1 ENf +1 SCFTs on a tube with
flux, which has been studied in [38]. The most fundamental of such tube compactifications,
which we will call the basic tube for brevity, is the one corresponding to a flux that in the
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Figure 1. The 3d N = 2 Lagrangian of [38] for the compactification of the 5d rank 1 ENf +1 SCFT
on a tube with flux Ftube. Each square node denotes a flavor symmetry of special unitary type, while
the charges under the abelian global symmetries including the R-symmetry are encoded in the pow-
ers of the corresponding fugacities. These are written close to each line that represents a chiral field
transforming under the nodes they are connecting, with incoming arrows denoting the fundamental
representation and outgoing the anti-fundamental. The cross denotes a single chiral multiplet F
with charges x 4

3 a4 which flips the meson constructed from the SU(2)× SU(2) bifundamental.

U(1)× SO(2Nf ) ⊂ ENf +1 basis corresponds to2

Ftube =
(√

8−Nf

4 ; 1
4 ,

1
4 , · · · ,

1
4︸ ︷︷ ︸

Nf

)
. (2.1)

The symmetry preserved by this flux is a subgroup of ENf +1 which for 0 ≤ Nf ≤ 6 is given
by3

Nf = 6 : SO(12)×U(1) ⊂ E7 ,

Nf = 5 : SU(6)×U(1) ⊂ E6 ,

Nf = 4 : SU(4)× SU(2)×U(1) ⊂ E5 = SO(10) ,
Nf = 3 : SU(3)×U(1)2 ⊂ E4 = SU(5) ,
Nf = 2 : SU(2)×U(1)2 ⊂ E3 = SU(3)× SU(2) ,
Nf = 1 : U(1)2 ⊂ E2 = SU(2)×U(1) ,
Nf = 0 : U(1) ⊂ E1 = SU(2) . (2.2)

The 3d N = 2 theory arising from this compactification is the Wess-Zumino (WZ)
model depicted in figure 1. The superpotential interaction between the chiral fields is

W = QBQ̃+ FB2 , (2.3)

where the contraction of flavor and gauge indices is understood. The symmetry manifest
in this model is

SU(2)2 × SU(Nf )×U(1)a ×U(1)b . (2.4)
2For more details regarding the basis and normalization of the fluxes used here, we refer the reader to

appendix A of [38].
3The case of Nf = 7 was not fully understood in [38] and so we neglect it here.
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The two SU(2) symmetries are associated with each of the punctures, while the rest is a
subgroup of the 5d ENf +1 symmetry. Notice that this is only a subgroup of the symmetry
preserved by the flux due to the presence of the punctures. The full symmetry preserved by
the flux is expected to get enhanced from SU(Nf )× U(1)b when tubes are glued together
so to form a Riemann surface with no punctures. The symmetry U(1)a is instead related
to the U(1) inside the 5d symmetry for which we turned on the flux.

The fields Q and Q̃ are usually referred to as moment maps. With this, one usually
refers to operators that transform under the subgroup of the 5d symmetry, that is manifest
in the 3d model, and under each of the SU(2) puncture symmetries. These 3d operators are
expected to descend from certain 5d operators that are given suitable boundary conditions
at the location of the punctures, and are therefore associated with the punctures. This
name is, as standard in the literature, given with an abuse of terminology, since in theories
with four supercharges there is no precise notion of moment map operators. Notice that
Q and Q̃ transform in complex conjugate representations with respect to each other. This
implies that the two punctures of the tube are of opposite type, usually referred to as sign
or color in the literature.

2.2 Gluing prescription

Using the basic tube of figure 1 one can produce others with more general values of flux
by chaining multiple tubes together to form one long tube. This adjoining of the tubes
is done by gluing them along the punctures. In this subsection we summarize how such
gluing is realized in field theory.

First of all, when we glue two punctures we have to gauge the diagonal combination of
their SU(2) × SU(2) symmetries. In the process we also need to turn on a Chern-Simons
(CS) level in order to avoid the parity anomaly, which is taken to be at level k = ±6−Nf

2
where the sign changes between adjacent gauge nodes in the final quiver.4

We then need to turn on superpotential interactions that relate the moment maps of
the glued punctures. For this we have two possible choices. The first one, called Φ-gluing,
consists of adding Nf fields Φ in the fundamental representation of the gauged SU(2)
symmetry with the interaction

δW = Φ · (Q+Q′) =
Nf∑
a=1

Φa(Qa +Q′a) , (2.5)

where Q and Q′ are the moment maps of the glued punctures of the two tubes and we are
omitting the contraction of the gauge indices. When we perform a Φ-gluing the fluxes of the
component tubes add up, so that we get a flux which is twice the one (2.1) of the basic tube.

4The fact that a CS level is needed and the exact levels were realized by comparing against the expec-
tations from the compactification picture. In particular, it was observed that for N = 6 no CS term is
needed, and smaller values of Nf can then be realized by giving real masses to some of the flavors which
generates the CS terms. As the origin of the CS term can be understood from the real mass deformations,
in certain cases, notably when S-gluing to be defined below is involved, the CS level may differ.
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2 2k 2

x

Nf − x

× ×

Figure 2. The 3d N = 2 Lagrangian of [38] for the compactification of the 5d rank 1 ENf +1 SCFT
on a tube with flux Fglue. We recall that each square node denotes a flavor symmetry, while the
circle node now denotes a gauge symmetry, all of special unitary type. The SU(2) gauge node also
has a Chern-Simons level k = 6−Nf

2 . Note that here x has to be even to be consistent with the
parity anomaly.

The second possibility, called S-gluing, consists of adding no extra chiral field and
turning on the interaction

δW = Q ·Q′ =
Nf∑
a=1

QaQ′a . (2.6)

In this case the fluxes of the component tubes get subtracted.
We can also consider mixed situations, in which we perform the Φ-gluing for some of

the moment maps and the S-gluing for the others

δW =
Nf−x∑
a=1

Φa(Qa +Q′a) +
Nf∑

b=Nf−x+1
QbQ′b , (2.7)

where here x has to be even. In this case we add the components of the flux vector
corresponding to the moment maps for which we performed the Φ-gluing and subtract
those for which we performed the S-gluing. For instance, when gluing two copies of the
basic tube in this way, the resulting flux is

Fglue =
(√

8−Nf

2 ; 1
2 , · · · ,

1
2︸ ︷︷ ︸

Nf−x

, 0, · · · , 0︸ ︷︷ ︸
x

)
. (2.8)

The resulting model is schematically depicted in figure 2 and the superpotential consists
of cubic and quartic interactions corresponding to the three closed loops in the quiver.

With this gluing procedure we can also construct models corresponding to compact-
ifications on tori. For example in figure 3 we depict the theory corresponding to the
compactification of the rank 1 ENf +1 SCFT on a torus with flux

(√8−Nf

2 ; 1
2 ,

1
2 , · · · ,

1
2︸ ︷︷ ︸

Nf

)
,
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×

×
x

2
3ab x

2
3ab−1

x
2
3a−2

x
2
3a−2

Figure 3. The 3d N = 2 Lagrangian of [38] for the compactification of the 5d rank 1 ENf +1 SCFT
on a torus. The Chern-Simons levels are written in terms of k = 6−Nf

2 .

N + 1 N + 1

m

Nf −m

×
B

Q Q̃

q q̃

Figure 4. The 3d N = 2 Lagrangian of [39] for the compactification of the 5d rank N SCFT that
UV complete the SU(N + 1)κ +NfF gauge theories on a tube with flux.

which is obtained by Φ-gluing twice two copies of the basic tube. As pointed out in [38],
when constructing a surface with no punctures one typically has to turn on monopole su-
perpotentials that break symmetries which would prevent the enhancement to the expected
symmetry that is preserved by the flux. For the specific model of figure 3 no monopole
superpotential is actually needed.

2.3 Tubes and tori for higher rank SCFTs

Finally, let us quickly review some of the results of [39] for the compactification of higher
rank 5d SCFTs that UV complete the SU(N + 1) gauge theories with CS level κ and Nf

fundamental hypermultiplets, which we compactly denote by SU(N+1)κ+NfF , for certain
values of κ and Nf . Some of the possible basic tubes in this case take the general form of
figure 4. The superpotential is given by

W = QBQ̃+ FB2 + qBN q̃ . (2.9)

The value of m generically depends both on κ and on the value of the flux. For example
in figure 5 we depict the model corresponding to the torus compactification of the 5d
rank 2 SCFT with global symmetry SU(2)× SO(16) that UV completes the SU(3)1 + 8F
gauge theory with the minimal allowed flux for a U(1) inside SO(16) whose commutant is
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3 3

2

6
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x

2
3a2c−1 x

2
3a2c

x
5
6ab x

5
6ab−1

x
1
3a−2

x
1
3a−2

Figure 5. The 3dN = 2 Lagrangian of [39] for the compactification of the 5d rank 2 SU(2)×SO(16)
SCFT on a torus with a unit of flux for a U(1) inside SO(16) whose commutant is SO(12)× SU(2).

SO(12) × SU(2). This model will play an important role in the derivation of the trinion
theory that we will discuss in the next section. We refer the reader to [39] for more details
on the tube and tori compactifications of these higher rank 5d SCFTs.

2.4 Tests

There are various tests that we can perform to check whether a particular 3d N = 2
Lagrangian theory flows to the same SCFT arising from the compactification of the 5d
SCFT. These have been extensively discussed for example in subsection 2.3 of [38] and
here we shall only briefly review them.

As we already mentioned, the 3d Lagrangians typically have a manifest symmetry
which is smaller than the subgroup of the 5d symmetry that is preserved by the flux. One
first possible test then consists in checking whether the full symmetry preserved by the
flux gets enhanced at low energies in the 3d theory. This can be done in two ways. One
consists of computing the supersymmetric index [40–45] and verifying that the spectrum of
operators rearranges into characters of the expected enhanced symmetry. The second one
consists in computing the flavor symmetry central charges, which can be extracted from
the S3 partition function [46–48] (see appendix B of [38] for a brief review), and verifying
that their ratios are compatible with the symmetry enhancement, or more precisely with
the ratios of the corresponding embedding indices inside the enhanced symmetry.

Another test consists of verifying that the spectrum of the 3d theory, which again can be
investigated using the supersymmetric index, contains certain operators that descend from
special 5d operators, such as the stress-energy tensor and the flavor symmetry current. If
we compactify a 5d SCFT on a Riemann surface of genus g with flux F in a U(1)α subgroup
of its flavor symmetry G that breaks it to U(1)α×G̃ and with no punctures, then the index
of the 3d theory computed with the reference U(1)R R-symmetry that is associated with
the Cartan of the 5d SU(2)R R-symmetry is expected to take the following general form

– 8 –
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to low orders [49, 50]:

I = 1 +

 ∑
i|qi>0

αqiχRi(G̃)(g − 1 + qiF )

x2 +
(
3g − 3 + (1 + χadj(G̃))(g − 1)

)
x2

+

 ∑
i|qi<0

αqiχRi(G̃)(g − 1 + qiF )

x2 + · · · , (2.10)

where qi and χRi are the charges and the characters of the representations under U(1)α×G̃
that appear in the decomposition of the adjoint representation of G

χadj(G) =
∑
i

αqiχRi(G̃) . (2.11)

Again we refer the reader to subsubsection 2.3.2 of [38] for more explanations. One can also
consider the contribution to the 3d index coming from other Higgs branch chiral generators
rather than the flavor symmetry current. This was done in [39], see subsection 2.3, though
we will not need it in the present paper.

Let us also mention one last test that is possible in some cases, although we will not use
it here. It can happen that different gluings of fundamental building blocks lead to distinct
3d theories associated with apparently different fluxes, but which are actually equivalent
since they are related by an element of the Weyl group of the 5d flavor symmetry. Hence,
the two compactifications should lead to the same 3d SCFT, meaning that the two different
looking 3d Lagrangians are expected to be IR dual. Checking such a duality is another non-
trivial test of the construction. For example in [38] some instances of this phenomenon were
studied, in which the 3d IR duality turned out to be related to the Aharony duality [51].

3 Trinion for the compactification of the rank 1 ENf +1 SCFTs

In this section we derive 3d Lagrangian N = 2 theories that are conjectured to be the
reduction of the rank 1 ENf +1 SCFTs on a three punctured sphere, which we shall refer
to as trinions. We shall consider two independent approaches, and see that they both give
the same results for the trinion theory.

3.1 Conjecturing a Lagrangian for the trinion

In order to conjecture a 3d Lagrangian for the compactification of the 5d rank 1 ENf +1
SCFTs on a three punctured sphere with flux we exploit the knowledge gained in similar
compactifications, but in the 6d to 4d setup. Specifically, in [23] it was proposed that
the 4d N = 1 SU(3) SQCD with 6 flavors is the theory obtained after compactifying the
6d rank 1 E-string theory on a three punctured sphere with unit flux for a U(1) whose
commutant inside the 6d E8 global symmetry is E7. In order to identify the embedding
of the symmetries of the 4d model inside the 6d ones, it is useful to split the flavors as in
figure 6. The embedding is then

SU(6)×U(1)3 ⊂ SU(6)× SU(3)×U(1) ⊂ E7 ×U(1) ⊂ E8 (3.1)

– 9 –
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x
2
3u−2v−2w−2

x
1
3u6 x

1
3 v6

x
1
3w6

Figure 6. The 4d N = 1 Lagrangian of [23] for the compactification of the 6d rank 1 E-string
SCFT on a three punctured sphere with unit flux for a U(1) whose commutant in E8 is E7.

and the flux is in the last U(1). The remaining SU(2)3 symmetries are associated with the
three punctures.

We now want to consider the 5d SCFTs of rank 1 with ENf +1 global symmetry. One
member of this family, corresponding to Nf = 7 and E8 global symmetry, can be obtained
by compactifying the 6d E-string on a circle [5]. From this 5d SCFT, the other members of
the ENf +1 family can be produced by mass deformations, which from the 6d circle reduction
viewpoint are interpreted as ENf +1 preserving holonomies in the E8 global symmetry.

This leads us to expect that we can obtain the 3d trinions we are looking for by taking
the 4d trinion in figure 6, compactifying it on a circle and turning on suitable real mass
deformations in 3d. The logic is as follows. We consider the reduction of the rank 1 E-string
on Σ × S1, with an ENf +1 preserving holonomy around the S1. Here, Σ stands for some
Riemann surface, potentially with flux in the E8 global symmetry of the 6d SCFT. We can
first reduce on the S1 to get the 5d ENf +1 SCFT so the final theory should just be the
compactification of this 5d SCFT on Σ. However, we can also consider reducing first on Σ
and then on the S1. The first reduction now yields a 4d theory which is the compactification
of the E-string SCFT on Σ. The second reduction then is just the compactification of this
theory with the required holonomies, which become real mass deformations in 3d. As
long as the volumes of both surfaces are kept finite, the two orders of doing the reduction
should yield the same result, and as we have been accustomed to the volume becoming an
irrelevant deformation in dimensional reduction, it is reasonable to expect this to hold in
this case. The following then is just the application of this idea to the case of Σ being a
three punctured sphere with the specified flux.

From the above then, we expect the trinion theory for the rank 1 E8 SCFT to just
be the circle reduction of the 4d theory in figure 6. The result of said reduction is a 3d
N = 2 theory that looks exactly like the one in figure 6, but with the fundamental SU(3)
monopole turned on in the superpotential [52]. We shall actually not study this case in
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detail, due to the similarities with the 4d model, and rather concentrate on the cases with
Nf < 7. For these, we also need to incorporate real mass deformations.

It is convenient to start with the case of Nf = 6. Here the appropriate real mass defor-
mation turns out to be a positive real mass deformation to one of the six anti-fundamental
chirals and a negative one to another. This can be understood by following the mapping
of the symmetries between the 4d and 6d theories, worked out in [23], and seeing that this
deformation correctly corresponds to the breaking of E8 → E7. We shall also see that the
resulting 3d theories indeed behave as expected from the reduction of the 5d E7 SCFT.
The resulting trinion theory is again a 3d N = 2 version of the one in figure 6, but with
only four anti-fundamental chirals and no monopole superpotential.

Next, we consider the cases with Nf < 6. For this we need to turn on the real mass
deformations implementing the required holonomies in the 6d construction. These turn
out to be equivalent to integrating out 6 − Nf anti-fundamentals with a positive mass,
reducing the number of anti-fundamentals, and generating a CS term. The result is the
theory in figure 7 for 2 ≤ Nf ≤ 6. Note that we cannot get to Nf < 2 as we have only
six anti-fundamentals, and integrating out the fundamentals would destroy the puncture
symmetries. Nevertheless, we will see in the next subsection how we can still obtain theories
with lower Nf for a compactification on a genus two surface if there is no flux.

We note that compared to the 4d trinion, we now have an additional abelian symmetry
since the monopole superpotential has been lifted. This is consistent, since the rank of the
manifest symmetry matches that of the 5d symmetry and the rank is preserved by the
compactification. By analogy with 4d, we expect the flux associated with this model in the
U(1)× SO(2Nf ) ⊂ ENf +1 basis to be

Ftrinion =


√

8−Nf

4 ; 1
4 ,

1
4 , . . . ,

1
4︸ ︷︷ ︸

Nf

 . (3.2)

We also expect the SU(2)3 symmetry to be associated with the three punctures, each
carrying an SU(2) global symmetry, while the SU(Nf − 2)×U(1)4 global symmetry to be
part of the 5d ENf +1 global symmetry. We shall see the exact embedding in the next section.

For each puncture, say the left one, we can also construct the moment maps as follows.
We first have an operator in the fundamental representation of SU(Nf − 2) and of SU(2),
which is constructed as the meson TL and similarly for the other punctures. We then have
two operators which are singlets under SU(Nf − 2) and are in the fundamental of SU(2),
which are constructed as the mesons R2L and B2L. These fields will be relevant when
gluing the punctures of the trinion, so for convenience we will collectively denote them as
follows:

ML =
(
TL,R2L,B2L

)
,

MR =
(
TR,L2R,B2R

)
,

MB =
(
TB,R2B,L2B

)
. (3.3)

– 11 –



J
H
E
P
0
6
(
2
0
2
3
)
0
8
5

3 6−Nf
2

Nf − 2

2 2

2

T, x
2
3u−2v−2w−2a3

L, x
1
3u6a−1 R, x

1
3 v6a−1

B, x
1
3w6a−1

Figure 7. The 3d N = 2 Lagrangian for the compactification of the 5d rank 1 ENf +1 SCFT on a

three punctured sphere with flux (
√

8−Nf

4 ; 1
4 ,

1
4 , . . . ,

1
4 ) in the U(1)× SO(2Nf ) ⊂ ENf +1 basis.

In the next sections we will start gluing various copies of these theories so to construct
surfaces of higher genus and without punctures. This serves for two purposes: on the
one hand it allows us to perform tests for the conjecture that the one in figure 7 is the
correct trinion model with the claimed flux, and on the other hand from our analysis we
will understand what monopole superpotential is needed in the gluing. That a monopole
superpotential is needed was indeed understood already in tube and tori compactifications
in [38, 39]. In the reminder of this section we present an additional derivation of the trinion
model of figure 7.

3.2 From the tube to the trinion

It is possible to derive the trinion model from a tube model by turning on a deformation
triggered by a vev for a suitable operator. This approach was first discussed in the context
of compactifications from 6d to 4d in [20] (see also [22, 24] and section 6.4 of [30] for a
review). The idea is based on the fact that SCFTs (either in 6d or 5d) of different ranks
can be related to each other by turning on vevs for suitable Higgs branch operators. For
example, in the case of the 6d minimal (DN+3, DN+3) conformal matter one can flow
to the one with rank decreased by one unit (DN+2, DN+2) by turning on a vev for a
Higgs branch operator which, in the gauge theory phase on the tensor branch in terms
of a USp(2N − 2) gauge theory with 2N + 6 fundamental hypermultiplets, is described
by one component of the meson matrix. Let us call T 6d/5d

UV and T 6d/5d
IR respectively the

theories before and after the deformation. One might then wonder whether this deformation
and the compactification process commute. Specifically, one can identify an operator in
the theory T 4d/3d

UV (either in 4d or 3d) obtained from the compactification of T 6d/5d
UV that

descends from the aformentioned Higgs branch operator, deform the theory by a vev for
it and ask whether the resulting theory T 4d/3d

IR can be interpreted as a compactification of
the theory T 6d/5d

IR . It turns out that the answer is yes, but the Riemann surface for the
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compactification T 6d/5d
IR → T 4d/3d

IR has an additional minimal puncture compared to the
one for the compactification T 6d/5d

UV → T 4d/3d
UV .

We can apply this logic to try to derive the trinion for the 5d rank 1 ENf +1 SCFT,
which is the UV completion of the SU(2) +NfF gauge theory and which can be obtained
from circle reduction plus decoupling of the 6d E-string theory that also corresponds to the
(D4, D4) conformal matter. For this we can start from the tube for some 5d rank 2 SCFT
that can be obtained from circle reduction plus decoupling of the 6d (D5, D5) conformal
matter, which was discussed in [39]. For simplicity we will consider the case of Nf = 6, since
the trinions for lower Nf can be obtained from real mass deformations in 3d. In this case,
the 5d SCFT we will consider is the UV completion of the SU(3)1 + 8F gauge theory and
in this description the vev leading to the SU(2) + 6F theory that we want to consider is for
one component of the meson matrix. Moreover, we will actually study the vev deformation
in a torus model, which should lead to the compactification of the lower rank theory on a
torus with one extra puncture. We will then cut the torus open to obtain the trinion.

Our starting point is then the compactification of the 5d rank 2 SCFT with global
symmetry SU(2)×SO(16), which is the UV completion of the SU(3)1+8F gauge theory, on a
torus. A 3d quiver description for this model was proposed in [39] and we already reported it
in figure 5. The charge assignment is due to two types of superpotential terms, one is a cubic
interaction involving the upper triangle and one is a quartic interaction involving the lower
triangle. The crosses denote singlet fields which flip the baryonic operators constructed
from the associated bifundamental fields, though these won’t play a role here. The reason is
that in general, the low-energy theory when going on the moduli space includes singlets in
addition to a potential interacting SCFT. As such, it is quite reasonable that some singlets
in T 4d/3d

IR would have their origin from said singlets generated in the 6d flow and so should
be removed. In 4d the identification of these singlets can be done by matching anomalies.
However, we do not possess this tool in 3d and so have to rely on the 4d results as well
as the consistency conditions in 3d. In particular, these singlets are indeed removed in 4d,
and we shall see that removing them yields consistent results with the trinion of figure 7.

We deform this theory by turning on a vev for one component of the mesonic operator
constructed from the fields represented by the top right and the bottom right diagonal
edges of the quiver, which has the effect of partially breaking the global symmetry and
Higgsing the right SU(3) gauge node down to SU(2). The latter will then be interpreted
as the diagonal gauging of the SU(2) symmetries of the punctures of the trinion that are
glued to form the torus.

The effect of the vev can be effectively studied using supersymmetric partition func-
tions, such as the S3

b partition function or the supersymmetric index, following the same
strategy discussed in [53] for the 4d supersymmetric index. At the level of the index, the
deformation implies the constraint on the fugacities

a3b−1cx
3
2 f−1

1 v = 1 , (3.4)

where fi with
∏6
i=1 fi = 1 are the fugacities for the SU(6) symmetry while v is the fugacity

for the SU(2) symmetry. Such a constraint is obtained by requiring that the operator
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that gets the vev is uncharged under all the symmetries including the R-symmetry and
it encodes the aforementioned breaking of the global symmetry. Imposing this constraint
on the index one can see that the sets of poles coming from the contributions of the two
chirals forming the meson to which we gave the vev pinch the integration contour at one
point. We should then take the residue at such point for one of the integration variables
of the right SU(3) gauge node, which implements the Higgsing at the level of the index.

We choose to solve the constraint (3.4) by

v = x−
3
2a−3bc−1f1 (3.5)

and to take the residue
z

(R)
1 = x−

5
6a−1bf1 , (3.6)

where z(R)
a with ∏3

a=1 z
(R)
a = 1 are the gauge fugacities for the right SU(3) node. Moreover,

since the deformation breaks SU(6)→ SU(5)×U(1), we redefine for convenience

fi =

s5 i = 1
s−1fi−1 i = 2, · · · , 6

. (3.7)

so that now fi with
∏5
i=1 fi = 1 are the SU(5) fugacities. The result is the quiver on the

top of figure 8.
As we previously mentioned, we expect this to be the compactification of the E7 SCFT

on a torus with one puncture. There should then be an SU(2) symmetry associated with
this new puncture that emerged at the end of the flow triggered by the VEV. This can be
made manifest by performing the redefinion

s→ s
1
5x−

1
5 b−

1
5 c

1
5 , a→ as

1
6 , c→ cs−

1
6 , (3.8)

where now s is the fugacity for such SU(2) symmetry. The result is depicted on the bottom
of figure 8.

Let us briefly comment on the superpotential of this model. This is given by

W = LR(B1 +B2) + P (B2
1 +B2

2) + TQ2(B1 +B2) , (3.9)

where the names we use for the chiral fields are as specified in the figure. In particular,
there is no monopole superpotential. Moreover, the fields R and T attached to the SU(2)
gauge node can be understood as the fields added in the Φ-gluing of the trinion to form the
torus with one puncture and which flip the moment map operators of the glued punctures,
which are given by

M1/2 =
(
LB1/2, Q

2B1/2
)
. (3.10)

We now want to get the trinion by cutting the torus open. This is done by ungauging
the SU(2) symmetries and removing the fields R and T that are introduced in the Φ-gluing.
The resulting model is depicted in figure 9 and the superpotential is given by

W = P (B2
1 +B2

2) . (3.11)
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x
7
4 a

9
2 b− 1

2 c2s− 5
2

x
5
6 abs−1 x

5
4 a

3
2 b− 3

2 s− 3
2

x− 1
12 a− 5

2 b
1
2 s

5
2

x− 1
12 a− 5

2 b
1
2 s

5
2

3 2

2 1 1

5

x
1
6 a−1c−1 x

7
6 a5c−1

x
5
4 a

9
2 c

3
2

x
19
30 ab

6
5 c− 1

5 x
19
20 a

3
2 b− 6

5 c− 3
10

x
5

12 a− 5
2 c

1
2

x
5

12 a− 5
2 c

1
2

Q P T

L R

B1

B2

Figure 8. The result of the Higgsing induced by the vev in two different parametrizations of the
global symmetries. In the bottom figure we also report the names we will use to denote each chiral
fields.

3 22

21

5

x
1
6 a−1c−1x

7
6 a5c−1

x
19
30 ab

6
5 c− 1

5

x
5

12 a− 5
2 c

1
2 x

5
12 a− 5

2 c
1
2

QP

L

B1 B2

Figure 9. The trinion model obtained by opening the torus with one puncture of figure 8.
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3
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3
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3
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Figure 10. The gluing of the trinion of figure 9 and of the tube of figure 1. Notice that the SU(2)
gauge nodes sees 6 chirals and has a monopole superpotential, so it confines giving the trinion of
figure 7.

Notice that this is not exactly the trinion of figure 7 that we discussed in the previous
subsection. In order to get the desired trinion, we need to glue to one of the punctures of
that in figure 9 one copy of the tube theory discussed in [38] and which we depicted in fig-
ure 1, in a similar manner to the case of the 6d to 4d compactification of the (DN+3, DN+3)
conformal matter reviewed in section 6.4 of [30]. More precisely we first flip the puncture
of the trinion that we want to glue, that is we introduce singlet fields that flip the mo-
ment map operators LB2 and Q2B2, and then we glue the tube with Φ-gluing for all the
moment maps except one for which we perform an S-gluing. The result is depicted in
figure 10. In the gluing we also turn on the fundamental monopole of the SU(2) gauge
node so that, using the duality of [52, 54],5 it confines. One of the fields produced in the
dualization is mapped to the baryonic operator (B2)2 of the theory before the dualization
and which becomes massive together with the field P due to the superpotential (3.11).
Integrating out all the massive fields one gets exactly the expected trinion of figure 7 (up
to a reparametrization of the abelian symmetries and the R-symmetry).

4 Compactifications on higher genus surfaces with no flux

After establishing the trinion model, we can now turn to study the theories resulting from
the compactification of the 5d ENf +1 SCFTs on a higher genus surface constructed by gluing
trinions. In this section we consider the case in which the punctures of the trinions are
glued via S-gluing, as reviewed in subsection 2.2, resulting in surfaces with no flux. We will
begin by considering the case of genus 2 and then turn to the case of arbitrary higher genus.

4.1 Genus two

We first construct the models for a compactification on a genus 2 surface with no flux by
gluing two copies of the trinion we introduced in figure 7. We will start by considering the
cases with Nf ≥ 2 and then flow to lower Nf by studying suitable mass deformations.

5More precisely, the SU(2) gauge theory with 6 fundamental chirals and W = M is dual to a WZ model
of 15 chirals with a cubic superpotential.
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Figure 11. The model arising from S-gluing two trinions along one puncture.

4.1.1 Nf ≥ 2

We first glue the two trinions along one puncture, say the one labeled by L, from each of
them using the S-gluing. Recall that this gluing is done by gauging a diagonal combination
of the SU(2) symmetry of the puncture of each trinion6 and turning on the superpotential

δW = ML ·M ′L , (4.1)

whereML is the moment map of one trinion and M ′L that of the other one. Recalling (3.3),
this translates into the sum of quartic and sextic couplings in the resulting model, which
we depict in figure 11. We are not reporting them in the picture, but here there are many
additional abelian symmetries compared to the original trinion model. As pointed out
in [38, 39] in the context of compactifications of 5d SCFTs on surfaces of genus one, one
might need to turn on suitable monopole superpotential terms during the gluing on top
of (4.1) in order to break some combinations of these symmetries. For the moment we will
remain agnostic about it and we will reconsider this issue in the final genus 2 model.

We then glue the remaining four punctures in pairs using the S-gluing again. The
result is the model in figure 12, which corresponds to the compactification of the 5d rank 1
ENf +1 SCFT on a genus 2 surface with no flux. Again remembering (3.3) we can see that
the superpotential for the perturbative matter part of the theory consists of quartic as well
as sextic interactions. In particular the latter break a would be U(1) global symmetry which
we parameterized in figure 12 with the fugacity y. If we compute the index of this model for
Nf = 6, we find that this symmetry obstructs the expected global symmetry enhancement
to E7. Setting y = 1 we can instead rewrite the index in terms of E7 characters. Moreover,
once this U(1) symmetry is broken we can see that the fundamental, that is with magnetic
flux 1, monopoles of the SU(2) gauge nodes are exactly marginal, meaning that the charge
assignment of the matter fields is compatible with having these monopoles turned on in
the superpotential. We then assume that when performing the gluing one should also turn
on such a monopole superpotential.

6We note that here we don’t need to turn on a CS term when gluing. This can be undestood by first
gluing the trinions for Nf = 6, where no CS term is needed, and then turning on the real mass deforations
leading to lower Nf . Since the SU(2) node does not see any flavors receiving the real masses, these do not
generate a CS term.
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Figure 12. The 3d N = 2 Lagrangian for the compactification of the 5d rank 1 ENf +1 SCFT on
a genus 2 surface with no flux. The superpotential breaks one abelian symmetry corresponding to
y = 1.

The index for Nf = 6 after setting y = 1 can be written in terms of E7 characters as
follows:

I = 1 + (4 + 3 + 133)x2 + · · · . (4.2)

The embedding of E7 inside the manifest SU(4)×U(1)4 symmetry is

56 → α2β−16 + α−2β6̄ + α−1β−1(γ + γ−1)4 + αβ(δ + δ−1)4 + αβ(γ + γ−1)4̄ +
+α−1β−1(δ + δ−1)4̄ + β3 + β−3 + α−4β−1 + α4β +
+(α2β−1 + α−2β)(γδ + γδ−1 + γ−1δ + γ−1δ−1) , (4.3)

where we defined

a = α
1
6β

1
6 δ

1
6 ,

u = α
1

12β−
1

12 γ−
1

12 δ
1

18 ,

v = α
1

12β−
1

12 γ
1

12 δ
1

18 ,

w = α
1
4β

1
12 δ−

1
36 . (4.4)

This result is also consistent with the spectrum expected from 5d as we reviewed in subsec-
tion 2.4, since for genus g = 2 and no flux we should have a contribution 3g−3+(g−1)133 =
3 + 133 to the order x2 of the index. One discrepancy with the 5d expectations is that we
have 4 additional marginal operators. This is due to the fact that once we set y = 1 we
have many more monopole operators that are exactly marginal than just the fundamental
SU(2) monopoles mentioned above. This deviation appears to be accidental as we shall
soon show that it disappears once one goes to either higher genus or higher flux.
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Figure 13. Dual description for the 3d N = 2 model arising from the compactification of the 5d
rank 1 ENf +1 SCFT on a genus 2 surface with no flux. The arcs on the gauge nodes denote chiral
fields in the antisymmetric representation or its complex conjugate, depending on the orientation
of the arrows.

The genus 2 model of figure 12 has a dual description in terms of a simpler quiver,
similarly to what was done for the analogous 4d models in [23]. Indeed, the SU(2) nodes
locally look like an SU(2) gauge theory with 6 fundamental chirals and superpotential
W = M, where M denotes the fundamental monopole, which is known to be dual to a
WZ model of 15 chirals Mij with superpotential Ŵ = Pf(M) [52]. If we apply this duality
to each of the SU(2) nodes of the quiver in figure 12 we remove them and the 15 fields
split into an antisymmetric for each SU(3) node and a bifundamental between them. The
result is thus the theory in figure 13, where now the perturbative superpotential consists
of cubic interactions for each triangle made of the anti-fundamental for the left SU(3), the
fundamental for the right SU(3) and one copy of the SU(3) × SU(3) bifundamentals and
other cubic interactions involving two antisymmetrics, one from each SU(3) gauge node, and
one copy of the SU(3)×SU(3) bifundamentals. Notice that this is again necessary in order
to kill one abelian symmetry. We find that the index of this theory coincides with (4.2).

It is more convenient to work with the theory in figure 13 rather than the one in
figure 12, which is what we will do in the reminder of this subsection. One reason is that
this has less gauge nodes, which makes computations easier. Moreover, part of the larger
non-abelian symmetry can be seen more easily from the model in figure 13. In fact, using
that the complex conjugate of the antisymmetric representation of SU(3) is actually the
fundamental representation and viceversa for the antisymmetric representation, we can
redraw the model in figure 13 as the one in figure 14. We can see that now the manifest
global symmetry is SU(Nf + 1)× U(1)d, so there is only one abelian symmetry. This can
be understood from the superpotential, which now takes the simpler form

W =
3∑

i,j=1
Pi(Pj)2 +

3∑
i=1

QLPiQR , (4.5)

where QL/R denotes the left/right fundamental fields and Pi for i = 1, 2, 3 the three bi-
fundamental fields. The global symmetry is expected to get enhanced to ENf +1 in the IR.
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Indeed, for Nf = 6 the result (4.2) can be rewritten as

I = 1 + (4 + 3 + 1 + 48SU(7) + d−67SU(7) + d67SU(7) + d335SU(7) + d−335SU(7))x2 =
= 1 + (4 + 3 + 133E7)x2 + · · · . (4.6)

Another piece of evidence for this symmetry enhancement can be obtained by com-
puting the central charges appearing in the two-point functions of the conserved currents
of U(1)d and SU(7). Since these two symmetries combine together in the IR to form the
group E7, their central charges are expected to be related to each other in accordance with
the way these symmetries are embedded in E7. In general, the central charge of a subgroup
H ⊂ G is related to that of G by

CH = IH↪→GCG (4.7)

where IH↪→G is the corresponding embedding index, which for an embedding

RG →
∑
i

R
(i)
H (4.8)

is given by

IH↪→G =

∑
i TR

(i)
H

TRG

(4.9)

where TR denotes the Dynkin index of the representation R and should be replaced by q2
i

when H is a U(1) group. As a result, the ratio of the central charges of two subgroups H1
and H2 which combine to give a larger enhanced symmetry should be given by the ratio of
the corresponding embedding indices

CH1

CH2
= IH1↪→G
IH2↪→G

. (4.10)

This is then a necessary condition for the symmetry enhancement that we can verify.
Specifically, if U(1)d and SU(7) of the Nf = 6 model indeed form an E7, their central
charges should be related as in (4.10). In order to check that, we numerically compute the
central charges of U(1)d and of the Cartan diag (1, 0, 0, 0, 0, 0,−1) of SU(7), denoted by C,
from the real part of the free energy (see appendix B of [38] and references therein for more
details). We obtain

Cd = 31.76 , CC = 2.01 (4.11)

corresponding to the ratio
Cd
CC

= 15.8, (4.12)

which indeed matches (within the accuracy of the computation) the expectations from the
enhancement to E7 since

IU(1)d↪→E7 = 63 , IU(1)C ↪→SU(7) = 4 , ISU(7)↪→E7 = 1 (4.13)

and therefore
Cd
CC

=
IU(1)d↪→E7

IU(1)C ↪→SU(7)ISU(7)↪→E7

= 15.75. (4.14)
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Figure 14. Equivalent representation of the dual description for the 3d N = 2 model arising from
the compactification of the 5d rank 1 ENf +1 SCFT on a genus 2 surface with no flux.

Using the simpler description of figure 14 we can also easily investigate cases with
lower Nf . For Nf = 5 we get the index

I = 1 + (9 + 3 + 1 + 35SU(6) + d−6 + d6 + (d3 + d−3)20SU(6))x2 =
= 1 + (9 + 3 + 78E6)x2 + · · · (4.15)

which supports the expected enhancement of U(1)d and SU(6) to E6. As before, to get
further support we can also compute the central charges of these symmetries and com-
pare their ratio to the one expected from the enhancement and the embedding. Denoting
the Cartan diag (1, 0, 0, 0, 0,−1) of SU(6) by C as in the previous case and computing
numerically the central charges, we find

Cd = 15.2 , CC = 1.7 ,
Cd
CC

= 8.9. (4.16)

This matches, within the accuracy of the computation, the ratio expected from the en-
hancement which is given by

Cd
CC

=
IU(1)d↪→E6

IU(1)C ↪→SU(6)ISU(6)↪→E6

= 9. (4.17)

Turning to the case Nf = 4, we find the index

I = 1 + (16 + 3 + 1 + 24SU(5) + d310SU(5) + d−310SU(5))x2 =
= 1 + (16 + 3 + 45SO(10))x2 + · · · (4.18)

which demonstrates the enhancement of U(1)d and SU(5) to SO(10). The central charges
are given in this case by

Cd = 10.385 , CC = 1.846 , Cd
CC

= 5.6257 (4.19)

which again matches the ratio expected from the enhancement

Cd
CC

=
IU(1)d↪→SO(10)

IU(1)C ↪→SU(5)ISU(5)↪→SO(10)
= 5.625. (4.20)
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Continuing to the theory corresponding to Nf = 3, we have the index

I = 1 + (25 + 3 + 1 + 15SU(4) + d34SU(4) + d−34SU(4))x2 =
= 1 + (25 + 3 + 24SU(5))x2 + · · · (4.21)

and the enhancement of U(1)d and SU(4) to SU(5). The central charges are given by

Cd = 7.5 , CC = 2.1 ,
Cd
CC

= 3.57, (4.22)

in agreement with the ratio expected from the enhancement

Cd
CC

=
IU(1)d↪→SU(5)

IU(1)C ↪→SU(4)ISU(4)↪→SU(5)
= 3.6. (4.23)

We next arrive to the case Nf = 2, where the index is given by

I = 1 + (36 + 3 + 1 + 8SU(3) + d3 + d−3)x2 =
= 1 + (36 + 3 + 8SU(3) + 3SU(2))x2 + · · · , (4.24)

signaling the enhancement of U(1)d to SU(2). Since this enhancement does not involve two
different groups combining together to form a single larger one, the computation of the
central charges will not teach us something new in this case.

Overall, we see that in all the cases above the expected symmetry enhancement from
SU(Nf +1)×U(1)d to ENf +1 indeed takes place. We also observe the presence of marginal
operators coming from the 5d stress-energy tensor and conserved current multiplets, in ac-
crdance with equation (2.10). However, we also observe the presence of additional marginal
operators for which we do not have a higher dimensional interpretation. These appear to
be accidental to the genus 2 and no flux case, as we shall see that they disappear for higher
genus or once flux is turned on.

Let us also comment that another advantage of working with the quiver of figure 14
rather than the original one in figure 12 is that we can in principle consider also values of
Nf which are smaller than 2, even Nf = −1. . We will investigate this possibility in more
detail in the rest of this section.

4.1.2 Flowing to Nf < 2

We can try to flow from the theory with Nf = 2 to the one with Nf = 1 with a mass
deformation. The natural choice is a mass deformation in the model of figure 14 for
Nf = 2 that breaks SU(3) to SU(2), which just amounts to considering the same model for
Nf = 1. Notice that such deformation makes sense only in the dualized genus 2 model and
not in the original trinion, since it would break some of the symmetries of the punctures.
The index of the resulting model is

I = 1 +
(
54 + t2 + t−2

)
x2 + · · · = 1 + (50 + 3 + 3)x2 + · · · , (4.25)

which is written in terms of characters of E2 = SU(2)t × U(1)d. This symmetry is in fact
already manifest in the Lagrangian description of the theory. This result is compatible
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with the theory being the result of the compactification of the 5d E2 SCFT on a genus 2
surface with no flux.

We can go on and perform a further mass deformation so to reach the model with
Nf = 0. Here we have two choices: we can either perform a real mass deformation for
U(1)d or for SU(2)t. This is compatible with the fact that from the E2 SCFT in 5d we
can either flow to the E1 or to the Ẽ1 SCFT. Indeed, the mass deformation for U(1)d
preserves SU(2)t which is the symmetry of the E1 SCFT, while a mass deformation for
SU(2)t preserves U(1)d × SU(1)t = U(1)d which is the symmetry of the Ẽ1 SCFT.

Let us start considering the mass deformation for SU(2)t, which amounts to considering
the model of figure 14 for Nf = 0. The index of the resulting model is

I = 1 + 68x2 + · · · , (4.26)

which is compatible with the fact that the SU(2) symmetry has been broken. Another
consistency check that this is indeed the compactification of the Ẽ1 SCFT is that the model
doesn’t have a 1-form symmetry [55] because of the fundamental matter fields. Indeed, a
difference between the E1 and the Ẽ1 SCFTs is that the former has a 1-form symmetry,
while the latter has not [56, 57].

Let us now consider a real mass deformation for U(1)d, which should lead to the
compactification of the E1 SCFT. Notice that if we perform such a deformation, all the
fields charged under SU(2)t become massive, so we would also lose this symmetry, in
contradiction with the 5d expectation. We can in principle avoid this by combining the
real mass deformation with a Coulomb branch vev in such a way that we follow the theory
to a vacuum where some of the fields charged under SU(2)t remain massless. Nevertheless,
we don’t have at this point a clear interpretation of what this additional Coulomb branch
vev in the 3d theory should correspond to in 5d and hence we don’t have a satisfactory
understanding of the resulting model. We leave this issue for future investigations.

Interestingly, we can also access the genus 2 compactification without flux of the E0
SCFT by just setting Nf = −1 in the model in figure 14. Notice that this is consistent
with the fact that the E0 theory can be obtained as a mass deformation of the Ẽ1 theory,
which recall corresponds to the model in figure 14 for Nf = 0. The index of this model is

I = 1 + 84x2 + 327x4 + · · · . (4.27)

Unfortunately at the moment the only test that we have that this is the correct theory
corresponding to the compactification of the E0 SCFT is that it has a Z3 one-form sym-
metry coming from the diagonal combination of the center symmetries of the two SU(3)
gauge groups that is not screened by the bifundamental matter fields. This agrees with the
known Z3 one-form symmetry of the 5d E0 SCFT [56, 57]. In a future work [58] we will
compute some discrete anomalies of this model, which could in principle be matched with
some 5d expectation.

4.2 Higher genus

In order to further validate our construction, we can use the trinion in figure 7 to construct
the theory corresponding to the compactification on a Riemann surface of higher genus.
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Figure 15. The 3d N = 2 model arising from the compactification of the 5d rank 1 ENf +1 SCFT on
a genus 3 surface with no flux. Double lines denote pairs of chiral fields in the same representations.

Gluing four trinions with the S-gluing we can get a surface with genus g = 3 and no flux,
which we depict in figure 15. This specific quiver is obtained after performing the gluings
and dualizing all the SU(2) gauge nodes, similarly to what we did for genus g = 2. We
have superpotential interactions that are analogous to those we had for g = 2 and which
determine the charge assignment summarized in the figure. In the general case of genus g
one needs to glue 2g − 2 trinions and so the model takes a form similar to the quiver in
figure 15 but with 2g − 2 gauge nodes SU(3).

Computing the index for Nf = 6 we get

I = 1 + (6 + 2(1 + 48SU(7) + d−67SU(7) + d67SU(7) + d335SU(7) + d−335SU(7)))x2 =
= 1 + (6 + 2× 133E7)x2 + · · · . (4.28)

We can see that it forms representations of the expected enhanced E7 symmetry with the
same embedding of the symmetry SU(7)×U(1) that is manifest in the quiver of figure 15
that we also had for genus g = 2. Moreover, the operators appearing at order x2 agree
with the 5d expectation, in particular they have the correct multiplicity that they should
have for genus g = 3, namely we have 3g − 3 = 6 marginal operators uncharged under all
the symmetries and g − 1 + qF = 2 operators in the 133 of E7. Notice that in this case,
unlike what we saw for genus g = 2, there are no extra marginal operators.

We can similarly check that the index is compatible with our expectations also for
lower values of Nf . For Nf = 5, we get

I = 1 + (6 + 2(1 + 35SU(6) + d−6 + d6 + (d3 + d−3)20SU(6)))x2 =
= 1 + (6 + 2× 78E6)x2 + · · · . (4.29)
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For Nf = 4 we get

I = 1 + (6 + 2(1 + 24SU(5) + d310SU(5) + d−310SU(5)))x2 =
= 1 + (6 + 2× 45SO(10))x2 + · · · . (4.30)

For Nf = 3 we get

I = 1 + (6 + 2(1 + 15SU(4) + d34SU(4) + d−34SU(4)))x2 =
= 1 + (6 + 2× 24SU(5))x2 + · · · . (4.31)

For Nf = 2 we get

I = 1 + (6 + 2(1 + 8SU(3) + d3 + d−3))x2 =
= 1 + (6 + 2(8SU(3) + 3SU(2)))x2 + · · · . (4.32)

As for genus 2, we can in principal go also to cases with Nf < 2, but as the index compu-
tation for these proves to be more demanding, we shall content ourselves with the Nf ≥ 2
cases.

In all of these cases we can see that the index is compatible with the expected en-
hancement of the manifest SU(Nf + 1)×U(1)d symmetry to ENf +1 and that the spectrum
of operators is compatible with the 5d expectation.

5 Compactifications on genus two surfaces with flux

We can also try to construct a genus 2 surface via Φ-gluing. As we reviewed in subsec-
tion 2.2, while in the S-gluing we turned on the superpotential interaction (4.1) between
the moment maps ML and M ′L of the glued punctures of the two trinions, in the Φ-gluing
we introduce Nf chirals Φ in the fundamental representation of the gauged SU(2) puncture
symmetry with the interaction

δW = Φ ·
(
ML +M ′L

)
. (5.1)

The resulting model is depicted in figure 16. The full superpotential consists of various
types of cubic and quartic couplings, associated with various closed loops in the quiver
diagram:

• cubic interactions involving an SU(3)× SU(Nf − 2) bifundamental, an SU(Nf − 2)×
SU(2) bifundamental and an SU(2)× SU(3) bifundamental;

• quartic interactions involving one of the chirals which is a doublet of one SU(2) and a
singlet of another SU(2) (represented by a line with a double arrow in figure 16), an
SU(3)×SU(2) bifundamental for the former SU(2) and the square of an SU(3)×SU(2)
bifundamental for the latter SU(2) (so to make an SU(2) singlet).

These superpotential interactions constrain the manifest global symmetry of the model to
be SU(Nf−2)×U(1)4. Notice that the rank is Nf +1, which matches that of the 5d ENf +1
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Figure 16. The 3d N = 2 Lagrangian for the compactification of the 5d rank 1 ENf +1 SCFT on
a genus 2 surface with one unit of flux. The Chern-Simons levels are written in terms of k = 6−Nf

2 .
The lines with double arrows between pairs of SU(2) nodes stand for a pair of chirals, one of which
is a doublet of one node and a singlet of the other node and the other chiral the opposite. The
charges of each of these chirals is written close to the arrow that points to the node under which it
is a doublet.

symmetry. This suggests that we do not need to consider any additional superpotential
term involving monopole operators to break additional unwanted symmetries. We will
indeed see momentarily that the model without monopole superpotential passes all the
tests required by compatibility with the compactification picture.

When preforming a Φ-gluing, the fluxes of the glued trinions add up so that, after gluing
three pairs of punctures, we get a genus 2 surface with a flux which is twice that of the
single trinion. In the U(1)×SO(2Nf ) ⊂ ENf +1 basis, this is given by (

√
8−Nf

2 ; 1
2 ,

1
2 , . . . ,

1
2︸ ︷︷ ︸

Nf

).

Let us start analyzing the case Nf = 6. Here the model corresponds to a unit of flux
for a U(1) inside E7 whose commutant is SO(12). The index reads

I = 1 + (7 + 15 + β±2γ±1δ±1 + γ±2 + γ±2 + 6(β±2 + γ±1δ±1)) +
+3α2 + 3α−2 + 2α(4(βγ±1 + β−1δ±1) + 4(β−1γ±1 + βδ±1))x2 + · · ·

= 1 + (4 + 66SO(12) + 3α2 + 3α−2 + 2α32SO(12))x2 + · · · , (5.2)

where we redefined

a = β−
1
6 γ−

1
6 ,

u = α−
1

18β−
5

36 γ
1

36 ,

v = α−
1

18β
1

36 γ−
1

18 δ−
1

12 ,

w = α−
1

18β
1

36 γ−
1

18 δ
1

12 . (5.3)
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The SO(12)×U(1) symmetry of the model is precisely the subgroup of the 5d E7 symmetry
preserved by the flux. The embedding of the former inside the latter is

133→ 10 ⊕ 660 ⊕ 1±2 ⊕ 32±1 . (5.4)

The spectrum that we see in the index of the 3d theory is also consistent with the 5d
expectation. Indeed, in accordance with (2.10), each state in the decomposition (5.4) of
the 5d flavor symmetry current appears with coefficient g − 1 + qF , where g is the genus,
q is the charge of the state under the U(1) symmetry and F is the flux. Moreover, one
also expects 3g − 3 operators uncharged under all the symmetries, which come from the
5d stress-energy tensor. The only exception is the state 1−2 which appears in the index
as 3α−2 while from 5d we would expect a coefficient g − 1 + qF = 2 − 1 − 2 = −1. We
expect this to be due to extra operators that appear in the spectrum of the 3d theory,
which generically occurs for low genus and flux.

Let us consider now the case of Nf = 5. This is obtained from the previous model via
a mass deformation, which induces CS levels 1

2 for the SU(3) gauge nodes and −1
2 for the

SU(2) ones, see figure 16. We expect this model to be associated with a unit of flux breaking
the 5d E6 global symmetry down to SU(6)×U(1). This should get enhanced from the man-
ifest SU(3)×U(1)4 global symmetry of the model. Indeed, we can write the index in terms
of characters for this symmetry by performing the following redefinition of the fugacities:

a = β−
1
2 ,

u = α−
1

18β−
1

12 γ−
1
6 ,

v = α−
1

18β−
1

12 γ
1

12 δ−
1

12 ,

w = α−
1

18β−
1

12 γ
1

12 δ
1

12 . (5.5)

With this new parametrization, the index reads

I = 1 +
(

7 + 8 + γ±3δ±1 + δ±2 + β23
(
γ−1δ±1 + γ2

)
+ β−23

(
γδ±1 + γ−2

)
+3α2 + 8α−2 + 2α

(
β3 + 1

β3 + β−13
(
γ−1δ±1 + γ2

)
+ β3

(
γδ±1 + γ−2

)))
x2 + · · ·

= 1 +
(
4 + 35SU(6) + 3α2 + 8α−2 + 2α20SU(6)

)
x2 + · · · . (5.6)

The SU(6)×U(1) symmetry of the model is precisely the subgroup of the 5d E6 symmetry
preserved by the flux. The embedding of the former inside the latter is

78→ 10 ⊕ 350 ⊕ 1±2 ⊕ 20±1 . (5.7)

The spectrum that we see in the index of the 3d theory is also consistent with the 5d
expectation, again except for the state 1−2 whose contribution to the 3d index has the
wrong coefficient due to extra operators.

For Nf = 4 the flux preserves the SU(4)×SU(2)×U(1) subgroup of the 5d E5 = SO(10)
symmetry. The former should be enhanced from the manifest SU(2)×U(1)4 symmetry of
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the model. Indeed, we can write the index in terms of characters for this symmetry by
performing the following redefinition of the fugacities:

a = β−
1
3 γ−

1
3 ,

u = α−
1

18β−
1
9 γ−

1
36 δ

1
12 ,

v = α−
1

18β
1

18 γ−
1
9 ,

w = α−
1

18β−
1
9 γ−

1
36 δ−

1
12 . (5.8)

With this new parameterization, the index reads

I = 1 +
(
7 + 3 + γ2 + γ−2 + δ2 + δ−2 + (β2 + β−2)(γ + γ−1)(δ + δ−1)

+3α2 + 15α−2 + 2α
(
β2 + β−2 + γδ + γ−1δ + γδ−1 + γ−1δ−1

)
2
)
x2 + · · ·

= 1 +
(
4 + (15,1) + (1,3) + 3α2 + 15α−2 + 2α(6,2)

)
x2 + · · · . (5.9)

The SU(4) × SU(2) × U(1) symmetry of the model is precisely the subgroup of the 5d
E5 = SO(10) symmetry preserved by the flux. The embedding of the former inside the
latter is

45→ (1,1)0 ⊕ (15,1)0 ⊕ (1,3)0 ⊕ (1,1)±2 ⊕ (6,2)±1 . (5.10)

The spectrum that we see in the index of the 3d theory is also consistent with the 5d
expectation, again except for the state (1,1)−2 whose contribution to the 3d index has the
wrong coefficient due to extra operators.

For Nf = 3 the flux preserves the SU(3) × U(1)2 subgroup of the 5d E4 = SU(5)
symmetry. The former should be enhanced from the manifest U(1)4 symmetry of the model.
Indeed, we can write the index in terms of characters for this symmetry by performing the
following redefinition of the fugacities:

a = β
1
2 ,

u = α−
1

18β
1

12 γ
1

12 δ
1

12 ,

v = α−
1

18β
1

12 γ
1

12 δ−
1

12 ,

w = α−
1

18β
1

12 γ
1

12 . (5.11)

With this new parameterization, the index reads

I = 1 +
(
7 + (γ3 + γ−3)(δ + δ−1) + δ2 + δ−2

+3α2 + 24α−2 + 2α
(
βγ2 + β−1γ−2 + (β−1γ + βγ−1)(δ + δ−1)

))
x2 + · · ·

= 1 +
(
5 + 8 + 3α2 + 24α−22α(β−13 + β3)

)
x2 + · · · . (5.12)

The SU(3)×U(1)2 symmetry of the model is precisely the subgroup of the 5d E4 = SU(5)
symmetry preserved by the flux. The embedding of the former inside the latter is

24→ 2× 1(0,0) ⊕ 8(0,0) + 1±2,0 ⊕ 3±1,−1 ⊕ 3±1,1
. (5.13)
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The spectrum that we see in the index of the 3d theory is also consistent with the 5d
expectation, again except for the state 1(−2,0) whose contribution to the 3d index has the
wrong coefficient due to extra operators.

Like in the previous cases, the computational complexity increases with decreasing
flavors, and given the complicated quiver involved in this case, we shall content ourselves
with the cases of Nf ≥ 3.

6 Discussion

In this paper we studied the compactifications of the 5d rank 1 Seiberg ENf +1 SCFTs on
Riemann surfaces with genus which is higher than 1, generalizing the previous work [38] in
which the compactification surface was a torus. In order to do this, we began with finding
the 3d model associated with the compactification on a trinion, which serves as a basic
building block from which Riemann surfaces with any higher genus can be constructed.
The 3d trinion model, in turn, was conjectured in two different ways which led to the same
result. In the first, building on the knowledge of the 4d trinion model corresponding to
the compactification of the 6d rank 1 E-string theory and the relation between the 6d/4d
and 5d/3d setups via circle compactification, we obtained the 3d trinion model from the 4d
one using circle reduction and a mass deformation. In the second approach, following the
methodology of [20, 23], the same trinion model was obtained from the models discussed
in [38, 39] by a suitable deformation.

After finding the trinion model, we turned to the study of theories corresponding to
compactifying the rank 1 Seiberg ENf +1 SCFTs on Riemann surfaces with higher genus,
obtained by gluing multiple trinions together. In particular, we checked that properties
expected from this higher-dimensional origin, such as the existence of the correct global
symmetries (which are usually enhanced in the IR) and the presence of specific operators
descending from 5d multiplets, can indeed be identified. Since these properties are not
manifest in the 3d UV Lagrangian description, checking them is a highly non-trivial test
for the validity of our conjectured trinion model and the gluing procedure. We started by
exploring the theories obtained by S-gluing trinions, corresponding to compactifications on
Riemann surfaces with no flux for the global symmetry. Focusing on theories corresponding
to genus 2 and 3, we employed the superconformal index and the central charges appearing
in two-point functions of global symmetry currents to argue that the IR symmetry of these
theories (which is usually enhanced compared to the UV one) is exactly the one expected
from the 5d picture. Moreover, we observed that the index contains the contributions of
the operators descending from special 5d multiplets. Then, in a similar way we analyzed
the genus 2 theories obtained by Φ-gluing trinions, corresponding to compactifications on
Riemann surfaces with flux, and obtained perfect agreement with the 5d expectations.

Several directions appear natural to be explored based on the results of this paper.
First, here we focused on a specific family of 5d SCFTs, namely the rank 1 Seiberg the-
ories with ENf +1 symmetry, and it will be interesting to generalize this analysis to more
general theories and find their 3d trinion models. Another very interesting direction is
to try to match ’t Hooft anomalies between the 5d and 3d theories. In the 6d/4d setup,
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there are continues symmetries whose anomaly matching upon compactification proved
to be extremely useful in both conjecturing and checking the 4d theory resulting from
compactifying a given 6d SCFT. In the 5d/3d setup, even though there are no anomalies
for continues symmetries, there are anomalies involving discrete symmetries. Specifically,
certain anomalies of 5d SCFTs are known [56, 57, 59–62] and we can try to match their
dimensional reduction with those computed directly in the 3d models, along the lines of the
field theory analysis of [62–68].7 This would provide an additional check of the proposals
both of this paper and of [38, 39], and possibly have new predictions for the anomalies of
certain 5d and 3d theories. We will address this topic of discrete anomaly matching in the
5d/3d setup in a following paper [58].
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