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INDEPENDENT SETS OF GENERATORS OF PRIME POWER ORDER

ANDREA LUCCHINI AND PABLO SPIGA

Abstract. A subset X of a finite group G is said to be prime-power-independent if each element in X has prime power
order and there is no proper subset Y of X with 〈Y,Φ(G)〉 = 〈X,Φ(G)〉, where Φ(G) is the Frattini subgroup of G. A
group G is Bpp if all prime-power-independent generating sets for G have the same cardinality. We prove that, if G is Bpp,
then G is solvable. Pivoting on some recent results of Krempa and Stocka [10, 16], this yields a complete classification of
Bpp-groups.

1. Introduction

Throughout this paper, all groups are finite. We start this introductory section with some definitions fundamental for
our work. Given a group G, an element g ∈ G is said to be a pp-element if g has prime power order. A subset X of G is
said to be

independent : if 〈X,Φ(G)〉 6= 〈Y,Φ(G)〉 for every proper subset Y of X (where as customary we denote by Φ(G)
the Frattini subgroup of G);

pp-independent : if X is independent and each element in X is a pp-element; and
pp-base: if X is a pp-independent generating set for G.

Finally, G is said to be a Bpp-group if every two pp-bases of G have the same cardinality.
The main result of this paper is the following.

Theorem 1.1. If G is a Bpp-group, then G is solvable.

Theorem 1.1 gives a solution to Question 1 in [10] in a strong sense. In fact, it yields a complete classification of the
Bpp-groups. Indeed, Krempa and Stocka [10, 16] have obtained an entirely satisfactory classification of solvable Bpp-groups
and hence Theorem 1.1 together with the work in [10, 16] gives a classification of all Bpp-groups. This classification is
easier to formulate for Frattini-free groups, that is, for groups G with Φ(G) = 1. (Observe that G is a Bpp-group if and
only if so is G/Φ(G).)

Corollary 1.2. Let G be a group with Φ(G) = 1. Then G is a Bpp-group and if only if one of the following holds:

(1) G is an elementary abelian p-group,
(2) G = P⋊Q, where P is an elementary abelian p-group, Q is a non-identity cyclic q-group for distinct prime numbers

p and q such that Q acts faithfully on P and the (Z/pZ)[Q]-module P is a direct sum of pair-wise isomorphic

simple modules,

(3) G is a direct product of groups given in (1) or in (2) with pair-wise coprime orders.

The groups as in (2) are simply refereed to as scalar extensions in [16]. We refer the reader to the work of Krempa
and Stocka [10, 16] for various motivations on investigating Bpp-groups. Broadly speaking, this motivation is rooted on
independent generating sets and on generalizations of the Burnside basis theorem; in turn, these motivations are useful for
studying groups satisfying the exchange property for bases which is useful for constructing matroids starting from finite
groups.

As a bi-product of the arguments used in the proof of Theorem 1.1, we obtain the following result of independent
interest. (See Section 2.1 for undefined terminology.)

Theorem 1.3. Let G be a group and denote by m(G) the largest cardinality of an independent generating set of G. Then

m(G) ≥ a+ b, where a and b are, respectively, the number of non-Frattini and non-abelian factors in a chief series of G.

We have verified with a computer computation [1] that the bound in Theorem 1.3 is sharp when G is the automorphism
group of the alternating group of degree 6: here, m(G) = 4, a = 3 and b = 1. Theorem 1.3 gives a strengthening of the
bound m(G) ≥ a, which was proved in [13]. Here, it was also proved that m(G) = a for every solvable group.

The structure of the paper is straightforward. In Section 2 after establishing some notation, and after a short detour
through fixed point ratios and spreads, we give some basic results. In Section 3 after establishing a few rather technical
results, we prove Theorem 1.1 and Corollary 1.2. Finally, we prove Theorem 1.3 in Section 4.
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2 A. LUCCHINI AND P. SPIGA

2. Preliminaries

2.1. Notation. Given a group G, we let m(G) and mpp(G) denote the largest cardinality of an independent generating
set of G and of a pp-independent generating set for G. Since every pp-independent generating set is also an independent
generating set, we have m(G) ≥ mpp(G). In fact, in Lemma 2.3 we show that m(G) = mpp(G).

Let

1 = Gt E · · ·EG0 = G

be a chief series for G. A factor Gi/Gi+1 is said to be a non-abelian chief factor of G if Gi/Gi+1 is a non-abelian group;
moreover, Gi/Gi+1 is said to be a Frattini chief factor of G if Gi/Gi+1 ≤ Φ(G/Gi+1).

The socle of G, denoted by socG, is the subgroup generated by the minimal normal subgroups of G. In particular,
if socG is a minimal normal subgroup of G (that is, G has a unique minimal normal subgroup), then G is said to be
monolithic.

Let G be a monolithic group with socle N . Following the notation in [14], we define µ(G) := m(G)−m(G/N).
Given a positive integer n and a group H , we denote by HwrSym(n) the wreath product of H with the symmetric

group Sym(n) of degree n. We denote the elements of HwrSym(n) with ordered pairs fσ, where f ∈ Hn and σ ∈ Sym(n).
Given two positive integers x and n with x, n ≥ 2, we say that the prime r is a primitive prime divisor of xn− 1 if r

divides xn−1 and r is relatively prime to xi−1, for each i ∈ {1, . . . , n−1}. From a celebrated theorem of Zsigmondy [17],
either xn − 1 has a primitive prime divisor, or n = 6 and x = 2, or n = 2 and x + 1 is a power of 2. In the latter case,
when x is a prime power, we deduce that x must be a (Mersenne) prime. We actually need the following refinement. The
prime r is said to be a large primitive prime divisor of xn − 1 if r is a primitive prime divisor of xn − 1 and either
r > n+ 1 or r2 divides xn − 1. We recall the classical result of Feit [6] on the existence of large primitive prime divisors.
(We refer also to [15], for an elementary proof of this result.)

Lemma 2.1. If x and n are integers greater than 1 there there exists a large primitive prime divisor for xn − 1 except

exactly in the following cases:

(1) n = 2 and x = 2s3t − 1 for some natural numbers s ≥ 0 and t ∈ {0, 1} with s ≥ 2 if t = 0,
(2) x = 2 and n ∈ {4, 6, 10, 12, 18},
(3) x = 3 and n ∈ {4, 6},
(4) x = 5 and n = 6.

Our last two definitions are rather technical and (for our application) they only pertain to almost simple groups, but
they will prove useful. Given an almost simple group H with socle S and a subgroup K of H with H = KS, let

t(H,K)

be the smallest cardinality of a set X of pp-elements in S with H = 〈K,X〉. Then, define
t(H) := max{t(H,K) | K ≤ H with H = KS}.

From [9, Theorem 1], S is generated by an involution and by an element of odd prime power order and hence

(2.1) t(H) ≤ 2.

Given a subgroup K of H , we say that a subset Y of H is K-generating for H if H = 〈K,Y 〉. A K-generating set for
H is said to be K-independent if no proper subset of Y generates H together with K. We denote by

mK(H)

the largest cardinality of a K-independent generating set for H .

2.2. A (short) walk through fixed point ratios and spreads. Let H be an almost simple group with socle S and
let g, s ∈ H . We set

P (g, s) :=
|{t ∈ sH | 〈g, t〉 6≥ S}|

|sH | .

This definition is strictly related to the definition of spread and uniform spread in almost simple groups and we refer the
reader to [3, 8] for further details.

For any action of H on a set Ω and for any g ∈ H , consider the set FixΩ(g) := {ω ∈ Ω | ωg = ω} of fixed points of g
on Ω and the fixed point ratio

µ(g,Ω) :=
|FixΩ(g)|

|Ω| .

From [8, Section 2], if M\H denotes the set of right cosets of the subgroup M of H , then

(2.2) µ(g,M\H) =
|gH ∩M |

|gH | .
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Let now M(H, g) be the collection of all maximal subgroups of H containing g and assume that H is almost simple with
socle S. Then, from (2.2), we deduce

(2.3) P (g, s) ≤
∑

M∈M(H,g)

|{t ∈ sH | 〈g, t〉 ≤ M}|
|sH | =

∑

M∈M(H,s)

|{h ∈ gH | 〈h, s〉 ≤ M}|
|gH | ≤

∑

M∈M(H,s)

µ(g,M\H).

Eq. (2.3) also appears in [3, (2.4)]. We summarize in the following lemma the main application of fixed point ratios in our
context.

Lemma 2.2. Let H be an almost simple group with socle S. Suppose H 6= S. If, for every g ∈ H \ S, there exists a

pp-element sg ∈ S with P (g, sg) < 1, then t(H) = 1. In particular, if
∑

M∈M(H,s) µ(g,M\H) < 1 for every g ∈ H \ S,
then t(H) = 1.

Proof. Let K be a subgroup of H with H = KS. For every g ∈ K \ S, let sg be a pp-element belonging to S with
P (g, sg) < 1. Then by definition of P (g, sg), there exists t ∈ sHg with 〈g, t〉 ≥ S. Thus H = 〈K, t〉 and hence t(H,K) = 1.
Since this holds regardless of K, we have t(H) = 1. The rest of the proof follows from (2.3). �

2.3. Basic results.

Lemma 2.3. Let G be a group. Then m(G) = mpp(G).

Proof. As we have observed above, m(G) ≥ mpp(G) and hence we only need to show that m(G) ≤ mpp(G).
Let X := {x1, . . . , xm(G)} be an independent generating set for G of cardinality m(G). For each i ∈ {1, . . . ,m(G)}, we

may write xi = y1,i · · · yki,i, where y1,i, . . . , yki,i are pair-wise commuting pp-elements of G with

(2.4) 〈xi〉 = 〈y1,i, . . . , yki,i〉.
Clearly,

{yj,i | 1 ≤ j ≤ ki, 1 ≤ i ≤ m(G)}
is a generating set for G consisting of pp-elements and hence it contains a pp-base Y .

We claim that, for each i ∈ {1, . . . ,m(G)}, there exists j ∈ {1, . . . , ki} with yj,i ∈ Y . Indeed, if for some some ī, Y
contains no yj,̄i, then

G = 〈Y 〉 ≤ 〈yj,i | i ∈ {1, . . . ,m(G)} \ {ī}, j ∈ {1, . . . , ki}〉 ≤ 〈X \ {xī}〉,
where in the last inequality we have used (2.4). However, this contradicts the fact that X is independent and hence the
claim is proved.

The previous paragraph yields |Y | ≥ m(G) and hence the lemma follows because mpp(G) ≥ |Y |. �

We now recall [10, Theorem 6.1 (1)].

Lemma 2.4. If G is a Bpp-group, then every quotient of G is a Bpp-group.

3. Proofs of Theorem 1.1 and Corollary 1.2

3.1. Technical lemmas.

Lemma 3.1. Let q be a prime power with q ≥ 4 and let H be an almost simple group with socle S := PSL2(q) and with

H 6= S. Then t(H) = 1.

Proof. It suffices to prove that, for every subgroup K of H with H = KS, there exists a pp-element xK ∈ S with
H = 〈K,xK〉. Write q := pf , where p is a prime number and f is a positive integer.

Let K ≤ H with H = KS and let θ ∈ K \ S. Assume that p2f − 1 admits no large primitive prime divisor. From
Lemma 2.1, we deduce that either

S ∈ {PSL2(4) = PSL2(5),PSL2(8),PSL2(32),PSL2(64),PSL2(512),PSL2(9),PSL2(27),PSL2(125)},
or f = 1 and q = p = 2s3t − 1 for some natural numbers s ≥ 0 and t ∈ {0, 1} with s ≥ 2 if t = 0. In the first eight
exceptional cases, the result can be established with a direct inspection using, for instance, the assistance of the computer
algebra system magma [1]. We now consider the case q = p = 2s3t − 1. Actually, we deal with the more general case that
q = p is a prime number. As H 6= S, we have H = PGL2(q). Clearly, a Sylow p-subgroup of S is cyclic; let x ∈ S be an
element generating a Sylow p-subgroup of S. Observe that we may choose x so that θ does not normalize 〈x〉. Using the
list of the maximal subgroups of S (see for instance [2, Tables 8.1, 8.2]), we see that S = 〈x, xθ〉. Thus H = 〈K,x〉 and
t(H,K) = 1.

Assume now that p2f − 1 admits a large primitive prime divisor r. Observe that, from the previous paragraph, we may
suppose that f > 1. In particular, either r > 2f + 1 ≥ 5 or r2 divides q + 1. Clearly, a Sylow r-subgroup of S is cyclic;
let x ∈ S be an element generating a Sylow r-subgroup of S. Observe that we may choose x so that θ does not normalize
〈x〉 (this can be easily established by considering the structure of the subgroup lattice of S, see [2, Table 8.1]). Using the
list of the maximal subgroups of S (see for instance [2, Tables 8.1, 8.2]), we see that either
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• S = 〈x, xθ〉, or
• r = 5 and 〈x, xθ〉 ∼= Alt(5), or
• r = 3 and 〈x, xθ〉 is isomorphic to either Alt(4) or Alt(5).

In the first case, H = 〈K,x〉 and hence t(H,K) = 1. In the last two cases, r is the cardinality of a Sylow r-subgroup of
S, because 5 is the cardinality of a Sylow 5-subgroup of Alt(5) and 3 is the cardinality of a Sylow 3-subgroup of Sym(4).
However, this contradicts the fact that r is a large primitive prime divisor of p2f − 1. �

Lemma 3.2. Let q be a prime power and let H be an almost simple group with socle S := PSU3(q) and with H 6= S.
Then t(H) = 1.

Proof. As PSU3(2) is solvable, we have q > 2. Here the argument is similar to the proof of Lemma 3.1: we use primitive
prime divisors and the structure of the subgroup lattice of S, see [2, Tables 8.5, 8.6]. Write q := pf , where p is a prime
number and f is a positive integer.

Let K ≤ H with H = KS and let θ ∈ K \ S. Assume p6f − 1 admits a large primitive prime divisor of r. Clearly,
a Sylow r-subgroup of S is cyclic; let x ∈ S be an element generating a Sylow r-subgroup of S. Observe that we may
choose x so that θ does not normalize 〈x〉. Using the list of the maximal subgroups of S (see [2, Tables 8.5, 8.6]), we see
that S = 〈x, xθ〉 (here we are using the fact that r is a large Zsigmondy prime and hence 〈x, xθ〉 cannot be contained in a
maximal subgroup in the Aschbacher class S by [2, Table 8.6]). Thus H = 〈K,x〉 and t(H,K) = 1.

It remains to consider the case that p6f − 1 does not admit a large primitive prime divisor. Lemma 2.1 yields (f, p) ∈
{(1, 5), (1, 3), (2, 2), (3, 2)}. Here the proof follows with the invaluable help of the computer algebra system magma [1]. �

Lemma 3.3. Let q be a prime power and let H be an almost simple group with socle S := PSL3(q) and with S < H �
PΓL3(q). Then t(H) = 1.

Proof. As PSL2(7) ∼= PSL3(2), from Lemma 3.1, we may suppose that q > 2. Here the argument is similar to the proof of
Lemma 3.1: we use primitive prime divisors and the structure of the subgroup lattice of S, see [2, Tables 8.3, 8.4]. Write
q := pf , where p is a prime number and f is a positive integer. As q > 2, we have (p, f) 6= (2, 1).

Let K ≤ H with H = KS and let θ ∈ K \ S. From Lemma 2.1, p3f − 1 has a large primitive prime divisors, except
when (p, f) ∈ {(2, 2), (2, 4), (2, 6), (3, 2), (5, 2)}. For these exceptional cases, we have checked the veracity of this lemma
with a computer computation. In particular, for the rest of the argument, we let r be a large primitive prime divisor of
p3f − 1.

A Sylow r-subgroup of S is cyclic; let x ∈ S be an element generating a Sylow r-subgroup of S. Let M ∈ M(H,x).
Here we use the information in [2, Tables 8.3, 8.4]. From the list of the maximal subgroups of H and recalling that
S < H � PΓL3(q) and r is a large primitive prime divisor, we deduce that either M = NH(〈x〉), or f is even, q = q20
and M ∩ S ∼= SU3(q0) (here we are using the fact that r is a large Zsigmondy prime and hence 〈x, xθ〉 cannot be
contained in a maximal subgroup in the Aschbacher class S by [2, Table 8.4]). In particular, when f is odd, we have
M(H,x) = {NH(〈x〉)}. Therefore, we deduce

∑

M∈M(H,x)

µ(θ,M\H) = µ(θ,NH(〈x〉) \H) < 1,

and hence t(H,K) = 1, from Lemma 2.2.
Suppose now that f is even and let M̄ ∈ M(H,x) \ {NH(〈x〉)}. Then M̄ ∩S ∼= SU3(q0), where q = q20 = pf/2. Observe

that from the “c” column in [2, Table 8.42], we deduce that the maximal subgroups of H with M̄ ∩ S isomorphic to
SU3(q0) form gcd(q0 − 1, 3) S-conjugacy class. Let Ω1 := {〈xg〉 | g ∈ H}. Using the information in [2, Table 8.3], we
deduce

|Ω1| =
q3(q3 − 1)(q2 − 1)

(q2 + q + 1)3
=

q3(q2 − 1)(q − 1)

3
.

Let Ω2 := {M̄g | g ∈ H}. Using the information in [2, Table 8.3], we deduce

|Ω2| =
q3(q3 − 1)(q2 − 1)

(q30 + 1)q30(q
2
0 − 1)

= q30(q
3
0 − 1)(q20 + 1).

How, consider the bipartite graph having vertex set Ω1 ∪ Ω2 and having edge set consisting of the pairs {A,B} with
A ∈ Ω1, B ∈ Ω2 and A ≤ B. Fix B ∈ Ω2. Using the structure of the unitary group B, we see that the number of A ∈ Ω1

with A ≤ B is

(q30 + 1)q30(q
2
0 − 1)

(q20 − q0 + 1)3
=

q30(q
2
0 − 1)(q0 + 1)

3
.

In particular, the number of edges of the bipartite graph is

|Ω2|
q30(q

2
0 − 1)(q0 + 1)

3
=

q3(q2 − 1)(q30 − 1)(q0 + 1)

3
.
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This shows that the number of elements in Ω2 containing the element M̄ ∈ Ω1 is

q3(q2−1)(q3
0
−1)(q0+1)

3

|Ω1|
= q20 + q0 + 1.

Thus

|M(H,x)| = |{NH(〈x〉)} ∪ {M ∈ Ω2 | x ∈ M}| = q20 + q0 + 2.

From [5, Lemma 2.10 (ii)], we have µ(θ,M\H) ≤ gcd(3, q − 1)/(q0(q + 1)) for every M ∈ M(θ,M \H) with M ∩ S ∼=
SU3(q0). Moreover, from [12, Theorem 1], we have µ(θ,NH(〈x〉)\H) ≤ 4/(3q). Therefore

∑

M∈M(H,x)

µ(θ,M\H) ≤ gcd(3, q − 1)
q20 + q0 + 1

q0(q + 1)
+

4

3q
< 1,

whenever q /∈ {4, 16}. Since we have excluded the case q = 4 above, it remains to deal with q = 16. This case, yet again,
has been dealt with a computer computation. Now Lemma 2.2 shows that t(H) = 1. �

Lemma 3.4. Let e be a positive integer, let q = 32e+1 and let H be an almost simple group with socle S := 2G2(q) and

with H 6= S. Then t(H) = 1.

Proof. Let K ≤ H with H = KS and let θ ∈ K \S. Let r be a primitive prime divisor of q6−1. From the structure of the
Ree groups 2G2(q), we deduce that the Sylow r-subgroups of S are cyclic. Let x ∈ S be an element generating a Sylow
r-subgroup of S. Using the list of the maximal subgroups of S [2, Tables 8.43], we deduce that |M(H,x)| = 1. Indeed,
M(H,x) = {NH(〈x〉)}. From (2.3), we have P (θ, x) ≤ µ(θ,NH(〈x〉)\H) < 1. Now Lemma 2.2 shows that t(H) = 1. �

Lemma 3.5. Let e be a positive integer, let q = 22e+1 and let H be an almost simple group with socle S := 2B2(q) and

with H 6= S. Then t(H) = 1.

Proof. Let K ≤ H with H = KS and let θ ∈ K \ S. Let r be a primitive prime divisor of q4 − 1. From the structure of
the Suzuki groups 2B2(q), we deduce that the Sylow r-subgroups of S are cyclic. Let x ∈ S be an element generating a
Sylow r-subgroup of S. Using the list of the maximal subgroups of S [2, Tables 8.16], we deduce that |M(H,x)| = 1 and
M(H,x) = {NH(〈x〉)}. Now, the proof follows as in the proof of Lemma 3.4. �

Lemma 3.6. Let e be a positive integer with e ≥ 1, let q = 3e and let H be an almost simple group with socle S := G2(q)
and with H containing an outer automorphism which is not a field automorphism. Then t(H) = 1.

Proof. Recall that |Aut(S) : S| = 2e. When e = 1, we have checked the veracity of this lemma with the computer algebra
system magma [1]. Therefore for the rest of the argument we suppose e ≥ 2.

Let K ≤ H with H = KS and let θ ∈ K \ S. Let r be a primitive prime divisor of q6 − 1. From the structure
of the Lie group G2(q), we deduce that the Sylow r-subgroups of S are cyclic. Let x ∈ S be an element generating a
Sylow r-subgroup of S. Let M ∈ M(H,x). Here we use the information in [2, Table 8.42]. From the list of the maximal
subgroups of H and recalling that H does contain an outer automorphism which is not a field automorphism, we deduce
that either M = NH(〈x〉), or e is odd and M ∩ S ∼= 2G2(q) (here we are assuming e ≥ 2). In particular, when e is even,
we have M(H,x) = {NH(〈x〉)}. Therefore, we deduce

∑

M∈M(H,x)

µ(θ,M\H) = µ(θ,NH(〈x〉)\H) < 1,

and hence t(H,K) = 1, from Lemma 2.2.
Suppose now that e is odd and let M̄ ∈ M(H,x) \ {NH(〈x〉)}. Then M̄ ∩ S ∼= 2G2(q). Observe that from the “c”

column in [2, Table 8.42], we deduce that the maximal subgroups of H with M̄ ∩ S isomorphic to 2G2(q) form a unique
conjugacy class. Observe that

q6 − 1 = (q3 − 1)(q + 1)(q +
√

3q + 1)(q −
√

3q + 1).

In particular, the primitive prime divisor r of q6−1 can be chosen so that r divides q+
√
3q+1. Let Ω1 := {〈xg〉 | g ∈ H}.

Using the information in [2, Table 8.42], we deduce

|Ω1| =
q6(q6 − 1)(q2 − 1)

(q2 − q + 1)6
=

q6(q3 − 1)(q2 − 1)(q + 1)

6
.

Let Ω2 := {M̄g | g ∈ H}. Using the information in [2, Table 8.42], we deduce

|Ω2| =
q6(q6 − 1)(q2 − 1)

(q3 + 1)q3(q − 1)
= q3(q3 − 1)(q + 1).
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Now, consider the bipartite graph having vertex set Ω1 ∪ Ω2 and having edge set consisting of the pairs {A,B} with
A ∈ Ω1, B ∈ Ω2 and A ≤ B. Fix B ∈ Ω2. Using the structure of the Ree group B, we see that the number of A ∈ Ω1

with A ≤ B is
(q3 + 1)q3(q − 1)

(q +
√
3q + 1)6

=
(q −√

3q + 1)q3(q2 − 1)

6
.

In particular, the number of edges of the bipartite graph is

|Ω2|
(q −√

3q + 1)q3(q2 − 1)

6
=

q6(q3 − 1)(q2 − 1)(q −√
3q + 1)(q + 1)

6
.

This shows that the number of elements in Ω2 containing the element M̄ ∈ Ω1 is

q6(q3−1)(q2−1)(q−√
3q+1)(q+1)

6

|Ω1|
= q −

√

3q + 1.

Thus

|M(H,x)| = |{NH(〈x〉)} ∪ {M ∈ Ω2 | x ∈ M}| = q −
√

3q + 2.

From [11, Theorem 1], we have µ(θ,M\H) < 1/(q2 − q + 1) for every M ∈ M(θ,M \H). Therefore

∑

M∈M(H,x)

µ(θ,M\H) ≤ q −√
3q + 2

q2 − q + 1
< 1.

Now Lemma 2.2 shows that t(H) = 1. �

Lemma 3.7. Let e be a positive integer with e ≥ 2, let q = 2e and let H be an almost simple group with socle S := Sp4(q)
and with H containing an outer automorphism which is not a field automorphism. Then t(H) = 1.

Proof. Recall that |Aut(S) : S| = 2e. Let K ≤ H with H = KS and let θ ∈ K \ S. Let r be a primitive prime divisor of
q4 − 1. From the structure of the classical group Sp4(q), we deduce that the Sylow r-subgroups of S are cyclic. Let x ∈ S
be an element generating a Sylow r-subgroup of S.

Let M ∈ M(H,x). Here we use the information in [2, Table 8.14]. From the list of the maximal subgroups of H
and recalling that H does contain an outer automorphism which is not a field automorphism, we deduce that either
M = NH(〈x〉), or e is odd and M ∩S ∼= 2B2(q). In particular, when e is even, we have M(H,x) = {NH(〈x〉)}. Therefore,
we deduce ∑

M∈M(H,x)

µ(θ,M\H) = µ(θ,NH(〈x〉)\H) < 1,

and hence t(H,K) = 1, from Lemma 2.2.
Suppose now that e is odd and let M̄ ∈ M(H,x) \ {NH(〈x〉)}. Then M̄ ∩ S ∼= 2B2(q). Observe that from the “c”

column in [2, Table 8.14], we deduce that the maximal subgroups of H with M̄ ∩ S isomorphic to 2B2(q) form a unique
conjugacy class. Observe that

q4 − 1 = (q2 − 1)(q +
√

2q + 1)(q −
√

2q + 1).

In particular, the primitive prime divisor r of q4−1 can be chosen so that r divides q+
√
2q+1. Let Ω1 := {〈xg〉 | g ∈ H}.

Using the information in [2, Table 8.14], we deduce

|Ω1| =
q4(q4 − 1)(q2 − 1)

(q2 + 1)4
=

q4(q2 − 1)2

4
.

Let Ω2 := {M̄g | g ∈ H}. Using the information in [2, Table 8.14], we deduce

|Ω2| =
q4(q4 − 1)(q2 − 1)

(q2 + 1)q2(q − 1)
= q2(q2 − 1)(q + 1).

How, consider the bipartite graph having vertex set Ω1 ∪ Ω2 and having edge set consisting of the pairs {A,B} with
A ∈ Ω1, B ∈ Ω2 and A ≤ B. Fix B ∈ Ω2. Using the structure of the Suzuki group B, we see that the number of A ∈ Ω1

with A ≤ B is
(q2 + 1)q2(q − 1)

(q +
√
2q + 1)4

=
(q −√

2q + 1)q2(q − 1)

4
.

In particular, the number of edges of the bipartite graph is

|Ω2|
(q −√

2q + 1)q2(q − 1)

4
=

q4(q2 − 1)2(q −√
2q + 1)

4
.

This shows that the number of elements in Ω2 containing the element M̄ ∈ Ω1 is

q4(q2−1)2(q−√
2q+1)

4

|Ω1|
= q −

√

2q + 1.
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Thus

|M(H,x)| = |{NH(〈x〉)} ∪ {M ∈ Ω2 | x ∈ M}| = q −
√

2q + 2.

Now, [4, Theorem 1] yields µ(θ,M\H) ≤ |θH |− 1

4 = |H : CH(θ)|− 1

4 for every M ∈ M(H,x). As θ is an outer
automorphism which is not a field automorphism and as e is odd, replacing θ with a suitable power, we may suppose that
θ is an involution and that θ is a graph-field automorphism. From [7], we deduce that CS(θ) ∼= 2B2(q) and hence

|θH | = q4(q4 − 1)(q2 − 1)

(q2 + 1)q2(q − 1)
= q2(q2 + 1)(q + 1).

Therefore
∑

M∈M(M,x)

µ(θ,M\H) ≤ q −√
2q + 2

(q2(q2 + 1)(q + 1))1/4
< 1,

where the last inequality follows with a computation. Now Lemma 2.2 shows that t(H) = 1. �

Lemma 3.8. Let H be an almost simple group with socle S. Then there exists a subgroup K of H with H = KS and

with mK(H) > t(H).

Proof. Suppose first H = S. Choose K := 1. Then mK(H) = m(H) ≥ 3, because we can generate H = S with conjugated
involutions. Therefore, the proof follows from (2.1). Thus, for the rest of the argument, we suppose H 6= S. Now, we use
the Classification of Finite Simple Groups and we divide our proof depending on the type of S.

Alternating groups: Suppose S is an alternating group Alt(n) of degree n ≥ 5. Assume first n 6= 6, or n = 6 and
H = Sym(6). Then H = Sym(n). Choose K := 〈(1, 2)〉 and let

Λ := {(1, 2, 3), (1, 2)(3, 4), (1, 2)(3, 5), . . . , (1, 2)(3, n)}.
It is readily seen that Λ is a K-independent generating set for H . Therefore, mK(H) ≥ |Λ| = n − 2 ≥ 3 and the proof
follows again from (2.1).

As Alt(6) ∼= PSL2(9), we postpone the proof of the case n = 6 and H 6= Sym(6), when we deal with groups of Lie type.

Sporadic groups: Suppose S is a sporadic simple group. As H 6= S, we deduce H = AutS and S is one of the following
groups

Fi22, F i24, HN, J3,M22, O
′N,HS, J2,McL,He,M12, Suz.

If S ∈ {Fi22, F i24, HN, J3,M22, O
′N}, then it follows from [3, Table 9] that t(H) = 1. However, if we choose α an

involution from H \S and we set K := 〈α〉, then mK(H) ≥ 2, because we can generated H with α and a suitable number
(at least 2) of involutions from S.

If S ∈ {HS, J2,McL,He,M12, Suz}, we have verified that mK(H) ≥ 3 using magma: in all cases there exists α ∈ H \S
with |α| = 2 and three conjugated involutions in S such that {α, t1, t2, t3} is a 〈α〉-independent generating set for H.

Groups of Lie type: Here we use the information and the notation in [7, Section 2.4]. The simple group of Lie type S
is generated by root elements x±α̂(t), where α ∈ Π, Π is a fundamental system for the root system Σ of S, and t lies in a
suitable finite field F. As xα̂(t) is unipotent, xα̂(t) has prime order and hence it is a pp-element.

The action of the automorphism group of S on the root elements x±α̂(t) is described in [7, Section 2.5] and again
we use the information and the notation therein. The outer automorphisms of S are divided in inner-diagonal, field
and graph automorphisms. These can be chosen so that inner-diagonal and field automorphisms normalize each root
subgroup 〈xα̂(t) | t ∈ F〉; whereas, graph automorphisms permute the root subgroups according to the action of the graph
automorphism on the nodes of the Dynkin diagram. In particular, we may choose a supplement K of S in H so that the
elements in K consist of inner-diagonal, field and graph automorphisms, with respect to the choice of the root system Σ.
Now, let Π̃ ⊆ Π be a set of representatives of the orbits for the action of K on Π. Then

H = 〈K,xα̂(t) | α ∈ ±Π̃, t ∈ F〉
and hence from the set {xα̂(t) | α ∈ ±Π̃, t ∈ F} we may extract a K-independent generating set Y for H consisting of
pp-elements. For each β ∈ ±Π, define Sβ := 〈xα̂(t) | α ∈ ±Π \ {β}, t ∈ F〉. Observe that Sβ is contained in a proper

parabolic subgroup of S normalized by K. This implies |Y | ≥ 2|Π̃|. A direct inspection on the various root systems gives
that one of the following holds:

(1) |Π̃| ≥ 2, or
(2) S is a simple group of Lie type of Lie rank 1, that is, S ∈ {A1(q) = PSL2(q),

2A2(q) = PSU3(q),
2B2(q),

2G2(q)},
or

(3) S = A2(q) = PSL3(q) and H � PΓL3(q),
(4) S = B2(q) = PSp4(q), q = 2e for some e ≥ 1 and H contains an outer automorphism which is not a field

automorphism,
(5) S = G2(q), q = 3e for some e ≥ 1, and H contains an outer automorphism which is not a field automorphism.
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If (1) holds, then the proof follows from (2.1). In the remaining cases, we have shown in Lemmas 3.1, 3.2, 3.3, 3.4, 3.5, 3.6
and 3.7 that t(H) = 1. Using this slight refinement on the value of t(H) and repeating the argument above for the remaining
groups we deduce mK(H) ≥ 2 > 1 = t(H). �

3.2. Pulling the threads of the argument.

Proof of Theorem 1.1. We argue by contradiction and among all non-soluble Bpp-groups we choose G having minimal
order.

Let N be a minimal normal subgroup of G. From Lemma 2.4, G/N is a Bpp-group and hence, from our minimal choice
of G, we deduce that

(3.1) G/N is solvable.

Suppose that G has two distinct minimal normal subgroups N1 and N2. Since N1∩N2 = 1, G embeds into the cartesian
product G/N1 × G/N2. As G/N1 and G/N2 are both solvable, we deduce that G is solvable, which is a contradiction.
Therefore, G has a unique minimal normal subgroup N , that is, G is monolithic.

If N is abelian, then G is solvable by (3.1), which is a contradiction. Therefore, N is non-abelian and hence N ∼= Sn,
for some non-abelian simple group S. Write N := S1 × · · · × Sn, where S1, . . . , Sn are the simple direct factors of N . Let
H be the subgroup of Aut(S) induced by the conjugacy action of NG(S1) on S. Clearly, H is an almost simple group
with socle S. Moreover, since G is monolithic, G embeds into the wreath product H ≀ Sym(n) and hence, without loss of
generality, we may assume that G is a subgroup of H wrSym(n) with Sn ≤ G and with

π : NG(S1) → H

projecting onto H . In particular, we may write the elements of G as ordered pairs fσ, with f ∈ Hn and σ ∈ Sym(n).
Let

m1 = m(G/N).

Let

Y = {g1, . . . , gm1
}

be a set of pp-elements of G with {g1N, . . . , gm1
N} a pp-base for G/N .

Let

K := π(N〈Y 〉(S1)).

As G = 〈Y 〉N , from the modular law we get

NG(S1) = NG(S1) ∩G = (NG(S1) ∩ 〈Y 〉)N = N〈Y 〉(S1)N.

Thus

H = π(NG(S1)) = π(N〈Y 〉(S1))π(N) = KS.

Let X be a set of pp-elements in S with H = 〈X,K〉 and having cardinality t(H,K). Let

X̃ := {(x, 1, . . . , 1
︸ ︷︷ ︸

n−1 times

) ∈ N | x ∈ X}

and observe that X̃ ⊆ Sn = N ≤ G ≤ H wrSym(n).
As N is a minimal normal subgroup of G, G acts transitively by conjugation on the set {S1, . . . , Sn} of simple direct

factors of N . From this, it follows that Y ∪ X̃ is a generating set for G. As Y ∪ X̃ consists of pp-elements and as all
pp-bases of G have the same cardinality, we get mpp(G) ≤ m1 + t(H,K) ≤ m1 + t(H). Thus

(3.2) m(G) ≤ m1 + t(H),

by Lemma 2.3.
Recall the definition of µ(G) and µ(S) in Section 2.1. In [14, page 403, inequality (1)] and in [13, Proposition 4], it

is proved that µ(G) ≥ µ(H). Moreover, by [13, Lemma 7], we have µ(H) ≥ mK(H), for every subgroup K of H with
H = KS. In particular, combining these two results, we deduce µ(G) ≥ mK(H). From (3.2), we get

t(H) ≥ m(G) −m1 = m(G) −m(G/N) = µ(G) ≥ mK(H),

for every subgroup K of H with H = KS. However, this contradicts Lemma 3.8. �

Proof of Corollary 1.2. Let G be a Bpp-group with Φ(G) = 1. From Theorem 1.1, G is solvable and hence the proof now
follows from [16, Theorem 1.2]. �
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4. Proof of Theorem 1.3

Let G be a finite group. Take a chief series

1 = Gt E · · ·EG0 = G

and consider the non-negative integers µi = m(G/Gi+1)−m(G/Gi). Clearly

(4.1) m(G) =
∑

0≤i≤t−1

µi.

Information on the values of µi have been obtained in [13], where is it proved in particular:

• if Gi/Gi+1 is abelian, then µi = 0 if Gi+1/Gi ≤ Φ(G/Gi+1), µi = 1 otherwise;
• if Gi/Gi+1 is non-abelian, then µi = µi(Li) = m(Li)−m(Li/ socLi), where Li = G/CG(Gi/Gi+1).

In the second case, Li is a monolithic group and socLi = Sni

i where ni is a positive integer and Si is a finite non-abelian
simple group. As we already recalled in the previous section, by [14, page 403, inequality (1)] and [13, Proposition 4],
there exists an almost simple group Hi such that socHi = Si and µi = µ(Li) ≥ µ(Hi). Moreover, by [13, Lemma 7], we
have µ(Hi) ≥ mKi

(Hi), for every subgroup Ki of Hi with Hi = KiSi. By the results in Section 3, for every choice of Hi

there exists Ki such that KiSi = Hi and mKi
(Hi) ≥ 2. So µi ≥ 2 whenever Gi/Gi+1 is non-abelian, and therefore the

statement of Theorem 1.3 follows from (4.1).
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