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Abstract: We consider the Helmholtz equation and the fractional Laplacian in the case of the
complex-valued unbounded variable coefficient wave number µ, approximated by finite differences.
In a recent analysis, singular value clustering and eigenvalue clustering have been proposed for a τ

preconditioning when the variable coefficient wave number µ is uniformly bounded. Here, we extend
the analysis to the unbounded case by focusing on the case of a power singularity. Several numerical
experiments concerning the spectral behavior and convergence of the related preconditioned GMRES
are presented.

Keywords: Caputo fractional derivatives; Helmholtz equations; eigenvalue asymptotic distribution;
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1. Introduction

In the present, the fractional Laplacian operator (−∆)α/2(·) is considered. Its formal
definition is

(−∆)α/2(u(x, y)) = cαP.V.
∫
R2

u(x, y)− u(x̃, ỹ)

[(x − x̃)2 + (y − ỹ)2]
2+α

2
dx̃dỹ, cα =

2αΓ( α+2
2 )

π|Γ(−α
2 )|

,

where Γ(.) is the Gamma function. More explicitly, our problem consists in finding fast
solvers for the numerical approximation of a two-dimensional nonlocal Helmholtz equation
with fractional Laplacian described by the equations{

(−∆)α/2u(x, y) + µ(x, y)u(x, y) = v(x, y), (x, y) ∈ Ω ⊂ R2, α ∈ (1, 2),
u(x, y) = 0, (x, y) ∈ Ωc,

(1)

with a given variable-coefficient, complex-valued wave number µ = µ(x, y), and with
source term v. Here, Ω is taken [0, 1]2 ⊂ R2 and Ωc is the complement of Ω. In what
follows, µ(x, y) = 1

(x+iy)γ for some γ > 0, the case of a bounded µ(x, y) has been studied
by Adriani et al. [1] and by Li et al. [2].

To approximate Equation (1), we employ the fractional centered differences (FCD).
Given a positive integer n, we take h = 1

n+1 as the step size. We define xi = ih and yj = jh
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for every i, j ∈ Z. The discrete version of the fractional Laplacian in such a setting is given
by

(−∆h)
α/2(u(x, y)) :=

1
hα ∑

k1,k2∈Z
b(α)k1,k2

u(x + k1h, y + k2h), (2)

where b(α)k1,k2
are the Fourier coefficients of the function

tα(η, Ψ) =

[
4 sin2

(η

2

)
+ 4 sin2

(
Ψ
2

)] α
2
, (3)

that is
b(α)k1,k2

=
1

4π2

∫ π

−π

∫ π

−π
tα(η, Ψ)e−i(k1η+k2Ψ)dηdΨ,

where i is the imaginary unit.
Proceeding as in [1] we trace back the original problem to solving the following

linear system
Anu := (Bn + Dn(µ))u = f , n = (n, n), (4)

where Bn = 1
hα B̂n, and B̂n is the two-level symmetric Toeplitz matrix generated by tα(η, Ψ),

i.e., Bn = Tn(tα) with

Bn =



B0 B1 B2 · · · Bn−2 Bn−1
B1 B0 B1 · · · Bn−3 Bn−2
B2 B1 B0 · · · Bn−4 Bn−3
...

...
...

. . .
...

...
Bn−2 Bn−3 Bn−4 · · · B0 B1
Bn−1 Bn−2 Bn−3 · · · B1 B0


,

Bj =



b(α)0,j b(α)1,j b(α)2,j · · · b(α)n−2,j b(α)n−1,j

b(α)1,j b(α)0,j b(α)1,j · · · b(α)n−3,j b(α)n−2,j

b(α)2,j b(α)1,j b(α)0,j · · · b(α)n−4,j b(α)n−3,j
...

...
...

. . .
...

...
b(α)n−2,j b(α)n−3,j b(α)n−4,j · · · b(α)0,j b(α)1,j

b(α)n−1,j b(α)n−2,j b(α)n−3,j · · · b(α)1,j b(α)0,j


.

For the sake of simplicity, the previous equation is rewritten in the following scaled form

Ânu := (B̂n + hαDn(µ))u = v, n = (n, n). (5)

For the two-level notations and the theory regarding Toeplitz structures, refer to [3].
In the case where µ(x, y) = 1/(x + iy)γ we can give sufficient conditions on the coeffi-

cient γ, depending on α, in order to guarantee that {hαDn(µ)}n is zero distributed in the
eigenvalue/singular value sense, thus obtaining the spectral distribution of the sequence
{Ân}n which, under mild conditions, has to coincide with that of {B̂n}n. In the next sec-
tion, we first introduce the necessary tools and then present theoretical results completing
those in [1,2] and related numerical experiments. The numerical experiments concern the
visualization of the distribution/clustering results and the optimal performances of the
related preconditioning when the preconditioned GMRES is used.

We highlight that the spectral analysis for the considered preconditioned and nonpre-
conditioned matrix-sequences for unbounded µ(x, y) is completely new. In fact, in [1,2]
the assumption of boundedness of the wave number is always employed; furthermore,
in [2] the results are focused on eigenvalue localization findings, while in [1] the singular
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value analysis is the main target. Finally, we stress that our eigenvalue results are nontrivial
given the non-Hermitian and even non-normal nature of the involved matrix sequences.

2. Spectral Analysis

First, we report a few definitions regarding the spectral and singular value distribution,
the notion of clustering and a few relevant relationships among the various concepts. Then,
we present the main theoretical tool taken from [4] and we perform a spectral analysis of the
various matrix-sequences. Numerical experiments and visualization results corroborating
the analysis are presented in the last part of the section.

Definition 1. Let {An}n be a sequence of matrices, with An of size dn, and let ψ : D ⊂ Rt → Cr×r

be a measurable function defined on a set D with 0 < µt(D) < ∞.

• We say that {An}n has an (asymptotic) singular value distribution described by ψ, and we
write {An}n ∼σ ψ, if

lim
n→∞

1
dn

dn

∑
i=1

F(σi(An)) =
1

µt(D)

∫
D

∑r
i=1 F(σi(ψ(x)))

r
dx, ∀ F ∈ Cc(R). (6)

• We say that {An}n has an (asymptotic) spectral (or eigenvalue) distribution described by ψ,
and we write {An}n ∼λ ψ, if

lim
n→∞

1
dn

dn

∑
i=1

F(λi(An)) =
1

µt(D)

∫
D

∑r
i=1 F(λi(ψ(x)))

r
dx, ∀ F ∈ Cc(C). (7)

If A ∈ Cm×m, then the singular values and the eigenvalues of A are denoted by
σ1(A), . . . , σm(A) and λ1(A), . . . , λm(A), respectively. Furthermore, if A ∈ Cm×m and
1 ≤ p ≤ ∞, then ∥A∥p denotes the Schatten p-norm of A, i.e., the p-norm of the vector
(σ1(A), . . . , σm(A)); see [5] for a comprehensive treatment of the subject. The Schatten
∞-norm ∥A∥∞ is the largest singular value of A and coincides with the spectral norm ∥A∥.
The Schatten 1-norm ∥A∥1 is the sum of the singular values of A and coincides with the
so-called trace-norm of A, while the Schatten 2-norm ∥A∥2 coincides with the Frobenius
norm of A, which is of great popularity in the numerical analysis community because of its
low computational complexity.

At this point, we introduce the definition of clustering, which, as for the distribution
notions, is a concept only of the asymptotic type. For z ∈ C and ϵ > 0, let B(z, ϵ) be the
disk with center z and radius ϵ, B(z, ϵ)

.
= {w ∈ C : |w − z| < ϵ}. For S ⊆ C and ϵ > 0, we

denote by B(S, ϵ) the ϵ-expansion of S, defined as B(S, ϵ)
.
=

⋃
z∈S B(z, ϵ).

Definition 2. Let {An}n be a sequence of matrices, with An of size dn tending to infinity, and
let S ⊆ C be a nonempty closed subset of C. {An}n is strongly clustered at S in the sense of the
eigenvalues if, for each ϵ > 0, the number of eigenvalues of An outside B(S, ϵ) is bounded by a
constant qϵ independent of n. In symbols,

qϵ(n, S) .
= #{j ∈ {1, . . . , dn} : λj(An) /∈ B(S, ϵ)} = O(1), as n → ∞.

{An}n is weakly clustered at S if, for each ϵ > 0,

qϵ(n, S) = o(dn), as n → ∞.

If {An}n is strongly or weakly clustered at S and S is not connected, then the connected components
of S are called sub-clusters. Of special importance in the theory of preconditioning is the case of
spectral single point clustering where S is made up by a unique complex number s.

The same notions hold for the singular values, where s is a nonnegative number and S is a
nonempty closed subset of the nonnegative real numbers.
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For a measurable function g : D ⊆ Rt → C, the essential range of g is defined as
ER(g) .

= {z ∈ C : µt({g ∈ B(z, ϵ)}) > 0 for all ϵ > 0}, where {g ∈ B(z, ϵ)} .
= {x ∈ D :

g(x) ∈ B(z, ϵ)}. ER(g) is always closed and, if g is continuous and D is contained in the
closure of its interior, then ER(g) coincides with the closure of the image of g.

Hence, if {An}n ∼λ ψ (with {An}n, ψ as in Definition 1), then, by ([6], Theorem 4.2),
{An}n is weakly clustered at the essential range of ψ, defined as the union of the essential
ranges of the eigenvalue functions λi(ψ), i = 1, . . . , r: ER(ψ)

.
=

⋃s
i=1 ER(λi(ψ)): all the

considerations above can be translated in the singular value setting as well, with obvious
minimal modifications.

In addition, the following result holds.

Theorem 1. If ER(ψ) = s with s fixed complex number then we have the subsequent equivalence:
{An}n ∼λ ψ iff {An}n is weakly clustered at s in the eigenvalue sense. Hence, if ER(|ψ|) = s
with s fixed nonnegative number then we have the subsequent equivalence: {An}n ∼σ ψ if {An}n
is weakly clustered at s in the singular value sense.

A noteworthy example treated in the previous theorem is that of zero-distributed
sequences {An}n expressed by definition as {An}n ∼σ 0 (see [3]).

We will make use of [Theorem 1] in [4], which we report below and which extends
previous results in [6] in the context of the zero distribution of zeros of perturbed orthogo-
nal polynomials.

Theorem 2. Let {Xn}n be a matrix-sequence such that each Xn is Hermitian of size dn and
{Xn}n ∼λ f , where f is a measurable function defined on a subset of Rq for some q, with finite
and positive Lebesgue measure. If ∥Yn∥2 = o(

√
dn), with ∥ · ∥2 being the Frobenius norm, then

{Yn}n ∼λ 0 and {Xn + Yn}n ∼λ f .

2.1. Main Results

We study the eigenvalue distribution results of the two matrix-sequences {hαDn(µ)}n
and {An = B̂n + hαDn(µ)}n, in the sense of Definition 1. The same kind of matrices and
matrix-sequences are treated in [1,2]. In [2] eigenvalues localization results are studied,
while in [1] singular value and eigenvalue distribution results are obtained and in both
cases, the coefficient µ(x, y) is assumed bounded. Here, we extend the results in the
quoted literature.

Theorem 3. Let µ(x, y) = 1/(x + iy)γ. Then, for every γ ≥ 0 such that α > γ − 1 (α ∈ (1, 2)),
we have

a1 {hαDn(µ)}n ∼λ 0;
a2 {B̂n + hαDn(µ)}n ∼λ tα.

Proof. In the proof we strongly rely on Theorem 2. Therefore, we compute

∥hαDn(µ)∥2
2 =

n

∑
i,j=1

|µij|2h2α

=
n

∑
i,j=1

(
|ih|2 + |jh|2

)−γ
h2α

= h2α−2γ
n

∑
i,j=1

1
(i2 + j2)γ

.
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Then, we estimate the quantity ∑n
i,j=1

1
(i2+j2)γ , under the hypothesis that γ ∈ (0, 1).

n

∑
i,j=1

1
(i2 + j2)γ

= 2
n

∑
i=1

i−1

∑
j=1

1
(i2 + j2)γ

+
1

2γ

n

∑
i=1

1
i2γ

.

Now, the first sum can be estimated as

2
n

∑
i=1

i−1

∑
j=1

1
(i2 + j2)γ

≤ 2
n

∑
i=1

i − 1
i2γ

= 2
n

∑
i=1

1
i2γ−1 − 2

n

∑
i=1

1
i2γ

. (8)

Therefore,

n

∑
i,j=1

1
(i2 + j2)γ

≤ 2
n

∑
i=1

1
i2γ−1 +

(
1

2γ − 2

) n

∑
i=1

1
2γ

.

Note, that 1
2γ−2 < 0 for every γ ∈ (0, 1). A basic computation leads to

2
n

∑
i=1

1
i2γ−1 ≤

∫ n

0

dt
t2γ−1 =

n2−2γ

1 − γ

and

n

∑
i=1

1
2γ

≥
∫ n

0

dt
(t + 1)2γ

=

{
(n+1)1−2γ−1

1−2γ γ ̸= 1
2 ,

log(n + 1) γ = 1
2 .

As a consequence, we conclude that

n

∑
i,j=1

1
(i2 + j2)γ

≤

 n2−2γ

1−γ + (n+1)1−2γ−1
1−2γ γ ̸= 1

2
n2−2γ

1−γ +
(

1
2γ−2

)
log(n + 1) γ = 1

2 ,

so that ∑n
i,j=1

1
(i2+j2)γ ≤ cn(γ) ∼ n2−2γ

1−γ for every γ ∈ (0, 1). This immediately implies that

h2α−2γ
n

∑
i,j=1

1
(i2 + j2)γ

≤ cn(γ)

n2α−2γ
∼ n2−2α

1 − γ
= o(n2)

for every α ∈ (1, 2), as required to apply Theorem 1 in [4] and conclude the proof.
From the computation in Equation (8), we immediately deduce the following: if γ > 1,

∑n
i,j=1

1
(i2+j2)γ ≤ cγ for every n, so that ∥hαDn(µ)∥2

2 = o(n2) if and only if 2α − 2γ + 2 > 0,
that is, α > γ − 1.

Finally, when γ = 1, we obtain the estimate

n

∑
i,j=1

1
i2 + j2

≤ k +
∫ n

1

∫ n

1

1
x2 + y2 dxdy

≤ k +
∫ n

1

(∫ π
2

0

1
r

dθ

)
dr

= k +
π

2
log(n),

with k being any constant independent of n satisfying

k ≥ 2
∞

∑
j=1

1
j2 + 1

− 1
2

.
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As above, this leads to the conclusion that ∥hαDn(µ)∥2
2 = o(n2) if and only if α > γ − 1,

that is γ < α + 1. Then the proof is complete by Theorem 2 with dn = n2.

With reference to the proof of Theorem 3, from a technical point of view, it should be
observed that in [7–9] we can find more refined bounds for terms as ∑n

j=1 jℓ, with various
choices of the real parameter ℓ.

The next corollary complements the previous result.

Corollary 1. Assume that there exist positive constants c ≤ C for which

c/|x + iy|γ ≤ |µ(x, y)| ≤ C/|x + iy|γ.

for every x, y ∈ [0, 1]. Then, for every γ ≥ 0 such that α > γ − 1 (α ∈ (1, 2)), we have

b1 {hαDn(µ)}n ∼λ 0;
b2 {B̂n + hαDn(µ)}n ∼λ tα.

Proof. It follows directly by Theorem 3 with the observation that

cδn ≤ ∥hαDn(µ)∥2 ≤ Cδn

with δn = ∥hαDn(µγ)∥2, µγ(x, y) = 1/(x + iy)γ.
Finally, the proof is concluded by invoking Theorem 2 with dn = n2.

2.2. Preconditioning

For a symmetric Toeplitz matrix Tn ∈ Rn×n with first column [t1, t2, . . . , tn]⊤, the
matrix τ(Tn) defined as

τ(Tn) := Tn − H(Tn) (9)

the natural τ preconditioner of Tn was already considered decades ago in [10–12] when
a great amount of theoretical and computational work was dedicated to preconditioning
strategies for structured linear systems. Here, H(Tn) denotes a Hankel matrix whose
entries are constant along each antidiagonal and whose precise definition is the follow-
ing: the first row and the last column of H(Tn) are given by [t2, t3, . . . , tn−1, 0, 0] and
[0, 0, tn−1, . . . , t3, t2]

⊤, respectively. Notice, that by using the sine transform matrix Sn,
defined as

[Sn]k,j =

√
2

n + 1
sin

(
πkj

n + 1

)
, 1 ≤ k, j ≤ n,

it is known that every τ matrix is diagonalized as τ(Tn) = SnΛnSn, where Λn is a diagonal
matrix constituted by all eigenvalues of τ(Tn), and Sn = ([Sn]j,k) is the real, symmetric,
orthogonal matrix defined before, so that Sn = ST

n = S−1
n . Furthermore, the matrix Sn is

associated with the fast sine transform of type I (see [13,14] for several other sine/cosine
transforms). Indeed the multiplication of a matrix Sn times a real vector can be conducted
in O(n log n) real operations and the cost is around half of the celebrated discrete fast
Fourier transform [15]. Therefore, all the relevant matrix operations in this algebra cost
O(n log n) real operations, including matrix–matrix multiplication, inversion, solution of a
linear system, and computation of the spectrum, i.e., of the diagonal entries of Λn.

Using standard and known techniques, the τ algebra has d-level versions for every
d ≥ 1, in which a τ(Tn), Tn d-level symmetric Toeplitz matrix of size ν(n) = n1n2 · · · nd,
n = (n1, . . . , nd), has the diagonalization form

τ(Tn) = SnΛnSn, Sn = Sn1 ⊗ · · · ⊗ Snd , (10)

with Λn, the diagonal matrix is obtained as a d-level sine transform of type I of the first
column of Tn. Again the quoted d-level transform and all the relevant matrix operations in
the related algebra have a cost of O(ν(n) log ν(n)) real operations which is quasi-optimal
given the fact that the matrices have size ν(n).
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At the algebraic level, the explicit construction can be conducted recursively using
additive decomposition (9): first at the most external level, and then applying the same
operation to any block which is a (d − 1)-level symmetric Toeplitz matrix and so on until
arriving at matrices with scalars.

In light of the excellent structural, spectral, and computation features of the τ algebra
in d levels, two different types of τ preconditioning for the related linear systems were
proposed in [2] and one in [1] (with d = 2 and n = (n, n)). Here, we consider the latter. In
fact, {Tn( f )− τ(Tn( f ))}n ∼σ,λ 0 for any Lebesgue integrable f , thanks to the distribution
results on multilevel Hankel matrix-sequences generated by any L1 function f proven
in [16]. From this, as proven in [1], the preconditioner Pn = τ(Tn(tα)) is such that the
preconditioned matrix sequence is clustered at 1 both in the eigenvalue and singular value
sense under mild assumptions. In fact, using the notion of an approximating class of
sequences, the eigenvalue perturbation results in [6], and the GLT apparatus [3]; it is
enough that µ(x, y) is Riemann integrable or simply bounded. Here, we extend the spectral
distribution results in the case where µ(x, y) is not bounded and even not integrable. More
precisely, as in Corollary 1, we consider the case of a power singularity.

Theorem 4. Assume that there exist positive constants c ≤ C for which

c/|x + iy|γ ≤ |µ(x, y)| ≤ C/|x + iy|γ.

for every x, y ∈ [0, 1]. Consider the preconditioner Pn = τ(Tn(tα)). Then, for every γ ∈ [0, 1) and
for every α ∈ (1, 2)), we have

c1 {P−1
n hαDn(µ)}n ∼λ 0;

c2
{

P−1
n

[
B̂n + hαDn(µ)

]}
n ∼λ 1.

Proof. We rely on Theorem 2, on Corollary 1, and on a standard symmetrization trick. First
of all, we observe that the eigenvalues of P−1

n hαDn(µ) and Yn = P−1/2
n hαDn(µ)P−1/2

n are
the same because the two matrices are similar. The same holds for

P−1
n

[
B̂n + hαDn(µ)

]
and Xn + Yn with

Xn = P−1/2
n B̂nP−1/2

n .

Now Xn is real symmetric, and in fact positive definite and so is B̂n. As proven in [1],
the spectral distribution function of {Xn}n is 1 thanks to a basic use of the GLT theory.
Furthermore, the minimal eigenvalue of Pn = τ(Tn(tα)) is positive and tends to zero as hα,
since tα has a unique zero of order α at zero (see, e.g., [17]). Therefore,

∥hαP−1/2
n ∥ =

hα

λ1(τ(Tn(tα)))
≤ Dh1/2,

∥P−1/2
n ∥ =

1
λ1(τ(Tn(tα)))

≤ Dh−1/2.

As a consequence of Corollary 1 we deduce

∥Yn∥2 ≤ D2∥Dn(µ)∥2 = o(n) (11)

if and only if γ < 1. In conclusion, the desired result follows from Theorem 2 with dn = n2

and f = 1.

Theorem 4 cannot be sharp since the estimate in (11) would hold also if the precon-
ditioner is chosen as Pn = hα In2 . A more careful estimate would require considering that
the eigenvalues of τ(Tn(tα)) are explicitly known, and in fact, we will see in the numerical



Algorithms 2024, 17, 100 8 of 19

experiments that the spectral clustering at 1 of the preconditioned matrix-sequence is
observed also for γ to be much larger than 1.

2.3. Numerical Evidence: Visualizations of the Original Matrix-Sequence

In the current subsection, we report visualizations regarding the analysis in Theo-
rem 3. More precisely, in Figures 1–4, we plot the eigenvalues of the matrix Ân, when the
matrix-size is n2 = 212 and when (α, γ) ∈ {(1.2, 1), (1.4, 1), 1.6, 1), (1.8, 1)}, satisfying the
assumption of Theorem 3 given by γ < α + 1. As it can be observed, the clustering at zero
of the imaginary part of the eigenvalues of Ân and the relation {Ân} ∼λ tα are visible
already for a moderate matrix size of 212. A remarkable fact is that no outliers are present,
since the imaginary parts are always negligible and the graph is of an equispaced sampling
of tα and of the real parts of the eigenvalues, both sets are in nondecreasing order and
superpose completely.

1 2 3

-0.022

-0.02

-0.018

-0.016

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

Figure 1. Eigenvalues of the matrix Ân for γ = 1, α = 1.2 and n2 = 212. The left panel re-
ports the eigenvalues in the complex plane. The right panel reports in blue the real part of the
eigenvalues and in red the equispaced samplings of tα in nondecreasing order, in the interval
[min tα = 0, max tα = 23α/2].
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Figure 2. Eigenvalues of the matrix Ân for γ = 1, α = 1.4 and n2 = 212. The left panel re-
ports the eigenvalues in the complex plane. The right panel reports in blue the real part of the
eigenvalues and in red the equispaced samplings of tα in nondecreasing order, in the interval
[min tα = 0, max tα = 23α/2].
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Figure 3. Eigenvalues of the matrix Ân for γ = 1, α = 1.6 and n2 = 212. The left panel re-
ports the eigenvalues in the complex plane. The right panel reports in blue the real part of the
eigenvalues and in red the equispaced samplings of tα in nondecreasing order, in the interval
[min tα = 0, max tα = 23α/2].
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Figure 4. Eigenvalues of the matrix Ân for γ = 1, α = 1.8 and n2 = 212. The left panel re-
ports the eigenvalues in the complex plane. The right panel reports in blue the real part of the
eigenvalues and in red the equispaced samplings of tα in nondecreasing order, in the interval
[min tα = 0, max tα = 23α/2].
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2.4. Numerical Evidence: Preconditioning, Visualizations, GMRES Iterations

In the present subsection, we consider the preconditioned matrices. More in detail,
Tables 1–4 concern the measure of the clustering at 1 with radius ϵ = 0.1, 0.01, for γ = 0.5,
0.8, 1, 1.5, for α = 1.2, 1.4, 1.6, 1.8, for various matrix-dimensions n2 = 28, 210, 212. As can be
seen, the number No(ϵ) = No(ϵ, n) increases moderately with n, but the percentage of the
number of outliers with respect to the matrix-size tends to zero fast and this is in agreement
with the forecast of Theorem 4, at least for γ < 1: the situation is indeed better than the
theoretical predictions because even when the condition γ < 1 is violated, we still observe
a clustering at 1 and this is not a surprise given the comments after Theorem 4.

Table 1. Number of outliers No(ϵ) with respect to a neighborhood of 1 of radius ϵ = 0.1 or ϵ = 0.01
and related percentage for increasing dimension n2.

µ(x, y) = 1/(x + iy)γ, γ = 0.5
n No(0.1) Percentage No(0.01) Percentage

α = 1.2
24 2 7.812500 × 10−1 227 8.867188 × 101

25 6 5.859375 × 10−1 302 2.949219 × 101

26 16 3.906250 × 10−1 307 7.495117 × 100

α = 1.4
24 1 3.906250 × 10−1 89 3.476562 × 101

25 5 4.882812 × 10−1 99 9.667969 × 100

26 13 3.173828 × 10−1 154 3.759766 × 100

α = 1.6
24 0 0 35 1.367188 × 101

25 3 2.929688 × 10−1 60 5.859375 × 100

26 8 1.953125 × 10−1 112 2.734375 × 100

α = 1.8
24 0 0 20 7.812500 × 100

25 0 0 38 3.710938 × 100

26 0 0 73 1.782227 × 100

Table 2. Number of outliers No(ϵ) with respect to a neighborhood of 1 of radius ϵ = 0.1 or ϵ = 0.01
and related percentage for increasing dimension n2.

µ(x, y) = 1/(x + iy)γ, γ = 0.8
n No(0.1) Percentage No(0.01) Percentage

α = 1.2
24 3 1.171875 × 100 233 9.101562 × 101

25 7 6.835938 × 10−1 395 3.857422 × 101

26 16 3.906250 × 10−1 456 1.113281 × 101

α = 1.4
24 2 7.812500 × 10−1 115 4.492188 × 101

25 6 5.859375 × 10−1 131 1.279297 × 101

26 15 3.662109 × 10−1 182 4.443359 × 100

α = 1.6
24 0 0 46 1.796875 × 101

25 3 2.929688 × 10−1 66 6.445312 × 100

26 8 1.953125 × 10−1 116 2.832031 × 100

α = 1.8
24 0 0 20 7.812500 × 100

25 0 0 39 3.808594 × 100

26 0 0 75 1.831055 × 100
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Table 3. Number of outliers No(ϵ) with respect to a neighborhood of 1 of radius ϵ = 0.1 or ϵ = 0.01
and related percentage for increasing dimension n2.

µ(x, y) = 1/(x + iy)γ, γ = 1
n No(0.1) Percentage No(0.01) Percentage

α = 1.2
24 8 3.125000 × 100 235 9.179688 × 101

25 11 1.074219 × 100 450 4.394531 × 101

26 22 5.371094 × 10−1 588 1.435547 × 101

α = 1.4
24 2 7.812500 × 10−1 128 50
25 6 5.859375 × 10−1 164 1.601562 × 101

26 15 3.662109 × 10−1 217 5.297852 × 100

α = 1.6
24 0 0 58 2.265625 × 101

25 2 1.953125 × 10−1 76 7.421875 × 100

26 8 1.953125 × 10−1 123 3.002930 × 100

α = 1.8
24 0 0 27 1.054688 × 101

25 0 0 43 4.199219 × 100

26 0 0 78 1.904297 × 100

Table 4. Number of outliers No(ϵ) with respect to a neighborhood of 1 of radius ϵ = 0.1 or ϵ = 0.01
and related percentage for increasing dimension n2.

µ(x, y) = 1/(x + iy)γ, γ = 1.5
n No(0.1) Percentage No(0.01) Percentage

α = 1.2
24 20 7.812500 × 100 237 9.257812 × 101

25 33 3.222656 × 100 547 5.341797 × 101

26 55 1.342773 × 100 923 2.253418 × 101

α = 1.4
24 9 3.515625 × 100 154 6.015625 × 101

25 13 1.269531 × 100 246 2.402344 × 101

26 24 5.859375 × 10−1 367 8.959961 × 100

α = 1.6
24 3 1.171875 × 100 78 3.046875 × 101

25 5 4.882812 × 10−1 117 1.142578 × 101

26 11 2.685547 × 10−1 181 4.418945 × 100

α = 1.8
24 1 3.906250 × 10−1 42 1.640625 × 101

25 1 9.765625 × 10−2 61 5.957031 × 100

26 1 2.441406 × 10−2 97 2.368164 × 100

The clustering in the preconditioning setting is also visualized in Figures 5–8, while
Table 5 accounts for the fact that the localization around 1 is very good since we do not
have large outliers. The moderate size of the outliers indicates that the preconditioned
GMRES is expected to be optimal and robust with respect to all the involved parameters.
The latter is evident in Table 6 with a slight increase in the number of iterations when γ
increases, so that the number and the magnitude of the outliers are slightly larger.
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Figure 5. Eigenvalues of the preconditioned matrix of size n2 = 212 for γ = 0.5 and α =

{1.2, 1.4, 1.6, 1.8}, respectively.
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Figure 6. Eigenvalues of the preconditioned matrix of size n2 = 212 for γ = 0.8 and α =

{1.2, 1.4, 1.6, 1.8}, respectively.
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Figure 7. Eigenvalues of the preconditioned matrix of size n2 = 212 for γ = 1 and α =

{1.2, 1.4, 1.6, 1.8}, respectively.
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Figure 8. Eigenvalues of the preconditioned matrix of size n2 = 212 for γ = 1.5 and α =

{1.2, 1.4, 1.6, 1.8}, respectively.
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Table 5. Maximal distance of eigenvalues of the preconditioned matrix from 1 for increasing dimen-
sion n2.

µ(x, y) = 1/(x + iy)γ

γ = 0.5
n α = 1.2 α = 1.4 α = 1.6 α = 1.8
24 1.289012 × 10−1 1.065957 × 10−1 8.471230 × 10−2 5.120695 × 10−2

25 1.660444 × 10−1 1.580600 × 10−1 1.257282 × 10−1 6.848000 × 10−2

26 2.157879 × 10−1 2.018168 × 10−1 1.609333 × 10−1 9.085515 × 10−2

γ = 0.8
n α = 1.2 α = 1.4 α = 1.6 α = 1.8
24 1.495892 × 10−1 1.105071 × 10−1 8.629435 × 10−2 5.992612 × 10−2

25 1.699374 × 10−1 1.589429 × 10−1 1.257050 × 10−1 6.831767 × 10−2

26 2.172238 × 10−1 2.017168 × 10−1 1.604429 × 10−1 9.037168 × 10−2

γ = 1
n α = 1.2 α = 1.4 α = 1.6 α = 1.8
24 1.775892 × 10−1 1.177315 × 10−1 9.016597 × 10−2 6.761970 × 10−2

25 1.783878 × 10−1 1.626862 × 10−1 1.274329 × 10−1 6.947072 × 10−2

26 2.226273 × 10−1 2.038328 × 10−1 1.612753 × 10−1 9.085565 × 10−2

γ = 1.5
n α = 1.2 α = 1.4 α = 1.6 α = 1.8
24 6.788881 × 10−1 3.445147 × 10−1 1.712513 × 10−1 1.195110 × 10−1

25 8.354951 × 10−1 3.702033 × 10−1 1.651846 × 10−1 1.109992 × 10−1

26 1.029919 × 100 3.983900 × 10−1 1.686921 × 10−1 1.048754 × 10−1

Table 6. Number of preconditioned GMRES iterations to solve the linear system for increasing
dimension n2 till tol = 10−11.

µ(x, y) = 1/(x + iy)γ

γ = 0.5
α = 1.2 α = 1.4 α = 1.6 α = 1.8

n - Pτ - Pτ - Pτ - Pτ

24 35 9 41 8 47 7 54 7
25 54 9 67 9 83 8 101 7
26 82 10 109 9 144 8 189 7
27 124 11 177 10 251 9 351 7
28 189 11 288 10 437 9 >500 8
29 287 11 467 10 >500 9 >500 8

γ = 0.8
α = 1.2 α = 1.4 α = 1.6 α = 1.8

n - Pτ - Pτ - Pτ - Pτ

24 36 9 42 9 49 8 56 7
25 55 10 68 9 85 8 103 7
26 83 11 111 10 147 9 192 7
27 126 11 180 10 256 9 356 8
28 191 12 293 10 449 9 >500 8
29 290 12 477 11 >500 10 >500 8

γ = 1
α = 1.2 α = 1.4 α = 1.6 α = 1.8

n - Pτ - Pτ - Pτ - Pτ

24 36 10 42 9 49 8 56 7
25 55 11 69 10 86 9 104 7
26 84 11 112 10 148 9 193 8
27 127 12 182 10 258 9 359 8
28 193 12 295 11 452 10 >500 8
29 293 12 480 11 >500 10 >500 8
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Table 6. Cont.

µ(x, y) = 1/(x + iy)γ

γ = 1.5
α = 1.2 α = 1.4 α = 1.6 α = 1.8

n - Pτ - Pτ - Pτ - Pτ

24 38 13 44 11 51 9 57 8
25 59 14 71 12 88 10 106 8
26 89 16 116 12 152 10 197 8
27 136 17 188 13 264 10 366 8
28 206 18 306 13 461 10 >500 8
29 312 20 498 14 >500 11 >500 9

2.5. Numerical Evidence: When the Hypotheses Are Violated

Here, we check the clustering at zero of the imaginary part of the eigenvalues of
Ân and the relation {Ân} ∼λ tα for a moderate matrix size as 212, for γ = 3, and for
α = 1.2, 1.4, 1.6, 1.8, see Figures 9–12. We stress that the condition γ < α + 1 in Theorem 3
is violated. Nevertheless, the clustering at 0 of the imaginary part is present and the
agreement between an equispaced sampling of tα and the real parts of the eigenvalues of
Ân is still striking.

However, the number and the magnitude of outliers in the preconditioned matrices
start to become significant as reported in Table 7 and Figure 13 and hence, the number of
preconditioned GMRES iterations starts to grow moderately with the matrix-size as can be
seen in Table 8.
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Figure 9. Eigenvalues of the matrix Ân for γ = 3, α = 1.2 and n2 = 212. The left panel re-
ports the eigenvalues in the complex plane. The right panel reports in blue the real part of the
eigenvalues and in red the equispaced samplings of tα in nondecreasing order, in the interval
[min tα = 0, max tα = 23α/2].
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Figure 10. Eigenvalues of the matrix Ân for γ = 3, α = 1.4 and n2 = 212. The left panel re-
ports the eigenvalues in the complex plane. The right panel reports in blue the real part of the
eigenvalues and in red the equispaced samplings of tα in nondecreasing order, in the interval
[min tα = 0, max tα = 23α/2].
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Figure 11. Eigenvalues of the matrix Ân for γ = 3, α = 1.6 and n2 = 212. The left panel re-
ports the eigenvalues in the complex plane. The right panel reports in blue the real part of the
eigenvalues and in red the equispaced samplings of tα in nondecreasing order, in the interval
[min tα = 0, max tα = 23α/2].
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Figure 12. Eigenvalues of the matrix Ân for γ = 3, α = 1.8 and n2 = 212. The left panel re-
ports the eigenvalues in the complex plane. The right panel reports in blue the real part of the
eigenvalues and in red the equispaced samplings of tα in nondecreasing order, in the interval
[min tα = 0, max tα = 23α/2].
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Figure 13. Eigenvalues of the preconditioned matrix of size n2 = 212 for γ = 3 and α = 1.8.

Table 7. Number of outliers No(ϵ) with respect to a neighborhood of 1 of radius ϵ = 0.1 or ϵ = 0.01
and related percentage for increasing dimension n2.

µ(x, y) = 1/(x + iy)γ, γ = 3
n No(0.1) Percentage No(0.01) Percentage

α = 1.8
24 15 5.859375 × 100 85 3.320312 × 101

25 26 2.539062 × 100 162 1.582031 × 101

26 50 1.220703 × 100 303 7.397461 × 100
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Table 8. Number of preconditioned GMRES iterations to solve the linear system for increasing
dimension n2 till tol = 10−11.

µ(x, y) = 1/(x + iy)γ

γ = 3, α = 1.8
n - Pτ

24 69 17
25 125 22
26 236 32
27 454 47
28 >500 70
29 >500 108

3. Conclusions

In this work, we considered a fractional Helmholtz equation approximated by ad
hoc centered differences with variable wave number µ(x, y), in the specific case where
the complex-valued function µ(x, y) has a pole of order γ. Eigenvalue distribution and
clustering results have been derived in [1,2]. The numerical results presented in this
corroborate the analysis.

Many more intricate cases can be treated using the same type of theoretical apparatus,
including the GLT theory [3,18] and non-Hermitian perturbation results, such as those
in [4,6]. We list a few of them.

• The numerical results in Section 2.5 seem to indicate that the spectral distribution of
the original matrix sequence and the spectral clustering at 1 of the preconditioned
matrix sequence holds also when the Frobenius norm condition in [4] is violated; this
is an indication that Theorem 1 in [4] may not be sharp. A related conjecture is that the
key condition ∥Yn∥2

2 = o(n) in Theorem 2 could be replaced by ∥Yn∥p
p = o(n), with

any p ∈ [1, ∞), which would be very useful when the trace norm is considered, i.e.,
for p = 1.

• Definition 1 has been reported with a matrix size of the symbol equal to r ≥ 1. In our
study for matrices arising from finite differences, the parameter r is always equal to 1.
However, when considering isogeometric analysis approximations with polynomial
degree p and regularity k ≤ p− 1 we have r = (p− k)d [19,20]. Notice that a particular
case of the previous formula is the case of p order finite elements in space dimension d
which leads to r = pd [20,21], since k = 0. Also, the discontinuous Galerkin techniques
of degree p are covered: we have r = (p + 1)d [19] because k = −1.

• The above considerations could be considered also in the case where the fractional
Laplacian is defined on a non-Cartesian d-dimensional domain Ω, or equipped with
variable coefficients, or with approximations on graded grids. In fact, the related
GLT theory is already available [3,18,19] for encompassing such a generality, while
non-Hermitian perturbation tools do not depend on a specific structure of the involved
matrix sequences.
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