
Scuola di Dottorato
Università degli Studi di Milano-Bicocca

Department of

Economics, Management, and Statistics

Ph.D. program: Economics and Statistics
Curriculum: Statistics

Cycle: XXXIV°

Developments in discrete latent variable models:

dealing with likelihood multimodality

and clustering of simple hypergraphs

Surname: Brusa
Name: Luca
Registration number: 839359

Supervisor: Prof. Fulvia Pennoni
Co-Supervisor: Prof. Francesco Bartolucci
Tutor: Prof. Giorgio Vittadini

Academic Year: 2021-2022

Abstract

Latent variable models provide a fundamental statistical framework for the analysis of data
in many different fields. These include, but are not limited to, education, psychology, sociol-
ogy, economics, medicine, and engineering. The popularity of these models has significantly
grown in the last decades due to the increasing availability of data and of computational
resources. The thesis is organized as follows.

In Chapter 1 we provide basic background knowledge for the latent variable models
based on a discrete distribution. In particular, we review in some details specific classes
of the models at issue, namely latent class (LC), hidden Markov (HM) and stochastic
block (SB) models. We recall the main underlying assumptions and analyze the standard
maximum likelihood estimation of model parameters through the expectation-maximization
(EM) algorithm.

In Chapter 2 we deal with the problem of multimodality of the log-likelihood function
of discrete latent variable models, and the consequent possible convergence of the EM
algorithm to a local maximum. We introduce a class of optimization methods, namely
tempering or annealing, which employ a parameter known as temperature to re-scale the
target function and monitor the prominence of all maxima. Exploiting the basic idea of these
techniques, we propose a tempered EM algorithm to explore the parameter space adequately
and increase the chance to reach the global maximum. We compare the proposal with the
standard EM algorithm by an extensive Monte Carlo simulation study, evaluating both the
ability to reach the global maximum of the log-likelihood function, and the computational
time. We also employ the proposal on cross-sectional and longitudinal data referred to some
application of interest, showing the main findings for LC and HM models.

In Chapter 3 we consider again the problem of convergence of the EM algorithm to a
local maximum proposing a different approach. We explore the framework of evolutionary
algorithms, a class of optimization methods working according to the biological principles
of natural evolution. We discuss the mechanism of the main evolutionary operators and
propose to apply it within the context of the EM algorithm for the estimation of the

iii

parameters of discrete latent variable models. This approach allows us to explore more
accurately the parameter space exploration and allows us to escape local maxima. The
performance of the resulting algorithm is assessed relying on the same simulation scheme
proposed in Chapter 2. This allows us to compare the two proposals, highlighting the
benefits and drawbacks of both approaches.

In Chapter 4, in the context of SB model, we tackle the need to account for higher-order
interactions, in order to include information deriving from groups of three or more subjects.
We review the notion of hypergraphs and hyperedges, which extend the concept of graphs
and edges respectively, and provide the most general mathematical formalization of high-
order interactions. In particular we distinguish the notion of “simple” hypergraphs, where
hyperedges are subsets of distinct nodes taking part into an interaction, from the notion
of “multisets” hypergraphs, where repeated nodes are allowed in the same hyperedge; we
illustrate how a proper choice has to rely on the specificity of each dataset. In this work,
we focus on model-based clustering for simple hypergraphs, where literature is quite scarce,
and computational challenges increase. We propose a general SB model for simple hyper-
graphs which allows us to capture the information of higher-order interactions. We perform
maximum likelihood estimation of model parameters through a variational EM algorithm,
and explore model selection using the Integrated Classification Likelihood criterion. The
model is applied to both simulated and real data, and the performance of the proposal is
assessed in terms of parameter estimation and ability to recover the clusters.

iv

Contents

Abstract iii

Contents v

List of Figures ix

List of Tables xiii

1 Introduction 1
1.1 An overview of latent variable models . 1

1.1.1 General formulation of discrete latent variable models 2
1.1.2 Maximum likelihood estimation . 3
1.1.3 Further estimation issues . 5

1.2 Relevant examples of discrete latent variable models 5
1.2.1 Latent class model . 6
1.2.2 Hidden Markov model . 9
1.2.3 Stochastic block model . 16

1.3 Outline and main contributions . 19
Bibliography . 21

2 Tempered Expectation-Maximization algorithm for the estimation of dis-
crete latent variable models 25
2.1 Introduction . 25
2.2 Convergence to local maxima . 27

2.2.1 Simulation study of multimodality for latent class model 28
2.3 Annealing and tempering techniques . 37

2.3.1 The origin of simulated annealing . 37
2.3.2 The simulated tempering variant . 40

v

Contents

2.3.3 The parallel tempering version . 41
2.3.4 Other features . 43

2.4 Tempered Expectation-Maximization algorithm 45
2.4.1 Choice of the temperature parameter 45
2.4.2 Tuning of the tempering profiles . 46
2.4.3 T-EM algorithm for the latent class model with categorical response

variables . 48
2.4.4 T-EM algorithm for the hidden Markov model with categorical re-

sponse variables . 49
2.4.5 T-EM algorithm for the hidden Markov model with continuous re-

sponse variables . 50
2.5 Simulation study . 51

2.5.1 Settings of the experimental scenarios 51
2.5.2 Simulation results . 52
2.5.3 Results in terms of computational time 57
2.5.4 The role of the oscillating tempering profile 58
2.5.5 Analysis of the tempered Expectation-Maximization algorithm with

fixed tempering profile . 60
2.6 Initialization of the tempered Expectation-Maximization algorithm 61
2.7 Applications . 65

2.7.1 Evaluation of anxiety and depression 65
2.7.2 Discovering criminal trajectories . 67
2.7.3 Analyzing countries development . 68

2.8 Conclusions . 71
Appendices . 73

A Characteristics of the simulated scenarios 73
B Additional simulation results . 75
C Simulation results with fixed tempering profiles 77
D Real data analysis in terms of computational time 79

Bibliography . 80

3 Evolutionary Expectation-Maximization algorithm for the estimation of
discrete latent variable models 85
3.1 Introduction . 85
3.2 Evolutionary algorithms . 86

3.2.1 Design of evolutionary algorithms . 86

vi

Contents

3.2.2 Previous works . 89
3.3 Evolutionary Expectation-Maximization algorithm 89

3.3.1 Initialization and convergence criterion 91
3.3.2 Model selection . 92

3.4 Simulation study . 93
3.5 Results with real-world data . 96
3.6 Conclusions . 99
Appendices . 101

A Additional simulation results . 101
B Comparison with the oscillating T-EM algorithm 103
C Additional features about crossover and mutation 104

Bibliography . 106

4 Model-based clustering in simple hypergraphs through a stochastic block-
model 109
4.1 Introduction . 109
4.2 Interacting systems and hypergraphs . 111

4.2.1 Higher-order interactions representation: from graphs to hypergraphs 111
4.2.2 The need for simple hypergraphs models 112
4.2.3 Matrix representations of higher-order interactions 115

4.3 Preliminary works about hypergraph modeling 116
4.3.1 The bipartite graph representation and its limits 116
4.3.2 Hypergraphs modeling . 118

4.4 A stochastic block model for hypergraphs 120
4.4.1 Model formulation . 120
4.4.2 Parameter identifiability . 123
4.4.3 Maximum likelihood estimation . 124
4.4.4 Model selection . 131

4.5 Simulation study . 131
4.5.1 Clustering performances . 132
4.5.2 Performance of model selection . 134

4.6 Analysis of a co-authorship dataset . 135
4.6.1 Dataset description . 135
4.6.2 Analysis with the HyperSBM package 135
4.6.3 Comparison with Hypergraph Spectral Clustering 137
4.6.4 Comparison with a bipartite SB model 138

vii

Contents

4.7 Conclusions . 139
Appendices . 141

A Proofs of theoretical results . 141
B Complete proof of the identifiability 145
C Artifacts induced by bipartite graph models 154
D Computational details . 155
E Spectral clustering . 157
F More on the simulation study . 158
G The Hypergraph SB model is not a bipartite SB model 161

Bibliography . 163

viii

List of Figures

1.1 Path diagram of the latent class model for multivariate data. 6
1.2 Path diagram of the basic hidden Markov model for multivariate data. . . . 10
1.3 Path diagram of the stochastic block model. 18

2.1 Graphical representation of the implemented Monte Carlo simulation study 27
2.2 Number of different local maxima obtained estimating the latent class model

with the Expectation-Maximization algorithm 30
2.3 Percentage of global maximum obtained estimating the latent class model

with the Expectation-Maximization algorithm 31
2.4 Configurations of parameters considered for both the simulation and the

estimation phase for the hidden Markov model with categorical response
variables . 34

2.5 Number of different local maxima obtained estimating the hidden Markov
model with categorical response variables with the Expectation-Maximization
algorithm . 35

2.6 Percentage of global maximum obtained estimating the hidden Markov model
with categorical response variables with the Expectation-Maximization algo-
rithm . 36

2.7 Simulated annealing scheme . 40
2.8 Simulated tempering scheme . 42
2.9 Parallel tempering scheme . 43
2.10 Percentages of global maxima obtained using EM and M-T-EM algorithms

under simulated scenarios for the latent class and hidden Markov models
with correctly specified latent structure . 53

2.11 Percentages of global maximum using EM and M-T-EM algorithms under
simulated scenarios for the latent class and hidden Markov models with mis-
specified latent structure . 54

ix

List of Figures

2.12 Percentage of global maximum and mean distance from it using EM, M-T-
EM, and O-T-EM algorithms on simulated data from an LC model correctly
specified with 6 latent classes . 59

2.13 Maximized log-likelihood values for the anxiety and depression data using
standard EM and O-T-EM algorithms for different numbers of the latent
classes k . 66

2.14 Maximized log-likelihood values for the criminal data using standard EM
and O-T-EM algorithms for different numbers of the latent states k 68

2.15 Maximized log-likelihood values for the countries’ economic conditions data
using standard EM and O-T-EM algorithms with k = 7 latent states 70

2.16 Mean distance from the global maximum using EM and M-T-EM algorithms
under simulated scenarios for the latent class and hidden Markov models
with correctly specified latent structure . 75

2.17 Mean distance from the global maximum using EM and M-T-EM algorithms
under simulated scenarios for the latent class and hidden Markov models
with misspecified latent structure . 76

3.1 General scheme to describe the evolutionary algorithm 87
3.2 Percentages of global maxima obtained using EM, M-T-EM, and E-EM al-

gorithms under simulated scenarios for the latent class and hidden Markov
models with correctly specified latent structure 94

3.3 Percentages of global maxima obtained using EM, M-T-EM, and E-EM al-
gorithms under simulated scenarios for the latent class and hidden Markov
models with misspecified latent structure . 95

3.4 Maximized log-likelihood values for the anxiety and depression data using
standard EM, O-T-EM, and E-EM algorithms 97

3.5 Maximized log-likelihood values for the countries’ economic conditions data
using standard EM, O-T-EM, and E-EM algorithms 98

3.6 Maximized log-likelihood values for the criminal data using standard EM,
O-T-EM, and E-EM algorithms . 99

3.7 Mean distance from the global maximum obtained using EM, M-T-EM, and
E-EM algorithms under simulated scenarios for the latent class and hidden
Markov models with correctly specified latent structure 101

3.8 Mean distance from the global maximum using EM, M-T-EM, and E-EM
algorithms under simulated scenarios for the latent class and hidden Markov
models with misspecified latent structure . 102

x

List of Figures

3.9 Percentage of global maximum and mean distance from it using EM, M-T-
EM, O-T-EM, and E-EM algorithms on simulated data from an latent class
model correctly specified with 6 latent classes 103

4.1 Visualization of a set of higher-order interactions through a graph and a
hypergraph . 112

4.2 (a) A bipartite graph G; (b) Projection of G into the multi-hypergraphs with
self-loops space; (c) Projection of G on the simple hypergraphs subspace; (d)
Embedding of the simple hypergraph in (c) in the bipartite graphs space . . 117

4.3 Mean Squared Error between true and estimated model parameters for dif-
ferent scenarios and number of nodes . 133

4.4 Integrated Classification Likelihood index resulting from fitting the HSB
model to the co-authorship dataset with number of latent groups ranging
from 2 to 5 . 135

xi

List of Tables

2.1 Different values (with the corresponding frequency) obtained for the log-
likelihood function on the basis of 100 repetitions of the Expectation-Maximization
algorithm on the same sample, drawn from the latent class model according
to scenario A and n = 5, 000 . 32

2.2 Estimated parameters (weight of each latent class and conditional probabil-
ities of each response variable given the latent class) referred to the results
shown in Table 2.1 . 32

2.3 Summary of all values defining the four simulated scenarios (first phase) for
the hidden Markov model with categorical response variables 33

2.4 Different values (with the corresponding frequency) obtained for the log-
likelihood function after 100 repetitions of the Expectation-Maximization
algorithm on the same sample, drawn from the hidden Markov model with
categorical response variables according to scenario C and time-heterogeneity 37

2.5 Estimated parameters (initial and transition probabilities) referred to the
results shown in Table 2.4 . 38

2.6 Number of samples in which the global maximum is reached with frequency <

10%, > 50%, or > 95%, using EM and M-T-EM algorithms under simulated
scenarios for the latent class model . 55

2.7 Number of samples in which the global maximum is reached with frequency <

10%, > 50%, or > 95%, using EM and M-T-EM algorithms under simulated
scenarios for the hidden Markov model with categorical response variables . 56

2.8 Number of samples in which the global maximum is reached with frequency <

10%, > 50%, or > 95%, using EM and M-T-EM algorithms under simulated
scenarios for the hidden Markov model with continuous response variables . 56

xiii

List of Tables

2.9 Mean square errors of the estimated model parameters with respect to the
true model parameters, using EM and M-T-EM algorithms under simulated
scenarios and estimating models with correct latent structure 57

2.10 Computational time in seconds of the EM and M-T-EM algorithms for each
simulated scenario . 58

2.11 Computational time in seconds of the EM, M-T-EM, and O-T-EM algorithms
for the correctly specified latent class model with 6 latent classes 60

2.12 Influence of the k-means (or k-modes) initialization on the M-T-EM when
the latent structure of the models is correctly specified 63

2.13 Influence of the k-means (or k-modes) initialization on the M-T-EM when
the latent structure of the models is not correctly specified 64

2.14 Number of parameters, maximum log-likelihood and BIC index resulting
from fitting a latent class model on the anxiety and depression data with
EM and O-T-EM algorithms for different numbers of the latent classes k . . 66

2.15 Number of parameters, maximum log-likelihood and BIC index resulting
from fitting a time heterogeneous hidden Markov model on the criminal data
with EM and O-T-EM algorithms for different numbers of the latent states k 67

2.16 Number of parameters, maximum log-likelihood and BIC index resulting
from fitting a time heterogeneous hidden Markov model on the countries’
economic conditions data with EM and O-T-EM algorithms for different
numbers of latent states k . 69

2.17 Description of the simulated scenarios for the latent class model 74
2.18 Description of the simulated scenarios for the hidden Markov model with

categorical response variables . 74
2.19 Description of the simulated scenarios for the hidden Markov model with

continuous response variables . 74
2.20 Performance of the M-T-EM algorithm for latent class and hidden Markov

models when the latent structure is correctly specified, using fixed configu-
rations of tempering constants α and β . 77

2.21 Performance of the M-T-EM algorithm for latent class and hidden Markov
models when the latent structure is not correctly specified, using fixed con-
figurations of tempering constants α and β 78

2.22 Computational times in seconds of the EM and O-T-EM algorithms for the
anxiety and depression data . 79

2.23 Computational times in seconds of the EM and O-T-EM algorithms for the
criminal data . 79

xiv

List of Tables

2.24 Computational times in seconds of the EM and O-T-EM algorithms for the
countries’ economic conditions data . 79

3.1 Number of samples in which the global maximum is reached with frequency
< 5% or > 95%, using EM, M-T-EM, and E-EM algorithms under simulated
scenarios for the latent class model . 96

3.2 Number of samples in which the global maximum is reached with frequency
< 5% or > 95%, using EM, M-T-EM, and E-EM algorithms under simulated
scenarios for the hidden Markov model with categorical response variables . 96

3.3 Number of samples in which the global maximum is reached with frequency
< 5% or > 95%, using EM, M-T-EM, and E-EM algorithms under simulated
scenarios for the hidden Markov model with continuous response variables . 97

4.1 Summary of the parameters of the hypergraph stochastic block model . . . 122
4.2 Number of parameters of the full hypergraph stochastic block model for given

values of Q (number of latent groups) and M (largest hyperedge size) . . . 122
4.3 Adjusted Rand Index for different scenarios and number of nodes 132
4.4 Results of model selection (performed by means of the ICL criterion): fre-

quency of the selected number of groups and average Adjusted Rand Index
of the classification obtained with Q = 3 depending on the selected number
of groups . 134

4.5 Distribution of the number of distinct co-authors per author 136
4.6 Degree distribution of authors in the bipartite graph 136
4.7 Memory size of the matrix containing the products τi1q1 · · · τimqm for given

values of n (number of nodes), Q (number of latent groups) and m (hyperedge
size) . 156

4.8 Performance of the proposed Variational Expectation-Maximization algo-
rithm under different initialization strategies: spectral clustering, “soft” spec-
tral clustering and graph-component absolute spectral clustering 158

4.9 Adjusted Rand Index for different scenarios and number of nodes with respect
to the soft spectral clustering initialization. Each value is obtained as the
average over 10 simulated datasets . 159

4.10 Computational time in seconds of the VEM algorithms for each setting, com-
puted as the mean over 10 simulated samples 160

xv

Chapter 1

Introduction

1.1 An overview of latent variable models

Research workers in various disciplines often face the need to capture complex or conceptual
properties of a system that are difficult to quantify or measure directly. Essentially, these
situations may either refer to true quantities affected by measurement errors, or represent
hypothetical constructs for which there exists no operational method for direct measure-
ment. This behavior is especially true in the framework of social and behavioral sciences,
but applications from other disciplines are becoming more and more common as the avail-
ability and complexity of data increases. These fields include, among others, medicine,
economics, marketing, engineering, geography, and biology.

Latent variables provide a suitable probabilistic way to represent the above concepts: a
latent variable is a random variable whose realizations are hidden from us, in contrast to
manifest variables, where the realizations are observed (von Eye and Clogg, 1994; Borsboom
et al., 2003). Although latent variables are not directly observable themselves, certain of
their effects on the manifest variables are observable, and hence subject to study. To this
aim a broad variety of statistical models, formulated on the basis of latent variables, has
been developed. Due to the wide range of applications, different definitions for such models
are formulated according to specific literatures. Following Bartolucci et al. (2013), we define

1

Chapter 1. Introduction

a latent variable model as a statistical model which relies on specific assumptions on the
conditional distribution of the response variables given the latent variables. See Everitt
(1984), Skrondal and Rabe-Hesketh (2004) and Bartholomew et al. (2011) for a complete
review of latent variable models. In general, a possible classification of the models at issue
distinguishes between discrete and continuous latent variables. In the first case, a Gaussian
distribution is typically assumed, thus resulting in a fully parametric model. In the second
case, the model may be seen as semi-parametric, because no parametric assumptions are
formulated on the distribution of the latent variables; in this way, the model is more flexible
compared to other proposals. In the following, and throughout this whole work, the focus
will be on discrete latent variable (DLV) models (Bartolucci et al., 2022). The following
notation is borrowed from Bartolucci et al. (2013) and Bartolucci et al. (2022).

1.1.1 General formulation of discrete latent variable models

With reference to a single random unit drawn from the population of interest, let Y =

(Y1, . . . , Yr) denote the set of response variables and let U = (U1, . . . , Ul) denote the set of
latent variables, having a discrete distribution. In the following we will assume that each
latent variable has the same number k of latent components.

Given the structure of a latent variable model, it is generally possible to distinguish
between two components:

• the measurements model, which describes the conditional distribution of the response
variables given the latent variables: p(Y = y|U = u). Note that, under the assump-
tion of local independence, we have p(Y = y|U = u) =

∏r
j=1 p(Yj = yj |U = u);

• the latent model, which describes the distribution of the latent variables: p(U = u).

These two distributions depend on specific parameters according to the particular model,
providing the basis for its formulation: by jointly considering them, we can obtain the
manifest distribution, that is, the marginal distribution of the response variables, once the
latent variables have been integrated out. This function assumes the following general
expression

p(Y = y) =
∑
u

p(Y = y|U = u)p(U = u), (1.1)

where the sum
∑

u is over all possible configurations of U . In the special case of a single
latent variable (l = 1), this summation corresponds to

∑k
u=1. Finally, the posterior condi-

tional distribution of the latent variables U given the response variables Y is obtained as

2

1.1. An overview of latent variable models

follows according to the Bayes’ law:

p(U = u|Y = y) =
p(Y = y|U = u)p(U = u)

p(Y = y)
.

These probabilities play a fundamental role both to estimate the model parameters and,
once the model has been estimated, to assign each subject to a certain latent variable
configuration.

It is worth noting that the above formulation of DLV models may be easily generalized
by considering the inclusion of individual covariates either in the measurement model or in
the latent model. These two extensions have very different interpretations: in the first case,
covariates affect the response variables and the main interest is in explaining, through the
latent variables, the heterogeneity between subjects that the observed covariates are not
able to account for. In the second case, instead, covariates are assumed to affect the latent
variables and the focus is on modeling the resulting effects.

1.1.2 Maximum likelihood estimation

As with any statistical model, estimation of DLV model parameters may be based on either
a classical or a Bayesian approach. In this Section, as well as throughout the rest of the
manuscript, we will focus on the first approach, which is typically carried out through
the Expectation-Maximization (EM) algorithm (Baum et al., 1970; Dempster et al., 1977;
McLachlan and Krishnan, 2008). What we obtain from the EM algorithm is the maximum
likelihood estimate of the model parameters on the basis of a sample of n independent units.

To this aim, let yi denote the observed data for subject i and let θ denote the vector
of all model parameters. Then the (incomplete data) log-likelihood function is equal to

ℓ(θ) =
n∑

i=1

log p(Yi = yi) =
∑
y

ny log p(Y = y),

where the summation in the second expression is restricted to all the possible distinct
configurations observed at least once, ny =

∑n
i=1 I(yi = y) is the frequency of configuration

y, and I(·) denotes the indicator function. The latter formulation is generally more efficient
from the computational point of view.

Maximization of ℓ(θ) by means of the EM algorithm requires the so-called complete
data, corresponding to the pairs (yi,ui), i = 1, . . . , n, where ui is the latent configuration

3

Chapter 1. Introduction

for subject i. The complete data log-likelihood has then the following expression

ℓ∗(θ) =
n∑

i=1

log p(Yi = yi,Ui = ui) (1.2)

=
n∑

i=1

log p(Yi = yi|Ui = ui) +
n∑

i=1

log p(Ui = ui).

Here the vectors ui are not directly observable. Hence, starting from an initial guess of
the model parameters, the EM algorithm alternates the following two steps until a suitable
convergence criterion is satisfied (h denotes the algorithm iteration number):

• E-step: compute the conditional expected value of ℓ∗(θ) given the observed data and
the value of the parameters at the previous step:

Q(θ;θ(h−1)) = Eθ(h−1) [ℓ∗(θ)|y];

• M-step: maximize the expected value Q(θ;θ(h−1)) and so update the model param-
eters:

θ(h) = argmax
θ

Q(θ;θ(h−1)).

The use of the EM algorithm ensure many advantages with respect to other maximization
algorithms: among others, we mention the simplicity of implementation, the stable con-
vergence to a local maximum of the log-likelihood function and the availability in many
software packages. On the other hand, a well-known drawback of this approach is related
to the multimodality of the log-likelihood function, which is especially observed when the
model is based on discrete latent variables and has a certain degree of complexity. Con-
sequently, the EM algorithm can converge to a local maximum, not corresponding to the
global one.

Another potentially demanding aspect of the EM algorithm is related to the computa-
tion of the posterior conditional distribution p(U = u|Y = y), which could be infeasible for
complex models. This problem could be sometimes addressed by implementing a backward-
forward recursion (Baum et al., 1970; Welch, 2003). An alternative solution is to approxi-
mate the maximum likelihood estimates through a variational inference approach. In this
case, instead of maximizing the intractable log-likelihood function, we optimize the lower
bound that “best” (in terms of Kullback-Leibler divergence) approximates the log-likelihood
function itself.

4

1.2. Relevant examples of discrete latent variable models

1.1.3 Further estimation issues

In this Section we briefly mention two further aspects related to the estimation of latent
variable models. The first concerns the prediction of the latent variables, usually performed
with the so-called maximum-a-posteriori rule (Goodman, 1974). Following this rule, a
given unit of the sample is assigned to the latent support point with the highest estimated
posterior probability. For simplest models, this corresponds to selecting a specific latent
component. More complex models require instead the more challenging task to select the
sequence of latent components for a certain sample unit (e.g., the latent component for
each time occasion for models on longitudinal data).

Finally, a relevant point in applying latent variable models is the choice of the number
of latent components. Despite the existence of a specific criterion based on the likelihood
ratio test, information criteria are commonly used in most applications. These criteria,
in the case of maximum likelihood estimation (MLE), aim at penalizing the (incomplete)
log-likelihood function in order to reach the best compromise between goodness-of-fit and
model complexity. Among the others, we mention the Akaike information criterion (Akaike,
1973) and the Bayesian information criterion (Schwarz, 1978). The corresponding indices
assume, respectively, the following general expressions:

AIC = −2ℓ̂+ 2#par,

BIC = −2ℓ̂+ log(n)#par,

where ℓ̂ denotes the maximum value of the log-likelihood function and #par the number
of free parameters. Both criteria suggest selecting the number of components of the model
corresponding to the smallest value of AIC or BIC. An alternative class of model selec-
tion criteria is widely used when the log-likelihood function may not be easily computed.
Among them, the integrated classification likelihood (ICL) criterion (Biernacki et al., 2000)
is particularly of interest, as it is based on a penalized form of the complete, rather than the
incomplete, log-likelihood function. Many other model selection criteria have been proposed
in the literature (Bacci et al., 2014; Bouveyron et al., 2019).

1.2 Relevant examples of discrete latent variable models

In this Section we introduce specific classes of DLV models: latent class (LC), hidden
Markov (HM), and stochastic block (SB) models. Mainly borrowing from Bartolucci et al.
(2013) and Bartolucci et al. (2022), we summarize model notation and formulation, and

5

Chapter 1. Introduction

describe the implementation of the standard MLE of the model parameters; see also Bar-
tolucci et al. (2014), Pandolfi et al. (2021), and Daudin et al. (2008).

1.2.1 Latent class model

The LC model (Lazarsfeld and Henry, 1968; Goodman, 1974; Lindsay et al., 1991) is one of
the most well-known latent variable models. It is typically applied for clustering a sample of
subjects on the basis of a series of response variables, relying on the main assumption that
the sample is drawn from a population made by different subpopulations or clusters, which
are not directly observable. All units in the same cluster are assumed to have the same
distribution of the response variables that, in general, is different from the one corresponding
to other clusters.

Model formulation Considering cross-sectional data and for a sample of n independent
individuals, let Yi = (Yi1, . . . , Yir)

′, i = 1, . . . , n, denote the vector of r response variables;
we assume that each variable Yij is categorical with the same number c of categories, labeled
from 0 to c−1. Note that the formulation of the model may be easily adapted to the case of
response variables having a different number of categories; the case of continuous response
variables instead is usually referred to as finite mixture model (Titterington et al., 1985;
Lindsay, 1995; McLachlan and Peel, 2000). The LC model relies on individual-specific
latent variables Ui, i = 1, . . . , n, with k support points that identify the latent classes in
the population, labeled from 1 to k. According to the assumption of local independence,
the response variables are conditionally independent given the latent variable; the resulting
path diagram is represented in Figure 1.1.

Yi1 Yi2 . . . Yir

Ui

Figure 1.1: Path diagram of the latent class model for multivariate data.

The model parameters are the weights of each latent class, denoted by

6

1.2. Relevant examples of discrete latent variable models

πu = p(Ui = u), u = 1, . . . , k,

and the conditional probabilities of each response variable given the latent variable, denoted

by

ϕjy|u = p(Yij = y|Ui = u), y = 0, . . . , c− 1, j = 1, . . . , r, u = 1, . . . , k.

The probabilities πu and ϕjy|u must, obviously, be non-negative and satisfy the constraints∑k
u=1 πu = 1 and

∑c−1
y=0 ϕjy|u = 1, j = 1, . . . r, u = 1, . . . , k. The number of free parameters

of the model is then

#par = k − 1︸ ︷︷ ︸
πu

+ kr(c− 1)︸ ︷︷ ︸
ϕjy|u

.

We let θ = (πu, ϕjy|u)u,y,j denote the model parameter vector.

We can now make explicit the dependence of Equation (1.1) on the specific LC model
parameters; the resulting manifest distribution for any individual i may be expressed as

p(Yi = y) =
k∑

u=1

p(Ui = u)p(Yi = y|Ui = u) =
k∑

u=1

πu

r∏
j=1

ϕjy|u,

where p(Yi = y|Ui = u) =
∏r

j=1 ϕjy|u is the conditional probability of Yi given Ui = u

(measurement model), and y = (y1, . . . , yr)
′ denote a realization of Yi.

Maximum likelihood estimation As generically introduced in Section 1.1.2, in order to
estimate the model parameters θ, we rely on the EM algorithm on the basis of the complete
data log-likelihood. Accounting for the specific parameters of LC model, this function may
be expressed as

ℓ∗ (θ) =

n∑
i=1

log p(Yi = yi|Ui = ui) +

n∑
i=1

log p(Ui = ui) (1.3)

=
r∑

j=1

k∑
u=1

c−1∑
y=0

ajuy log ϕjy|u +
k∑

u=1

bu log πu,

where:

- ajuy =
∑n

i=1 I(ui = u, yij = y) is the frequency of subjects that are in latent class u

and responded by y at the j-th response variable;

- bu =
∑n

i=1 I(ui = u) is the number of sample units in latent class u.

7

Chapter 1. Introduction

In this setting, both expectation and maximization steps are simple to implement; in the
following, referring to Section 1.1.2 for the general structure of the algorithm, we provide
the explicit expressions for both steps:

• E-step: given the observed data and the value of the parameters at the previous step,
compute the conditional expected values of each unknown frequency ajuy and bu in
(1.3). Computation of these expected values is based on the posterior probability
that a subject with observed response configuration y belongs to latent class u:

q(u|y) = p(Ui = u|Yi = y) =
πu
∏r

j=1 ϕjy|u

p(Yi = y)
, u = 1, . . . , k. (1.4)

The following closed-form expressions are then used:

b̂u = E [bu] =
n∑

i=1

q(u|yi) =
∑
y

ny · q(u|y),

âjuy = E [ajuy] =
n∑

i=1

I (yij = y) · q(u|yi) =
∑
y

ny · I (yj = y) · q(u|y).

In particular, b̂u must be computed for u = 1, . . . , k, whereas âjuy must be computed

for j = 1, . . . , r, u = 1, . . . , k, and y = 0, . . . , c− 1.

• M-step: maximize the expected value of ℓ∗(θ) obtained by replacing each variable
ajuy and bu with âjuy and b̂u respectively. As reported in Bartolucci et al. (2013), the
following explicit solutions are available:

– class weights:

πu =
b̂u
n
,

to be computed for u = 1, . . . , k;

– conditional response probabilities:

ϕjy|u =
âjuy

b̂u
,

to be computed for y = 0, . . . , c− 1, j = 1, . . . , r, and u = 1, . . . , k.

8

1.2. Relevant examples of discrete latent variable models

1.2.2 Hidden Markov model

The HM model (Wiggins, 1973; Bartolucci et al., 2013) represents a generalization of the LC
model to the case of longitudinal data. It allows a dynamic clustering where each unit may
move between clusters across time. Although our focus is on longitudinal data, HM models
may be easily adapted to the analysis of time-series (Zucchini et al., 2016; MacDonald and
Zucchini, 2016).

Model formulation For a sample of n individuals and for T time occasions, let Y
(t)
i =

(Y
(t)
i1 , . . . , Y

(t)
ir)′ denote the occasion-specific response variables, i = 1, . . . , n and t = 1, . . . , T ,

and let Yi = (Y
(1)
i , . . . ,Y

(T)
i) denote the vector of response variables, i = 1, . . . , n. In order

to model these responses, let us consider a sequence of latent variables U
(1)
i , . . . , U

(T)
i , col-

lected in the vector Ui and having a discrete distribution with k states. The latent model
parameters are the initial probabilities, denoted by

πu = p(U
(1)
i = u), u = 1, . . . , k,

and the transition probabilities, denoted by

π
(t)
u|ū = p(U

(t)
i = u|U (t−1)

i = ū), t = 2, . . . , T, ū, u = 1, . . . , k.

Note that it is possible to include a constraint corresponding to the hypothesis that the
latent process is time homogeneous, such that the transition probabilities do not depend
on time occasion t: π

(t)
u|ū = πu|ū, t = 2, . . . , T .

The HM model in its basic formulation (Bartolucci et al., 2013) relies on the following
three main assumptions, which can be suitable relaxed:

1. Y
(1)
i , . . . ,Y

(T)
i are conditionally independent given Ui;

2. Y
(t)
i1 , . . . , Y

(t)
ir are conditionally independent given U

(t)
i , for t = 1, . . . , T ;

3. Ui follows a first-order Markov chain with state space {1, . . . , k}, where k is the
number of latent states.

The first two conditions represent a form of local independence; in other words, each
occasion-specific response variable Y

(t)
ij is independent of Y (1)

ij , . . . , Y
(t−1)
ij , Y

(t+1)
ij , . . . , Y

(T)
ij

and of Y (t)
h , for all h = 1, . . . , r, h ̸= j, given U

(t)
i . The resulting model is represented by

the path diagram shown in Figure 1.2.

9

Chapter 1. Introduction

Y
(1)
i1 Y

(1)
ir

. . .

U
(1)
i

Y
(2)
i1 Y

(2)
ir

. . .

U
(2)
i

Y
(T)
i1 Y

(T)
ir

. . .

U
(T)
i

. . .

. . .

Figure 1.2: Path diagram of the basic hidden Markov model for multivariate data.

The proposed framework for HM models is sufficiently flexible to deal with responses
of different nature; in the following we will distinguish between categorical and continuous
response variables.

1.2.2.1 Hidden Markov model with categorical response variables

Let Y (t)
ij , j = 1, . . . , r, t = 1, . . . T , denote the categorical response variable with c categories

for subject i. The corresponding conditional response probabilities are denoted by

ϕjy|u = p(Y
(t)
ij = y|U (t)

i = u), t = 1, . . . , T,

j = 1, . . . , r, y = 0, . . . , c− 1, u = 1, . . . , k,

and may be collected into the vector

ϕy|u =
r∏

j=1

ϕjy|u = p(Y
(t)
i1 = y1, . . . , Y

(t)
ir = yr|U (t)

i = u) = p(Y
(t)
i = y|U (t)

i = u),

with y = (y1, . . . , yr)
′.

Accounting for the usual constraint on the above probabilities, the number of free pa-
rameters is

#par = k − 1︸ ︷︷ ︸
πu

+(T − 1)k(k − 1)︸ ︷︷ ︸
π
(t)
u|ū

+ kr(c− 1)︸ ︷︷ ︸
ϕjy|u

if the model is time-heterogeneous, and reduces to

#par = k − 1︸ ︷︷ ︸
πu

+ k(k − 1)︸ ︷︷ ︸
πu|ū

+ kr(c− 1)︸ ︷︷ ︸
ϕjy|u

10

1.2. Relevant examples of discrete latent variable models

for a time-homogeneous model. Let us denote by θ = (πu, π
(t)
u|ū, ϕjy|u)u,ū,t,j,y the parameter

vector.

The probability mass function of the distribution of Ui may be expressed as

p(Ui = u) = πu(1)

T∏
t=2

π
(t)

u(t)|u(t−1) ,

where u = (u(1), . . . , u(T))′ denotes a realization of Ui. In addition, the conditional distri-

bution of Yi given Ui = u is

p(Yi = y|Ui = u) =
T∏
t=1

ϕy(t)|u(t) =
T∏
t=1

r∏
j=1

ϕjy(t)|u(t) ,

where y = (y(1), . . . ,y(T))′ denotes a realization of Yi and therefore, the resulting manifest

distribution of Yi is

p(Yi = y) =
∑
u

πu(1)πu(2)|u(1) · · ·πu(T)|u(T−1)ϕy(1)|u(1)ϕy(2)|u(2) · · ·ϕy(T)|u(T) .

It is important to note that computing the manifest distribution p(Yi = y) involves a sum-

mation over all possible kT configurations of vector u, which would require a considerable
computational effort. In practice, this distribution is efficiently computed with a forward
recursion (Baum et al., 1970; Welch, 2003). This recursion is efficiently implemented by
using the matrix notation (Bartolucci, 2006; Bartolucci et al., 2007).

Maximum likelihood estimation The model parameters are estimated by means of the
EM algorithm, on the basis of the complete data log-likelihood. In this case, the complete
data are represented by the pairs (ui,yi), i = 1, . . . , n, where, with reference to subject i,
yi and ui denote the realization of Yi and Ui, respectively. The corresponding complete
data log-likelihood function may be written as follows:

11

Chapter 1. Introduction

ℓ∗(θ) =

n∑
i=1

log p(Yi = yi|Ui = ui) +

n∑
i=1

log p(Ui = ui) (1.5)

=

n∑
i=1

log

 T∏
t=1

r∏
j=1

ϕjy(t)|u(t)

+

n∑
i=1

log

(
πu(1)

T∏
t=2

π
(t)

u(t)|u(t−1)

)

=

n∑
i=1

T∑
t=1

r∑
j=1

log ϕjy(t)|u(t) +

n∑
i=1

log πu(1) +

n∑
i=1

T∑
t=2

log π
(t)

u(t)|u(t−1)

=

T∑
t=1

r∑
j=1

k∑
u=1

c−1∑
y=0

a
(t)
juy log ϕjy|u +

k∑
u=1

b(1)u log πu +
T∑
t=2

k∑
ū=1

k∑
u=1

b
(t)
ūu log π

(t)
u|ū,

where:

- a
(t)
juy =

∑n
i=1 I(u

(t)
i = u, y

(t)
ij = y) is the number of subjects that, at time occasion t,

are in latent state u and have outcome y for the j-th response variable;

- b
(t)
u =

∑n
i=1 I(u

(t)
i = u) is the number of subjects in latent state u at time occasion t;

- b
(t)
ūu =

∑n
i=1 I(u

(t−1)
i = ū|u(t)i = u) is the number of subjects that move from latent

state ū to latent state u at time occasion t.

Since the frequencies a
(t)
juy, b

(t)
u , and b

(t)
ūu are obviously unknown, the EM algorithm

alternates the following two steps:

• E-step: given the observed data and the parameters value at the previous step,
compute the expected value of every frequency a

(t)
juy, b

(t)
u , and b

(t)
ūu in (1.5), so as to

obtain the expected value of ℓ∗(θ). This computation is based on the conditional
posterior probabilities:

q(t)(u|y) = p(U
(t)
i = u|Yi = y),

and
q(t)(ū, u|y) = p(U

(t−1)
i = ū, U

(t)
i = u|Yi = y).

The following explicit expressions are available:

12

1.2. Relevant examples of discrete latent variable models

â
(t)
juy = E[a(t)juy] =

n∑
i=1

I(y
(t)
ij = y) · q(t)(u|yi) =

∑
y

ny · I(y(t)j = y) · q(t)(u|y),

b̂(t)u = E[b(t)u] =
n∑

i=1

q(t)(u|yi) =
∑
y

ny · q(t)(u|y),

b̂
(t)
ūu = E[b(t)ūu] =

n∑
i=1

q(t)(ū, u|yi) =
∑
y

ny · q(t)(ū, u|y).

In particular, â(t)juy must be computed for j = 1, . . . , r, u = 1, . . . , k, y = 0, . . . , c− 1,

and t = 1, . . . , T , b̂(t)u must be computed for u = 1, . . . , k and t = 1, . . . , T , whereas
b̂
(t)
ūu must be computed for ū, u = 1, . . . , k and t = 2, . . . , T .

• M-step: maximize the expected value of ℓ∗(θ) obtained as above. As shown in
Bartolucci et al. (2013), the following explicit solutions are available for this aim:

– Initial probabilities:

πu =
b̂
(1)
u

n
,

to be computed for u = 1, . . . , k;

– Transition probabilities:

π
(t)
u|ū =

b̂
(t)
ūu

b̂
(t−1)
ū

,

to be computed for ū, u = 1, . . . , k and t = 2, . . . , T ;

– Conditional response probabilities:

ϕjy|u =

∑T
t=1 â

(t)
juy∑T

t=1 b̂
(t)
u

,

to be computed for j = 1, . . . , r, y = 0, . . . , c− 1, and u = 1, . . . , k.

A fundamental point is the computation of the posterior probabilities q(t)(u|y) =

p(U
(t)
i = u|Yi = y) and q(t)(ū, u|y) = p(U

(t−1)
i = ū, U

(t)
i = u|Yi = y) involved in the

E-step. To this aim, we can rely on an efficient backward-forward recursion, strictly related
to the forward recursion used for the computation of the manifest distribution (Baum et al.,
1970; Welch, 2003).

13

Chapter 1. Introduction

1.2.2.2 Hidden Markov model for continuous response variables

Let Y (t)
i , t = 1, . . . , T denote the vector of r continuous response variables at time occasion t

and for subject i. We assume that, conditionally on U
(t)
i = u, Y (t)

i a Gaussian distribution,
that is,

Y
(t)
i |U

(t)
i = u ∼ N (µu, Σ), u = 1, . . . , k, (1.6)

with state-specific mean vectors µu ∈ Rr, u = 1, . . . , k, and variance-covariance matrix

Σ ∈ Rr×r constant across latent states under the assumption of homoscedasticity. This
latter assumption may be suitably relaxed to allow for heteroscedasticity across latent
states.

Taking into consideration the usual constraints on probability vectors, the number of
free parameters is

#par = k − 1︸ ︷︷ ︸
πu

+(T − 1)k(k − 1)︸ ︷︷ ︸
π
(t)
u|ū

+ kr︸︷︷︸
µu

+
r2 + r

2︸ ︷︷ ︸
Σ

if the model is time-heterogeneous, and reduces to

#par = k − 1︸ ︷︷ ︸
πu

+ k(k − 1)︸ ︷︷ ︸
πu|ū

+ kr︸︷︷︸
µu

+
r2 + r

2︸ ︷︷ ︸
Σ

in the event of a time-homogeneous model. Again, let us collect the model parameters in

the vector θ: θ = (πu, π
(t)
u|ū,µu,Σ)u,ū,t.

On the basis of this set of model parameters, the probability mass function of the
distribution of the latent process Ui may be expressed as

p(Ui = u) = πu(1)

T∏
t=2

π
(t)

u(t)|u(t−1) ,

where u = (u(1), . . . , u(T))′ denotes a realization of Ui. Moreover, according to (1.6),

the conditional distribution of Y (t)
i given U

(t)
i simply follows the usual probability density

function of a multivariate normal distribution:

f(Y
(t)
i = y(t)|U (t)

i = u) = (2π)−
r
2 |Σ|−

1
2 exp

[
−1

2
(y(t) − µu)

′Σ−1(y(t) − µu)

]
,

14

1.2. Relevant examples of discrete latent variable models

where y(t) denotes a realization of Y (t)
i . Finally, the resulting manifest distribution of Yi

is

f(Yi = y) =
∑
u

T∏
t=1

f(y(t)|u)p(u) =

=
∑
u

T∏
t=1

f(y(t)|u)πu(1)

T∏
t=2

π
(t)

u(t)|u(t−1) .

Similarly to the categorical case, an efficient computation of this distribution can be per-

formed through a forward recursion method (Baum et al., 1970; Welch, 2003).

Maximum likelihood estimation In this case, accounting for the specific model pa-
rameters, the complete data log-likelihood function may be expressed as follows:

ℓ∗(θ) =

n∑
i=1

T∑
t=1

k∑
u=1

z
(t)
iu log f(y

(t)
i |u) +

n∑
i=1

k∑
u=1

z
(1)
iu log πu +

n∑
i=1

T∑
t=2

k∑
ū=1

k∑
u=1

z
(t)
iūu log πu|ū,

where:

- z
(t)
iu = I(u

(t)
i = u) is an indicator function equal to 1 if subject i is in latent state u

at time occasion t;

- z
(t)
iūu = I(u

(t−1)
i = ū)I(u

(t)
i = u) is an indicator function equal to 1 if subject i is in

latent state ū at time t− 1 and moves to latent state u at time t.

As usual, this function provides the basis for the estimation of model parameters through
the EM algorithm. In this specific setting, expectation and maximization steps are imple-
mented as follows:

• E-step: compute the conditional expected values of the indicator functions z
(t)
iu and

z
(t)
iūu, given the observed data and the current value of the parameters. By substituting

these indicator functions with the corresponding posterior expectation, we obtain the
expected value of ℓ∗(θ). In particular:

ẑ
(t)
iu = p(U

(t)
i = u|Y t = y

(t)
i), t = 1, . . . , T, u = 1, . . . , k,

ẑ
(t)
iūu = p(U

(t)
i = u, U (t−1) = ū|Y t = y

(t)
i), t = 2, . . . , T, ū, u = 1, . . . , k.

(1.7)

In order to efficiently compute these quantities, we resort to forward-backward recur-

sion; the implementation is similar to the one introduced for the categorical case.

15

Chapter 1. Introduction

• M-step: update the model parameters by maximizing the expected value of ℓ∗(θ)

obtained as above. The following closed form solutions are available:

µu =
1∑n

i=1

∑T
t=1 ẑ

(t)
iu

n∑
i=1

T∑
t=1

ẑ
(t)
iu y

(t)
i , u = 1, . . . , k,

Σ =
1

nT

n∑
i=1

T∑
t=1

k∑
u=1

ẑ
(t)
iu (y

(t)
i − µu)(y

(t)
i − µu)

′,

πu =

∑n
i=1 ẑ

(1)
iu

n
, u = 1, . . . , k,

πu|ū =

∑n
i=1

∑T
t=2 ẑ

(t)
iūu∑n

i=1

∑T
t=2 ẑ

(t−1)
iu

, ū, u = 1, . . . , k.

(1.8)

1.2.3 Stochastic block model

While LC models are commonly applied to cross-sectional data, and HM models are typ-
ically employed in the analysis of longitudinal data (as well as of time-series), SB models
represent a fundamental tool for dealing with network data.

Notation and definitions In mathematics and statistics, networks are usually referred
to as graphs. In its simplest definition a graph G = (V, E) is made up of a set V ̸= ∅
of n distinct nodes (or vertices, or points) and a set E of edges (or lines, or links). For
a given graph G, it is often convenient to define the adjacency matrix A = (Aij)ij . The
generic element Aij indicate weather nodes i and j are connected by an edge. Starting from
this basic definition, many generalizations have been developed to account for more com-
plex real-world systems. Directed edges were introduced to describe potential origin and
destination of the interaction. Weighted edges allow us to model the strength of the rela-
tionship; this includes the special case of negative weights, with signed edges incorporating
the distinction between constructive and damaging interactions. Multi-edges and self-loops
describe the existence of more than one link between a pair of nodes, and the presence of
edges connecting a node to itself, respectively. More recent developments include also the
analysis of temporal graphs, where the interactions change dynamically across the time.
We refer to Whittaker (1990) for a thorough review of graphical models.

SB models are an increasingly popular class of models in statistical analysis of graphs.
Introduced in the early eighties in the field of social sciences (Holland et al., 1983), these
models have successively flourished in many directions and application fields (Snijders and

16

1.2. Relevant examples of discrete latent variable models

Nowicki, 1997; Nowicki and Snijders, 2001). They assume that nodes are clustered into
unobserved (or latent) groups and the connection probabilities between nodes (i.e., the
probability that two distinct nodes are connected into an edge) are driven by their group
memberships.

Model formulation Considering a random graph with n nodes, let Yij denote the generic
binary response variable (i, j = 1, . . . , n), such that Yij = 1 if there exists an edge connecting
node i to node j, and Yij = 0 otherwise. In this context, the set of response variables
Y = (Yij)i,j=1,...,n corresponds to the n × n adjacency matrix of the graph. Hereafter we
will rely on the following two assumptions on the response variables:

• Yij = Yji for each pair of nodes i, j = 1, . . . , n, which restrict our focus on undirected
graphs;

• Yii = 0 for each node i, which excludes self-loops.

Both assumptions may be suitably relaxed, extending the model to directed graphs con-
taining self-loops; see Lee and Wilkinson (2019), among others, for a review of possible
model specifications and extensions.

In the present formulation, the SB model relies on node-specific discrete latent variables
Ui with k support points that describe the k unobserved blocks. Let U = (U1, . . . , Un)

denote the vector of the latent variables. Also in this case a form of local independence is
assumed: variables Yij are conditionally independent given Ui = u and Uj = v. The path
diagram of the corresponding model is represented in Figure 1.3. The model parameters
are the probability that a node belongs to latent group u, denoted by

πu = p(Ui = u), u = 1, . . . , k,

and the probability for a node from latent group u to be connected with a node from latent
group v, denoted by

πuv = p(Yij = 1|Ui = u, Uj = v), u, v = 1, . . . , k.

Since the graph is undirected, these probabilities must be symmetric: πuv = πvu, for each
u, v = 1, . . . , k. This constraint, along with the usual ones on the above probabilities,
determines the number of free parameters:

#par = k − 1︸ ︷︷ ︸
πu

+
k2 + k

2︸ ︷︷ ︸
πuv

.

17

Chapter 1. Introduction

Finally, we let θ = (πu, πuv)u,v denote the vector of model parameters.

Y12 Y13 . . . Y1n Y23 . . . Y2n . . . Y3n . . .

U3U2 . . .U1 Un

Figure 1.3: Path diagram of the stochastic block model.

The observed network distribution, corresponding to the model likelihood, may be ob-
tained as

p(Y = y) =
∑
u

p(Y = y|U = u)p(U = u)

=
∑
u

[
n−1∏
i=1

n∏
j=i+1

p(Yij = yij |Ui = ui, Uj = uj)

][
n∏

i=1

πui

]
,

where y = (yij)ij denotes a realization of Y = (Yij)ij and u = (u1, . . . , un) is a realization
of U = (U1, . . . , Un).

Maximum likelihood estimation Computing the above sum becomes prohibitive even
when dealing with networks of limited size. This computational problem has a direct impact
on the posterior distribution of the latent variables U1, . . . , Un, which becomes intractable
itself, and hence on the EM algorithm which becomes complicated to apply. A typical
remedy (Daudin et al., 2008) is to consider a variational approach: rather than maximizing
the intractable log-likelihood function, this method aims at optimizing a lower bound of
the log-likelihood itself. Denoting by Q(U) a suitable approximation of the intractable
posterior distribution p(U = u|Y = y), the lower bound is defined as

J (θ) = log p(Y = y)−KL[Q(U)||p(U = u|Y = y)].

Here, KL[·||·] denotes the Kullback-Leibler divergence (Kullback and Leibler, 1951), measur-
ing the (non-symmetric) distance between the two probability distribution. The variational
EM algorithm alternates the following two steps until convergence; we refer to Daudin et al.
(2008) for the explicit solutions of the two steps.

18

1.3. Outline and main contributions

• VE-step: minimize the Kullback-Leibler divergence in order to determine the best
approximation of p(U = u|Y = y);

• M-step: maximize J (θ) in order to update the model parameters.

1.3 Outline and main contributions

In the present Chapter we provided basic background knowledge for the latent variable
models based on a discrete distributions. In particular, we reviewed in some details specific
classes of the models of interest, recalling the main underlying assumptions, summarizing
the notations, and analyzing the standard MLE of model parameters through the EM
algorithm. The remainder of this manuscript is comprised of separated and distinct research
problems and is structured as follows.

In Chapter 2 we deal with the problem of multimodality of the log-likelihood function
of DLV models, and the consequent possible convergence of the EM algorithm to a local
maximum. We introduce a class of optimization methods, namely tempering or annealing,
which employ a parameter known as temperature to re-scale the target function and monitor
the prominence of all maxima. Exploiting the basic idea of these techniques, we propose a
tempered EM algorithm to explore the parameter space adequately and increase the chance
to reach the global maximum. We compare the proposal with the standard EM algorithm by
an extensive Monte Carlo simulation study, evaluating both the ability to reach the global
maximum of the log-likelihood function, and the computational time. We also employ the
proposal on cross-sectional and longitudinal data referred to some application of interest,
showing the main findings for LC and HM models respectively. All the results provide
supporting evidence that the proposal outperforms the standard EM algorithm, and it
significantly improves the chance to reach the global maximum.

In Chapter 3 we consider again the problem of convergence of the EM algorithm to a
local maximum, proposing a different approach. We explore the framework of evolutionary
algorithms, a class of optimization methods strongly inspired by the biological principles
of natural evolution. We discuss the mechanism of the main evolutionary operators and
propose their application in the context of the EM algorithm for DLV models estimation.
This approach encourages a more accurate parameter space exploration and allows us to
escape local maxima. The performance of the resulting algorithm is assessed relying on
the same simulation scheme proposed in Chapter 2. This allow us to compare the two
proposals, highlighting benefits and drawbacks of both approaches.

In Chapter 4, in the context of SB model, we tackle the need to account for higher-order

19

Chapter 1. Introduction

interactions, in order to include information deriving from groups of three or more subjects.
We review the notion of hypergraphs and hyperedges, which extend the concept of graphs
and edges respectively, and provide the most general mathematical formalization of higher-
order interactions. In particular we distinguish the notion of “simple” hypergraphs, where
hyperedges are subsets of distinct nodes taking part into an interaction, from the notion
of “multisets” hypergraphs, where repeated nodes are allowed in the same hyperedge; we
illustrate how a proper choice has to rely on the specificity of each dataset. In this work, we
focus on model-based clustering for simple hypergraphs, where literature is quite scarce, and
computational challenges increase. We propose a general SB model for simple hypergraphs
which allows us to capture the information of higher-order interactions. We perform MLE
of model parameters through a variational EM algorithm, and explore model selection
using the ICL criterion. The model is applied to both simulated and real data, and the
performance of the proposal is assessed in terms of parameter estimation and ability to
recover the clusters.

20

Bibliography

Akaike, H. (1973). Information theory and an extension of the maximum likelihood
principle.

Bacci, S., Pandolfi, S., and Pennoni, F. (2014). A comparison of some criteria
for states selection in the latent markov model for longitudinal data. Adv. Data Anal.
Classif., 8, 125–145.

Bartholomew, D., Knott, M., and Moustaki, I. (2011). Latent Variable Models and
Factor Analysis: A Unified Approach, 3rd Edition. Wiley, Chichester.

Bartolucci, F. (2006). Likelihood inference for a class of latent markov models under
linear hypotheses on the transition probabilities. J. R. Stat. Soc. Ser. B, 68, 155–178.

Bartolucci, F., Farcomeni, A., and Pennoni, F. (2013). Latent Markov Models for
Longitudinal Data. Chapman & Hall/CRC, Boca Raton.

Bartolucci, F., Farcomeni, A., and Pennoni, F. (2014). Latent markov models:
A review of a general framework for the analysis of longitudinal data with covariates.
TEST, 23, 433–486.

Bartolucci, F., Pandolfi, S., and Pennoni, F. (2022). Discrete latent variable mod-
els. Annu. Rev. Stat. Appl., 6, 1–31.

Bartolucci, F., Pennoni, F., and Francis, B. (2007). A latent markov model for
detecting patterns of criminal activity. J. R. Stat. Soc. Ser. A, 170, 115–132.

Baum, L., Petrie, T., Soules, G., and Weiss, N. (1970). A maximization technique
occurring in the statistical analysis of probabilistic functions of markov chains. Ann.
Math. Stat., 41, 164–171.

Biernacki, C., Celeux, G., and Govaert, G. (2000). Assessing a mixture model for
clustering with the integrated complete likelihood. IEEE Trans. Pattern Anal. Mach.
Intel., 22, 719–725.

Borsboom, D., Mellenbergh, G., and van Heerden, J. (2003). The theoretical
status of latent variables. Psychol. Rev., 110, 203–219.

Bouveyron, C., Celeux, G., T.B., M., and A.E., R. (2019). Model-Based Clustering
and Classification for Data Science: With Applications in R. Cambridge University Press,
Cambridge.

Chapter 1. Introduction

Daudin, J., Picard, F., and Robin, S. (2008). A mixture model for random graphs.
Stat. Comput., 18, 173–183.

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete
data via the em algorithm (with discussion). J. R. Stat. Soc. Ser. B, 39, 1–38.

Everitt, B. (1984). An Introduction to Latent Variable Models. Chapman & Hall/CRC,
Boca Raton.

Goodman, L. (1974). Exploratory latent structure analysis using both identifiable and
unidentifiable models. Biometrika, 61, 215–231.

Holland, P., Laskey, K., and Leinhardt, S. (1983). Stochastic blockmodels: first
steps. Soc. Netw., 5, 109–137.

Kullback, S. and Leibler, R. (1951). On information and sufficiency. JSTOR, 22,
79–86.

Lazarsfeld, P. and Henry, N. (1968). Latent Structure Analysis. Houghton Mifflin,
Boston.

Lee, C. and Wilkinson, D. (2019). A review of stochastic block models and extensions
for graph clustering. Appl. Netw. Sci., 4, 1–50.

Lindsay, B. (1995). Mixture Models: Theory, Geometry and Applications. American
Statistical Association, Arlington.

Lindsay, B., Clogg, C., and Grego, J. (1991). Semiparametric estimation in the rasch
model and related exponential response models, including a simple latent class model for
item analysis. J. Am. Stat. Assoc., 86, 96–107.

MacDonald, I. and Zucchini, W. (2016). Hidden markov models for discrete-valued
time series. In Handbook of Discrete-Valued Time Series, pages 267–286. Chapma &
Hall/CRC, Boca Raton.

McLachlan, G. and Krishnan, T. (2008). The EM Algorithm and Extensions: 2nd
Edition. John Wiley and Sons, Hoboken.

McLachlan, G. and Peel, D. (2000). Finite Mixture Models. Wiley, New York.

Nowicki, K. and Snijders, T. (2001). Estimation and prediction for stochastic block-
structures. J. Am. Stat. Assoc., 96, 1077–1087.

22

Bibliography

Pandolfi, S., Bartolucci, F., and Pennoni, F. (2021). Maximum likelihood estima-
tion of hidden markov models for continuous longitudinal data with missing responses
and dropout. arXiv:2106.15948, pages 1–36.

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Stat., 6, 461–464.

Skrondal, A. and Rabe-Hesketh, S. (2004). Generalized Latent Variable Modelling:
Multilevel, Longitudinal and Structural Equation Models. Chapman & Hall/CRC, Boca
Raton.

Snijders, T. and Nowicki, K. (1997). Estimation and prediction for stochastic block-
models for graphs with latent block structure. J. Classif., 14, 75–100.

Titterington, D., Smith, A., and Makov, H. (1985). Statistical Analysis of Finite
Mixture Distributions. Wiley, New York.

von Eye, A. and Clogg, C. (1994). Latent Variables Analysis: Applications for Devel-
opmental Research. SAGE Publications.

Welch, L. (2003). Hidden markov models and the baum-welch algorithm. IEEE Inform.
Theory Soc. Newsl., 53, 9–13.

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. John Wiley
& Sons.

Wiggins, L. (1973). Panel Analysis: Latent Probability Models for Attitude and Behaviour
Processes. Elsevier, Amsterdam.

Zucchini, W., MacDonald, I., and Langrock, R. (2016). Hidden Markov Models for
Time Series: An Introduction Using R, Second Edition. Chapman & Hall/CRC, Boca
Raton.

23

Chapter 2

Tempered Expectation-Maximization algorithm for
the estimation of discrete latent variable models1

2.1 Introduction

As already mentioned in Section 1.1.2, maximum likelihood estimation (MLE) of discrete
latent variable (DLV) models is usually performed by using the Expectation-Maximization
(EM) algorithm (Baum et al., 1970; Dempster et al., 1977; McLachlan and Krishnan, 2008).
A particular drawback of this approach is related to the multimodality of the log-likelihood
function, which is especially observed with the DLV models. Consequently, the EM algo-
rithm could converge to a local maximum, not corresponding to the global one. Multistart
strategies employing both deterministic and random rules to initialize the model parameters
are typically adopted. Although this approaches encourage a more accurate exploration of
the parameter space, they are computationally intensive, and they do not ensure that the
global maximum is reached.

In this Chapter, in order to face the multimodality of the likelihood function, we pro-
pose a tempered EM (T-EM) algorithm able to explore the parameter space adequately.

1Part of this Chapter has been published in: Brusa, L., Bartolucci, F, Pennoni, F. (2022). Tem-
pered Expectation-Maximization algorithm for the estimation of discrete latent variable models. Compu-
tational Statistics. https://link.springer.com/content/pdf/10.1007/s00180-022-01276-7.pdf

25

https://link.springer.com/content/pdf/10.1007/s00180-022-01276-7.pdf

Chapter 2. Tempered Expectation-Maximization algorithm

Tempering and annealing (Kirkpatrick et al., 1983; Geyer, 1991; Geyer and Thompson,
1995; Falcioni and Deem, 1999) constitute a broad family of optimization methods; by
means of a parameter known as temperature, they allows us to re-scale the target function
and monitor the prominence of all maxima. In particular, these procedures are gradually
attracted towards the global optimum by accurately defining a sequence of temperatures.
The alternation of high and low values allows us to deal with two opposite but fundamental
issues: on the one side, the algorithm is led to explore broad areas of the parameter space,
thus escaping local sub-optimal solutions (high temperatures); on the other side, the algo-
rithm is able to perform a sharp optimization of the target function in a small area of the
parameter space (low temperatures).

In the following, dealing with DLV models, we propose a general approach. In particular,
we explicitly focus on latent class (LC, see Lazarsfeld and Henry (1968), Goodman (1974),
and Lindsay et al. (1991)) and hidden Markov (HM, see Wiggins (1973) and Bartolucci
et al. (2013)) models because these are among the most utilized models in data analysis.
However, the proposal can easily be adapted to the aforementioned finite mixture models
and to other DLV models. We explore two different temperature sequences, including a
non-monotone one, evaluating the ability to reach the global maximum along with the
computational time efficiency by means of an extensive Monte Carlo simulation study. Up
to our knowledge, for the first time, we deal with the problem of temperature sequence
tuning, inspecting the performance of the T-EM algorithm with both optimally tuned and
fixed temperature sequences. We also show the results for both LC and HM models, using
the proposal on discrete and continuous, cross-sectional and longitudinal data in connection
with some applications of interest.

The implemented code for the proposal is written for the open source software R (Team,
2022). It is based on some functions of the package LMest (Bartolucci et al., 2017), and it is
available at the following link in the GitHub repository: https://github.com/LB1304/T-
EM.

The rest of this Chapter is organized as follows. In Section 2.2, by mean of an inten-
sive simulation analysis, we illustrate the problem of multimodality for both LC and HM
model. In Section 2.3 we introduce the theory of annealing and tempering methods. In
Section 2.4 we provide details on the proposed T-EM algorithm for both models. In Section
2.5 we summarize the main findings of an extensive simulation study aimed to assess the
performance of the proposal by comparing it with the standard EM algorithm for many
different scenarios. In Section 2.6 we evaluate the proposed algorithm in connection with
different initialization strategies. In Section 2.7 we apply the T-EM algorithm to estimate
LC and HM models using a variety of data types. In Section 2.8 we provide some con-

26

https://github.com/LB1304/T-EM
https://github.com/LB1304/T-EM

2.2. Convergence to local maxima

clusion. Appendix A supplies more details of the settings used for the simulation studies,
Appendices B and C provide additional simulation results, while Appendix D summarizes
the performance comparison in terms of computational time for the real data analysis.

2.2 Convergence to local maxima

In this Section we address the problem of the convergence of EM algorithm to a local
maximum of the log-likelihood function. To investigate the magnitude of this phenomenon,
we carry out a simulation study, applied both to LC and to HM models with categorical
response variables. This procedure, illustrated in Figure 2.1, consists of the following two
steps:

1. given a chosen set of model parameters, we draw 50 samples from the corresponding
model;

2. on the basis of every sample, we estimate the model parameters 100 times, using the
EM algorithm with 100 different random starting values.

Model
parameters Sample

Log-Likelihood
(Value at convergence)

Parameters
(Estimates)

Simulation
phase

Estimation
phase

Figure 2.1: Graphical representation of the implemented Monte Carlo simulation study

For the whole study, the EM algorithm is implemented in the R programming language
on the basis of the functions available in the two aforementioned packages. The convergence
of the algorithm is checked on the basis of both the relative change in the log-likelihood at
two consecutive steps, and the distance between the corresponding parameter vectors. As
for the initialization of the algorithm, for all model parameters we adopt a random starting
rule, based on suitably normalized random numbers drawn from a uniform distribution be-
tween 0 and 1. See also Section 2.5.1 for a more accurate description of these computational
aspects.

27

Chapter 2. Tempered Expectation-Maximization algorithm

2.2.1 Simulation study of multimodality for latent class model

As for the LC model, we test the convergence behavior of the EM algorithm considering two
different scenarios with increasing levels of complexity, from an estimation point of view. In
addition to the true values of the model parameters πu (the weight of each latent class) and
ϕjy|u (the conditional probability of each response variable given the latent variable), the
complexity of the scenario depends on: the sample size n, the number of response variables
r, the number of categories of each response variable c, and the number of latent classes k.
The two considered scenarios are summarized hereafter:

• Scenario A. The first scenario considers favorable conditions for the estimation al-
gorithm: low values of r e c, and over all, a small number of latent classes. In more
details, the adopted values are:

– r = 6, c = 3, and k = 3;

– π = [1/3, 1/3, 1/3]′;

– ϕjy|u defined by

0.7 0.15 0.1

0.2 0.7 0.2

0.1 0.15 0.7

 , j = 1, . . . , r.

• Scenario B. The second scenario, instead, is based on more challenging conditions
for the estimation algorithm, mainly due to the higher number of latent classes. In
this case, the chosen values are:

– r = 10, c = 6, and k = 6;

– π = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6]′;

– ϕjy|u defined by

0.95 0.25 0 0 0 0

0.05 0.65 0.1 0 0 0

0 0.1 0.7 0.2 0 0

0 0 0.2 0.7 0.1 0

0 0 0 0.1 0.65 0.05

0 0 0 0 0.25 0.95

, j = 1, . . . , r.

For each scenario, two different sample sizes are considered, n = 500 and n = 5, 000, for a
total of four different configurations of parameters; for each of the 4 resulting situations,
50 different random samples from the corresponding LC model are simulated.

In the second phase of the simulation study, for every sample, we estimate 100 times
both a correctly specified model, by selecting the true number of latent components (namely,

28

2.2. Convergence to local maxima

k = 3 for Scenario A, and k = 6 for Scenario B), and a misspecified model, by considering
a number of latent states different from the true one (in particular, k = 4 for Scenario A
and k = 7 for Scenario B). Each estimation is initialized with a different random starting
value, in order to test the overall convergence behavior of the EM algorithm. Finally, on
the basis of these 100 estimation results, we count the number of different local maxima
for each sample. Once log-likelihood values at convergence have been suitably ordered, a
couple of consecutive log-likelihood values can correspond to two different maxima, if their
distance is significant, or correspond to the same maximum (with a slightly variation due
to approximation) otherwise. A tolerance threshold is therefore required in this process,
in order to distinguish between the two cases. In this regard, throughout the simulation
study, all values are suitably rounded.

Results Figure 2.2 summarizes the main results of the study, focusing on the case of
misspecified models. The latter represents a realistic situation in many real-world situations,
and allows us to best emphasize the extent of the problem of multiple local maxima. We
refer to Section 2.5 for more simulation studies, including the analyses of results related
to correctly specified models. Dealing with Scenario A, which should represent a sort
of favorable situation for the estimation procedure, the corresponding plots in Figure 2.2
show the existence of a high number of different local optima. With none of the 50 analyzed
samples, the EM algorithm is able to converge repeatedly to the same maximum; even in
best cases, at least 4 different local maxima are reached, and this number grows to 10
different values in worst instances. Finally, by performing a comparison between the case
with n = 500 and that with n = 5, 000, we can notice a very slight better behavior when a
larger sample size is employed.

As expected, the situation is even much more complicated when the second scenario is
considered. Here, the number of different local maxima dramatically increases: regardless
of the sample size, the EM algorithm can converge, even in the best cases, to more than 20
different values, reaching up to about 50 distinct local maxima in the worst cases. Again,
a slightly better situation can be observed with n = 5, 000, compared to n = 500, thus
confirming the theory that the frequency of reaching the global maximum increases with
the sample size.

A second, but equally important, question is how often the EM algorithm gets to the
global maximum: an hypothetical situation in which the EM algorithm converges to only
two different optima, but the global maximum is reached less frequently than the local
maximum is generally much worse with respect to a circumstance in which the EM algorithm

29

Chapter 2. Tempered Expectation-Maximization algorithm

Big sample size Small sample size

A B A B

10

20

30

40

50

Scenarios

N
u
m

b
er

 o
f
d
if
fe

re
n
t

m
a
x
im

a

Figure 2.2: Number of different local maxima obtained estimating the LC model with
the Expectation-Maximization algorithm; for each scenario, 50 samples are simulated and
for each sample, the model is estimated 100 times using the Expectation-Maximization al-
gorithm. The plots show the frequency of samples with a given number of different local
maxima

can converge to a higher number of different optima, but the global maximum is reached
with an overwhelming probability. In this regard, the results are shown in Figure 2.3.

Throughout the analysis, a distinction between the two scenarios is required; considering
Scenario A (Figures 2.3), although the behavior is clearly problematic, we can still find some
samples where the EM algorithm is able to reach the global maximum relatively often, or
at least with a probability greater than 50%. All samples obtained according to the second
scenario, instead, show a completely bad result: the probability to reach the global optimum
is never sufficiently high, being always lower than 20%, and in most cases even not greater
than 10%. Finally, the same conclusions, drawn before about the effect of different sample
sizes, hold here.

To sum up, what emerges from the simulation study at issue is a rather critical situation:
in the worst, but not infrequent, cases a wide number of different optima are obtained and
the true global maximum is reached only in a small minority of times. Besides the obvious

30

2.2. Convergence to local maxima

Big sample size Small sample size

A B A B

0%

20%

40%

60%

80%

Scenarios

P
ro

p
o
rt

io
n
 o

f
g
lo

b
a
l
m

a
x
im

u
m

Figure 2.3: Percentage of global maximum obtained estimating the latent class model
with the Expectation-Maximization algorithm; for each scenario, 50 samples are simulated
and for each sample, the model is estimated 100 times using the Expectation-Maximization
algorithm. The plots show the frequency of samples with a given percentage

problem to achieve convergence toward this value, it is clear that in such a situation, it also
appears uncertain that this value is the global maximum, and there is not another, higher
value, which has never been reached.

Finally, a last interesting issue is the effect of these different optima of the log-likelihood
function on the parameter estimates. In this regard, since we are purposely dealing with
misspecified models, we cannot directly compare the true model parameters with their
estimated values; then, we just show differences and similarities between the estimates
corresponding to different maxima. We consider, for instance, a sample obtained according
to the first scenario, with n = 5, 000, in order to focus on the most favorable scenario from
an estimation perspective. Consistently with the results just summarized, and as shown in
Table 2.1, the considered sample exhibits 6 different maxima, and the global optimum is
reached 17% of the times.

The impact on the estimated parameters is quite clear: by comparing the optimal
estimates, corresponding to the global maximum, with the ones obtained in the case of the

31

Chapter 2. Tempered Expectation-Maximization algorithm

Value -28,690 -28,688 -28,687 -28,686 -28,685 -28,684
Frequency 1 3 33 17 29 17

Table 2.1: Different values (with the corresponding frequency) obtained for the log-
likelihood function on the basis of 100 repetitions of the Expectation-Maximization algo-
rithm on the same sample, drawn from the latent class model according to scenario A and
n = 5, 000

most frequent local optimum (equal to −28, 687), significant differences can be detected.
In particular, in Table 2.2 the results for the weights πu and the conditional probabilities
ϕjy|u (for the first response variable, i.e. r = 1) are shown.

Log-Likelihood = -28,687 Log-Likelihood = -28,684

Weights (πu) [0.33, 0.33, 0.17, 0.17]′ [0.02, 0.31, 0.33, 0.34]′

Conditional probabilities
for the first response

(ϕjy|u for j = 1)

0.70 0.15 0.14 0.06
0.21 0.69 0.19 0.20
0.09 0.16 0.67 0.74

 0.47 0.71 0.15 0.10
0.38 0.20 0.70 0.20
0.15 0.09 0.15 0.70

Table 2.2: Estimated parameters (weight of each latent class and conditional probabilities
of each response variable given the latent class) referred to the results shown in Table 2.1.
The parameters resulting from the global maximum are shown on the right, the estimates
obtained from the most frequent local maximum on the left

Even accounting for the label switching among latent states, we notice some very clear
dissimilarities:

• considering the estimated parameter associated to the global maximum, we notice
that the first class has a weight approximately equal to 0 zero, while analyzing the
estimates related to the local optimum, all classes have a strictly positive weight;

• analogously, by taking into consideration the conditional probability matrix obtained
in correspondence to the global maximum, we can observe that the first column
(related to the first latent class) is completely different from every column of the
same matrix in the local maximum case.

2.2.1.1 Simulation analysis of multimodality for Hidden Markov model

A simulation study similar to the previous one has been carried out for HM models; in this
case, to assess the convergence behavior of the EM algorithm, four different configurations

32

2.2. Convergence to local maxima

of the parameters, or scenarios, have been considered, according to the chosen sample size
n and to the number of time occasions T ; in particular, samples are made up of 500 or
2,000 subjects and the study is referred to 5 or 10 time occasions. Moreover, for all samples
5 binary response variables are considered and 2 latent states are always assumed. In
Table 2.3 the simulated scenarios are summarized. Let us remark that all samples are
drawn form a time-homogeneous HM model, being π

(t)
u|ū = πu|ū, t = 2, . . . , T . Following

the same procedure adopted in the simulation study for the LC model, for each of these
scenarios we draw 50 different random samples.

Notation Scenarios
A B C D

n n = 500 n = 500 n = 5, 000 n = 5, 000

T T = 5 T = 10 T = 5 T = 10

k k = 2

r r = 5

c c = 2

πu [0.5, 0.5]′

π
(t)
ūu

[
0 0
0 0

]
︸ ︷︷ ︸

t=0

,

[
0.9 0.1
0.1 0.9

]
︸ ︷︷ ︸

t=1

,

[
0.9 0.1
0.1 0.9

]
︸ ︷︷ ︸

t=2

, . . . ,

[
0.9 0.1
0.1 0.9

]
︸ ︷︷ ︸

t=T

ϕjy|u

[
0.8 0.2
0.2 0.8

]
︸ ︷︷ ︸

1st response variable

,

[
0.8 0.2
0.2 0.8

]
︸ ︷︷ ︸

2nd response variable

, . . . ,

[
0.8 0.2
0.2 0.8

]
︸ ︷︷ ︸

rth response variable

Table 2.3: Summary of all values defining the four simulated scenarios (first phase) for
the hidden Markov model with categorical response variables

In the second phase of the study, for each sample, 4 different models are estimated: a
time-homogeneous model with k = 2 latent states (it is the only model correctly specified);
a time-homogeneous model with k = 3 latent states; two time-heterogeneous models, with
k = 2 and k = 3 latent states (all these models are misspecified because they are not
in agreement with to the simulation scheme). Figure 2.4 summarizes all the simulated
scenarios and the configurations of the estimated HM models.

In order to monitor the convergence behavior of the EM algorithm, the log-likelihood
function at convergence is evaluated many times: in particular, each model is estimated 100

33

Chapter 2. Tempered Expectation-Maximization algorithm

n = 500
TT = 5
k = 2

Time-Homogeneous
500 500
5 5
2 3

Time-Heterogeneous
500 500
5 5
2 3

n = 500
TT = 10
k = 2

Time-Homogeneous
500 500
10 10
2 3

Time-Heterogeneous
500 500
10 10
2 3

n = 2, 000
TT = 5
k = 2

Time-Homogeneous
2, 000 2, 000
5 5
2 3

Time-Heterogeneous
2, 000 2, 000
5 5
2 3

n = 2, 000
TT = 10
k = 2

Time-Homogeneous
2, 000 2, 000
10 10
2 3

Time-Heterogeneous
2, 000 2, 000
10 10
2 3

Figure 2.4: Configurations of parameters considered for both the simulation (in green)
and the estimation (in blue) phases for the hidden Markov model with categorical response
variables. The involved parameters are the sample size n and the number of time occasions
TT and of latent states k

times on the same sample, starting from 100 random initial values. This procedure allows
us to count the number of possible local maxima. The same remark expressed for LC
model needs to be taken into consideration also in this context: two different values could
either constitute two actual distinct maxima, or represent the same optimum with a slightly
different approximation. Therefore, a tolerance threshold is needed to distinguish between
these two alternatives; in the following, all log-likelihood values are suitably rounded.

Results Similarly to the previous simulation study, we only show the results obtained
using the wrong number of latent components (k = 3 for all scenarios). This analysis
illustrate, once again, the extent of the problem of multiple local maxima: as shown in
Figures 2.5 and 2.6, regardless of the considered scenario, a large number of different values
is reached at convergence of the EM algorithm. In the following, we list the three factors
affecting the number of local maxima in the simulation study, summarizing their actual
observed effect.

34

2.2. Convergence to local maxima

Time-heterogeneity Time-homogeneity

A B C D A B C D

5

10

15

20

Scenarios

N
u
m

b
er

 o
f
d
if
fe

re
n
t

m
a
x
im

a

Figure 2.5: Number of different local maxima obtained estimating the hidden Markov
model with categorical response variables with the Expectation-Maximization algorithm; for
each scenario, 50 samples are simulated and, for each sample, the model is estimated 100
times. The plots show the frequency of samples with a given number of different local maxima

1. An important feature that contributes to increase or decrease the number of different
local maxima is the sample size. As already noted in the LC model analysis, in each
scenario more local maxima are detected when the sample size increases. Moreover,
we also detect a considerable decrease in the proportion of global maximum; in this
regard, it is important to observe that the only rare samples for which the EM algo-
rithm converges to a unique maximum, are for n = 500 and when time-homogeneity
is assumed.

2. Under a misspecified heterogeneous HM model, another important characteristic with
a substantial impact on the number of local maxima is the number of the time occa-
sions: increasing T , indeed, leads to a significant rise of the number of local maxima
and to an important decrease in the proportion of global maxima. This behavior,
however, does not occur when the model is assumed as time homogeneous.

35

Chapter 2. Tempered Expectation-Maximization algorithm

Time-heterogeneity Time-homogeneity

A B C D A B C D

0%

25%

50%

75%

100%

Scenarios

P
ro

p
o
rt

io
n
 o

f
g
lo

b
a
l
m

a
x
im

u
m

Figure 2.6: Percentage of global maximum obtained estimating the hidden Markov model
with categorical response variables with the Expectation-Maximization algorithm; for each
scenario, 50 samples are simulated and, for each sample, the model is estimated 100 times.
The plots show the frequency of samples with a given percentage

3. Finally, the hypothesis of time-heterogeneity rather that time-homogeneity is the
feature that seems to affect most the number of local maxima. As expected, all the
misspecified models estimated assuming a time heterogeneous transition probability
matrix show a significantly higher number of different values of local maxima. This
behavior is particularly evident when the number of time occasions is high (e.g.,
T = 10 in our study).

In summary, when misspecified models are estimated, we detect the highest number
of different local maxima when n is small and T is big; moreover, the models with time-
heterogeneous transition probabilities always contribute to provide more local maxima. The
most relevant conclusion that we can draw from this simulation study is that, irrespective
of the selected scenario, the number of different local maxima is always extremely high.

Finally, it could be interesting to show in more detail the actual effect of the described
behavior on the estimated HM model parameters. Let us consider, as an example, a single

36

2.3. Annealing and tempering techniques

sample obtained according to the third scenario (n = 5, 000 and T = 5) in the time-
homogeneous case; in Table 2.4 different values (rounded up to the nearest integer) assumed
by the log-likelihood function after convergence of the EM algorithm are shown.

Value ≤ −70, 745 -70,744 -70,743 -70,742 -70,741 -70,740 -70,739
Frequency 30 4 3 8 47 3 5

Table 2.4: Different values (with the corresponding frequency) obtained for the log-
likelihood function after 100 repetitions of the Expectation-Maximization algorithm on the
same sample, drawn from the hidden Markov model with categorical response variables ac-
cording to scenario C and time-heterogeneity

In the case described above, the presence of many local maxima gives rise to a serious
issue, since the highest value, equal to −70, 739, occurs only 5 times (out of 100). Moreover,
comparing the estimated parameters resulting in this instance, with the ones obtained in the
case of the most frequent value (equal to −70, 741), we can detect significant differences. In
particular, as shown in Table 2.5, even accounting for label switching among latent states,
we notice significant dissimilarities:

• when the global maximum estimates are considered, the second latent state has initial
probability very close to zero (π2 = 0.01); moreover, according to the transition
probability matrix, the probability to move from a latent state to a different one is
always very low (all elements outside the diagonal are close to zero);

• on the contrary, if the estimates corresponding to the local maximum are taken into
consideration, all latent states have initial probability far from zero and the transition
probability between any couple of latent states is generally higher.

2.3 Annealing and tempering techniques

In this Section we summarize the theory of annealing and tempering techniques, laying the
groundwork for the implementation of the T-EM algorithm.

2.3.1 The origin of simulated annealing

The origin of the word annealing is in the metallurgy and material science (Aarts and
Korst, 1989, Section 2.2), where annealing is a common heat treatments, which is used

37

Chapter 2. Tempered Expectation-Maximization algorithm

Log-Likelihood = -70,741 Log-Likelihood = -70,739

Initial Probabilities
(πu)

[0.24, 0.25, 0.51]′ [0.51, 0.01, 0.48]′

Transition Probabilities
(πu|ū)

0.54 0.27 0.19
0.31 0.67 0.02
0.06 0.05 0.89

 0.89 0.01 0.10
0.00 0.84 0.16
0.10 0.01 0.89

Table 2.5: Estimated parameters (initial and transition probabilities) referred to the results
shown in Table 2.4. The parameters resulting from the global maximum are shown on the
right, the estimates obtained from the most frequent local maximum on the left

to alter physical, mechanical and sometimes chemical properties of metals; in particular,
the metal is heated to a specific temperature, where re-crystallization can occur, and then
cooled at a very slow and controlled rate. During this process, the free energy of the
solid is minimized. Practice shows that the cooling must be done carefully, in order not
to get trapped into locally optimal structure with crystal imperfections: if the decrease of
temperature is sufficiently slow, a perfect crystalline solid will form.

In a mathematical context, we can define a similar process by establishing a strong
underlying analogy between this physical annealing process of metals and the problem
of solving complex optimization problems; this similarity, in particular, is based on the
following equivalences:

• solutions in the optimization problem are equivalent to states of the metal physical
system;

• the value of a solution is equivalent to the free energy of a state.

From these analogies, a class of mathematical and statistical techniques, widely employed in
global optimization and probabilistic sampling, was developed. The origin of these methods
can be traced back to the early 1980’s, when the concepts of annealing were introduced in
combinatorial optimization (Kirkpatrick et al., 1983). The resulting approach, known as
simulated annealing (SA), soon became very popular, being used in various fields, such
as image and signal processing (Chen and Luk, 1999), biology (Svergun, 1999), geophysics
(Billings, 1994), finance (Crama and Schyns, 2003) and production managements (Koulamas
et al., 1994).

Consider finding the global maximum of a non-convex function f(θ) with respect to
the vector θ. In general, an optimization procedure will lead to one of the local optima

38

2.3. Annealing and tempering techniques

closest to the starting point: maxima with higher values would only emerge through a
more accurate exploration of the function profile. Annealing technique encourages such an
exploration behavior by introducing a parameter τ ∈ R+, known as the temperature, which
provides a rescaling of the target function. In particular, following the general scheme of
its metallurgical counterpart, SA operates by flattening the shape of the objective function
and then gradually warping the substitute, flat profile towards the original, bumpy one.
If this warping process is sufficiently slow, as all modes gradually reappear, the algorithm
remains close enough to the dominant mode (Kirkpatrick et al., 1983).

The procedure is based on the definition of the following general family of modified
functions:

f (τ)(θ) ∝ f(θ)
1/τ , (2.1)

where the proportionality is up to possible normalizing constants; we refer to f (τ)(θ) as an

annealed (or tempered, or heated) version of f(θ). In this context, the value of τ plays a
key role, since:

• as temperature is raised, the shape of f (τ)(θ) becomes relatively flat and all maxima
are less pronounced; this makes it much easier to escape from local optima and allows
exploring wide regions of the parameters space;

• as temperature is lowered, on the contrary, the shape of f (τ)(θ) becomes similar to
the original shape of f(θ); this guarantees a sharp optimization in a local region of
the parameters space.

SA makes use of a simple, strictly decreasing sequence of M temperature values (τm)m=1...M ;
for each fixed value τm, the procedure maximizes the corresponding annealed function
f (τm)(θ) and then moves to the next temperature level. The sequence needs to satisfy
the following two fundamental requirements: (i) the initial temperature τ1 should be suffi-
ciently high so that the corresponding annealed function f (τ1)(θ) is relatively flat; (ii) for
each level τm, the sequence decreases to immediately following, lower, temperature τm+1

and it is not allowed us to increase back to a previous, higher, value: P(τm+1 | τm) = 1,
where P(τm+1 | τm) denotes the probability to move from temperature τm to temperature
τm+1. In this way, as temperature is adjusted from high to low values, the new objective
function is increasingly more peaked, until the original profile is restored (in correspondence
of τM = 1). Hence, SA involves deterministic transitions between two successive tempera-
ture levels; in general, in order to avoid to be entrapped in local optima, these transitions

39

Chapter 2. Tempered Expectation-Maximization algorithm

τ1

τ2

τ3

τ4

τ5

τ6

τ7

τ8

Algorithm steps

Model Updates of θ
(Within-Chain Steps)

Changes of τ
(Between-Chains Steps)

T
em

p
er

at
u
re

Figure 2.7: Simulated annealing scheme: the procedure moves from high to low tempera-
ture levels (τm)m=1,...,M ; for each level τm, the algorithm maximizes the annealed function
f (τm)(θ).

must be done by taking small enough decrements in the temperature. Figure 2.7 illustrates
a simple example of this procedure when M = 8 temperature levels are considered.

2.3.2 The simulated tempering variant

Though SA provides a general framework that, in principle, can be applied to any opti-
mization problem, its performance is deeply influenced by how slow temperature transitions
occur. However, in general, precise rules are not provided in this regard: experience shows
that this issue is problem-dependent and a specific tuning is often required for each appli-
cation (Sambridge, 2014).

Simulated tempering (ST) (Geyer and Thompson, 1995; Sambridge, 2014) is a variant
of annealing, that attempts to address this issue. The general structure is similar to SA:
a strictly decreasing temperature sequence (τm)m=1...M is required and, for each fixed level
τm, the procedure seeks the maximum of the corresponding annealed (or tempered) func-
tion f (τm)(θ). In ST, however, temperature transitions gain two original elements; first,
the temperature may either increase or decrease, according to specific probabilities: for
each level τm, we possibly have P(τm+1 | τm) ≥ 0 and P(τm−1 | τm) ≥ 0, with the only,
obvious constraint that P(τm+1 | τm) + P(τm−1 | τm) = 1. Secondly, the decision to change
temperature is now stochastic: a new proposed level may be accepted or rejected according
to a specific probability (Geyer and Thompson, 1995; Sambridge, 2014). Therefore, the

40

2.3. Annealing and tempering techniques

process describing temperature evolution follows a Markov chain. In particular, when a
jump is proposed between temperatures τm and τl, with l = m ± 1, the transition is ac-
cepted, in accordance with the Metropolis-Hastings rule (Hastings, 1970), with probability
λ(m, l) = min(1, r), where

r =
f (τl)(θ) cl qm|l

f (τm)(θ) cm ql|m
(2.2)

and cm and cl are normalizing constants:

cm =

[∫
f (τm)(θ) dθ

]−1

,

cl =

[∫
f (τl)(θ) dθ

]−1

.

In the previous expressions ql|m = P(τl | τm) and qm|l = P(τm | τl) are the probabilities

of proposing a move from temperature level m to l and from temperature level l to m,
respectively. Standard values for ST are the following: ql|m = qm|l = 1/2, with q2|1 =

qM |M−1 = 1.
It is straightforward to prove that ST becomes identical to SA when l = m + 1 and

λ = 1, but, in general, this will not be the case. In this regard, an important advantage of
tempering over annealing is that the former guarantees a detailed balance between a finite
set of temperature levels by satisfying the Metropolis-Hastings stochastic accept-reject rule,
whereas the latter violates such condition (Earl and Deem, 2005). Conversely, in ST the
computation of normalizing constants is required for evaluation of λ(m, l); this may result
in difficulties in the implementation when such constants must be determined numerically.
Figure 2.8 provides a simple example of ST with 8 temperature levels.

2.3.3 The parallel tempering version

Among the appealing features of ST, a considerable aspect is the possibility to include a par-
allel execution in a quite natural way; the resulting approach is known as parallel tempering
(PT) (Geyer, 1991; Falcioni and Deem, 1999; Earl and Deem, 2005; Sambridge, 2014). In
this case, a temperature sequence (τm)m=1,...,M is again employed and, for each fixed level
τm, the respective tempered function f (τm)(θ) is maximized. The difference between ST
and PT lies in the nature of transition between different temperature levels: indeed, instead
of a single Markov chain either increasing or decreasing the value of temperature, in PT an

41

Chapter 2. Tempered Expectation-Maximization algorithm

τ1

τ2

τ3

τ4

τ5

τ6

τ7

τ8

Algorithm steps

Markov Chain

Model Updates of θ
(Within-Chain Steps)

Accepted Changes of τ
(Between-Chains Steps)

Rejected Changes of τ
(Between-Chains Steps)

T
em

p
er

at
u
re

Figure 2.8: Simulated tempering scheme: a single Markov Chain moves randomly either
up or down a level in the temperature sequence; for each level τm, the algorithm maximizes
the tempered function f (τm)(θ).

ensemble of Markov chains is distributed across all levels of the sequence and, at specified
intervals, a swap between a pair of neighboring chains is proposed:

(θm, τm), (θl, τl) → (θm, τl), (θl, τm), m, l = 1, . . . ,M, l ̸= m;

immediately before the proposed swap, θm and θl are current maximum points of f (τm)(θ)

and f (τl)(θ), respectively. As in ST, in order to guarantee the detailed balance property,
the proposed swap is accepted with probability λ(m, l) = min(1, r) (see also Sambridge
(2014)), with

r =
f (τl)(θm) cl qm|l

f (τm)(θm) cm ql|m
·
f (τm)(θl) cm ql|m

f (τl)(θl) cl qm|l
=

f (τl)(θm) f (τm)(θl)

f (τm)(θm) f (τl)(θl)
; (2.3)

The above expression highlights a considerable/significant improvement of PT over ST:
indeed, in the former, the computation of normalizing constants is no longer required,
thereby ensuring a substantial reduction of the computational effort. It can also make
efficient use of large CPU clusters, when maximization processes at different temperatures
can be run in parallel. Figure 2.9 illustrates a simple example of this approach.

42

2.3. Annealing and tempering techniques

τ1

τ2

τ3

τ4

τ5

τ6

τ7

τ8

Algorithm steps

Markov Chain 4
Markov Chain 2
Markov Chain 1
Markov Chain 5
Markov Chain 3
Markov Chain 8
Markov Chain 7
Markov Chain 6

Model Updates of θ
(Within-Chain Steps)

Accepted Changes of τ
(Between-Chains Steps)

Rejected Changes of τ
(Between-Chains Steps)

T
em

p
er

at
u
re

Figure 2.9: Parallel tempering scheme: an ensemble of Markov Chains is distributed
across all levels of the temperature sequence, and at points along the Markov Chains, a
swap of models at two neighboring temperature levels is proposed and accepted or rejected
according to a certain probability; for each temperature level τm, the algorithm maximizes
the tempered function f (τm)(θ).

2.3.4 Other features

We conclude this Section with a brief list of final observations and remarks:

1. All methods illustrated above may be used in combination with many existing op-
timization techniques. In particular, a common approach is described in Sambridge
(2014): instead of directly maximizing the objective function f(θ), it establishes to
sample through a statistical approach from a distribution with the following proba-
bility density function:

π(θ, τ) = e
f(θ)/τ .

Indeed, for τ > 0, the maximum point of f(θ) corresponds to the maximum point of

π(θ, τ); thereby, samples drawn from π(θ, τ) will be attracted to the peak of the
distribution and hence the global maximum of f(θ).

2. The main difference between SA and PT lies in the opposite way they distribute wide
exploration and localized search across the procedure. SA clearly separates these two
activities, by starting at high temperatures (that allow exploring wide regions of the
solution space) and then gradually moving to lower temperatures (that guarantee a
sharp optimization in a localized region of solution space). With PT, on the other

43

Chapter 2. Tempered Expectation-Maximization algorithm

hand, at each iteration step, both activities spread across all temperature levels: while
low temperature chains explore locally, higher temperature chains explore more glob-
ally and communication between these chains is always ensured by performing random
swaps (see Figure 2.9). Therefore, SA requires a careful tuning of the temperature
sequence, in order to avoid entrapment in local optima; in PT, instead, this issue is
avoided.

3. The application of a tempering technique to the EM algorithm, however, faces many
difficulties, mainly related to the nature of the objective function; in particular, since
an explicit form for the log-likelihood function is often intractable, the employment
of tempering requires a specific and careful adjustment and it makes it impossible
the computation of the acceptance probability λ as defined through (2.2) or (2.3).
Moreover, for the same reason we need to employ decreasing temperature levels during
the iterations of the algorithm and tempering techniques do not ensure such behavior.
Hence, in the following, we will consider two possible solutions:

(a) a standard SA procedure, which does not involve any acceptance probability
computation and guarantees a strict decrease of temperature;

(b) an adjusted ST procedure, where temperature may either decrease or increase
but, with respect to the original version, the accept-reject rule is removed and
the temperature sequence has a general decreasing trend.

In both cases, the detailed balance condition is violated, and the temperature sequence
needs to be carefully tuned; even so, tempering approach shows a clear advantage
since the procedure will spend much time at all temperatures. A possible interesting
development is to include a PT scheme. In the following, for simplicity, we will
generally refer to both methods as “tempering”, since this procedure also includes
annealing as a special case.

4. Tempering techniques are employed, among others, in Barbu and Zhu (2013) and
Robert et al. (2018) for simulating from complex multimodal statistical distributions
by means of Markov chain Monte Carlo methods (Metropolis et al., 1953; Hastings,
1970). On the other hand, the use of these procedures within the EM algorithm is
quite scarce. Hofmann (1999) proposed tempering techniques for the EM algorithm
in the context of probabilistic latent semantic analysis. For what concerns finite
Gaussian mixture models, recently, Lartigue et al. (2021) proposed a general class of
deterministic approximated versions of the EM algorithm following previous proposals
in Yuille et al. (1994), Ueda and Nakano (1998), and Zhou and Lange (2010).

44

2.4. Tempered Expectation-Maximization algorithm

2.4 Tempered Expectation-Maximization algorithm

The T-EM algorithm is implemented by adjusting the computation of the expected frequen-
cies in the E-step. As illustrated in Section 1.2, this computation is based on conditional
distributions, namely, q(u|y) for the LC model, and either q(t)(u|y) or q(t)(ū, u|y) for the
HM model. In the following, generically referring to these probabilities as q(·), we show
details of the T-EM algorithm for the LC and HM models, and we define some general rules
for the tempering constants.

The family of tempered probabilities has the following expression:

q̃(τ)(·) = m−1q(·)1/τ , (2.4)

where q(·) denotes the original conditional probability, τ is a suitable value for the tem-

perature parameter, varying over the interval [1,+∞)], and m is a suitable normalizing
constant in order to sum to 1. At each E-step of the T-EM algorithm, the conditional
expected frequencies are computed accordingly.

2.4.1 Choice of the temperature parameter

Given the above setting, it is clear that the temperature value τ has a deep impact on the
performance of the proposed T-EM algorithm, and needs to be carefully tuned. In fact,
as analyzed in Section 2.4, increasing the temperature value has the effect of flattening
the profile of the log-likelihood, thereby reducing the chance that the algorithm will get
trapped into a local maximum. In particular, the choice τ → +∞ yields q̃(τ)(·) to a uniform
distribution, while τ = 1 recovers the original posterior probability q(·). In other words, a
decrease in the value of τ ∈ (1,+∞) implies a change in the shape of q̃(τ)(·) from uniform to
original distribution. Therefore, we define a sequence of temperature values (τh)h≥1, where
h is the T-EM algorithm iteration number, so that:

1. the initial temperature value τ1 is sufficiently large, implying that the corresponding
tempered distribution q(τ1)(·) is relatively flat;

2. the temperature value τh tends towards 1 as the algorithm iteration counter increases:
τh → 1 as h→ +∞.

Any resulting sequence, denoted as tempering profile, guarantee a proper convergence of the
algorithm (Lartigue et al., 2021). This high flexibility in the definition of the temperature
sequence allows us to consider different tempering profiles, in order to evaluate and compare
the performance of the resulting algorithm:

45

Chapter 2. Tempered Expectation-Maximization algorithm

• a monotonically decreasing exponential profile, which is defined as

τh = 1 + eβ−
h/α, (2.5)

where, α ≥ 1 and β ≥ 0 are two tuning constants chosen so as to ensure flexibility in

the profile shape;

• a non-monotonic profile with oscillations of gradually smaller amplitude, which is
expressed as

τh = tanh
(

h

2ρ

)
+

(
τ0 − β · 2

√
2

3π

)
· αh/ρ + β · sinc

(
3π

4
+

h

ρ

)
, (2.6)

with constants r, τ0, β > 0 and 0 < α < 1. This profile has more parameters

to tune, but it guarantees a very high level of flexibility. Here, tanh(·) indicates
the hyperbolic tangent, while sinc(x) = sin(πx)/(πx) (with sinc(0) = 1)denotes the
normalized sine cardinal function. In this case, the sequence (τh)h≥1 could assume
values that are smaller than 1 or even negative, for some combinations of the involved
constants; although this is not an issue from a strictly mathematical perspective, a
tempering step with negative temperature lacks a proper interpretation. Therefore,
in practice, we can force the tempering profile to be always greater or equal to 1 by
taking τh = max{τh, δ}, with δ ≥ 1 (we fix δ = 1).

The abbreviations M-T-EM and O-T-EM are used for monotonic (2.5) and oscillating (2.6)
tempering profiles.

2.4.2 Tuning of the tempering profiles

The selection of optimal tempering constants for both profiles may be carried out through
a grid-search procedure; in the following, the term grid will denote the sequence of values
considered for a constant, while the term step-size will refer to the distance between two
consecutive values. For the monotonic profile the only two constants are simple to interpret:
β controls the value of the initial temperature, while α adjusts the decrease rate of the
temperature. Lower values of both make the contribution of tempering insignificant; at the
extreme, α = 1 and β = 0 recover the standard EM algorithm. Although it is not possible to
provide precise and rigorous rules for the selection of these constants, some guidelines hold
in general: (i) avoid very high values of α and β. Indeed, beyond certain values, the target
function can not be flattened further, and only the computational time would increase.

46

2.4. Tempered Expectation-Maximization algorithm

This sort of “threshold” values are unfortunately data-dependent, but we recommend not
exceeding α = 15 and β = 5; (ii) choose step-sizes for each grid such that the distance
between two consecutive values of α will result much smaller than the one between two
successive values of β. Indeed, the monotonic profile is much more sensitive to variations in
α than in β; we suggest, for example, a ratio of about 1 to 10; (iii) avoid increasing β without
a corresponding growth of α (while the opposite has no shortcomings). This would lead to
a fast decrease in the value of the temperature; accordingly, the target function would not
be warped back to its original shape in a gradual way, and the algorithm could possibly
be brought far from the global mode; (iv) typically, for each type of data there are many
possible suitable tempering configurations, and an important step is to locate a rough range
for the constants. After that, although the tuning process can be further refined, most of the
tempering configurations chosen within that range would provide good results; (v) various
factors such as number of observations, of response variables, and of latent components
would guide the choice of this “unrefined” range. For example, estimating a model with
many latent components typically requires higher values of α and β with respect to a model
with fewer components.

The same guidelines illustrated above should also be taken into account for the oscillat-
ing profile, where, however, there are more constants to tune. Their practical interpretation
is, in this case, slightly different: T0 controls the initial temperature, ρ the distance between
two consecutive peaks of the profile, β the amplitude of the oscillations, and α the global
decrease rate.

The following steps for tuning the tempering profile are derived from the aforementioned
rules:

1. define grids for all the tempering constants, starting with large step-sizes;

2. estimate the model using the T-EM algorithm with these “unrefined” grids for the
tempering constants employing a much smaller number of starting values with respect
to that required with the EM algorithm;

3. identify the optimal tempering constants by comparing values of the log-likelihood
function at convergence;

4. improve the tuning procedure, if necessary, in a smaller region of the tempering con-
stants space and repeat the same procedure (points 2 and 3) using the same small
number of different starting values.

The previous rules are successfully employed to estimate the models for the applications
presented in Section 2.7.

47

Chapter 2. Tempered Expectation-Maximization algorithm

A final note, which is effective for both profiles, is that in order to achieve a proper
convergence, the algorithm needs to be run until the temperature is steadily close to 1.
After that, the last step is conducted with the temperature precisely equal to 1 in order to
retrieve the shape of the original log-likelihood function. Typically, this approach increases
the number of steps that are required for the algorithm to converge, especially in the case of
the oscillating profile. The code written for this proposal is implemented in R and it is freely
available at the following link in the GitHub repository https://github.com/LB1304/T-EM.

2.4.3 T-EM algorithm for the latent class model with categorical re-
sponse variables

In the following, we provide some details of the tempered distribution (2.4) defined for the
LC model with categorical response variables considering a suitable tempering profile τh:

q̃(τh)(u|yi) =
q(u|yi)

1/τh∑k
v=1 q(v|yi)

1/τh
.

The corresponding pseudo-code is shown in the box Algorithm 1. On the basis of this

tempered distribution, the E-step and M-step of the resulting version of the algorithm are
implemented as follows:

• E-step: compute the revised conditional expected values of ajuy and bu revised ac-
cording to the rules

b̃(τ)u =
n∑

i=1

q̃(τ)(u|yi) and ã
(τ)
juy =

n∑
i=1

I(yij = y)q̃(τ)(u|yi); (2.7)

to obtain the conditional expected value Q(θ;θ(h−1)).

• M-step: maximize Q(θ;θ(h−1)), thus updating the parameters as:

π(τ)
u =

b̃
(τ)
u

n
and ϕ

(τ)
jy|u =

ã
(τ)
juy

b̃
(τ)
u

. (2.8)

48

https://github.com/LB1304/T-EM

2.4. Tempered Expectation-Maximization algorithm

Algorithm 1 Tempered Expectation-Maximization algorithm for the latent class model
with categorical response variables
1: Define a tempering profile (τh)h≥1.
2: θ ← θ(0) and h← 0.
3: while (Convergence Condition = FALSE) do
4: h← h+ 1;
5: E-Step: compute ã

(τh)
juy and b̃

(τh)
u , as in (2.7);

6: M-Step: compute π
(τh)
u and ϕ

(τh)
jy|u as in (2.8).

7: end while

2.4.4 T-EM algorithm for the hidden Markov model with categorical
response variables

A more refined formulation for the tempered distribution in (2.4) is required to estimate
the HM model with categorical response variables. Once the tempering profile τh is chosen,
we obtain the following tempered distributions:

q̃(t;τh)(u|yi) =
q(t)(u|yi)

1/τh∑k
v=1 q

(t)(v|yi)
1/τh

and

q̃(t;τh)(ū, u|yi) =
q(t)(ū, u|yi)

1/τh∑k
v=1

∑k
v̄=1 q

(t)(v̄, v|yi)
1/τh

.

The pseudo-code is shown in the box below Algorithm 2. In this setting, the steps of the

T-EM algorithm are:

• E-step: compute the revised conditional expected value of every frequency a
(t)
juy, b

(t)
u ,

and b
(t)
ūu, so as to obtain the conditional expected value Q(θ;θ(h−1)); in particular, we

have the following explicit expressions

ã
(t; τh)
juy =

n∑
i=1

I(y
(t)
ij = y) · q̃(t;τh)(u|yi) =

∑
y

ny · I(y(t)j = y) · q̃(t;τh)(u|y),

b̃(t;τh)u =

n∑
i=1

q̃(t;τh)(u|ỹi) =
∑
ỹ

ny · q̃(t;τh)(u|y),

b̃
(t;τh)
ūu =

n∑
i=1

q̃(t;τh)(ū, u|yi) =
∑
ỹ

ny · q̃(t;τh)(ū, u|y).

(2.9)

Similarly to the standard EM algorithm, the posterior probabilities q̃(t;τh)(u|yi) and

49

Chapter 2. Tempered Expectation-Maximization algorithm

q̃(t;τh)(ū, u|yi) may be efficiently computed by a backward recursion; see Bartolucci
et al. (2013, pp. 61-64) for further details.

• M-step: by maximizing Q(θ;θ(h−1)), update the parameters as follows:

π(τh)
u =

b̃
(1; τh)
u

n
, π

(t; τh)
u|ū =

b̃
(t; τh)
ūu

b̃
(t−1; τh)
ū

and ϕ
(τh)
jy|u =

∑T
t=1 ã

(t; τh)
juy∑T

t=1 b̃
(t; τh)
u

. (2.10)

Algorithm 2 Tempered Expectation-Maximization algorithm for the hidden Markov model
with categorical response variables
1: Define a tempering profile (τh)h≥1.
2: θ ← θ(0) and h← 0.
3: while (Convergence Condition = FALSE) do
4: h← h+ 1;
5: E-Step: compute ã

(t; τh)
juy , b̃(t; τh)u , and b̃

(t; τ)
ūu , as in (2.9);

6: M-Step: compute π
(τh)
u , π(t; τh)

u|ū , and ϕ
(τh)
yj|u as in (2.10).

7: end while

2.4.5 T-EM algorithm for the hidden Markov model with continuous
response variables

Regarding the HM model with continuous response variables, the pseudo-code is shown
in box Algorithm 3. Similarly to the previous case, denoting by τh a suitable tempering
profile, the steps of the resulting T-EM algorithm are as follows:

• E-step: compute the conditional expected value Q(θ;θ(h−1)) considering z
(t)
iu and

z
(t)
iūu:

z̃
(t;τh)
iu = q̃(t;τh)(u|yi) and z̃

(t;τh)
iūu = q̃(t;τh)(ū, u|yi). (2.11)

50

2.5. Simulation study

• M-step: maximize Q(θ;θ(h−1)) and update the model parameters as follows:

µ(τh)
u =

1∑n
i=1

∑T
t=1 z̃

(t;τh)
iu

n∑
i=1

T∑
t=1

z̃
(t;τh)
iu y

(t)
i ,

Σ(τh) =

n∑
i=1

T∑
t=1

k∑
u=1

z̃
(t;τh)
iu (y

(t)
i − µu)(y

(t)
i − µu)

′

nT
,

π(τh)
u =

∑n
i=1 z̃

(1;τh)
iu

n
,

π
(t;τh)
u|ū =

∑n
i=1

∑T
t=2 z̃

(t;τh)
iūu∑n

i=1

∑T
t=2 z̃

(t−1;τh)
iu

.

(2.12)

Algorithm 3 Tempered Expectation-Maximization algorithm for the hidden Markov model
with continuous response variables
1: Define a tempering profile (τh)h≥1.
2: θ ← θ(0) and h← 0.
3: while (Convergence Condition = FALSE) do
4: h← h+ 1;
5: E-Step: compute z̃

(t;τh)
iu and z̃

(t;τh)
iūu , as in (2.11);

6: M-Step: compute µ
(τh)
u , Σ(τh), π(τh)

u , and π
(t;τh)
u|ū , as in (2.12).

7: end while

2.5 Simulation study

We conduct an extensive Monte Carlo simulation study to evaluate the performance of the
T-EM algorithm. In the following, we illustrate the simulation scheme for each different
model specification and summarize the main results.

2.5.1 Settings of the experimental scenarios

In this Section we illustrate the simulation schemes for each different model specification.
The settings involved in each model are related to sample size n, and number of response
variables r, categories for each variable c, time occasions T , and latent components k. We
define a baseline scenario (setting A, see Tables 2.17, 2.18, and 2.19 in Appendix A) for
each model, characterized by n = 500, r = 6, c = 3, T = 5 and k = 3. In addition,

51

Chapter 2. Tempered Expectation-Maximization algorithm

more scenarios (settings from B to F) are obtained by doubling, one at a time, the value
of each feature. These settings are summarized in Tables 2.17, 2.18, and 2.19 in Appendix
A, where also the values of the models’ parameters are presented. Following the scheme
already introduced in Section 2.3, for each scenario we draw 50 different samples.

For each of the simulated samples, we estimate 100 times both the model with correctly
specified latent structure and that with misspecified latent structure, using each time dif-
ferent starting values randomly selected and employing the standard EM algorithm and the
two proposed versions of the T-EM algorithm. The choice to also fit misspecified models
allows us to show in more detail the features of the proposed tempering approach.

The convergence of the algorithms is checked on the basis of both the relative change
in the log-likelihood of two consecutive steps, and the distance between the corresponding
parameter vectors. We stop the algorithm when both criteria are satisfied:

ℓ(θ(h))− ℓ(θ(h−1))

|ℓ(θ(h))|
< ε1

and
max

s
|θ(h)s − θ(h−1)

s | < ε2,

where θ(h) is the parameter estimate obtained at the h-th iteration of the M-step and ε1

and ε2 are tolerance levels equal to 10−8 and 10−4, respectively.
Regarding the algorithm initialization, we adopt a starting rule based on normalized

random numbers (Bartolucci et al., 2013). In more details, each initial (πu) and transition
(π(t)

u|ū) probability is initialized with a random number drawn from a uniform distribution

between 0 and 1. Then, they are normalized such that
∑k

u=1 πu = 1 and
∑k

u=1 π
(t)
u|ū =

1. Similarly, we draw each ϕjy|u from the uniform distribution and we normalize these
parameters so that

∑c−1
y=0 ϕjy|u = 1. In the case of continuous response variables, the mean

vectors µu are drawn from a multivariate Gaussian distribution, whereas Σ is initialized
with the observed variance-covariance matrix.

2.5.2 Simulation results

The EM and T-EM algorithms are compared according to the following criteria:

1. Global maximum achievement : the highest of the maximized log-likelihood values
over all 100 initial values, denoted by ℓ̂max, is considered as the global maximum, and
a log-likelihood value at convergence denoted by ℓ̂ is considered close to this value
once it satisfies (ℓ̂max − ℓ̂)/|ℓ̂max| < ε̃, where ε̃ is a suitable threshold;

52

2.5. Simulation study

2. Average distance from the global maximum computed over the 100 log-likelihood val-
ues ℓ̂1, . . . , ℓ̂100 and expressed as

∑100
s=1(ℓ̂max − ℓ̂s)/100;

3. Low mean square error of the estimated model parameters with respect to the true
model parameters, computed only for models with a correctly specified latent struc-
ture;

4. Low mean and median of the log-likelihood values at convergence.

Setting A Setting B Setting C Setting D Setting E

EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM
0%

25%

50%

75%

100%

(a) Latent class model with correctly specified latent structure

Setting A Setting B Setting C Setting D Setting E Setting F

EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM
0%

25%

50%

75%

100%

(b) Hidden Markov model with categorical response variables and correctly specified latent structure

Setting A Setting B Setting C Setting D Setting E

EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM

40%

60%

80%

100%

(c) Hidden Markov model with continuous response variables and correctly specified latent structure

Figure 2.10: Percentages of global maxima obtained using EM and M-T-EM algorithms
under simulated scenarios presented in Tables 2.17, 2.18, and 2.19 of the Appendix A for
the latent class and hidden Markov models with correctly specified latent structure

In particular, in this first part of the simulation study, we analyze the performance of
the M-T-EM algorithm when the tempering profile is optimally tuned through a grid-search

53

Chapter 2. Tempered Expectation-Maximization algorithm

Setting A Setting B Setting C Setting D Setting E

EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM

0%

25%

50%

75%

100%

(a) Latent class model with misspecified latent structure

Setting A Setting B Setting C Setting D Setting E Setting F

EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM

0%

25%

50%

75%

100%

(b) Hidden Markov model with categorical response variables and misspecified latent structure

Setting A Setting B Setting C Setting D Setting E

EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM

0%

25%

50%

75%

100%

(c) Hidden Markov model with continuous response variables and misspecified latent structure

Figure 2.11: Percentages of global maximum using EM and M-T-EM algorithms under
simulated scenarios presented in Tables 2.17, 2.18, and 2.19 of the Appendix A for the latent
class and hidden Markov models with misspecified latent structure

procedure. The following values for the tempering constants are kept fixed throughout the
simulation studies: α ranging from 1 to 15 with a step-size equal to 1 and β ranging from
0 to 2, with a step-size equal to 0.1. In order to show the flexibility of the method, we
use the same grid for each model. However, efficient ad hoc grids may be set according to
the model and observed data. The results are summarized in the following, while the full
outcomes related to every sample of each simulated scenario are reported in the SI.

Criterion 1 is the most important, providing a suitable measure of performance of the
algorithm. In this regard, the main results are summarized in Figures 2.10 and 2.11,
representing the frequencies of global maximum with respect to the LC model, HM model

54

2.5. Simulation study

with categorical response variables, and HM model with continuous response variables,
respectively. From all these figures it clearly emerges that the M-T-EM algorithm ensures
better performance in each considered scenario.

Regarding the estimation of models whose latent structure is correctly specified, in par-
ticular (see Figure 2.10), the improvement with respect to the standard EM algorithm is
very relevant: the M-T-EM is generally able to detect the global maximum in the over-
whelming majority of cases, and the frequency of convergence to the global mode is very
close, or even equal, to 100%. Only in estimating models with many latent states (up to
6), this percentage is slightly reduced, even if the M-T-EM still remains the algorithm pro-
viding the best performance. As an example, we consider the HM model with categorical
response variables and in the particular setting F (see the last plot in Figure 2.10b): in this
case the frequencies of convergence to the global maximum is, on average, equal to 29%

when the standard EM algorithm is used, and up to 52% when the M-T-EM algorithm is
employed. Moreover, this frequency is always lower than 75% with the EM, while it reaches
100% with M-T-EM (though only in a few cases).

All the algorithms are less efficient in steadily detecting the global mode when models
with misspecified latent components are estimated (see Figures 2.11). The M-T-EM al-
gorithm always provides the best performance, and in many scenarios the improvement is
very relevant: in setting D of the LC model (Figure 2.11a) the frequency of convergence to
the global mode increases from 18% to 41%; in setting C of the HM model with categorical
responses (Figure 2.11b) for some samples this frequency reaches 100%.

Correctly specified Misspecified

Scenario < 10% > 50% > 95% < 10% > 50% > 95%

A 1 - 0 43 - 49 20 - 49 7 - 2 9 - 25 0 - 8
B 0 - 0 41 - 50 15 - 49 1 - 0 10 - 33 0 - 3
C 0 - 0 50 - 50 47 - 50 9 - 4 0 - 9 0 - 0
D 1 - 1 47 - 48 32 - 47 4 - 1 0 - 21 0 - 0
E 10 - 5 0 - 13 0 - 2 32 - 18 0 - 5 0 - 0

Table 2.6: Number of samples in which the global maximum is reached with frequency
< 10%, > 50%, or > 95%, using EM (highlighted in blue) and M-T-EM (highlighted in
red) algorithms under simulated scenarios presented in Table 2.17 of the Appendix A for
the latent class model

In Tables 2.6, 2.7, and 2.8, for each one of the simulated scenarios, we show the number
of samples in which the global maximum is reached at least half of the times (> 50%), almost
always (> 95%), or almost never (< 10%). These results provide supporting evidence for

55

Chapter 2. Tempered Expectation-Maximization algorithm

Correctly specified Misspecified

Scenario < 10% > 50% > 95% < 10% > 50% > 95%

A 0 - 0 50 - 50 50 - 50 4 - 1 6 - 24 0 - 1
B 0 - 0 50 - 50 50 - 50 0 - 0 20 - 35 0 - 0
C 0 - 0 50 - 50 35 - 50 4 - 1 5 - 21 0 - 1
D 0 - 0 43 - 47 11 - 41 3 - 2 1 - 17 0 - 0
E 0 - 0 50 - 50 50 - 50 3 - 1 20 - 32 0 - 2
F 7 - 6 6 - 23 0 - 7 27 - 17 0 - 5 0 - 0

Table 2.7: Number of samples in which the global maximum is reached with frequency
< 10%, > 50%, or > 95%, using EM (highlighted in blue) and M-T-EM (highlighted in
red) algorithms under simulated scenarios presented in Table 2.18 of the Appendix A for
the hidden Markov model with categorical response variables

Correctly specified Misspecified

Scenario < 10% > 50% > 95% < 10% > 50% > 95%

A 0 - 0 50 - 50 12 - 36 3 - 2 13 - 23 0 - 0
B 0 - 0 50 - 50 14 - 36 0 - 0 20 - 26 0 - 1
C 0 - 0 50 - 50 0 - 40 2 - 0 19 - 24 0 - 0
D 0 - 0 50 - 50 18 - 47 4 - 4 20 - 28 0 - 1
E 0 - 0 15 - 40 0 - 0 17 - 5 0 - 1 0 - 0

Table 2.8: Number of samples in which the global maximum is reached with frequency
< 10%, > 50%, or > 95%, using EM (highlighted in blue) and M-T-EM (highlighted in
red) algorithms under simulated scenarios presented in Table 2.19 of the Appendix A for
the hidden Markov model with continuous response variables

the conclusions drawn so far. In particular, when the considered models are estimated with
the correct latent structure, M-T-EM algorithm performs really well, significantly increasing
the performance with respect to standard EM algorithm. For example, this enhancement
is evident in setting C of the HM model with continuous response variables, where we
observe that 40 samples reach the global mode with high frequency compared to none with
the standard EM algorithm. An analogous improvement is noticeable for the case with
6 latent states but referred to the frequency of convergence to the global maximum more
than half the time. In the case of models estimated with the wrong latent structure and
many components we show another important result, not highlighted so far: the number of
samples in which the global maximum is almost never reached (< 10% of times) diminishes
when the M-T-EM algorithm is employed.

56

2.5. Simulation study

We also consider the mean distance from the global mode to measure how far is the
obtained maximum from the global one. In particular, although all settings provide similar
results, we notice that when dealing with correctly specified models, the mean distance
decreases to zero when the M-T-EM algorithm is employed, thus confirming that the global
maximum is almost always reached. In Appendix B, all detailed results are provided in
Figures 2.16 and 2.17.

Scenario LC Categorical HM Continuous HM

A 0.0013
0.0012

0.0006
0.0002

0.0643
0.0272

B 0.0007
0.0006

0.0003
0.0001

0.0556
0.0294

C 0.0022
0.0010

0.0046
0.0003

0.1603
0.0433

D 0.0020
0.0006

0.0027
0.0002

0.0322
0.0094

E 0.0584
0.0544

0.0002
0.0001

0.1384
0.1168

F - 0.0202
0.0179 -

Table 2.9: Mean square errors of the estimated model parameters with respect to the
true model parameters, using EM (highlighted in blue) and M-T-EM (highlighted in red)
algorithms for each simulated scenario. Each value is computed as the average over 50
samples and 100 starting values as presented in Section 2.5.2. The true parameters for
each model are summarized in Appendix A

Finally, we also provide the mean square error of the estimated model parameters with
respect to the true ones, once the models are estimated with the correct latent structure.
The results, summarized in Table 2.9, show that the mean square error values are always
smaller with the M-T-EM algorithm than with the standard EM algorithm, thus highlight-
ing that the estimated model parameters are more accurate by employing the former.

2.5.3 Results in terms of computational time

Having assessed the good performance of the proposed M-T-EM algorithm in locating the
global maximum, we also compare the computational time required for convergence with
that required by the EM algorithm for the same simulation settings illustrated above.
Tempering constants are chosen as presented in Section 2.5.2. The estimation is performed

57

Chapter 2. Tempered Expectation-Maximization algorithm

by employing an Intel(R) Core(TM) i7-8700T CPU @ 2.40GHz Windows desktop with 8
GB of RAM.

Scenario LC Categorical HM Continuous HM

Correctly specified models

A 0.039 - 0.055 0.178 - 0.643 3.499 - 3.442
B 0.042 - 0.067 0.288 - 1.109 6.225 - 6.381
C 0.046 - 0.052 0.212 - 0.583 7.475 - 7.224
D 0.035 - 0.039 0.191 - 0.775 5.974 - 5.897
E 0.466 - 0.537 0.270 - 1.206 9.545 - 9.495
F - 1.728 - 11.237 -

Misspecified models

A 0.205 - 0.484 1.114 - 7.282 11.114 - 12.480
B 0.268 - 0.348 2.045 - 13.258 18.646 - 21.016
C 0.294 - 0.407 1.396 - 6.747 24.670 - 29.081
D 0.244 - 0.364 1.173 - 7.365 19.981 - 23.852
E 0.581 - 0.630 2.022 - 13.217 18.513 - 19.714
F - 2.523 - 15.867 -

Table 2.10: Computational time in seconds of the EM (highlighted in blue) and M-T-EM
(highlighted in red) algorithms for each simulated scenario, computed as the mean over 50
samples and 100 starting values as presented in Section 2.5.2

The main results, summarized in Table 2.10, show that when estimating LC and HM
models with continuous response variables, the EM and M-T-EM algorithms show very
similar computing times. The EM algorithm generally remains the fastest even if the
difference with the M-T-EM is negligible. When dealing with correctly specified HM models
with continuous response variables, M-T-EM algorithm is faster than the EM algorithm.
Conversely, for the case of the HM model with categorical response variables it is the slower,
requiring up to 6.5 times the computational time of the EM algorithm. These two opposite
behaviors are due to the different implementations of the T-EM algorithm: the one for the
HM model with categorical responses involves the addition of a for loop to the code, which
is not required for the other two models.

2.5.4 The role of the oscillating tempering profile

Although the M-T-EM algorithm ensures significant improvements in terms of ability to
detect the global maximum, in some cases the frequency of convergence to this global mode
remains inferior to 100%. A possible remedy is represented by the oscillating profile, which

58

2.5. Simulation study

is able to explore the parameter space more deeply than the monotonic one. In the following
we focus only on the LC model, comparing the O-T-EM algorithm with the EM and M-T-
EM algorithms; this is due to the higher computing time associated with this profile. The
main results are summarized in Figure 2.12, where we show the percentage of times the
global maximum is reached and the mean distance from the global maximum for the three
versions of the algorithm.

Setting E

EM M-T-EM O-T-EM
0%

25%

50%

75%

100%

(a) Percentage of global maximum

Setting E

EM M-T-EM O-T-EM
0

2

4

6

(b) Mean distance from the global maximum

Figure 2.12: Percentage of global maximum and mean distance from it using EM, M-T-
EM, and O-T-EM algorithms on simulated data from an LC model correctly specified with
6 latent classes

Employing the oscillating profile, we notice a further improvement compared to the
results analyzed in Section 2.5.2: the global maximum is reached on average about 18%

of times with the standard EM algorithm, which increases up to 38% with the M-T-EM
algorithm, and up to 60% with the oscillating version. It is also interesting to evaluate the
number of samples in which the global maximum is reached almost surely (< 95%); this
number, as reported in Table 2.6, was equal to 0 and 2 with EM and M-T-EM algorithms,
respectively. Using the O-T-EM algorithm instead it increases to 18 samples. As for the
mean distance from the global maximum, we notice that this value decreases accordingly,
following the general advantage of the O-T-EM algorithm over the monotonic version. This
optimal performance of the tempered algorithm with oscillating profile results, however, in
a much higher computational time, as reported in Table 2.11.

The aspect mentioned above sometimes makes the employment of the O-T-EM algo-
rithm rather complex; in particular, when it is applied to the HM model with categorical
responses, the convergence is extremely slow, and the M-T-EM could be the most appro-
priate choice.

59

Chapter 2. Tempered Expectation-Maximization algorithm

Algorithm Minimum Median Mean Maximum

EM 0.07 0.51 0.466 1.74
M-T-EM 0.11 0.59 0.537 1.78
O-T-EM 0.08 6.08 7.91 24.51

Table 2.11: Computational time in seconds of the EM, M-T-EM, and O-T-EM algorithms
for the correctly specified latent class model with 6 latent classes, computed as the mean over
50 samples and 100 starting values, as presented in Section 2.5.2

2.5.5 Analysis of the tempered Expectation-Maximization algorithm with
fixed tempering profile

Lastly, we check the performance of the T-EM algorithm when it is not optimally tuned, but
the tempering constants are fixed in advance. With this aim, for each inspected scenario,
a short list of different configurations of tempering constants is considered for applying the
M-T-EM algorithm to all samples. In the analysis of the results, the tempered version is
considered as the best choice only when it outperforms the standard EM algorithm with
respect to all the four criteria introduced in Sect 2.5.2. Otherwise, if at least one criterion
shows a better result with the standard EM algorithm, the latter is preferred. In this way,
we carry out a very rigorous analysis.

Tables 2.20 and 2.21 in the Appendix C report for each scenario the configuration of
tempering constants which exhibits the best performance. Results are highly satisfactory
in most cases: given a fixed configuration, the M-T-EM algorithm outmatches the standard
version in around 50% of samples in almost all the analyzed scenarios. In other words, once
a configuration of tempering constants is set appropriately by a grid-search procedure over a
specific sample, it generally remains valid for around 50% of other samples. This percentage
increases up to 100% in some scenarios, especially when the latent structure of the model
is correctly specified: the considered configuration of tempering constants provides optimal
results in all samples. Similar results are achieved in the case of oscillating tempering profile
analyzing setting E of the LC model when the latent structure is correctly defined: the best
configuration of tempering constants (α = 0.9, β = 50, ρ = 5, and T0 = 10) performs
well with 62% of considered samples. It is clear that there are still some cases that require
experimenting with the tempering constants to yield good performance; however, in our
opinion, this represents a first significant improvement that allows avoiding specific settings
for models and types of data.

60

2.6. Initialization of the tempered Expectation-Maximization algorithm

2.6 Initialization of the tempered Expectation-Maximization
algorithm

In this Section we consider different initialization strategies for the model parameters to
evaluate the effect of different choices in detecting the global maximum and reducing the
computational time.

Laird (1978) was the first to suggest a grid search; however, this method is unfeasible
when parameter space has a high dimension. As suggested in Bartolucci et al. (2013),
a multi-try strategy is typically adopted, combining deterministic and random rules. In
particular, once an estimate θ̂0 is obtained starting with a deterministic rule, this approach
suggests performing the algorithm again, starting from a suitable number R of randomly
chosen points of the parameters space, and obtaining the estimates θ̂1, . . . , θ̂R. Then, we
compare ℓ(θ̂0) with the maximum of ℓ(θ̂1), . . . , ℓ(θ̂R) and we take as global maximum of
ℓ(θ) the solution corresponding to the highest log-likelihood value. In this way, provided
that R is large enough, the random rule allows us to adequately explore the parameter
space. However, this approach is computationally intensive and it may fail to reach the
global maximum, in particular with many model parameters.

More refined initialization strategies have been investigated. Recently, Maruotti and
Punzo (2021) carried out a detailed study about the effect of the initial values on the
outcome of the EM algorithm and compared different initialization methods, some of which
are based on preliminary cluster analysis (Everitt et al., 2011). In particular, they examine
the following strategies:

• Random Short EM : this procedure establishes to perform a suitable number of “short”
runs of the EM algorithm, each with random initialization. Every run is limited to
a small number of iterations, without waiting for the reaching of convergence. The
resulting parameter vector providing the largest likelihood is then used as initial value
for the classic EM.

• Partitional Clustering : this method, proposed by Leroux and Puterman (1992) fol-
lowing McLachlan and Basford (1988), suggests to classify the observations into k

clusters, where k is the number of latent states or latent classes of the model to be
estimated; then the estimate derived by the application of this clustering algorithm
is considered as the initial point of the EM algorithm. A typical example, when
dealing with continuous responses, is represented by k-means clustering (Forgy, 1965;
MacQueen, 1967), which partitions units so that the within-cluster sum of squares is
minimized. Then the starting values for the EM algorithm are simply computed on

61

Chapter 2. Tempered Expectation-Maximization algorithm

the basis of this partition; for instance the transition probabilities are obtained as the
proportions of transition and persistence. A similar procedure for generating starting
values based on data partitions when response variables are categorical makes use of
the k-modes algorithm (Huang, 1998).

• Gaussian Mixtures: this strategy prescribes to obtain a preliminary partition using
Gaussian mixtures (Fraley and Raftery, 2002; Titterington et al., 1985); then the
initial values for the EM algorithm are computed from this partition as in the previous
method.

In the following we will focus on the partitional clustering approach, being the method
that provides the best results in Maruotti and Punzo (2021). Considering k-means and k-
modes algorithms as partition clustering methods for categorical and continuous response
variables respectively, initial values are computed as follows:

• proportion of observations assigned to cluster u at the first time occasion for the
initial probabilities (πu);

• proportion of transition (or persistence) estimated from cluster ū to cluster u for the
transition probabilities (π(t)

u|ū);

• proportion of observations assigned to cluster u who responded with category j to
the response variable y for the conditional probabilities (ϕjy|u);

• maximum likelihood estimator on the observations of cluster u for the mean vectors
(µu);

• maximum likelihood estimator on all the observations under the hypothesis of ho-
moscedasticity for the variance-covariance matrix (Σ).

We consider the same samples and starting values used in Section 2.6, comparing the
performance of EM and M-T-EM algorithms. In general, when the estimation of correctly
specified models is considered, the standard EM algorithm benefits from the adoption of a
k-means initialization; using this kind of strategy, therefore, the results obtained with EM
and M-T-EM algorithms are very similar.

In the second column of Table 2.12, for each scenario, we report the number of samples
in which the standard EM algorithm with k-means initialization does not converge to the
global maximum, which is instead reached by the M-T-EM algorithm with the same starting
values. It is important to remark that M-T-EM does not behave worse than the standard
EM in all the other samples, but both algorithms converge to the same value (further

62

2.6. Initialization of the tempered Expectation-Maximization algorithm

Scenario Perc. > EM
(k-means)

Perc. Glob. Max.
(k-means)

Iterations
(Random)

Iterations
(k-means)

LC model

A 98% 98% 26.49 25.10
B 98% 98% 28.88 28.32
C 96% 100% 11.00 6.82
D 76% 92% 11.42 8.54
E 60% 0% - -

HM model (categorical responses)

A 62% 100% 10.09 5.48
B 58% 100% 10.00 5.14
C 0% 100% 8.89 5.78
D 76% 92% 12.53 9.70
E 38% 100% 9.50 5.16
F 84% 36% 176.47 164.96

HM model (continuous responses)

A 14% 100% 42.73 11.84
B 8% 100% 37.97 10.76
C 0% 100% 45.39 11.06
D 0% 98% 34.21 10.62
E 28% 100% 83.89 14.44

Table 2.12: Percentage of samples in which the global maximum is reached by the M-T-
EM algorithm with k-means initialization, but not by the standard EM algorithm with the
same starting values, percentage of samples in which the M-T-EM algorithm with k-means
initialization reaches the global maximum and number of iterations until convergence with
random and k-means (or k-modes) initialization when the latent structure of the models is
correctly specified

analyses conducted on correctly specified HM models with continuous response variables
and k = 2 latent states highlight that in such case the global maximum is always reached
also by the EM algorithm with k-means initialization). We also compare random and
k-means initializations for the M-T-EM algorithm. The results, summarized in the last
three columns of Table 2.12, show that the k-means initialization works properly. Indeed
this strategy significantly reduces the number of iterations required for convergence, and
hence the computational time. In particular we report, along with the number of samples
in which the M-T-EM algorithm with k-means initialization reaches the global maximum,
the average number of iterations required by the two initialization strategies to converge.

63

Chapter 2. Tempered Expectation-Maximization algorithm

We notice that apart from some cases with many latent components, the global maximum
is almost always reached by the M-T-EM algorithm when initialized with the k-means
approach. As for the decrease in the number of iterations, the advantage is particularly
evident when dealing with HM model with continuous responses; in this case, it is dropped
up to one sixth.

Scenario Perc. > EM
(k-means)

Perc. Glob. Max.
(k-means)

Iterations
(Random)

Iterations
(k-means)

LC model

A 60% 16% 359.44 216.00
B 60% 22% 136.21 121.27
C 38% 0% - -
D 60% 26% 112.04 99.04
E 78% 0% - -

HM model (categorical responses)

A 86% 40% 148.55 140.29
B 76% 40% 134.40 121.61
C 82% 32% 122.13 110.48
D 42% 30% 147.47 132.06
E 70% 32% 116.50 106.26
F 78% 18% 263.00 253.79

HM model (continuous responses)

A 44% 44% 142.33 142.33
B 70% 56% 117.07 97.32
C 62% 50% 141.78 136.68
D 68% 44% 116.41 94.09
E 62% 26% 136.21 89.54

Table 2.13: Percentage of samples in which the global maximum is reached by the M-T-
EM algorithm with k-means initialization, but not by the standard EM algorithm with the
same starting values, percentage of samples in which the M-T-EM algorithm with k-means
initialization reaches the global maximum and number of iterations until convergence with
random and k-means (or k-modes) initialization when the latent structure of the models is
not correctly specified

In the case of models where the latent structure is not correctly specified, the situation
is less well defined: likewise the previous case, the results obtained comparing EM and M-T-
EM algorithms initialized with k-means strategy are very similar for some samples (second
column in Table 2.13), highlighting that the standard EM algorithm may sometimes benefit

64

2.7. Applications

from the adoption of this initialization strategy. However, when M-T-EM is employed, this
improvement does not always correspond to an advantage of k-means initialization with
respect to the random one. As shown in Table 2.13, the number of samples that benefit
from this initialization strategy is quite limited and usually does not reach the 50%. Finally,
also in this case the k-means initialization provides some benefits from the point of view
of the number of iterations until convergence, even if less pronounced than in the case of
models with correctly specified latent structures.

2.7 Applications

To explore the performance of the T-EM algorithm when dealing with real-world cases,
we apply it to cross-sectional and longitudinal data; we specifically address the problem of
selecting the best number of components for LC and HM models.

2.7.1 Evaluation of anxiety and depression

We consider data derived from the administration of 14 ordinal items measuring anxiety and
depression in a sample of 201 oncological Italian patients (Zigmond and Snaith, 1983). Items
are measured according to four response categories ranging from 0 to 3 and corresponding to
the lowest and to the highest level of anxiety or depression, respectively. Data are available
in the R package MultiLCIRT (Bartolucci et al., 2014).

The LC model allows to discover subpopulations of patients with similar intensity levels
of these two pathologies. The model is estimated with both EM and O-T-EM algorithms
with a number of latent components k ranging from 1 to 4 to perform model selection.
Bayesian Information Criterion (BIC, Schwarz, 1978) is employed at this purpose penal-
izing the maximized log-likelihood function for the model complexity. For the O-T-EM
algorithm the following configuration of tempering constants is used and held fixed over
the values of k: ρ = 90, τ0 = 10, β = 20, and α = 0.8.

Results of the estimation of LC model with EM and O-T-EM algorithms are reported
in Table 2.14, where it can be seen that both algorithms are able to detect the global
maximum for every number of latent classes. The resulting optimal number of components,
corresponding to the minimum value of BIC, is three. It is important to remark that
the results are always obtained using the same configuration of tempering constants as
presented above. Therefore, we highlight the considerable level of flexibility of the method
again.

In this case, the main advantage resulting from the employment of the tempered algo-

65

Chapter 2. Tempered Expectation-Maximization algorithm

EM O-T-EM

k #par ℓ̂ BIC ℓ̂ BIC

1 42 -3,153.15 6,529.04 -3,153.15 6,529.04
2 85 -2,814.64 6,080.05 -2,814.64 6,080.05
3 128 -2,674.48 6,027.79 -2,674.48 6,027.79
4 171 -2,595.47 6,097.83 -2,595.47 6,097.83

Table 2.14: Number of parameters, maximum log-likelihood and BIC index resulting from
fitting a latent class model on the anxiety and depression data with EM and O-T-EM al-
gorithms for different numbers of the latent classes k. For both algorithms, bold value
represents the best result

EM algorithm O-T-EM algorithm

-3,154.0 -3,153.6 -3,153.2 -3,154.0 -3,153.6 -3,153.2

0%

25%

50%

75%

100%

Log-likelihood values

F
re

q
u
en

cy

(a) Model with 1 latent class

EM algorithm O-T-EM algorithm

-2,817 -2,816 -2,815 -2,817 -2,816 -2,815

0%

25%

50%

75%

100%

Log-likelihood values

F
re

q
u
en

cy

(b) Model with 2 latent classes

EM algorithm O-T-EM algorithm

-2,735 -2,710 -2,685 -2,735 -2,710 -2,685

0%

25%

50%

75%

100%

Log-likelihood values

F
re

q
u
en

cy

(c) Model with 3 latent classes

EM algorithm O-T-EM algorithm

-2,690 -2,650 -2,610 -2,690 -2,650 -2,610

0%

25%

50%

75%

100%

Log-likelihood values

F
re

q
u
en

cy

(d) Model with 4 latent classes

Figure 2.13: Maximized log-likelihood values for the anxiety and depression data using
standard EM (in blue) and O-T-EM (in green) algorithms. Four different choices for the
number of latent classes are analyzed, with 100 random starting values each

rithm is the frequency of convergence to the global maximum. Figure 2.13 refers to the
maximum log-likelihood values reached by each algorithm for each model; as it is evident,
while the EM algorithm spreads out over a wide range of values, the O-T-EM algorithm
always converge to a single value appearing as the global mode. The same results are
obtained also with the M-T-EM for different configurations of tempering constants.

66

2.7. Applications

2.7.2 Discovering criminal trajectories

We consider longitudinal data on conviction histories of a cohort of n = 10, 000 offenders
followed from the age of criminal responsibility (10 years) until age 40. As described
in Research Development and Statistics Directorate (1998), offenses are grouped into the
following 10 typologies: violence against the person, sexual offenses, burglary, robbery, theft
and handling stolen goods, fraud and forgery, criminal damage, drug offenses, motoring
offenses, and other offenses. Binary response variables (r = 10) indicate if the offender has
committed a crime during six age bands (T = 6) of length equal to 5 years. An HM model
was proposed for the analysis of these data in Bartolucci et al. (2007) and Pennoni (2014)
to identify typologies of criminal behaviors and types of criminal career specialization over
time. Data are available in the R package LMest (Bartolucci et al., 2017).

Results of estimating a time heterogeneous HM model with the EM and O-T-EM algo-
rithms for a number of latent states ranging from 1 to 5 are reported in Table 2.15. The
optimal number of latent states corresponding to the minimum value of BIC is four. As for
the tempered algorithm, the same configuration of tempering constants is kept fixed for all
values of k: α = 0.2, β = 10, ρ = 5 and T0 = 10.

EM O-T-EM

k #par ℓ̂ BIC ℓ̂ BIC

1 10 -27,936.35 55,964.81 -27,936.35 55,964.81
2 31 -22,638.39 45,562.30 -22,638.39 45,562.30
3 62 -22,275.05 45,121.14 -22,275.05 45,121.14
4 103 -22,051.55 45,051.77 -22,051.55 45,051.77
5 154 -21,881.36 45,181.12 -21,881.36 45,181.12

Table 2.15: Number of parameters, maximum log-likelihood and BIC index resulting from
fitting a time heterogeneous hidden Markov model on the criminal data with EM and O-T-
EM algorithms for different numbers of the latent states k. For both algorithms, bold value
represents the best result

Results in Figure 2.14 show the comparison of maximum log-likelihood values reached
by each algorithm for each model: according to the same procedure illustrated in Section
2.5.2, for each value of k, 100 different starting values are randomly chosen to initialize both
versions of the algorithm. It is clear that, also in this context, the O-T-EM guarantees a
better performance. Employing this algorithm the global maximum is reached with a very

67

Chapter 2. Tempered Expectation-Maximization algorithm

high frequency in all cases, and in particular for the selected model with k = 4 latent states.
Conversely, the standard EM algorithm converges to a broad range of different maxima.

EM algorithm O-T-EM algorithm

-22,638.39 -22,638.39 -22,638.39 -22,638.39

0%

25%

50%

75%

100%

Log-likelihood values

F
re

q
u
en

cy

(a) Model with 2 latent states

EM algorithm O-T-EM algorithm

-22,470 -22,380 -22,290 -22,470 -22,380 -22,290

0%

25%

50%

75%

100%

Log-likelihood values

F
re

q
u
en

cy

(b) Model with 3 latent states

EM algorithm O-T-EM algorithm

-22,140 -22,100 -22,060 -22,140 -22,100 -22,060

0%

25%

50%

75%

100%

Log-likelihood values

F
re

q
u
en

cy

(c) Model with 4 latent states

EM algorithm O-T-EM algorithm

-22,100 -22,000 -21,900 -22,100 -22,000 -21,900

0%

20%

40%

60%

Log-likelihood values

F
re

q
u
en

cy

(d) Model with 5 latent states

Figure 2.14: Maximized log-likelihood values for the criminal data using standard EM (in
blue) and O-T-EM (in green) algorithms. Four different choices for the number of latent
states are analyzed, with 100 random starting values each

More specifically, with the proposed algorithm, the frequency of global maximum is
higher: the M-T-EM algorithm reaches the global mode 96 times, while the standard EM
algorithm only 63. Moreover, the mean distance from the global optimum decreases to
almost zero, and the mean of log-likelihood values increases accordingly; only the median
value remains essentially unchanged, with just a very slight enhancement.

2.7.3 Analyzing countries development

We consider data obtained from the World Bank’s World Development Indicators (The
World Bank Group, 2018) on n = 175 countries collected for T = 5 years (from 2011 to
2015) on r = 6 continuous response variables: life expectancy at birth, total population
between the ages 0 to 14, percentage of population with access to electricity, percentage of
population using the internet, share of electricity generated by renewable power plants, and
fertility rate. A logit transformation was applied to the variables expressed in a percentage

68

2.7. Applications

scale, and a Box-Cox transformation (Box and Cox, 1964) to all the variables. In order
to check the assumption on the conditional distribution we check the posterior density
of each response variable once the units are allocated according to maximum a posteriori
rule; results (available from the authors upon request) seem satisfactory. Results of the
estimation of a time heterogeneous HM model on the transformed data with EM and O-T-
EM algorithms for a number of states ranging from 1 to 10 are reported in Table 2.16. In

EM O-T-EM

k #par ℓ̂ BIC ℓ̂ BIC

1 42 -18,100.06 36,339.58 -18,100.06 36,339.58
2 57 -17,299.80 34,816.53 -17,299.80 34,816.53
3 80 -16,891.00 34,117.72 -16,887.96 34,111.63
4 111 -16,386.89 33,269.60 -16,386.89 33,269.60
5 150 -16,161.01 33,019.26 -16,161.01 33,019.26
6 197 -16,006.90 32,953.79 -16,002.67 32,945.33
7 252 -15,859.53 32,943.11 -15,821.86 32,867.78
8 315 -15,692.55 32,934.54 -15,676.37 32,902.18
9 386 -15,569.32 33,054.78 -15,531.69 32,979.51
10 465 -15,459.35 33,242.85 -15,428.07 33,180.30

Table 2.16: Number of parameters, maximum log-likelihood and BIC index resulting from
fitting a time heterogeneous hidden Markov model on the countries’ economic conditions
data with EM and O-T-EM algorithms for different numbers of latent states k. For both
algorithms, bold values represent the best results

this case, the advantages of using the tempering approach are even more evident:

1. it guarantees convergence to the global maximum. Indeed, for most values of k, the
maximized log-likelihood value is higher than that of the EM algorithm, showing that
the standard EM algorithm cannot correctly detect such a value. Moreover, the mean
distance from the global maximum also shows significant improvements, assuming
much smaller values when the O-T-EM algorithm is used, thus showing that it is able
to converge repeatedly to the global maximum.

2. it allows us to select a more parsimonious model. Model selection performed with
the standard EM leads us to choose eight components, whereas the T-EM algorithm
suggests seven components. BIC values are always smaller than those obtained with
standard algorithm.

69

Chapter 2. Tempered Expectation-Maximization algorithm

3. it exhibits an appealing level of flexibility: there is no need to change the optimal
set of tempering constants (fixed at α = 0.6, β = 110, ρ = 5, and τ0 = 20) once
the HM model is fitted for a number of states ranging from 5 to 10. For values of
k from 2 to 4, another unique configuration of tempering constants proves to be the
best (α = 0.5, β = 120, ρ = 5, and τ0 = 10).

Focusing on the log-likelihood values shown in Figure 2.15 related to the selected model
with seven states, we notice that the O-T-EM algorithm always avoids lower values in favor
of the higher ones of the maximized log-likelihood. These are reached much more frequently
with respect to the EM algorithm.

EM algorithm O-T-EM algorithm

-16,500 -16,200 -15,900 -16,500 -16,200 -15,900

0%

20%

40%

60%

Log-likelihood values

P
er

ce
n
ta

g
e

Figure 2.15: Maximized log-likelihood values for the countries’ economic conditions data
using standard EM (left, in blue) and O-T-EM (right, in green) algorithms with k = 7 latent
states, using 100 random starting values

As already illustrated with the simulation study presented in Section 2.7 and also shown
in Table 2.24 of Appendix D, the O-T-EM algorithm is more demanding in terms of com-
putational time with respect to the EM algorithm; however, its performance is superior.
Moreover, we notice that on average, a single execution of the T-EM algorithm requires
the same time of approximately 10 runs of the standard algorithm. It is important to note
that after 1,000 executions performed with 1, 000 different random starting values, the EM
algorithm is still unable to detect the global maximum (according to the definition provided
by the first criterion in Section 2.6) obtained with the O-T-EM algorithm, and equal to
−15, 821.86, since its highest reached value is −15, 834.97. Neither a higher number of
random starting values (up to 10, 000 in our study), nor the k-means initialization strategy
allows us to improve its performance.

70

2.8. Conclusions

2.8 Conclusions

The likelihood of DLV models is typically multimodal, and convergence to a point that it is
not the global maximum is a severe limitation of all the algorithms employed for maximum
likelihood estimation of the model parameters. To reduce the chance of local maxima at
convergence when the Expectation-Maximization (EM) algorithm is employed, the model
parameters are typically initialized with a multiple-try strategy, employing deterministic
and random values to initialize the model parameters. Then, maximum likelihood estimate
of the parameters corresponds to the highest log-likelihood at convergence of the algorithm.

In this Chapter, a new robust estimation algorithm based on annealing and tempering
techniques is proposed in this context. The underlying idea of the tempered EM (T-EM)
algorithm is flattening the target function and then gradually warping it back towards
the original one. The ability of the algorithm to remain close enough to the dominant
maximum is related to the slowness and the graduation of the warping process, which, in
turn, is controlled by a sequence of parameters known as the temperature or tempering
profile. Two main classes of such profiles usable with many models to be estimated are
tested and compared: a monotonically decreasing exponential profile, easy to tune, and
an oscillating profile, having more parameters to tune and ensuring the best performances
with a very high level of flexibility.

An accurate Monte Carlo simulation study is carried out considering two general classes
of DLV models: latent class and hidden Markov models. We compare the performance of
the standard EM algorithm with the proposed ones. This comparison is carried out by
evaluating the ability to reach the global maximum and the computational time. From the
results of the simulation study and those of the applications we show that the proposed al-
gorithms outperform the standard EM, increasing significantly the chance to of reaching the
global maximum in the overwhelming majority of cases. In particular, when an optimally
tuned tempering profile is employed, the improvement with respect to the EM algorithm is
remarkable: the T-EM algorithm can reach the global mode with a high frequency, gener-
ally escaping all local sub-optimal maxima. We detect that the variant with the oscillating
profile shows the best performance, sightly outperforming also the monotonic version in
most cases.

Estimating the models with the proposed algorithms on categorical and continuous data,
having a cross-sectional or longitudinal structure, we also show their good performance in
choosing the proper number of latent components. According to the results obtained for the
LC and HM models we argue that the proposal may be especially useful for the estimation
of the model parameters with complex data structures involving the inclusion of covariates,

71

Chapter 2. Tempered Expectation-Maximization algorithm

missing values, and drop-out.
An additional appealing feature of the proposal is the high level of flexibility of the

tempering profiles: once a grid-search procedure is employed to set the tempering constants,
these constants remain valid also when data with similar characteristics are used to estimate
the model parameters. Moreover, a broad range of values generally performs optimally in
many different applied contexts.

Future works may consider the relevant issue of finding a new family of tempering
profiles that combines the excellent performance of the oscillating profile with the simple
tuning procedure and the fast execution time of the monotonic profile. Other relevant
research directions include the exploration of the T-EM algorithm in connection with other
maximization algorithms; the most natural choice in this regard is to apply a tempering
approach to a direct maximization algorithm, such as Newton-Raphson. The algorithm
would also benefit from a more efficient implementation, through the C++ language in order
to reduce the computation time. Finally, another possible research line, explored in the
next Chapter, would be to incorporate the EM algorithm in the context of evolutionary
algorithms (Ashlock, 2004).

72

Appendices

Appendices

A Characteristics of the simulated scenarios

Tables 2.17, 2.18, and 2.19 summarize the specific values used to simulate data for the
estimation of the LC model, HM model with categorical responses, and HM with continuous
responses presented in Section 2.5.1. The following parameters are considered:

• weights of the latent classes (for the LC model) and initial probabilities of the latent
states (for the HM models) are defined in such a way that each latent component has
the same probability: πu = 1/k, ∀u = 1, . . . , k;

• transition probabilities of the HM models are defined to favor persistence in each
state; in particular, for k = 3 the transition matrix is defined as follows:0.800 0.150 0.050

0.100 0.800 0.100

0.050 0.150 0.800

 ;

• conditional response probabilities are kept fixed considering scenario A (see Tables
2.17, 2.18, and 2.19); for each response variable we define the corresponding matrix
as follows: 0.800 0.100 0.050

0.150 0.800 0.150

0.050 0.100 0.800

 ;

• for the HM model with continuous response variables the same conditional distribu-
tion holds for all response variables; for example, with k = 3 latent states, the mean
vector µ = [−2, 0, 2]′ is fixed for each response variable;

• the variance-covariance matrix Σ is computed as the sample covariance matrix of the
data.

73

Chapter 2. Tempered Expectation-Maximization algorithm

Scenario n r c k

A 500 6 3 3
B 1,000 6 3 3
C 500 12 3 3
D 500 6 6 3
E 500 6 3 6

Table 2.17: Description of the simulated scenarios for the latent class model: sample size
(n), response variables (r), categories (c), and latent classes (k)

Scenario n r c T k

A 500 6 3 5 3
B 1,000 6 3 5 3
C 500 12 3 5 3
D 500 6 6 5 3
E 500 6 3 10 3
F 500 6 3 5 6

Table 2.18: Description of the simulated scenarios for the hidden Markov model with
categorical response variables: sample size (n), number of response variables (r), categories
(c), time occasions (T), and latent states (k)

Scenario n r T k

A 500 6 5 3
B 1,000 6 5 3
C 500 12 5 3
D 500 6 10 3
E 500 6 5 6

Table 2.19: Description of the simulated scenarios for the hidden Markov model with
continuous response variables: sample size (n), number of response variables (r), time
occasions (T), and latent states (k)

74

Appendices

B Additional simulation results

In this Section we report additional details on the results of the simulation study in Section
2.5.2. In particular, for each considered scenario (see Tables 2.17, 2.18, and 2.19), Figures
2.16 and 2.17 show the distribution of the mean distance from the global maximum through
boxplots.

Setting A Setting B Setting C Setting D Setting E

EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM
0

2

4

6

0

10

20

30

40

50

0

10

20

30

40

0

1

2

0.0

0.5

1.0

1.5

(a) Latent class model with correctly specified latent structure

Setting A Setting B Setting C Setting D Setting E Setting F

EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM
0

2

4

6

8

0

10

20

30

40

0

100

200

300

0

100

200

300

400

0

20

40

60

80

0

20

40

60

80

(b) Hidden Markov model with categorical response variables and correctly specified latent structure

Setting A Setting B Setting C Setting D Setting E

EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM
200

300

400

500

600

0

100

200

300

400

0

200

400

0

200

400

0

100

200

300

(c) Hidden Markov model with continuous response variables and correctly specified latent structure

Figure 2.16: Mean distance from the global maximum using EM and M-T-EM algorithms
under simulated scenarios presented in Tables 2.17, 2.18, and 2.19 of the Appendix A for
the latent class and hidden Markov models with correctly specified latent structure

75

Chapter 2. Tempered Expectation-Maximization algorithm

Setting A Setting B Setting C Setting D Setting E

EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM

0

5

10

15

(a) Latent class model with misspecified latent structure

Setting A Setting B Setting C Setting D Setting E Setting F

EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM

5

10

15

0

20

40

60

10

20

30

40

0

10

20

30

40

50

2

4

6

8

10

0

2

4

6

8

(b) Hidden Markov model with categorical response variables and misspecified latent structure

Setting A Setting B Setting C Setting D Setting E

EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM EM M-T-EM

100

200

300

0

20

40

0

25

50

75

100

0

10

20

30

40

50

0

10

20

30

40

(c) Hidden Markov model with continuous response variables and misspecified latent structure

Figure 2.17: Mean distance from the global maximum using EM and M-T-EM algorithms
under simulated scenarios presented in Tables 2.17, 2.18, and 2.19 of the Appendix A for
the latent class and hidden Markov models with misspecified latent structure

76

Appendices

C Simulation results with fixed tempering profiles

In this Section we present results obtained from the simulation studies comparing the EM
algorithm with the T-EM algorithm with fixed tempering profiles. Table 2.20 reports the
results for LC model, HM model with categorical response variables and HM model with
continuous response variables model (according to simulated scenarios presented in Tables
2.17, 2.18, and 2.19 in the Appendix A) when the latent structure is correctly specified;
Table 2.21 considers the same models when the latent structure is not correctly specified.
The analysis carried out on the basis of the results is reported in Section 2.5.5.

Scenario Tempering profile Percentage
Correctly specified LC model
α β

A 6 0.7 58%
B 6 0.6 62%
C 1 0.7 78%
D 1 1.8 72%
E 1 1.5 64%

Correctly specified categorical HM model
α β

A 1 0.7 96%
B 1 0.6 100%
C 1 1.9 74%
D 3 1.8 70%
E 1 0.6 100%
F 14 1.1 64%

Correctly specified continuous HM model
α β

A 1 1.3 92%
B 1 1.1 100%
C 2 0.3 96%
D 2 0.2 98%
E 1 1.1 100%

Table 2.20: Performance of the M-T-EM algorithm for latent class and hidden Markov
models when the latent structure is correctly specified, using fixed configurations of tempering
constants α and β. The last column shows the percentage of samples for which the M-T-EM
algorithm outperforms the EM algorithm

77

Chapter 2. Tempered Expectation-Maximization algorithm

Scenario Tempering profile Percentage
Misspecified LC model

α β

A 2 0.6 50%
B 2 0.6 52%
C 2 0.6 44%
D 2 0.6 58%
E 2 0.6 62%

Misspecified categorical HM model
α β

A 5 2.0 60%
B 5 1.9 54%
C 6 0.0 66%
D 3 1.7 64%
E 1 1.9 52%
F 15 0.1 42%

Misspecified continuous HM model
α β

A 2 0.4 84%
B 1 0.9 92%
C 1 1.2 80%
D 2 0.2 80%
E 3 0.0 86%

Table 2.21: Performance of the M-T-EM algorithm for latent class and hidden Markov
models when the latent structure is not correctly specified, using fixed configurations of
tempering constants α and β. The last column shows the percentage of samples for which
the M-T-EM algorithm outperforms the EM algorithm

78

Appendices

D Real data analysis in terms of computational time

In this Section, considering the real data presented and analyzed in Section 2.7 we briefly
inspect the performance of the different algorithms in terms of computational time. Results
for the LC model, the HM model with categorical response variables and the HM model with
continuous response variables are summarized in Tables 2.22, 2.23, and 2.24, respectively.
All values are expressed in seconds.

Algorithm Minimum Median Mean Maximum

EM 0.03 0.09 0.15 0.78
M-T-EM 0.42 0.44 0.45 0.76
O-T-EM 1.22 1.24 1.26 1.56

Table 2.22: Computational times in seconds of the EM and O-T-EM algorithms. The
analysis refers to the estimation of the latent class model for the anxiety and depression
data using k = 3 latent classes and on the basis of 100 random starting values

Algorithm Minimum Median Mean Maximum

EM 16.85 26.37 23.27 45.24
M-T-EM 152.23 287.78 299.58 529.13
O-T-EM 1,952.25 2,541.36 2,774.72 3,247.59

Table 2.23: Computational times in seconds of the EM and O-T-EM algorithms. The
analysis refers to the estimation of the hidden Markov model with categorical response vari-
ables for the criminal data using k = 4 latent states and on the basis of 100 random starting
values

Algorithm Minimum Median Mean Maximum

EM 0.56 2.08 2.33 5.13
M-T-EM 0.52 3.02 3.13 7.87
O-T-EM 2.03 22.72 28.44 105.69

Table 2.24: Computational times in seconds of the EM and O-T-EM algorithms. The
analysis refers to the estimation of the hidden Markov model with continuous response
variables for the countries’ economic conditions data using k = 7 latent states and on the
basis of 100 random starting values

79

Bibliography

Aarts, E. and Korst, J. (1989). Simulated Annealing and Boltzmann Machines: A
Stochastic Approach to Combinatorial Optimization and Neural Computing. John Wiley
and Sons, New York.

Ashlock, D. (2004). Evolutionary Computation for Modeling and Optimization. Springer,
New York.

Barbu, A. and Zhu, S. (2013). Monte Carlo Methods. Springer, Singapore.

Bartolucci, F., Bacci, S., and Gnaldi, M. (2014). MultiLCIRT: An R package for
multidimensional latent class item response models. Computational Statistics and Data
Analysis, 71, 971–985.

Bartolucci, F., Farcomeni, A., and Pennoni, F. (2013). Latent Markov Models for
Longitudinal Data. Chapman & Hall/CRC, Boca Raton.

Bartolucci, F., Pandolfi, S., and Pennoni, F. (2017). LMest: An R package for
latent markov models for longitudinal categorical data. Journal of Statistical Software,
81, 1–38.

Bartolucci, F., Pennoni, F., and Francis, B. (2007). A latent markov model for
detecting patterns of criminal activity. Journal of the Royal Statistical Society. Series A
(Statistics in Society), 170, 114–132.

Baum, L., Petrie, T., Soules, G., and Weiss, N. (1970). A maximization technique
occurring in the statistical analysis of probabilistic functions of markov chains. The
Annals of Mathematical Statistics, 41, 164–171.

Billings, S. (1994). Simulated annealing for earthquake location. Geophysical Journal
International, 118, 680–692.

Box, G. and Cox, D. (1964). An analysis of transformations. J. R. Stat. Soc. Series. B
Stat. Methodol., 26, 211–243.

Chen, S. and Luk, B. (1999). Adaptive simulated annealing for optimization in signal
processing applications. Signal Processing, 79, 117–128.

Crama, Y. and Schyns, M. (2003). Simulated annealing for complex portfolio selection
problems. European Journal of Operational Research, 150, 546–571.

Bibliography

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete
data via the em algorithm (with discussion). Journal of the Royal Statistical Society,
Series B, 39, 1–38.

Earl, D. J. and Deem, M. W. (2005). Parallel Tempering: theory, applications, and
new perspectives. Phys. Chem. Chem. Phys., 7, 3910–3916.

Everitt, B. S., Landau, S., Leese, M., and Stahl, D. (2011). Cluster Analysis, 5th
ed. New York: John Wiley.

Falcioni, M. and Deem, M. (1999). A Biased Monte Carlo Scheme for Zeolite Structure
Solution. Journal of Chemical Physics, 110, 1754–1766.

Forgy, E. (1965). Cluster analysys of multivariate data: Efficiency versus interpretability
of classifications. Biometrics, 21, 768–780.

Fraley, C. and Raftery, A. (2002). Model-based clustering, discriminant analysis, and
density estimation. Journal of the American Statistical Association, 97, 611–634.

Geyer, C. J. (1991). Markov Chain Monte Carlo Maximum Likelihood. In Computing
Science and Statistics, Proceedings of the 23rd Symposium on the Interface, Computing
science and statistics, pages 156–163. Interface Foundation of North America.

Geyer, C. J. and Thompson, E. A. (1995). Annealing Markov Chain Monte Carlo with
Applications to Ancestral Inference. Journal of the American Statistical Association, 90,
909–920.

Goodman, L. (1974). Exploratory latent structure analysis using both identifiable and
unidentifiable models. Biometrika, 61, 215–231.

Hastings, W. K. (1970). Monte Carlo Sampling Methods Using Markov Chains and their
Application. Biometrika, 57, 97–109.

Hofmann, C. J. (1999). Probabilistic latent semantic analysis. In Proceedings of the Fif-
teenth conference on Uncertainty in artificial intelligence, UAI’99, pages 289–296. Morgan
Kaufmann Publisher Inc., San Francisco, CA, USA.

Huang, Z. (1998). Extensions to the k-means algorithm for clustering large data sets with
categorical values. Data Mining and Knowledge Discovery, 2, 283–304.

Kirkpatrick, S., Gelatt, C., and Vecchi, M. (1983). Optimization by Simulated
Annealing. Science (New York, N.Y.), 220, 671–680.

81

Chapter 2. Tempered Expectation-Maximization algorithm

Koulamas, C., Antony, S., and Jaen, R. (1994). A survey of simulated annealing
applications to operations-research problems. OMEGA-International Journal of Man-
agement Science, 22, 41–56.

Laird, N. (1978). Nonparametric maximum likelihood estimation of a mixing distribution.
Journal of the American Statistical Association, 73, 805–811.

Lartigue, T., Durrleman, S., and Allassonnière, S. (2021). Deterministic approx-
imate EM algorithm; application to the riemann approximation EM and the tempered
EM. arXiv:2003.10126, pages 1–32.

Lazarsfeld, P. and Henry, N. (1968). Latent Structure Analysis. Houghton Mifflin,
Boston.

Leroux, B. and Puterman, M. (1992). Maximum-penalized-likelihood estimation for
independent and markov-dependent mixture models. Biometrics, 48, 545–558.

Lindsay, B., Clogg, C., and Grego, J. (1991). Semiparametric estimation in the rasch
model and related exponential response models, including a simple latent class model for
item analysis. Journal of the American Statistical Association, 86, 96–107.

MacQueen, j. (1967). Some methods for classification and analysis of multivariate ob-
servations. In In 5-th Berkeley Symposium on Mathematical Statistics and Probability,
pages 281–297.

Maruotti, A. and Punzo, A. (2021). Initialization of hidden markov and semi-hidden
markov: A critical evaluation of several strategies. International Statistical Review.

McLachlan, G. and Basford, K. (1988). Mixture Models: Inference and Applications
to Clustering. Marcel Dekker, New York.

McLachlan, G. and Krishnan, T. (2008). The EM Algorithm and Extensions: 2nd
Edition. John Wiley and Sons, Hoboken.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A.-H., and Teller,

E. (1953). Equation of state calculations by fast computing machines. Journal of Chem-
ical Physics, 21, 1087–1092.

Pennoni, F. (2014). Issues on the Estimation of Latent Variable and Latent Class Models.
Scholar’s Press, Saarbrucken.

82

Bibliography

Research Development and Statistics Directorate (1998). The offenders index:
codebook. Available from https://webarchive.nationalarchives.gov.uk/ukgwa/

20130128103514/http://homeoffice.gov.uk/rds/pdfs/oicodes.pdf.

Robert, C., Elvira, V., Tawn, N., and Wu, C. (2018). Accelerating mcmc algorithms.
WIREs Computational Statistics, 10, 1–14.

Sambridge, M. (2014). A parallel tempering algorithm for probabilistic sampling and
multimodal optimization. Geophysical Journal International, 196, 357–374.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–
464.

Svergun, D. (1999). Restoring low resolution structure of biological macromolecules from
solution scattering using simulated annealing. Biophysical Journal, 76, 2879–2886.

Team, R. C. (2022). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

The World Bank Group (2018). Data catalog: World development indicators.
Available from https://datacatalog.worldbank.org/dataset/world-development-

indicators.

Titterington, D., Smith, A., and Makov (1985). Statistical Analysis of Finite Mixture
Distributions. John Wiley and Sons, New York.

Ueda, N. and Nakano, R. (1998). Deterministic annealing EM algorithm. Neural Netw.,
11, 271–282.

Wiggins, L. (1973). Panel Analysis: Latent Probability Models for Attitude and Behaviour
Processes. Elsevier, Amsterdam.

Yuille, A., Stolorz, P., and Utans, J. (1994). Statistical Physics, Mixture of Distri-
butions, and the EM Algorithm. Neural Computation, 6, 334–340.

Zhou, H. and Lange, K. (2010). On the bumpy road to the dominant mode. Scand. J.
Stat., 37, 612–631.

Zigmond, A. and Snaith, R. (1983). The hospital anxiety and depression scale. Acta
Psychiatr. Scand., 67, 361–70.

83

https://webarchive.nationalarchives.gov.uk/ukgwa/20130128103514/http://homeoffice.gov.uk/rds/pdfs/oicodes.pdf
https://webarchive.nationalarchives.gov.uk/ukgwa/20130128103514/http://homeoffice.gov.uk/rds/pdfs/oicodes.pdf
https://datacatalog.worldbank.org/dataset/world-development-indicators
https://datacatalog.worldbank.org/dataset/world-development-indicators

Chapter 3

Evolutionary Expectation-Maximization algorithm
for the estimation of discrete latent variable models

3.1 Introduction

In this Chapter we consider the problem of convergence of the log-likelihood function to
local maxima again and explore a different tactic, proposing the use of a quite new technique
known as evolutionary algorithms (EAs). Inspired by the basic principles of the Darwinian
theory of evolution, this class of computational methods is commonly employed to solve
complex optimization problems in an iterative manner. At each step of the procedure,
many candidate solutions are considered and evaluated. The best candidates, according to
some quality measure, are selected for successive step, while the worst ones are discarded.
To favor an adequate exploration of the solution domain, other natural-based operations,
such as mutation and crossover, may increase the diversity of the candidates during the
process.

Following these principles, we propose an evolutionary version of the EM algorithm
able to repeatedly discard local maxima in favor of solutions closer to the global optimum;
this approach significantly increases the chance of converging to the global maximum. In
continuity with the content of the previous Chapter, we specifically address the case of LC

85

Chapter 3. Evolutionary Expectation-Maximization algorithm

and HM models; it is anyway straightforward to extend the procedure for the estimation
of many other DLV models. The performance of the proposed evolutionary approach is as-
sessed in terms of ability to converge to the global maximum relying on the same simulation
studies designed in Chapter 2, so that we can compare the proposal with both the standard
and the tempered EM algorithms. The implemented code for the proposal is written for
the open source software R and will be made available.

The rest of this Chapter is organized as follows. In Section 3.2 we introduce the theory
of evolutionary algorithms, examining its main features in full detail. In Section 3.3 we
provide the general formulation of the evolutionary EM (E-EM) algorithm; we deal with
the specific settings of the algorithm and propose an efficient model selection approach. In
Section 3.4 we analyze the performance of the proposed algorithm through an extensive
Monte Carlo simulation study. In Section 3.5 we apply the E-EM algorithm to the real-
world data introduced and used in Section 2.6 of the previous Chapter. Section 3.6 concludes
the present Chapter with a brief comparison between the T-EM and the E-EM algorithms.
Appendices A and B include additional simulation results, while Appendix C provides some
technical details about the main evolutionary operators.

3.2 Evolutionary algorithms

In this Section we provide a generic introduction to the theory of evolutionary algorithms.
Note that this field is quite vast and active, and just a brief outline is provided here; for
more detail see, among the others, Bäck (1996), Deb (2001), and Ashlock (2004) for a
comprehensive coverage of the topic.

3.2.1 Design of evolutionary algorithms

In the natural context, evolution can be described as the process by which individuals of a
population become fitter in a specific environment through mutation, adaptation, natural
selection, and selective breeding. Evolutionary algorithms aim at modeling these princi-
ples in a computational field operating on “populations” of data structures. In particular,
these methods are commonly employed to solve difficult optimization problems, for both
continuous and discrete functions. In this context, each population member represents a
possible solution of the optimization problem. After creating an initial population, a fitness
function assigns a numerical estimate of quality to each population member and is used
to decide which of them deserve further attention. This procedure is known as selection
and it aims at favoring data structures with a higher fitness function value. Each selected

86

3.2. Evolutionary algorithms

population member is then made to evolve through some variation operators, mimicking
the natural process of evolution. Here we consider the most relevant ones in evolutionary
computation literature: mutation, which introduces variation by making random changes
in data structures, and crossover, which produces a new generation of individuals from the
previous ones. The entire process is repeated until one or more stopping conditions are
met. In the following we will examine in more detail the main components of an EA, while
the general scheme of an EA is sketched in Figure 3.1.

Crossover Mutation Selection

Population initialization

Convergence

Figure 3.1: General scheme to describe the evolutionary algorithm

Initial population The choice of the initial population is a crucial aspect, having a direct
impact on the performance of an EA. In general there exist different ways to specify the
initial population: it may be filled in at random, designed to some standard, or be the
output of some other algorithm. However, regardless of the initialization procedure, a main
requirement is the ability to represent the entire search space of the parameters, increasing
diversity; to this aim note that an initial population including only points from a restricted
region will typically result into optimal solutions close to that same region, thus wasting
the exploration power of the evolutionary algorithm. Another fundamental feature is the
choice of the initial population size (generally kept constant in evolutionary algorithms): a
small number of population members ensures a fast execution of the algorithm, but limits
the representation of the entire search space. On the contrary, a large population helps
increasing such a diversity, but results into a higher computational time. A thoughtful

87

Chapter 3. Evolutionary Expectation-Maximization algorithm

choice needs to balance these two requirements, taking into account the complexity of the
problem at issue, the computational cost of the fitness function, and the availability of
computational resources.

Crossover Also known as recombination, it is an evolutionary operator used to produce a
new generation of individuals from the previous ones. Crossover techniques can be classified
into three main types:

• asexual crossover, when a single parent is selected to generate an offspring;

• sexual crossover, when two parents are selected and combined in some fashion to
produce one ore two offsprings;

• multi-recombination, when more than two parents are used to generate one or more
offsprings.

Crossover may be either applied to all individuals of a given generation, or performed
on a restricted number of individuals, selected according to a probability distribution (a
typical choice is to favor crossover in the individuals associated with the worst values of the
fitness function). The latter option helps preserving the information of the parents without
increasing the computational time of the algorithm.

Mutation It is the process by which changes are introduced into the structure of an
already existing population member, so as to provide a source of minor variation. Likewise
the crossover operator, mutation my either affect the whole population or be mainly used on
the least fit individuals in order to encourage exploration. Note that, unlike the biological
and natural evolution, in evolutionary algorithms the difference between asexual crossover
and mutation, may appear very subtle. We will examine this point in more detail and from
a computational perspective in Section 3.3.

Selection A major difference between biological evolution and evolutionary algorithms
lies in the selection process. Natural selection “multiplies the incidence of beneficial muta-
tions over the generations and eliminates harmful ones”, thus enhancing “the preservation
of a group of organisms that are best adjusted to the physical and biological conditions of
their environment” (Encyclopaedia Britannica, 2022). This “selection of the fittest” pro-
cedure is not always appropriate in evolutionary algorithms. Consider, for example, a
selection scheme which chooses very often the best individuals and very rarely the worst
ones; the consequence is a phenomenon known as strong selective pressure, which diminishes

88

3.3. Evolutionary Expectation-Maximization algorithm

the diversity in the population and may lead to a premature convergence of the algorithm
(Wieczorek and Czech, 2002). The problem of loss of population diversity has garnered in-
creasing attention in the computer science literature, but is beyond the scope of this work;
see, for example, Goldberg and Deb (1991), Back (1994), and Blickle and Thiele (1995).
To prevent this behavior, it is important to balance between exploitation of the individuals
with the best values of the fittest function and exploration of population member associated
with the worst values of the fitness function. This results into a broad variety of selection
methods, ranging from elitism (i.e., selection of the best percent of the current population,
representing pure exploitation) to random selection (representing pure exploration). For a
thorough collection of selection methods see, among the others, Ashlock (2004, Chapter 2).

3.2.2 Previous works

The evolutionary paradigm is successfully applied to clustering. In this context several
criteria used for assessing partitions can serve as fitness function, and the role of evolutionary
algorithms is mainly limited to minimizing some notion of distance between points and
clusters. Hruschka et al. (2009) present a thorough overview of this subject, providing
a large number of references, and describing applications of evolutionary algorithms for
clustering in different domains.

In the field of model-based clustering Pernkopf and Bouchaffra (2005) introduce an EA
for Gaussian mixture models, focusing on the evolution of the parameter space: the initial
population is made up of different copies of the model parameters, crossover and mutation
aims at evolving these values, and selection extracts a new population of model parameters.
Andrews and McNicholas (2013) and McNicholas et al. (2021) address the same problem
following a slightly different approach and considering evolution among cluster membership
labels. Kampo (2021) extends the approach to the Gaussian mixture model with missing
values, and to the family of Gaussian parsimonious clustering models. Up to our best
knowledge no applications of EA for LC, HM, or other DLV models have been proposed in
statistical literature.

3.3 Evolutionary Expectation-Maximization algorithm

In this Section we provide details on the proposed E-EM algorithm; its basic idea is to
utilize the most appealing features of both algorithms, namely, the well-known convergence
properties towards a maximum of the log-likelihood function characteristic of the EM algo-
rithm, and the ability to accurately explore the parameter space typical of the evolutionary

89

Chapter 3. Evolutionary Expectation-Maximization algorithm

framework. In addition, we also exploit the fact that, although the EM algorithm typ-
ically has a slow convergence, the first few steps considerably increase the value of the
log-likelihood function.

The proposed E-EM algorithm defines a population in which each “individual” rep-
resents a possible solution of the model estimation. In particular, we associate with each
individual the array containing the initial posterior probabilities of the latent states for each
response configuration (and for each time occasion, in the case of longitudinal data). This
choice is similar to McNicholas et al. (2021), which directly focuses on evolving the cluster
membership labels. In literature, a possible alternative is sometimes defined, considering
evolution of the parameter space (see e.g. Pernkopf and Bouchaffra, 2005) and performing
crossover and mutation on the model parameters. The latter approach seems to involve
some drawbacks, especially when categorical response variable are taken into account. See
Appendix C for a quick theoretical comparison between the two approaches.

In the following we discuss in more detail the feature of the proposed E-EM algorithm.
Hereafter we will denote the evolving population by letter P . Moreover we let np and nc

denote the number of parent and offspring individuals respectively. At the beginning of
each step of the E-EM algorithm the current population P0 always consists of np parents.
After being initialized, the algorithm alternates the following operations until convergence:

1. Update. Each individual from population P0 is updated by performing a small
number R of cycles of the EM algorithm; the resulting updated population is denoted
by P1. The value of R should be kept sufficiently small so as not to increase the
computational time. In the following the choice R = 20 will be considered for both
LC and HM models. Moreover, convergence is checked on the basis of the relative
change in the log-likelihood of two consecutive steps; if this condition is fulfilled, the
EM algorithm is interrupted without performing the remaining cycles.

2. Crossover. The crossover operator recombines individuals from population P1 to
obtain the nc offspring of new population P2. More specifically, two parents are
randomly selected among the individuals of population P1, the same row is randomly
chosen from the two corresponding arrays, which are swapped from that line to the
end. This operator is usually known as single-point crossover (Bäck, 1996; Michalewicz
and Fogel, 2000). For the HM model this operation is repeated for every time occasion
independently. Note that the same pair of parents could be selected multiple times;
this surely happens if np(np − 1)/2 < nc.

3. Update. Each offspring individual from population P2 is updated through R steps of

90

3.3. Evolutionary Expectation-Maximization algorithm

the EM algorithm, generating the updated population P3. This operation is identical
to the previous update performed at point 1.

4. Selection. The selection operator pertains to individuals from both the parent
population P1 and the offspring population P3 collectively. The complete data log-
likelihood is employed as a fitness function, so that fittest individuals are those with
the highest log-likelihood value. Refer to Chapter 1 for the expression of the log-
likelihood function for each specific model. The selection strategy is inspired from
Back and Schwefel (1996): individuals from populations P1 and P3 are considered
jointly and the np with the highest fitness value are selected for the next generation
P4. This elitist approach allows us to preserve the monotonic convergence of the EM
algorithm.

5. Mutation. Differently from the crossover operator, mutation introduces variation
working on a single individual at a time. More specifically, given a row of the cor-
responding array, mutation operator swaps the highest value with a random one. In
other words, we are changing the latent component to which a subject is assigned.
Each row is selected with a certain probability pM , equal to 0.02 in the following. To
preserve the elitism of the algorithm, the best individual of the current population is
always copied unaltered to the next generation (denoted by P5).

After convergence of the E-EM algorithm, the best individual from population P4 is
selected and updated one last time through a complete run of the EM algorithm until
convergence is reached. The resulting E-EM algorithm is a very flexible procedure, in
which the specificities of each model are limited to the few steps of the EM algorithm. It
is valid for both the LC and the HM models, and it can be applied with minimal effort to
other DLV models. The pseudo-code of the algorithm is presented in Algorithm 4.

3.3.1 Initialization and convergence criterion

Given the evolutionary framework of the algorithm and the related need to represent the
entire search space, a random initialization of the population represents the most appro-
priate choice. To this aim, model parameters are randomly drawn as described in Section
2.5.1, and used to compute the array of the estimated posterior probabilities. The process
is repeated for each of the np individuals of the initial population. The use of more re-
fined initialization strategies, such as k-means or k-modes algorithms, does not show any
significant benefit and is therefore discarded.

91

Chapter 3. Evolutionary Expectation-Maximization algorithm

Algorithm 4 General scheme of the evolutionary Expectation-Maximization algorithm
1: Initialize np, nc, and R.
2: Initialize P0.
3: while (Convergence Condition = FALSE) do
4: P1 ← Update(P0): run R steps of the EM algorithm;
5: P2 ← Crossover(P1);
6: P3 ← Update(P2): run R steps of the EM algorithm;
7: P4 ← Select(P1 ∪ P3);
8: P5 ← Mutate(P4);
9: P0 ← P5.

10: end while
11: Select the best result from population P4 and run the EM algorithm until convergence.

Another fundamental aspect is how to check for the algorithm convergence. Here we
adapt a simple criterion commonly used for the EM algorithm: at each step of the E-EM
algorithm, before mutation is applied, the best solution is selected and its log-likelihood is
computed. The algorithm is stopped when the relative change in the log-likelihood of two
consecutive steps is smaller than a suitable tolerance level ε (equal to 10−8 in the follow-
ing; see also Section 2.5.1). More restrictive criteria exist in the evolutionary literature,
considering for example the lack of progress of the top np solutions over a certain number
of generations (Pernkopf and Bouchaffra, 2005; Andrews and McNicholas, 2013), or the
absence of change in the mean fitness value. These approaches are more time demanding,
without showing any significant benefit in our case, and are not taken into consideration.

3.3.2 Model selection

The flexibility of the proposed E-EM algorithm allows us to directly incorporate a selection
process for the optimal number of latent components k. The structure of the algorithm
remains mainly unaltered, the only necessary change being in the nature of the fitness
function. A simple approach is to define some model selection criterion, such as AIC or
BIC (see Section 1.1.3), and use this as fitness function instead of the log-likelihood. A
minor adjustment regards the initial population, which has to include a suitable number
of individuals for each value of k. In general, higher values of k require a more accurate
exploration of the parameter space to converge to the global maximum, and hence a higher
number of individuals in the initial population. On the contrary, if the number of solutions
for high values of k is overwhelming, the risk is that individuals related to small values of k
may be dropped prematurely. In this sense a control may be added to force the algorithm to
carry on at least one solution for each value of k. The resulting procedure is able to evolve

92

3.4. Simulation study

the population, gradually favoring solutions with the optimal number of latent components,
and thus converging in a natural and automatic way towards the correct model.

3.4 Simulation study

In this Section we present the results of a simulation study aimed at assessing the perfor-
mance of the E-EM algorithm. In order to compare the proposal with both the EM and the
T-EM algorithms, we employ here the same simulation schemes and the same comparison
criteria presented in Section 2.5 (see also Appendix A of the previous Chapter for more
details about the specific settings). In the following study, in particular, we mainly rely
on the percentage of times that global maximum is reached by each algorithm; the corre-
sponding results are summarized in Figures 3.2 and 3.3. Note that in all the plots the E-EM
algorithm is compared to both the standard and the tempered versions of the algorithm.
As for the latter, the monotonic version is considered throughout the whole Section.

Considering initially the estimation of models with a correctly specified latent structure
(see Figure 3.2), the E-EM algorithm shows a clear advantage with respect to the standard
EM algorithm. This improvement is generally analogous to the one obtained with the T-
EM algorithm when models with a few latent components are considered; on the contrary,
focusing on the cases with more latent components, the performance of the E-EM algorithm
is considerably superior also with respect to the tempered approach. In particular the
probability to reach the global maximum is, on average, very close to 100% when the E-EM
algorithm is used.

Regarding the estimation of models with misspecified latent structure (see Figure 3.3),
the advantage of the E-EM algorithm over both the standard and the tempered version is
even more significant. The evolutionary approach allows us to reach the global maximum
with a very high incidence in all the considered scenarios; the frequency is usually very close
to 100%, highlighting that the E-EM algorithm is generally able to avoid all local maxima.
Only the most challenging settings (namely, the ones which involve the estimation of models
with many latent components) show lower frequencies, ensuring anyway a considerable
advantage with respect to the results obtained with the other two methods. As an example
let us consider Setting F for the HM model with categorical response variables; in this case
the average frequency of achieved global maximum is approximately equal to 60%, thus
making this scenario the most complex from an estimation perspective. The corresponding
values for the standard EM and the tempered EM algorithms are 8% and 17% respectively,
highlighting the clear superiority of the evolutionary algorithm.

93

Chapter 3. Evolutionary Expectation-Maximization algorithm

Setting A Setting B Setting C Setting D Setting E

EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM

0%

25%

50%

75%

100%

(a) Latent class model with correctly specified latent structure

Setting A Setting B Setting C Setting D Setting E Setting F

EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM

0%

25%

50%

75%

100%

(b) Hidden Markov model with categorical response variables and correctly specified latent structure

Setting A Setting B Setting C Setting D Setting E

EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM

40%

60%

80%

100%

(c) Hidden Markov model with continuous response variables and correctly specified latent structure

Figure 3.2: Percentages of global maxima obtained using EM, M-T-EM, and E-EM algo-
rithms under simulated scenarios presented in Tables 2.17, 2.18, and 2.19 of the Appendix
A for the latent class and hidden Markov models with correctly specified latent structure

To conclude this part of the simulation study, we also show, for each simulated scenario,
the number of samples in which the global maximum is reached with very low (< 10%) or
very high (> 95%) frequency. The results are summarized in Tables 3.1, 3.2, and 3.3 for
LC, HM with categorical response variables, and HM with continuous response variables
respectively.

The superior performance of the E-EM algorithm is confirmed by the analysis of these
results; although the advantage is evident also in the estimation of models whose latent
structure is correctly specified (see, e.g., Setting C and E of the HM model with continuous
response variables), the most significant improvements are shown when the models with

94

3.4. Simulation study

Setting A Setting B Setting C Setting D Setting E

EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM

0%

25%

50%

75%

100%

(a) Latent class model with misspecified latent structure

Setting A Setting B Setting C Setting D Setting E Setting F

EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM

0%

25%

50%

75%

100%

(b) Hidden Markov model with categorical response variables and misspecified latent structure

Setting A Setting B Setting C Setting D Setting E

EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM

0%

25%

50%

75%

100%

(c) Hidden Markov model with continuous response variables and misspecified latent structure

Figure 3.3: Percentages of global maximum using EM, M-T-EM, and E-EM algorithms
under simulated scenarios presented in Tables 2.17, 2.18, and 2.19 of the Appendix A for
the latent class and hidden Markov models with misspecified latent structure

misspecified latent components are considered. In these cases, the number of samples in
which the global maximum is reached with very high frequency (> 95%) is generally superior
to 40 (out of a total of 50); on the contrary, the samples with a very low frequency (< 10%) of
global maximum is usually negligible. These results confirm that the evolutionary approach
outperforms the standard EM algorithm and shows a clear superiority also with respect to
the tempered EM algorithm.

We also inspect the mean distance from the global maximum, whose results are sum-
marized in Tables 3.7 and 3.8 in Appendix A. Throughout all the considered scenarios, the
E-EM algorithm shows values very close to zero, thus confirming that the global maximum

95

Chapter 3. Evolutionary Expectation-Maximization algorithm

Correctly specified Misspecified

Scenario < 10% > 95% < 10% > 95%

A 1 - 0 - 0 20 - 49 - 50 7 - 2 - 0 0 - 8 - 40
B 0 - 0 - 0 15 - 49 - 50 1 - 0 - 0 0 - 3 - 44
C 0 - 0 - 0 47 - 50 - 50 9 - 4 - 0 0 - 0 - 40
D 1 - 1 - 0 32 - 47 - 50 4 - 1 - 0 0 - 0 - 31
E 10 - 5 - 0 0 - 2 - 40 32 - 18 - 0 0 - 0 - 4

Table 3.1: Number of samples in which the global maximum is reached with frequency
< 5% or > 95%, using EM (highlighted in blue), M-T-EM (highlighted in red), and E-EM
(highlighted in yellow) algorithms under simulated scenarios presented in Table 2.17 of the
Appendix A for the latent class model

Correctly specified Misspecified

Scenario < 10% > 95% < 10% > 95%

A 0 - 0 - 0 50 - 50 - 50 4 - 1 - 0 0 - 1 - 43
B 0 - 0 - 0 50 - 50 - 50 0 - 0 - 0 0 - 0 - 49
C 0 - 0 - 0 35 - 50 - 50 4 - 1 - 0 0 - 1 - 47
D 0 - 0 - 0 11 - 41 - 50 3 - 2 - 0 0 - 0 - 47
E 0 - 0 - 0 50 - 50 - 50 3 - 1 - 1 0 - 2 - 49
F 7 - 6 - 0 0 - 7 - 29 27 - 17 - 6 0 - 0 - 10

Table 3.2: Number of samples in which the global maximum is reached with frequency
5% or > 95%, using EM (highlighted in blue), M-T-EM (highlighted in red), and E-EM
(highlighted in yellow) algorithms under simulated scenarios presented in Table 2.18 of the
Appendix A for the hidden Markov model with categorical response variables

is almost always reached.

3.5 Results with real-world data

In this Section we briefly examine the behavior of the E-EM algorithm in connection with
real-world cases. We consider here the same applications introduced and analyzed in Section
2.7, which we refer to for a preliminary description of the data. In the following we assess
the performance of the E-EM algorithm, comparing it with the standard EM and the T-EM
algorithms; we refer again to Section 2.7 for a more detailed analysis of the results.

Starting with the LC model, we analyze data derived from the administration of 14
ordinal items measuring anxiety and depression in a sample of 201 oncological Italian pa-

96

3.5. Results with real-world data

Correctly specified Misspecified

Scenario < 10% > 95% < 10% > 95%

A 0 - 0 - 0 12 - 36 - 50 3 - 2 - 1 0 - 0 - 41
B 0 - 0 - 0 14 - 36 - 50 0 - 0 - 0 0 - 1 - 49
C 0 - 0 - 0 0 - 40 - 50 2 - 0 - 0 0 - 0 - 48
D 0 - 0 - 0 18 - 47 - 50 4 - 4 - 0 0 - 1 - 47
E 0 - 0 - 0 0 - 0 - 50 17 - 5 - 0 0 - 0 - 26

Table 3.3: Number of samples in which the global maximum is reached with frequency
5% or > 95%, using EM (highlighted in blue), M-T-EM (highlighted in red), and E-EM
(highlighted in yellow) algorithms under simulated scenarios presented in Table 2.19 of the
Appendix A for the hidden Markov model with continuous response variables

tients (Zigmond and Snaith, 1983). We estimate the model using the E-EM algorithm with
a number of latent classes k ranging from 1 to 4, and we employ the BIC (Schwarz, 1978)
index to perform model selection. Consistently with the findings shown in Section 2.7.1,
the resulting optimal number of components is three. In Figure 3.4 we show a comparison
of the results obtained with the three estimation algorithms when the model with three
latent classes is estimated.

-2,690

-2,710

-2,730

EM T-EM E-EM

(a) Comparison between EM, O-T-EM, and
E-EM algorithms

-2,674.48

-2,674.48

-2,674.48

T-EM E-EM

(b) Detail on the comparison between O-T-
EM and E-EM algorithms

Figure 3.4: (a) Maximized log-likelihood values for the anxiety and depression data using
standard EM (in blue), O-T-EM (in green), and E-EM (in yellow) algorithms. (b) Zoom
on the comparison between O-T-EM and E-EM algorithms

The T-EM and E-EM algorithms show a similar superiority compared to the standard
version, ensuring a much more frequent convergence to the global maximum. In particular,
the former slightly improves the value of the maximized log-likelihood function also with
respect to the O-T-EM algorithm.

97

Chapter 3. Evolutionary Expectation-Maximization algorithm

A similar behavior is obtained with the HM model with continuous response variables,
analyzing from the World Bank’s World Development Indicators (The World Bank Group,
2018) on n = 175 countries collected for T = 5 years (from 2011 to 2015) on r = 6

continuous social and economic response variables. The time heterogeneous HM model is
estimated with the E-EM algorithm, for a number of latent states ranging from 1 to 10.
Relying on the BIC index to select the optimal number of latent components, we obtain
a model with 7 latent states; this result is in accordance with the conclusion drawn with
the O-T-EM algorithm in Section 2.7.2 (while the standard EM algorithm leads to select 8
latent states, with higher values of the BIC index). A comparison between the performance
of the three algorithms in estimating the optimal model is shown in Figure 3.5.

-15,800

-16,000

-16,200

-16,400

EM T-EM E-EM

(a) Comparison between EM, O-T-EM, and
E-EM algorithms

-15,850

-15,900

T-EM E-EM

(b) Detail on the comparison between O-T-
EM and E-EM algorithms

Figure 3.5: (a) Maximized log-likelihood values for the countries’ economic conditions
data using standard EM (in blue), O-T-EM (in green), and E-EM (in yellow) algorithms.
(b) Zoom on the comparison between O-T-EM and E-EM algorithms

In this case, it is even more evident the different performance of the three algorithms:
while the standard EM algorithm converges to a wide range of values, the two modified ver-
sions avoids low values of the log-likelihood functions, always being very close to the global
maximum. In particular, the E-EM algorithm shows a slight superiority also with respect
to the T-EM algorithm, reaching, on average, higher values. As a final note, the global
maximum reached by the E-EM algorithm (approximately equal to −18, 820) outperforms
the highest obtained by the T-EM algorithm (equal to −15, 822).

Finally, dealing with the HM model with categorical response variables, we consider
longitudinal data on conviction histories of a cohort of n = 10, 000 offenders. A time
heterogeneous HM model is estimated with the E-EM algorithm for a number of latent
states ranging from 1 to 5. According to the BIC index, and coherently with the results

98

3.6. Conclusions

obtained in Section 2.7.3, the optimal number of latent states is four. Figure 3.6 summarizes
the comparison between the behavior of the three algorithms in estimating this optimal
model.

-22,050

-22,075

-22,100

-22,125

-22,150

EM T-EM E-EM

(a) Comparison between EM, O-T-EM, and
E-EM algorithms

-22,050

-22,075

-22,100

-22,125

T-EM E-EM

(b) Detail on the comparison between O-T-
EM and E-EM algorithms

Figure 3.6: (a) Maximized log-likelihood values for the criminal data using standard EM
(in blue), O-T-EM (in green), and E-EM (in yellow) algorithms. (b) Zoom on the compar-
ison between O-T-EM and E-EM algorithms

The situation is here slightly different: both the O-T-EM and the E-EM algorithms
outperform the standard EM algorithm, but in this case the evolutionary version does not
provide any significant advantage with respect to the tempered algorithm, and both of them
are able to steadily reach the global maximum.

3.6 Conclusions

In this Chapter, considering the problem of convergence of the log-likelihood function to
local maxima again, a new estimation algorithm is explored. The underlying idea of this
evolutionary EM (E-EM) algorithm is incorporating the standard E-step and M-step into
an evolutionary framework. In this context, clearly inspired by the basic principles of the
Darwinian theory of natural evolution, a population is considered, in which each individual
represents a candidate solution of the model parameters estimation problem. Selection of
the best individuals is performed through a fitness function that determines the quality of
each candidate solution: the best ones are selected for the successive steps, and the worst
ones are discarded. Other evolutionary operators, such as crossover and mutation, ensure
adequate parameter space exploration.

An accurate Monte Carlo simulation study is carried out to assess the proposal’s per-
formance for two general classes of DLV models, namely latent class and hidden Markov

99

Chapter 3. Evolutionary Expectation-Maximization algorithm

models. In particular, the ability to reach the global maximum is evaluated, allowing us
to compare the performance of the E-EM algorithm with the standard and the tempered
versions. To conclude the present Chapter, we summarize the main differences, advantages
and disadvantages of the two proposals. Both approaches clearly show superior performance
with respect to the standard EM algorithm; this behavior is distinctly evident throughout
all the simulation studies and by applying the proposed algorithms to real-world data. The
E-EM algorithm generally provides the best results, even compared to the tempered ver-
sion; in particular, it allows us (i) to improve the value of the global maximum, and (ii) to
increase the percentage of times that the global maximum is reached. Although both the
proposed algorithms rely on some parameters (namely, α, β, T0, and ρ for the T-EM algo-
rithm, and np and nc for the E-EM algorithm), the evolutionary approach ensures a much
more straightforward interpretation: np and nc represent the number of parent and children
individuals respectively. None of the tempering parameters has such a clear meaning. The
effect of a change in the value of the parameters on the performance of the E-EM algorithm
is fully known: it is evident that increasing the value of np ed nc (number of parents and
offspring, respectively) ensures a better performance (obviously, at the cost of a higher com-
putational time). Conversely, as np and nc decrease, the algorithm resembles the standard
EM version. These fully-known effects allow us to control the algorithm behavior (regard-
less of the considered model). On the contrary, regarding the T-EM algorithm, we may
only suggest a broad range of values for which the algorithm shows a good performance.
These are quite general, but it is impossible to state that they hold in every instance. In
conclusion, no precise rules explaining and interpreting the dependence of the algorithm
performance based on the parameter’s value is available for the T-EM algorithm. Finally,
this different behavior implies a relevant advantage for the E-EM algorithm in terms of
computational time. Indeed it does not need a tuning procedure for the parameters, which,
on the contrary, is often essential for the T-EM algorithm.

100

Appendices

Appendices

A Additional simulation results

In this Section we report additional details on the results of the simulation study in Section
3.4. In particular, for each considered scenario, Figures 3.7 and 3.8 show the distribution
of the mean distance from the global maximum through boxplots.

Setting A Setting B Setting C Setting D Setting E

EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM

0

2

4

6

0

10

20

30

40

50

0

10

20

30

40

0

1

2

0.0

0.5

1.0

1.5

(a) Latent class model with correctly specified latent structure

Setting A Setting B Setting C Setting D Setting E Setting F

EM T-EME-EM EM T-EME-EM EM T-EME-EM EM T-EME-EM EM T-EME-EM EM T-EME-EM

0

2

4

6

8

0

10

20

30

40

0

100

200

300

0

100

200

300

400

0

20

40

60

80

0

20

40

60

80

(b) Hidden Markov model with categorical response variables and correctly specified latent structure

Setting A Setting B Setting C Setting D Setting E

EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM

0

200

400

600

0

100

200

300

400

0

200

400

0

200

400

0

100

200

300

(c) Hidden Markov model with continuous response variables and correctly specified latent structure

Figure 3.7: Mean distance from the global maximum obtained using EM, M-T-EM, and
E-EM algorithms under simulated scenarios presented in Tables 2.17, 2.18, and 2.19 of the
Appendix A for the latent class and hidden Markov models with correctly specified latent
structure

101

Chapter 3. Evolutionary Expectation-Maximization algorithm

Setting A Setting B Setting C Setting D Setting E

EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM

0

2

4

6

8

0

5

10

15

0

3

6

9

0

2

4

6

0

2

4

(a) Latent class model with misspecified latent structure

Setting A Setting B Setting C Setting D Setting E Setting F

EM T-EME-EM EM T-EME-EM EM T-EME-EM EM T-EME-EM EM T-EME-EM EM T-EME-EM

0

5

10

15

0

20

40

60

0

10

20

30

40

0

10

20

30

40

50

0.0

2.5

5.0

7.5

10.0

0

2

4

6

8

(b) Hidden Markov model with categorical response variables and misspecified latent structure

Setting A Setting B Setting C Setting D Setting E

EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM EM T-EM E-EM

0

100

200

300

0

20

40

0

25

50

75

100

0

10

20

30

40

50

0

10

20

30

40

(c) Hidden Markov model with continuous response variables and misspecified latent structure

Figure 3.8: Mean distance from the global maximum using EM, M-T-EM, and E-EM al-
gorithms under simulated scenarios presented in Tables 2.17, 2.18, and 2.19 of the Appendix
A for the latent class and hidden Markov models with misspecified latent structure

102

Appendices

B Comparison with the oscillating T-EM algorithm

We compare here the E-EM algorithm with the oscillating version of the T-EM algorithm.
We recall that, although the latter outperforms the monotonic version, this gain in perfor-
mance comes with a much higher computational time, which makes the employment of the
O-T-EM algorithm rather complex in many cases (see Section 2.5.4). The results of this
study are summarized in Figure 3.9.

0%

25%

50%

75%

100%

EM M-T-EM O-T-EM E-EM

(a) Percentage of global maximum

0

2

4

6

EM M-T-EM O-T-EM E-EM

(b) Mean distance from the global maximum

Figure 3.9: Percentage of global maximum and mean distance from it using EM, M-T-
EM, O-T-EM, and E-EM algorithms on simulated data from an latent class model correctly
specified with 6 latent classes

As clearly shown in Figure 3.9, the E-EM algorithm outperforms all the other versions.
The global maximum is reached on average about 17% of times with the standard EM
algorithm (this percentage rarely exceeds the 25%), which increases up to 37% with the
M-T-EM algorithm and up to 50% with the oscillating version. The E-EM algorithm
shows a superior performance, allowing us to steadily reach the global maximum: the
corresponding percentage is on average equal to 97%, and it never decreases below 75%.
Employing this algorithm, the median percentage value is equal to 100%, highlighting that
for many samples the global maximum is always reached. The mean distance from the
global maximum decreases accordingly.

103

Chapter 3. Evolutionary Expectation-Maximization algorithm

C Additional features about crossover and mutation

Evolutionary operators such as crossover and mutation can be defined in multiple ways;
throughout this Chapter, they are performed on the arrays containing the posterior prob-
abilities of the latent components for each response configuration. A possible alternative,
sometimes analyzed in the literature, considers the evolution of the parameter space instead.
As already stated in Section 4.3, the latter approach involves some drawbacks, especially
when categorical response variables are taken into account. In the following, in order to
justify the choice made, we briefly compare the peculiarities of the two approaches.

First, apart from the mean vectors and the variance-covariance matrix in the hidden
Markov model with continuous response variables, all the models’ parameters are probabil-
ities subject to some kind of constraints (e.g. the weights, or initial probabilities, must sum
to 1 in all models). This aspect complicates the implementation of crossover on the model
parameters: as a simple example, let us consider the following two initial probability vectors:
π1 = [0.4, 0.6] and π2 = [0.2, 0.8]. Performing crossover between π1 and π2 requires to swap
the (for example) first element of π1 with the corresponding one of π2; this operation results
into two new vectors that are not normalized. A normalization step would obviously affect
each element of both vectors, exceeding the purposes of the crossover operator. The same
happens for the transition and conditional response probabilities, and a similar issue also
affects the mutation operator. To this aim, note that in Pernkopf and Bouchaffra (2005)
and in Andrews and McNicholas (2013) an evolutionary approach performing crossover and
mutation on the parameters is actually defined for the Gaussian mixture model. However
mutation and crossover operators are only applied to the mean vector and the covariance
matrix, without including the weights vector.

Secondly, the parameters-based approach would require considering many classes of
parameters: for example, in the case of hidden Markov models with categorical response
variables, mutation and crossover should be performed on the initial probabilities, on the
transition probabilities, and on the conditional response probabilities. Employing mutation
and crossover on the a posteriori probabilities, on the contrary, allows us to operate on
a unique structure (the posterior probability matrix); this ensures an advantage from the
point of view of the computational complexity. Moreover, this also allows us to define a
single common implementation of the E-EM algorithm for all the models, without having
to consider specific changes according to each model and to its parameters.

Moreover, employing mutation and crossover on the posterior probabilities ensures a
more straightforward interpretation of the evolutionary operators (mutation simply changes
the latent component to which a subject is assigned; crossover implies allocating a portion

104

Appendices

of the subjects according to one of the two parents, and the remaining subjects according
to the other parent). Such a clear meaning is not available for a potential version operating
on the model parameters.

Finally, Andrews and McNicholas (2013) compared the two approaches in the case of
Gaussian mixture models, without showing any significant advantage deriving from per-
forming mutation and crossover on the parameters.

105

Bibliography

Andrews, J. and McNicholas, P. (2013). Using evolutionary algorithms for model-
based clustering. Pattern Recognition Letters, 34, 987–992.

Ashlock, D. (2004). Evolutionary Computation for Modeling and Optimization. Springer,
New York.

Back, T. (1994). Selective pressure in evolutionary algorithms: A characterization of
selection mechanisms. In Proceedings of the first IEEE conference on evolutionary com-
putation. IEEE World Congress on Computational Intelligence, pages 57–62. IEEE.

Back, T. and Schwefel, H.-P. (1996). Evolutionary computation: An overview. In
Proceedings of IEEE International Conference on Evolutionary Computation, pages 20–
29. IEEE.

Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford University Press, New York.

Blickle, T. and Thiele, L. (1995). A comparison of selection schemes used in genetic al-
gorithms. tik-report 11, tik institut fur technische informatik und kommunikationsnetze.
Computer Engineering and Networks Laboratory, ETH, Swiss Federal Institute of Tech-
nology, Gloriastrasse, 35, 279–284.

Deb, K. (2001). Multi-Objective Optimization using Evolutionary Algorithms. John Wiley
and Sons, Chichester.

Encyclopaedia Britannica (2022). Natural selection. https://www.britannica.com/
science/natural-selection.

Goldberg, D. and Deb, K. (1991). A comparative analysis of selection schemes used in
genetic algorithms. In Foundations of genetic algorithms, volume 1, pages 69–93. Elsevier.

Hruschka, E., Campello, R., Freitas, A., and Ponce Leon F. de Carvalho,

A. (2009). A survey of evolutionary algorithms for clustering. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews), 39, 133–155.

Kampo, R. (2021). Evolutionary Algorithms for Model-Based Clustering. PhD thesis,
McMaster University, Hamilton, Ontario, Canada.

McNicholas, S., McNicholas, P., and Ashlock, D. (2021). An evolutionary algo-
rithm with crossover and mutation for model-based clustering. J Classif, 38, 264–279.

https://www.britannica.com/science/natural-selection
https://www.britannica.com/science/natural-selection

Bibliography

Michalewicz, Z. and Fogel, D. (2000). How to Solve It: Modern Heuristics. Springer,
Berlin, Heidelberg.

Pernkopf, F. and Bouchaffra, D. (2005). Genetic-based em algorithm for learning
gaussian mixture models. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 27, 1344–1348.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–
464.

The World Bank Group (2018). Data catalog: World development indicators.
Available from https://datacatalog.worldbank.org/dataset/world-development-

indicators.

Wieczorek, W. and Czech, Z. (2002). Selection schemes in evolutionary algorithms.
In Intelligent Information Systems 2002, pages 185–194. Physica-Verlag HD.

Zigmond, A. and Snaith, R. (1983). The hospital anxiety and depression scale. Acta
Psychiatr. Scand., 67, 361–70.

107

https://datacatalog.worldbank.org/dataset/world-development-indicators
https://datacatalog.worldbank.org/dataset/world-development-indicators

Chapter 4

Model-based clustering in simple hypergraphs
through a stochastic blockmodel1

4.1 Introduction

Over the past two decades a broad variety of models has been developed for pairwise in-
teractions, encoded in graphs. These allow to better comprehend the complexity of many
real-world systems: interconnected components often display properties that cannot be de-
duced from the analysis of the individual elements. Systems of this kind, characterized
by richness of interactions among their units, emerge in almost every branch of science
and technology, including chemistry, physics, biology, geology, ecology, engineering, and
even psychology, economy, and social sciences. See Newman (2010, Chapters 1 to 5) for a
thorough list of interesting examples. However, modern applications in various fields high-
light the need to account for higher-order interactions, to include the information deriving
from groups of three or more nodes. Hypergraphs provide the most general formalization
of higher-order interactions: similarly to a graph, we define a hypergraph as a set of nodes
and a set of hyperedges, where each hyperedge is a subset of distinct nodes taking part in

1Part of this chapter has been submitted for publication in an international statistical journal: Brusa,
L., Matias, C. Model-based clustering in simple hypergraphs through a stochastic blockmodel.

109

Chapter 4. Model-based clustering in hypergraphs through a SB model

an interaction. In particular, here we distinguish these simple hypergraphs from multisets-
hypergraphs where multiset hyperedges are allowed. A multiset is the generalization of a
set where each element may appear with some multiplicity; thus, multiset hyperedges occur
when repeated nodes appear. It is clear that, depending on each specific real-world case,
only one of the two notions of hypergraph is appropriate.

Despite an increasing interest for these higher-order interactions, the statistical litera-
ture on this topic remains quite scarce. Statistics such as centrality or clustering coefficient
have been extended from graphs to hypergraphs (Estrada and Rodríguez-Velázquez, 2006).
These help to understand the structure and extract information from the data but do not
fill the need for hypergraphs models. In the graphs context, as mentioned in Section 1.2.3,
stochastic block (SB) models were introduced in the early eighties (Frank and Harary, 1982;
Holland et al., 1983) and have flourished in many directions. These models assume that
nodes are clustered into groups and the connection probabilities between nodes are driven
by their groups memberships. Variants handling weighted graphs and degree corrected ver-
sions have been developed among others. Despite these new improvements, generalizations
of the SB model for hypergraphs are currently limited to some restrictive hypotheses. In
particular, to our best knowledge, extensions in the context of simple hypergraphs are still
missing in the literature. In order to overcome this limitation, in the present Chapter we
focus on model-based clustering for simple hypergraphs and study stochastic hypergraph
block models.

The algorithm implementation in C++ is freely available as an R package called HyperSBM

at https://github.com/LB1304/HyperSBM. The files to reproduce the synthetic experi-
ments and the dataset analysis are available at https://github.com/LB1304/Hypergraph-
Stochastic-Blockmodel.

The remaining of this chapter is organized as follows. In Section 4.2 we introduce
the general context of higher-order interactions and their representation through hyper-
graphs. We furthermore discuss the multisets-hypergraphs assumption, often presented
as a harmless one in the literature, and highlight its consequences on datasets analysis.
These consequences motivate our focus on simple hypergraphs, where much less has been
done, while computational challenges are higher. In Section 4.3 we present an overview of
models for hypergraphs existing in previous literature. In Section 4.4, we formulate a gen-
eral stochastic simple hypergraphs block model as well as different submodels. Parameter
inference is performed through a variational expectation-maximization (VEM) algorithm
(Section 4.4.3) and model selection relies on an integrated completed likelihood (ICL) cri-
terion (Section 4.4.4). In Sections 4.5 and 4.6 we illustrate the performance of our method
through an analysis on synthetic and real datasets. In Section 4.7 we provide some conclu-

110

https://github.com/LB1304/HyperSBM
https://github.com/LB1304/Hypergraph-Stochastic-Blockmodel
https://github.com/LB1304/Hypergraph-Stochastic-Blockmodel

4.2. Interacting systems and hypergraphs

sions. All the proofs are postponed to Appendices A and B, while Appendices from C to
G contains additional details on both computational and theoretical aspects.

4.2 Interacting systems and hypergraphs

In this Section we analyze in more details the general structure of a complex, or interacting,
system, formally introducing the concept of interaction and discussing its mathematical
representations. Following Battiston et al. (2020), we define an m-interaction as a set
I = [p1, . . . , pm], where p1, . . . , pm denote the m elements of the system among which the
interaction takes place. We refer to the case m = 2 as a binary interaction, and to m ≥ 3 as
higher-order interaction. We refer to Battiston et al. (2020), Bick et al. (2021), and Torres
et al. (2021) for recent reviews on higher-order interactions.

4.2.1 Higher-order interactions representation: from graphs to hyper-
graphs

The simplest and most natural mathematical entity used to represent interactions among
the basic elements of a complex system is the graph structure. As introduced in Section
1.2.3, a graph G = (V, E) is defined as a set V ≠ ∅ of distinct nodes, representing the
various elements of the complex system, and of a set E of edges, consisting of pairs of dis-
tinct elements of E . Despite recent developments and improvements, a serious limitation
of graphs remains the inability to account for higher-order interactions, capturing inter-
actions between groups of more than two nodes. This task is nowadays fundamental in
many modern applications in various field; simple example include (but are not limited
to) triadic and larger groups interactions in social networks (whose importance has early
been acknowledged in Simmel, 1950), scientific co-authorship (Roy and Ravindran, 2015),
interactions between more than two species in ecological systems (Muyinda et al., 2020;
Singh and Baruah, 2021) or higher-order correlations between neurons in brain networks
(Chelaru et al., 2021).

A common approach to provide a graph-based representation of a higher-order interac-
tion, is to unfold it in terms of binary interactions; for example, a simple triadic interaction
I = [a, b, c] can be easily decomposed into the following collection of binary interactions:
IB = {[a, b], [b, c], [c, a]}. This description, however, lacks a proper interpretation: although
they are associated to then same graph representation, I and IB do not convey the same
information. Let us consider, for example, co-authorship networks; in this context there
is a significant difference between a single paper written by three authors (interaction I),

111

Chapter 4. Model-based clustering in hypergraphs through a SB model

a

b

c

d

e

a

b

c

d

e

Figure 4.1: Visualization of the set of higher-order interactions {[a, b, c], [a, d], [c, d], [c, e]}
through a graph (on the left) and a hypergraph (on the right). The latter provides a much
more accurate representation

and three different papers written by pairs of those authors (set of interactions IB). In
other words, through this representation, it is impossible to state weather any higher-order
interaction is actually present or not.

Hypergraphs (Battiston et al., 2020) give an explicit encoding of higher-order interac-
tions, thus providing the most appropriate description. Similarly to a graph, a hypergraph
H = (V, E) is defined as a set of nodes V ≠ ∅ and a set of hyperedges E . Each hyperedge is
a non-empty collection of m distinct nodes taking part within an interaction. This entity
naturally includes the one of simple graphs, by simply considering m = 2 for each hyper-
edge e ∈ E . Note that a hypergraph can contain a hyperedge of size 3 [a, b, c] without any
requirement on the existence of the hyperedges of size 2 [a, b], [a, c], and [b, c]. An example
of hypergraph representing a higher-order interacting system is represented in shown in
Figure 4.1.

4.2.2 The need for simple hypergraphs models

In this Section, we discuss modeling differences between multisets-hypergraphs where mul-
tiset hyperedges are allowed versus simple hypergraphs where hyperedges are subsets of
distinct nodes. We first recall that a multiset is the generalization of a set where each
element may appear with some multiplicity. Thus, multiset hyperedges occur when nodes
may be repeated in a hyperedge.

Multiset hyperedges generalize in some sense the notion of self-loops in graphs, thus

112

4.2. Interacting systems and hypergraphs

constituting a natural extension to consider. However, they are not appropriate in all con-
texts. For instance, a co-authorship dataset cannot contain hyperedges with repeated nodes
(but it may contain a self-loop of a unique author). In the same way, a social interaction
hypergraph does not contain multisets hyperedges: triadic interactions are restricted to
3 different individuals and self-loops are not allowed. In the meantime, they are natu-
ral in other contexts; e.g. chemical reaction hypergraphs where the multiplicity plays the
role of the stoichiometric coefficients (Flamm et al., 2015). We first argue that multiset
hypergraphs models are inappropriate for analyzing simple hypergraphs.

4.2.2.1 A motivating example

For the sake of simplicity, we restrict our attention to uniform size-3 hypergraphs on a set
of n nodes and consider two different models. The first one, denoted as MH, acts on 3-
uniform multisets-hypergraphs and draws a hyperedge between any 3 nodes, not necessarily
distinct, with probability pMH. The second one, denoted as SH, acts on 3-uniform simple
hypergraphs and draws a hyperedge between any 3 distinct nodes, with probability pSH.

Let us consider the toy example of a simple hypergraph H with n = 3 nodes and
only one hyperedge e = {1, 2, 3}. This dataset could correspond for instance to observing
one publication with 3 authors. When analyzed under the MH model, the density of our
observed hypergraph is estimated by

p̂MH = 1/27

because there are n3 = 27 possible size-3 multiset hyperedges under this model, and just
one of these is observed. On the contrary, when analyzed under the SH model, we infer a
density of

p̂SH = 1

because the only possible size-3 hyperedge is observed. As a consequence, the statistical
conclusions drawn on this dataset will highly differ depending on whether we restrict atten-
tion to simple hypergraphs or work with more general multisets-hypergraphs. This simple
and elementary example shows that it is not possible to statistically analyze a simple hy-
pergraph with a multisets-hypergraphs model without erroneous conclusions. This choice
of the ambient space has to be made according to the specificities of the dataset.

113

Chapter 4. Model-based clustering in hypergraphs through a SB model

4.2.2.2 Computational challenge in the simple hypergraph case

The main technical difference between multisets-hypergraphs and simple hypergraphs anal-
ysis comes from the enumeration of the size-m tuples of nodes. In the multisets-hypergraphs
setting, the summations over multisets of nodes {i1, . . . , im} ∈ {1, . . . , n}m factorize into
m independent sums. On the contrary, in the simple hypergraph setting, the summations
involve sets of nodes {i1, . . . , im} that are constrained to be distinct. As a consequence,
such a factorization is impossible.

Let us consider a concrete example. In the context of interaction data, modularity is a
widely used criterion for clustering entities. It is designed to obtain specific clusters, called
communities, characterized by large intra-group and low inter-group connections (see also
Section 4.3.2 for a more detailed analysis of modularity). When dealing with hypergraphs
modularity criteria have been proposed only in the multisets-hypergraphs setting (Kamiński
et al., 2019; Chodrow et al., 2021). Modularities are generally constructed as deviation
measures of the number of hyperedges from their expected number under a null model.
For instance in the graphs context, the Newman and Girvan modularity of a partition
(C1, . . . , CQ) of the nodes into Q clusters is computed as

Modularity(C1, . . . , CQ) =
1

2|E|

Q∑
q=1

∑
i,j∈Cq

(
Aij −

didj
2|E|

)

=
1

2|E|

Q∑
q=1

∑
i,j∈Cq

Aij −
1

2|E|

Q∑
q=1

∑
i,j∈Cq

didj
2|E|

,

where A = (Aij)i,j is the graph adjacency matrix, di is the degree of node i and 2|E| =
∑

i di

is twice the number of edges. While the first part of these criteria enumerates only the
(present) hyperedges, a quantity that is small in general as most hypergraph datasets are
sparse, the second part needs to account for all tuples of nodes in the graph (or at least in
the same group Cq). In the case of multisets-hypergraphs, this second term factorizes to

1

2|E|

Q∑
q=1

∑
i,j∈Cq

didj
2|E|

=
1

2|E|

Q∑
q=1

(
∑

i∈Cq
di)(

∑
j∈Cq

dj)

2|E|
=

Q∑
q=1

Vol(q)2

(2|E|)2
,

where the time complexity of the volume Vol(q) =
∑

i∈Cq
di computation is O(n). On

the contrary, in the simple hypergraph setting, enumerating all constrained tuples of nodes

114

4.2. Interacting systems and hypergraphs

requires enumerating
M∑

m=2

(
n

m

)
elements for a hypergraph with n nodes and maximum hyperedge size M . This quantity
is huge and represents the main computational limit when analyzing hypergraphs. Our
approach to this issue is detailed in Appendix D.

4.2.3 Matrix representations of higher-order interactions

To conclude this Section, we briefly describe the representation of higher-order interactions
in terms of matrices. These structures generalize the standard notions existing in the graph
literature.

The incidence matrix of a hypergraph encodes the relation of node-hyperedge pairs.
In particular, let us denote by H = (Hie) the n × N matrix, where n and N are the
numbers of nodes and hyperedges, respectively, and the entry Hie is equal to 1 if and
only if node i belongs to hyperedge e, and 0 otherwise. The incidence matrix provides
important properties of the hypergraphs. The degree of a node i (i.e. the number of
hyperedges incident to the node) can be defined as the sum of the elements of the i-th
row of the incidence matrix: deg(i) =

∑N
e=1 hie. Conversely, the sum of the elements in

the e-th columns defines the size of hyperedge e (i.e., number of nodes taking part in the
hyperedge): |e| =

∑n
i=1 hie.

The adjacency matrix of a hypergraph encodes the relation of node-node pairs. It is
defined as the n× n matrix A = (Aij), where the entry Aij , with i ̸= j, counts the number
of hyperedges containing both nodes i and j. As long as we do not allow for self-loops,
the diagonal entries aii are all equal to 0. The adjacency matrix is related to the incidence
matrix by the following simple formula: A = II ′−D, where D is the diagonal matrix, with
entry dii = deg(i) equal to the number of hyperedges node i belongs to.

A hypergraph Laplacian operator (Zhou et al., 2006) can be defined on the basis of the
above matrices as follows:

L = In −D−1/2H∆−1H ′D−1/2 ∈ Rn×n,

where I is the identity matrix of size n, H is the incidence matrix, D and ∆ are diagonal
matrices such that dii = deg(i) and δee = |e|. Similarly to the simple graph context,
Laplacian matrix and the distribution of its eigenvalues convey many important properties
of hypergraphs; we will address a simple example in Section 4.4.3.3. Note that several other

115

Chapter 4. Model-based clustering in hypergraphs through a SB model

notions of hypergraph Laplacian have been proposed in the literature; see, among others,
Bolla (1993) and Rodríguez (2002).

4.3 Preliminary works about hypergraph modeling

In this Section we briefly summarize the main contributions available in the statistical
literature in the field of higher-order interactions and hypergraphs.

4.3.1 The bipartite graph representation and its limits

Some early analyses of hypergraphs rely on the embedding of the former into the space of
bipartite graphs (see for e.g. Battiston et al., 2020). A bipartite graph is defined by two
sets of nodes (U ,W) and a set of edges; each edge e must connect a node from set U and a
node from set W, i.e. e = (u,w) with u ∈ U and w ∈ W. Any hypergraph H = (V, E) may
be represented as a bipartite graph: U is chosen as the set of hypergraphs nodes, so U = V,
while W is the set of hyperedges, so that W = E : there is a link between v ∈ V and e ∈ E
whenever node v belongs to hyperedge e in the original hypergraph H.

It is possible to define a “converse” application from bipartite graphs to hypergraphs.
Indeed, any bipartite graph can be projected into two distinct hypergraphs, by choosing
one of the two parts as the nodes set and forming a hyperedge with any set of nodes that are
neighbors (in the bipartite graph) of the same node (belonging to the second part). A major
difference appears whether we consider simple hypergraphs or multi-hypergraphs with self-
loops. In multi-hypergraphs (not to be confused with multisets-hypergraphs) hyperedges
may appear several time so that these are weighted hypergraphs with integer valued weights.
In multi-hypergraphs, we also allow for self-loops, i.e hyperedges of cardinality 1. Then,
this application from bipartite graphs to hypergraphs slightly differs depending on whether
we allow the image of a bipartite graph to be a multi-hypergraphs with self-loops or a simple
hypergraph. In the first case, all the information from the bipartite graph will be encoded
in the multi-hypergraphs with self-loops; while in the second case, part of the information
will be lost. This is illustrated on a toy example in Figure 4.2.

The embedding of the simple hypergraphs space into the bipartite graphs space is not
the inverse of the natural projection of bipartite graphs into simple hypergraphs. Thus,
models of bipartite graphs are inappropriate to handle simple hypergraphs, as the former
generally put mass on any bipartite graph, notwithstanding the fact that not all of these
may be realized as the image of a simple hypergraph. For the same reason, preferential
attachment models of bipartite graphs (Guillaume and Latapy, 2004) may not be directly

116

4.3. Preliminary works about hypergraph modeling

Bipartite graphs space Hypergraphs space

a b c

(a)

Ba b c

(b)

a b c

(c)

a b c

(d)

Figure 4.2: (a) A bipartite graph G; (b) Projection of G into the multi-hypergraphs
with self-loops space, choosing the top nodes as the new set of nodes. Hyperedges are
{a}, {a, b}, {a, b}, {a, b, c}. The applications from (a) to (b) are invertible bijections, one
being the inverse of the other; (c) Projection of G on the simple hypergraphs subspace. Hy-
peredges are {a, b}, {a, b, c}; (d) Embedding of the simple hypergraph in (c) in the bipartite
graphs space. Note that (a) and (d) are not the same bipartite graph

117

Chapter 4. Model-based clustering in hypergraphs through a SB model

used for simple hypergraphs as they would produce unconstrained bipartite graphs that do
not necessarily come from simple hypergraphs. Appendix C contains further considerations
in the same line.

4.3.2 Hypergraphs modeling

A first simple and natural model for hypergraphs was introduced generalizing Erdös-Rényi’s
model of random graphs and leading to random uniform hypergraphs. It consists in draw-
ing uniformly at random from the set of all m-uniform hypergraphs (i.e. with hyperedges
of fixed cardinality m) over a set of n nodes. Each of the

(
n
m

)
m-elements subsets of the set

of nodes is chosen to be an edge of a random hypergraph with probability p independently
of all other subsets. The number of edges of such a random hypergraph has a binomial dis-
tribution with expected value equal to

(
n
m

)
p. A slightly more general definition of random

hypergraphs allows for hyperedges of varying cardinality: each possible subset of nodes of
size m is selected as a hyperedge with probability pm, 0 ≤ pm ≤ 1, m = 2, . . . ,M , inde-
pendently of all other subsets of nodes of the same and different sizes. However, similarly
to Erdös-Rényi, these models are too simple and homogeneous to be used to statistically
analyze datasets.

The configuration model for random graphs constitutes a slightly more advanced model;
it draws uniformly at random from the set of all graphs over a set of n nodes with some
prescribed degrees sequence. A first generalization to the hypergraph context appears
in Ghoshal et al. (2009) focusing on tripartite and 3-uniform hypergraphs, while Chodrow
(2020) extends it to a more general hypergraphs setup: given a fixed degree sequence d

(i.e., the vector whose i-th element is the degree of node i), and a fixed dimension sequence
δ (i.e., the vector whose e-th element is the size of hyperedge e), and denoted by Hd,δ the
space of all hypergraphs with the specified nodes degree and hyperedges size sequences, the
configuration model is the uniform distribution on this space. The configuration model is
useful to sample (hyper)-graphs with the same nodes degrees (and same hyperedges sizes)
as an observed one through shuffling algorithms, and thus is often used as a null model in a
statistical perspective. However sampling exactly (and not approximately) from this model
is challenging, in particular in the hypergraph case. We refer to Section 4 in Chodrow
(2020) for a thorough discussion on this issue.

Hypergraph nodes clustering has recently received some attention. Ghoshdastidar and
Dukkipati (2014) introduce a planted partition model for uniform hypergraphs, which is a
particular case of a SB model. More precisely, they assume that nodes are clustered into
equally-sized groups and two parameters determine intra-groups and inter-groups connec-

118

4.3. Preliminary works about hypergraph modeling

tion probabilities, the former always being larger than the latter. They develop a spectral
partitioning method and establish its consistency. This result was extended to the non-
uniform and weighted sparse (i.e. most weights are close to zero) setting in Ghoshdastidar
and Dukkipati (2017). We will include these formulations as particular cases of our general
model. Introducing hypergraphons, Balasubramanian (2021) extends the hypergraph SB
model ideas to a nonparametric setting; this approach is very general, but its least-squares
estimator of a hypergraphon model is intractable. Besides, Algorithm 1 in that reference
is dedicated to community detection and does not recover general groups. In the same
way, the references (Ke et al., 2020; Ahn et al., 2018; Chien et al., 2019) all focus on com-
munity detection and do not find clusters that are not communities. In a parallel vein,
Turnbull et al. (2021) recently proposed a latent space model for hypergraphs, by general-
izing random geometric graphs to hypergraphs, though not designed to capture clustering.
A proposal linked to SB models appears in Vazquez (2009), where nodes belong to latent
groups and participate in a hyperedge with a probability that depends on their group and
that hyperedge.

Modularity is a widely used criterion for clustering entities in the context of interaction
data. It is designed to obtain specific clusters, called communities, and characterized by
large intra-group and low inter-group connections (exactly as in the above partition model
from Ghoshdastidar and Dukkipati, 2014). In the hypergraph context, the definition of
modularity is not unique. In particular, Kamiński et al. (2019) introduce a “strict” modu-
larity criterion such that only hyperedges with all their nodes belonging to the same group
contribute to an increase in the modularity. Their criterion measures a deviation of the
number of these homogeneous hyperedges from a new null model: a configuration-like model
for hypergraphs where the average values of the degrees are kept fixed. Further in this di-
rection, Chodrow et al. (2021) introduce a very general degree-corrected hypergraph SB
model and propose two new modularity criteria. Similarly to Kamiński et al. (2019), one of
these criteria relies on an “all-or-nothing” affinity function that distinguishes only whether
a given edge is contained entirely within a single cluster. In this setup, they establish
a link between approximate maximum likelihood estimation (MLE) and their modularity
criterion. This echoes the work of Newman (2016) in the graph context. It is important
to note that the developments in Kamiński et al. (2019); Chodrow et al. (2021) are done
in a multisets-hypergraphs context where hyperedges are multisets, i.e. nodes are allowed
to appear with a certain multiplicity in each hyperedge. The multisets-hypergraphs setup
simplifies computational challenges raised by the computation of the modularity and to our
knowledge modularity approaches still lack instantiation in the simple hypergraph case. As
already argued in Section 4.2.2.1, while both approaches are grounded, they give rise to

119

Chapter 4. Model-based clustering in hypergraphs through a SB model

different statistical analyses. The choice of which should be used depends on the type of
data at hand. Focusing on community detection, random walks approaches have also been
used for hypergraph clustering (Swan and Zhan, 2021), as well as low-rank tensor decompo-
sitions (Ke et al., 2020). The misclassification ratio for the community detection problem
in hypergraphs and its limits have been analyzed in various contexts (see for instance Ahn
et al., 2018; Chien et al., 2019; Cole and Zhu, 2020). We mention that a recent approach
has proposed to cluster hyperedges (Ng and Murphy, 2021) while our focus in this work is
on nodes clustering.

To conclude this Section, we mention that the literature about higher-order interactions
often discusses simplicial complexes in parallel with hypergraphs. Borrowing the notation
from algebraic topology (Hatcher, 2002), a simplex is generally defined as a set of nodes, and
a simplicial complex is a collection of simplices. However the peculiarity of these structures
(namely the fact that each subset of a simplex should also be a simplex) puts them out of
the scope of the current state of the art (Battiston et al., 2020).

4.4 A stochastic block model for hypergraphs

4.4.1 Model formulation

Let H = (V, E) denote a binary hypergraph, where V = {1, . . . , n} is a set of n nodes and
E is the set of hyperedges. We indicate by M = max

e∈E
|e| the largest size of hyperedges in E

(so that M ≥ 2, with M = 2 for graphs). Let us denote by

V(m) =
{
{i1, . . . , im} : i1, . . . , im ∈ V and i1 ̸= . . . ̸= im

}
,

E(m) =
{
{i1, . . . , im} ∈ V(m) : {i1, . . . , im} ∈ E

}
,

the sets of unordered node tuples and hyperedges of size m respectively. Obviously it holds
that

E =

M⋃
m=2

E(m) ⊆
M⋃

m=2

V(m).

In particular, for each tuple {i1, . . . , im} ∈ V(m), we define the indicator variable

Yi1,...,im = 1{i1,...,im}∈E =

1 if {i1, . . . , im} ∈ E ,

0 if {i1, . . . , im} /∈ E .

We let Y = (Yi1,...,im){i1,...,im}∈V(m) represent a random hypergraph.

120

4.4. A stochastic block model for hypergraphs

Likewise the formulation of the SB model for graphs, we assume that the nodes be-
long to Q unobserved groups. Let U1, . . . , Un denote n independent and identically dis-
tributed (i.i.d.) latent random variables having a discrete distribution with Q support
points {1, . . . , Q}; for each q = 1, . . . , Q, πq = P(Ui = q) is the prior distribution such
that πq ≥ 0 and

∑Q
q=1 πq = 1. With a slight abuse of notation, we sometimes write Ui =

(Ui1, . . . , UiQ) ∈ {0, 1}Q, with only one value Uiq equal to 1. We also let U = (U1, . . . , Un).
Every m-tuple of nodes is associated aith a latent configuration, simply defined as the

set of latent groups these nodes belong to. We denote by

Q(m) =
{
Yq1,...,qm : q1, . . . , qm ∈ {1, . . . , Q}

}
,

the set of all possible latent configurations of elements in V(m). Conditionally on the latent
variables Ui, all indicator variables Yi1,...,im are assumed to be independent and follow a
Bernoulli distribution whose parameter depends on the latent configuration:

Yi1,...,im |{U1 = q1, . . . , Um = qm} ∼ B(B(m)
q1,...,qm) for any {i1, . . . , im} ∈ V(m).

Here B
(m)
q1,...,qm denotes the probability that m unordered nodes with latent configuration

{q1, . . . , qm} are connected into a hyperedge. Therefore, ∀{i1, . . . , im} ∈ V(m), the following
holds:

P
(
Yi1,...,im |Ui1 = q1, . . . , Uim = qm

)
= (B(m)

q1,...,qm)
Yi1,...,im · (1−B(m)

q1,...,qm)
1−Yi1,...,im .

Note that each B(m) is a fully symmetric tensor of rank m, namely

B(m)
q1,...,qm = B(m)

qσ(1),...,qσ(m)
, ∀q1, . . . , qm and ∀σ permutation of {1, . . . ,m}. (4.1)

We let θ = (πq, B
(m)
q1,...,qm)q,m,q1,...,qm denote the parameter vector and Pθ,Eθ the corre-

sponding probability distribution and expectation, respectively. Moreover, to simplify the
notation, we will denote as

∑
V(m) and

∑
Q(m) the summations over all possible unordered

node tuples and over all possible latent configurations respectively:∑
V(m)

=
∑

{i1,...,im}∈V(m)

, and
∑
Q(m)

=
∑

{q1,...,qm}∈Q(m)

.

The model parameters of our hypergraph stochastic block (HSB) model are summarized in
Table 4.1.

Lemma 1. The number of different parameters in each tensor B(m) is
(
Q+m−1

m

)
.

121

Chapter 4. Model-based clustering in hypergraphs through a SB model

Parameter Description Range

πq Prior probability of latent blocks q = 1, . . . , Q

B
(m)
q1,...,qm Conditional probability of hyperedges

given the latent configuration
m = 2, . . . ,M
qj = 1, . . . , Q

Table 4.1: Summary of the parameters of the hypergraph stochastic block model

As a consequence, the total number of free parameters is given by

(Q− 1) +
M∑

m=2

(
Q+m− 1

m

)
.

As better shown in Table 4.2, the number of parameters increases quite rapidly as the values

Q

M 2 3 4 5 6 7

3 4 10 20 35 56 84
4 5 15 35 70 126 210
5 6 21 56 126 252 462
6 7 28 84 210 462 924
7 8 36 120 330 792 1716

Table 4.2: Number of parameters of the full hypergraph stochastic block model for given
values of Q (number of latent groups) and M (largest hyperedge size)

of Q and M grow. To significantly reduce the model complexity, we introduce submodels
by assuming the equality of some conditional probabilities B

(m)
q1,...,qm . We mention that

(Chodrow et al., 2021) have also defined submodels in the context of degree-corrected HSB
models. In particular, we consider two “affiliation” submodels given by

B(m)
q1,...,qm =

α(m) if q1 = · · · = qm,

β(m) if there exist at least qi ̸= qj
(Aff-m)

and

B(m)
q1,...,qm =

α if q1 = · · · = qm

β if there exist at least qi ̸= qj
∀m = 2, . . . ,M. (Aff)

The number of parameters is dropped to (Q − 1) + 2(M − 1) and to (Q − 1) + 2 under

122

4.4. A stochastic block model for hypergraphs

Assumptions (Aff-m) and (Aff), respectively. These submodels reflect the same ideas as
in Kamiński et al. (2019); Chodrow et al. (2021) when they consider that only hyperedges
whose nodes all belong to the same group should increase the modularities.

The choice of M . It is important to stress that when analyzing a dataset, M is not
necessarily the maximum observed value of the hyperedges sizes but rather a modeling
choice. Indeed, take for example a co-authorship dataset with n authors and only 3 co-
authors at most. If nothing prevents 4 persons to be co-authors, then the fact that there are
no hyperedges of size 4 gives as much information as if all the possible size-4 hyperedges
would be present. In the same way, the amount of information contained in a dataset
where all but say 5 possible size-4 hyperedges are present is the same as the amount of
information contained in the same dataset but with only 5 occurring size-4 hyperedges.
In other words, occurring hyperedges and possible but non-occurring hyperedges carry
the same amount of information (0 and 1 values play a similar role). As a consequence, M
should be chosen by the statistician, depending on the characteristics of the dataset at hand
and on computational resources (see “Algorithm complexity” below for more on that point).
One should keep in mind that on any dataset, choosing M > 2 is already an improvement
(in the sense of taking into account more information) with respect to a graph analysis of
the data at hand.

Generalizations. Our model could allow for self-loops without any important changes
(by authorizing m = 1). It could also be easily generalized to multiple hypergraphs (with
or without self-loops) by putting a (zero-inflated or deflated) Poisson law on the condi-
tional distribution of the hyperedges. More generally, the conditional Bernoulli distribution
could be replaced by any parametric distribution to handle weighted hypergraphs (e.g. a
Poisson or a degree-corrected Poisson as in Chodrow et al. (2021)). The case of multisets-
hypergraphs could also be handled and would result in a fastest algorithm (though requiring
a distinct implementation, which is not provided in our R package).

4.4.2 Parameter identifiability

In this Section, we first establish generic identifiability of the parameters of a HSB model re-
stricted to simple m-uniform hypergraphs for any m ≥ 2. Generic identifiability (in a para-
metric context) means that every parameter θ, except possibly for some lying in a subset
whose dimension is strictly smaller than the dimension of the full parameter space, uniquely
defines the distribution Pθ. In other words, when picking at random (w.r.t. Lebesgue mea-
sure) a parameter θ, this uniquely defines Pθ almost surely (w.r.t. Lebesgue measure).

123

Chapter 4. Model-based clustering in hypergraphs through a SB model

Identifiability is established up to label switching on the node groups, as in any discrete
latent variable model. The case m = 2 corresponds to Theorem 2 in Allman et al. (2011).
Our proof follows the same ideas, building on a key result by Kruskal (1977), and relying
in our case on a sufficient condition for a sequence of non-negative integers to be the degree
sequence of a simple m-uniform hypergraph (Behrens et al., 2013).

Theorem 1. For any m ≥ 2 and Q ∈ N ̸=0, the set θ(m) = (πq, B
(m)
q1,...,qm)1≤q≤Q,1≤q1≤···≤qm≤Q

of parameter of the HSB model restricted to m-uniform simple hypergraphs over n nodes,
is generically identifiable, up to label switching on the node groups, for large enough n

(depending only on m,Q).

The case of fixed group proportions (e.g., equal group proportions πq = 1/Q) needs
special attention. Indeed, our main result does not explicitly characterize the subspace of
the parameter space on which identifiability may not be satisfied (we only know that its
dimension is less than that of the full parameter space). When restricting to fixed group
proportions, we are exactly on a lower dimensional space and may not obtain identifiability
without specific care. In the same way, our result does not apply in the affiliation cases
(Aff-m) and (Aff) that correspond to a restriction of the parameter space to a lower-
dimensional subspace.

The result stated for m-uniform hypergraphs is enough to imply a similar one for non-
uniform simple hypergraphs, as stated in the following corollary.

Corollary 2. For any Q ∈ N̸=0, the set θ = (πq, B
(m)
q1,...,qm)1≤q≤Q,1≤q1≤···≤qm≤Q,2≤m≤M of

parameters of the HSBM for simple hypergraphs over n nodes, is generically identifiable, up
to label switching on the node groups, for large enough n (depending only on M,Q).

Our proof of Corollary 2 specifically requires all the πq’s are distinct (a generic condition,
thus not explicitly stated) and does not apply for instance in the restricted case of equal
group proportions. In that case, it is not sufficient to identify the parameters for each value
of m separately.

4.4.3 Maximum likelihood estimation

On the basis of the model parameters introduced in Section 4.4.1, the distribution of U

may be expressed as

Pθ(U) =

n∏
i=1

Pθ(Ui) =

n∏
i=1

Q∏
q=1

π
Uiq
q =

Q∏
q=1

π
∑n

i=1 Uiq
q ,

124

4.4. A stochastic block model for hypergraphs

where Pθ(Ui) =
∏Q

q=1 π
Uiq
q denotes the distribution of latent variable Ui, and the corre-

sponding logarithmic transformation as

logPθ(U) =

Q∑
q=1

n∑
i=1

Uiq log πq.

Moreover, for the conditional distribution of Y given U , we have

Pθ(Y |U) =

M∏
m=2

∏
V(m)

Pθ(Yi1,...,im |Ui1 , . . . , Uim),

given the assumption of independence of indicator hyperedges given the latent variables.
Again, the corresponding logarithmic transformation assumes the following expression:

logPθ(Y |U) =

M∑
m=2

∑
V(m)

logPθ(Yi1,...,im |Ui1 , . . . , Uim)

=
M∑

m=2

∑
V(m)

∑
Q(m)

Ui1q1 · · ·Uimqm logPθ(Yi1,...,im |Ui1 = q1, . . . , Uim = qm)

=
M∑

m=2

∑
V(m)

∑
Q(m)

Ui1q1 · · ·Uimqm log
[
(B(m)

q1,...,qm)
Yi1,...,im (1−B(m)

q1,...,qm)
1−Yi1,...,im

]

=
M∑

m=2

∑
V(m)

∑
Q(m)

Ui1q1 · · ·Uimqm

[
Yi1,...,im log(B(m)

q1,...,qm) + (1− Yi1,...,im) log(1−B(m)
q1,...,qm)

]
.

Finally, the (incomplete data) likelihood function may be obtained as

Pθ(Y) =

Q∑
q1=1

· · ·
Q∑

qn=1

Pθ(U1 = q1, . . . , Un = qn)Pθ(Y |U1 = q1, . . . , Un = qn)) (4.2)

=

Q∑
q1=1

· · ·
Q∑

qn=1

(
n∏

i=1

Pθ(Ui = qi)

)
M∏

m=2

∏
V(m)

Pθ(Yi1,...,im |Ui1 = qi1 , . . . , Uim = qim)

=

Q∑
q1=1

· · ·
Q∑

qn=1

(
n∏

i=1

πqi

)
M∏

m=2

∏
V(m)

(
B(m)

qi1 ,...,qim

)Yi1,...,im
(
1−B(m)

qi1 ,...,qim

)1−Yi1,...,im
.

As it usually happens with latent variable models, the computation of the model likeli-
hood is generally intractable. Indeed, Equation (4.2) involves a summation over all possible
Qn different latent configurations, which is too computationally heavy, unless n and q are

125

Chapter 4. Model-based clustering in hypergraphs through a SB model

small. As mentioned in Section 1.1.2, latent variable models often rely on Expectation-
Maximization (EM) algorithm (Dempster et al., 1977) to solve this problem. Nonetheless,
the expectation step of the EM algorithm is typically based on the conditional probability
of the latent variable, which is intractable itself in the context of (H)SB models (see e.g.
Matias and Robin, 2014, for a more detailed explaination of why the EM algorithm is not
feasible in these cases). A possible remedy is to rely on variational approximations of EM
algorithm (VEM, Jordan et al., 1999).

4.4.3.1 Variational Expectation-Maximization algorithm

In order to illustrate the implementation of the VEM algorithm for the HSB model, we first
have to introduce the complete data log-likelihood function:

ℓ∗(θ) = logPθ(Y ,U) = logPθ(U) + logPθ(Y |U) (4.3)

=

Q∑
q=1

n∑
i=1

Uiq log πq

+

M∑
m=2

∑
V(m)

∑
Q(m)

Ui1q1 · · ·Uimqm

[
Yi1...im log(B(m)

q1,...,qm) + (1− Yi1...im) log(1−B(m)
q1,...,qm)

]
.

The variational approach follows the same he same iterative two-steps structure as
in the EM algorithm; the core idea is to replace the intractable posterior distribution
Pθ(U |Y) by the best approximation (with respect to Kullback-Leibler divergence) in a
class of simpler (often factorized) distributions. We thus introduce the class of factorized
probability distributions Qτ over U = (U1, . . . , Un) given by

Qτ (U) =

n∏
i=1

Qτ (Ui) =

n∏
i=1

Q∏
q=1

τ
Uiq

iq ,

with the variational parameter τiq = Qτ (Ui = q) ∈ [0, 1] and
∑Q

q=1 τiq = 1, for any
i = 1, . . . , n and q = 1, . . . , Q. Let us denote by EQτ the expectation under distribution Qτ

and by H(Qτ) = EQτ [− logQτ (U)] the entropy (Shannon, 1948) of Qτ .

126

4.4. A stochastic block model for hypergraphs

We define the evidence lower bound (ELBO) as follows:

J (θ, τ) = EQτ [logPθ(Y ,U)] +H(Qτ) (4.4)

= EQτ [logPθ(Y ,U)]− EQτ [logQτ (U)]

=

Q∑
q=1

n∑
i=1

τiq log
πq
τiq

+

M∑
m=2

∑
Q(m)

∑
V(m)

τi1q1 · · · τimqm

[
Yi1,...,im log(B(m)

q1,...,qm) + (1− Yi1,...,im) log(1−B(m)
q1,...,qm)

]
.

Proposition 1 shows that J (θ, τ) is a lower bound of the model log-likelihood logPθ(Y).

Proposition 1. The function J (θ, τ), as defined in Equation (4.4), satisfies

J (θ, τ) = logPθ(E)−KL(Qτ (U)||Pθ(U |E)), (4.5)

where KL() denotes the Kullback-Leibler divergence.

The VEM algorithm alternates the following two steps until a suitable convergence
criterion is satisfied:

• VE-Step: maximizes J (θ, τ) with respect to τ

τ̂ (t) = argmax
τ

J (θ(t−1), τ); s.t.
∑Q

q=1 τiq = 1 ∀i = 1, . . . , n (4.6)

this is equivalent to minimizing the Kullback-Leibler divergence term in (4.5), and
thus finding the “best” approximation of the conditional distribution Pθ(U |Y);

• M-Step: maximizes J (θ, τ) with respect to θ

θ̂(t) = argmax
θ

J (θ, τ (t−1)), s.t.
∑Q

q=1 πq = 1, (4.7)

thus updating the value of the model parameters πq and B
(m)
q1,...,qm .

In the following we provide the solutions of the two maximization problems in Equa-
tions (4.6) and (4.7).

Proposition 2 (VE-Step). Given the current model parameters (πq, B
(m)
q1,...,qm)q,m,q1,...,qm

at any iteration of the VEM algorithm, the corresponding optimal values of the variational

127

Chapter 4. Model-based clustering in hypergraphs through a SB model

parameters (τ̂iq)i,q defined in Equation (4.6) should satisfy the following fixed point equation:

log τ̂iq = log πq +
M−1∑
m=1

∑
Q(m)

∑
{i1,...,im}∈V(m)

s.t.{i,i1,...,im}∈V(m+1)

τ̂i1q1 · · · τ̂imqm

×
[
Yii1...im log(B(m+1)

qq1...qm) + (1− Yii1...im) log(1−B(m+1)
qq1...qm)

]
+ ci, (4.8)

for any 1 ≤ i ≤ n and 1 ≤ q ≤ Q and where ci are normalizing constants such that∑
q τ̂iq = 1.

Proposition 3 (M-Step). Given the current variational parameters (τiq)i,q at any iter-
ation of the VEM algorithm, the corresponding optimal values of the model parameters
(π̂q, B̂

(m)
q1...qm)q,m,q1,...,qm defined in Equation (4.7) are expressed as:

π̂q =
1

n

n∑
i=1

τiq and B̂(m)
q1...qm =

∑
V(m) τi1q1 . . . τimqmYi1...im∑

V(m) τi1q1 . . . τimqm

.

We now express the solutions of the M-Step under the submodels given by (Aff-m) and
(Aff). Note that the VE-Step is unchanged under these settings.

Proposition 4 (M-Step, affiliation setup). In the particular affiliations submodels given
by (Aff-m) and (Aff) respectively, given variational parameters (τiq)i,q, at any iteration of
the VEM algorithm, the corresponding optimal values of (α̂(m), β̂(m))m and α̂, β̂ maximizing
J as in Equation (4.7) are now expressed as:

• under Assumption (Aff-m),

α̂(m) =

∑Q
q=1

∑
V(m) τi1q . . . τimqYi1...im∑Q

q=1

∑
V(m) τi1q . . . τimq

,

β̂(m) =

∑
{q1,...,qm}∈Q(m)

|{q1,...,qm}|≥2

∑
V(m) τi1q1 . . . τimqmYi1...im∑

{q1,...,qm}∈Q(m)

|{q1,...,qm}|≥2

∑
V(m) τi1q1 . . . τimqm

;

128

4.4. A stochastic block model for hypergraphs

• under Assumption (Aff),

α̂ =

∑M
m=2

∑Q
q=1

∑
V(m) τi1q . . . τimqYi1...im∑M

m=2

∑Q
q=1

∑
V(m) τi1q . . . τimq

,

β̂ =

∑M
m=2

∑
{q1,...,qm}∈Q(m)

|{q1,...,qm}|≥2

∑
V(m) τi1q1 . . . τimqmYi1...im∑M

m=2

∑
{q1,...,qm}∈Q(m)

|{q1,...,qm}|≥2

∑
V(m) τi1q1 . . . τimqm

.

Algorithm complexity. The complexity of our algorithm is of the order O
(
nQM

(
n
M

))
,

which is rather prohibitive for large datasets when M becomes large. We recall here that
the value of M must be chosen, and is not necessarily the largest observed hyperedge size
(see paragraph “The choice of M ” above). Thus, for large datasets, we recommend limiting
the analysis to M = 3 or 4.

4.4.3.2 Fixed point

From Proposition 2, the τi’s in the VE-Step are obtained using a fixed point algorithm.
In practice at iteration h of the VEM algorithm, starting from the previous values of the
variational and the model parameters τ

(h−1)
iq and θ(h−1), respectively, we iterate over some

index u the computation given by (4.8) and obtain a sequence of values τ
(t,u)
iq . We stop

these iterations whenever we reach a maximum number of fixed point iterations (u > Umax)
or the variational parameters converged (max

iq
|τ (h,u−1)
iq − τ

(h,u)
iq | ≤ ε). Although in all the

situations we experienced, the algorithm converged in a reasonable number of iterations,
we have no guarantee about existence nor uniqueness of a solution to (4.8).

4.4.3.3 Algorithm initialization and stopping criteria

As it typically happens, the proposed VEM algorithm requires a set of starting values to
initialize the first iteration. We choose to start the algorithm with its M -step, hence provid-
ing an initial value for τ instead of θ. This way, we take advantage of smart initialization
strategies based on a preliminary clustering of the nodes. Specifically, the following differ-
ent approaches were tested and compared (see Appendix E for a more detailed explanation
of the involved methods):

1. random: this naive method simply draws each (τiq)1≤q≤Q uniformly in (0, 1) for every
node i and normalize the vector τi; a similar approach is to draw τi from a Dirichlet

129

Chapter 4. Model-based clustering in hypergraphs through a SB model

distribution with parameter vector (1, 1, . . . , 1), to obtain a uniform distribution on
the simplex.

2. spectral clustering : it is one of the most popular modern clustering algorithm. It
computes a hypergraph Laplacian matrix and constructs the column matrix X of
its leading Q orthonormal eigenvectors. The rows of X are normalized to have unit
norm, and the k-means algorithm (Forgy, 1965; MacQueen, 1967) is performed on
these normalized rows. The starting value for τ is then defined by taking τiq = 1 if
spectral clustering assigns node i to group q, and τiq = 0 otherwise.

3. “soft” spectral clustering : this approach performs spectral clustering as described at
the previous point, but a soft k-means algorithm (Suganya and Shanthi, 2012) is
applied on the normalized rows of X. Then τiq is defined as the posterior probability
for node i to belong to cluster q.

4. graph-component absolute spectral clustering : we restrict our attention to edges in
the hypergraph (m = 2) and the corresponding adjacency matrix. We then perform
the absolute spectral clustering (Rohe et al., 2011) on this adjacency matrix. This
initialization does not use the whole information from the hypergraph (hyperedges of
size m ≥ 3 are not used). Nonetheless, absolute spectral clustering is believed to be
superior to spectral clustering as it captures disassortative groups.

An other important aspect is how to check for the algorithm convergence. Here we
consider two of the most common criteria, based on the relative difference in terms of
the ELBO J of two consecutive steps and on the difference between the corresponding
parameter vectors. More precisely, let us denote by θ(h) = (θ

(h)
s)s the sequence of model

parameter vectors estimated at the t-th iteration of the M-Step. Then, according to the
two criteria, the algorithm is stopped when

|J (θ(h−1))− J (θ(h))|
|J (θ(h))|

≤ ε

and when
max

s
|θ(h−1)

s − θ(h)
s | ≤ ε,

respectively. Here ε is a suitable tolerance level.
However, experimenting with the above conditions, the algorithm sometimes stops when

the VE-Step still requires a few iterations to reach a fixed point. In these cases, carrying on
with the VEM iterations generally leads to higher values of the ELBO function, and hence

130

4.5. Simulation study

to better estimates. Therefore we impose that the fixed point in the VE-Step is reached at
its first iteration:

max
i,q
|τ (t,0)iq − τ

(t,1)
iq | ≤ ε

This prevents possible convergence to some local maxima of J .

Obviously, a proper check on convergence needs to rely on all conditions above. Finally,
when at least one of these conditions is not fulfilled, we stop the algorithm if a maximum
number of iterations has been reached: t > Tmax.

4.4.4 Model selection

Model selection on the number of latent groups Q relies on the Integrated Classification
Likelihood (ICL, Biernacki et al., 2000) criterion. Let θ̂ and (τ̂i)i denote the estimated
parameters obtained at the end of the VEM algorithm and let Ûi = argmaxq τ̂iq denote the
estimated group for node i. Then, for any number Q ≥ 1, the ICL is defined for the full
model and for (Aff-m), (Aff) submodels as

ICLfull(Q) = logPθ̂(Y , Û)− 1

2
(Q− 1) log n− 1

2

M∑
m=2

(
Q+m− 1

m

)
log

(
n

m

)
(4.9)

ICLaff-m(Q) = logPθ̂(Y , Û)− 1

2
(Q− 1) log n− 2(M − 1) log

(
n

m

)
(4.10)

ICLaff(Q) = logPθ̂(Y , Û)− 1

2
(Q− 1) log n− log

(
n

m

)
, (4.11)

respectively. In each expression the first penalization term accounts for the prior probabil-
ities (πq)q and for the n latent variables U1, . . . , Un; the second penalization term, instead,
refers to (B

(m)
q1,...,qm)m,q1,...,qm and to the

(
n
m

)
different indicator variables Yi1,...,im . The num-

ber of latent groups is then selected with Q̂ = argmaxQ ICL(Q). Note that Ghoshdastidar
and Dukkipati (2017) propose to select the number of groups by looking for the spectral
gap.

4.5 Simulation study

In this Section we conduct a simulation study to assess the performance of the proposed
VEM algorithm for the HSB model. In the following, we illustrate the simulation scheme
and summarize the main results.

131

Chapter 4. Model-based clustering in hypergraphs through a SB model

4.5.1 Clustering performances

Hypergraphs are simulated from the HSB model, considering Q = 2 latent groups with prior
probabilities equal to 0.6 and 0.4, respectively. The largest size M of hyperedges is set to
3, and 4 different values are examined for the number of nodes: n = 50, 100, 150, and 200.
A simplified latent structure, according to the (Aff) submodel is assumed, and various
scenarios, corresponding to different possible real-world situations, are analyzed:

A. Communities: in this scenario, we focus on community detection and consider the
case of high intra-groups and low inter-groups connection probabilities. We thus set
α = 0.7 > β = 0.3;

B. Disassortative: in this scenario, we focus on disassortative behavior and consider the
case of low intra-groups and high inter-groups connection probabilities. We thus set
α = 0.3 < β = 0.7;

C. Erdös-Rényi-like: in this scenario, we focus on the difficult case of very similar intra-
groups and inter-groups connection probabilities. We thus set α = 0.25 very close to
β = 0.35.

For each scenario and each value n of the number of nodes, 10 different datasets are sim-
ulated. We consider estimation under the full HSB model formulation with our VEM
algorithm and rely on soft spectral clustering initialization only. The performance of the
proposed VEM algorithm is assessed in terms of both recovery of the correct clustering and
estimation of the original parameters.

For the correct classification, the Adjusted Rand Index (ARI, Hubert and Arabie, 1985)
is considered, measuring the similarity between the correct node clustering and the esti-
mated one. This index is always smaller than or equal to 1 (two identical clusterings have
an ARI exactly equal to 1), and it can assume negative values when the agreement between
the two clusterings is less than what is expected from a random result. Table 4.3 reports,

n Scenario A Scenario B Scenario C

50 1.00 1.00 0.50
100 1.00 1.00 0.90
150 1.00 1.00 1.00
200 1.00 1.00 1.00

Table 4.3: Adjusted Rand Index for different scenarios and number of nodes. Each value
is obtained as the average over 10 simulated datasets

132

4.5. Simulation study

for each setting, the average value of the ARI over the 10 simulated datasets. Considering
scenarios A and B, the results are highly satisfactory, all values being equal to 1. The VEM
algorithm perfectly recovers the correct clusters in all cases, hence showing an optimal per-
formance in detecting communities as well as disassortative behaviors. Scenario C proves
to be a more complex setting for clustering, especially when combined with a small number
of nodes. Considering this setting, the proposed approach sometimes fails to recover the
optimal clustering. This behavior is particularly evident in the case with n = 50 nodes,
where the average ARI is rather low (0.5): the correct clusters are obtained for only half the
hypergraphs. In that scenario, the performance improves with the increase of the number
of nodes.

We also inspect the estimation of model parameters by computing the Mean Squared
Error (MSE) between the true parameters and the estimated ones, for both the prior prob-
abilities πq, and the probabilities of hyperedge occurrence B

(m)
q1,...,qm . More specifically, we

computed an aggregated MSE over all the components of θ, defined as

MSE =
1

10

10∑
i=1

{
(π̂i

1 − π1)
2 +

M∑
m=2

∑
q1,...,qm

(B̂(m),i
q1,...,qm −B(m)

q1,...,qm)
2
}
.

where θ̂i = (π̂i
1, {B̂

(m),i
q1,...,qm}m,q1,...,qm) is the parameter estimated on the i-th dataset by the

full model.

0

1 × 10-3

2 × 10-3

50 100 150 200

(a) Scenario A

0

1 × 10-3

2 × 10-3

3 × 10-3

4 × 10-3

50 100 150 200

(b) Scenario B

0

2 × 10-2

4 × 10-2

50 100 150 200

(c) Scenario C

Figure 4.3: Mean Squared Error between true and estimated model parameters for different
scenarios and number of nodes

The corresponding results are summarized through the boxplots in Figure 4.3. All values
are rather small, showing that the model parameters are generally estimated with a high
degree of accuracy. In particular, scenarios A and B provide the best results, with values
of the MSE that are always lower than 0.5%. On the other hand, scenario C confirms to
be the most difficult from the estimation perspective, showing the highest MSE for each

133

Chapter 4. Model-based clustering in hypergraphs through a SB model

value of n (up to 8%). This analysis also allows us to better outline the behavior of the
VEM algorithm for different values of n; in particular, in each scenario, the parameters
estimation becomes more accurate as the number of nodes increases. Estimates obtained
assuming the submodel (Aff) formulation do not present any significant difference.

4.5.2 Performance of model selection

In this Section we assess the performance of ICL as a model selection criterion. To this aim
we simulate 50 hypergraphs from the HSB model with Q = 3 latent states and assuming
the simplified (Aff) formulation for the latent structure. Two different values are tested
for the number of nodes, n = 100 and n = 200, while the largest size M of hyperedges is
set equal to 3 in both cases. The simulated data is then fitted with the HSB model with a
number of latent states ranging from 1 to 5.

n = 100 n = 200

Q Percentage ARI for 3 groups Percentage ARI for 3 groups

2 0% - 2% 0.55
3 68% 1.00 90% 1.00
4 22% 0.57 6% 0.60
5 10% 0.58 2% 0.61

Table 4.4: Frequency of the selected number of groups and average Adjusted Rand Index
of the classification obtained with Q = 3 depending on the selected number of groups. Model
selection is carried out by means of the ICL criterion. Results are computed over 50 sample
for each value of n

In Table 4.4 we show the frequency of the selected number of groups. Results are highly
satisfactory: the correct model is selected in 68% of cases for n = 100 and in 90% of cases
for n = 200. We also compute the value of ARI of the classification obtained with 3 clusters
depending on the selected number of latent groups. This value is always equal to 1 when
the correct model is recovered, thus confirming the optimal behavior of our HSB model
stated in Section 4.5.1. On the contrary, in cases where an incorrect number of groups is
selected, values of ARI are quite low (around or smaller than 0.60). This behavior clarifies
that the estimation through the VEM algorithm is responsible for the bad recovery more
than the selection criterion. It is again confirmed that better results are obtained for higher
values of n.

134

4.6. Analysis of a co-authorship dataset

4.6 Analysis of a co-authorship dataset

We analyze a co-authorship dataset available at the following link: http://vlado.fmf.

uni-lj.si/pub/networks/data/2mode/Sandi/Sandi.htm. The dataset is extracted from
the bibliography of a book (“Product Graphs: Structure and recognition” by Imrich and
Klavzăr) and is given as a bipartite author/paper graph.

4.6.1 Dataset description

Following (Estrada and Rodríguez-Velázquez, 2006), we construct the hypergraph in which
nodes are authors and hyperedges link the authors of a same paper. The original dataset
has 274 papers and 314 authors, with 1 paper having 6 authors and 1 paper having 5
authors. We decide to consider M = 4, discarding these 2 papers with 5 or more authors.
Thereafter, we look at the largest connected component of the resulting graph; it results in
79 authors (nodes) and 76 papers (hyperedges, 68.5% of which have size 2, while 29% have
size 3 and 2.5% have size 4).

4.6.2 Analysis with the HyperSBM package

We perform an analysis of this dataset with our HyperSBM package, estimating the HSB
model with Q ranging from 2 to 5, and with two different (random and soft spectral clus-
tering) initializations. The results are robust to different tries. As shown in Figure 4.4, the
ICL criterion selects Q = 2 latent groups.

-1100

-900

-700

2 3 4 5
Q

IC
L

Figure 4.4: Integrated Classification Likelihood index resulting from fitting the HSB model
to the co-authorship dataset with number of latent groups ranging from 2 to 5

We obtain a small group with only 8 authors (the remaining 71 authors being in the
second group). Table 4.5 presents the distribution of the number of distinct co-authors per

135

http://vlado.fmf.uni-lj.si/pub/networks/data/2mode/Sandi/Sandi.htm
http://vlado.fmf.uni-lj.si/pub/networks/data/2mode/Sandi/Sandi.htm

Chapter 4. Model-based clustering in hypergraphs through a SB model

author. Among the 8 authors of the first group, 6 of them have the highest number of
distinct co-authors (and the remaining 2 have 4 distinct co-authors each).

Number of distinct co-authors 1 2 3 4 5 6 7 8 10 11 12
Count 23 27 13 6 2 2 1 1 2 1 1

Table 4.5: Distribution of the number of distinct co-authors per author. The first group
contains the 6 authors having the largest number of distinct co-authors (between 7 and 12)
plus 2 authors with 4 co-authors each

We also look at the degree distribution of the authors, given in Table 4.6. This corre-
sponds to the distribution of the number of co-authored published papers per author. We
observe that 5 of the 8 authors from our first group are the ones that co-published the most,
the three others having also high degree (one of degree 5 and two of degree 4). Thus, our
first group is made of authors (among) the most collaborative ones, which are also (among)
the most prolific ones.

Author degree 1 2 3 4 5 6 7 8 10 13
Count 44 14 6 6 4 1 1 1 1 1

Table 4.6: Degree distribution of authors in the bipartite graph. Our first group contains
the 5 most collaborating authors, one of the sixth, plus 2 authors with degree equal to 4

Inspecting more closely the variational parameters τiq for all the nodes, we find that a
total of 4 nodes could be considered as ambiguously classified, while all other nodes had
posterior probabilities to belong to one of the two groups larger than 0.8. More precisely,
in the first small group, 2 nodes have posterior probabilities to belong to that group equal
to 0.54 and 0.63, respectively; while in the second large group, 2 nodes have posterior
probabilities to belong to that group equal to 0.56 and 0.72, respectively. We notice that
the 2 authors in the first group that have the smallest number of co-authors (namely 4) and
the smallest number of degrees (also 4) are the ones that are ambiguously clustered in this
group. While the 2 other authors ambiguously clustered in the second large group have a
number of co-authors of 6 and 4, respectively, and both a degree of 4. This reinforces the
conclusion that on this dataset, HyperSBM has grouped apart the authors which are both
the most collaborative and the most prolific ones.

Neither the first nor the second group inferred by the HyperSBM are communities. In-
deed, we obtain the following estimated values from the size-2 hyperedges (expressed as
percentages): B̂(2)

11 ≃ 4.2% is of the same order as B̂(2)
12 ≃ 5.1% while B̂

(2)
22 ≃ 0.8% is around

five times smaller. This means that the first group contains authors that have published

136

4.6. Analysis of a co-authorship dataset

with authors from the two groups, while the second group is made of authors who have less
co-authored papers with people of their own group.

Looking now at size-3 hyperedges, we get that B̂
(3)
111 ≃ 2 · 10−4, B̂

(3)
112 ≃ 18 · 10−4,

B̂
(3)
122 ≃ 7 · 10−4, and B̂

(3)
222 ≃ 0.6 · 10−4. The most important estimated frequency is B̂

(3)
112

that concerns 2 authors of the small first group co-authoring a paper with one author of
the large second group. The second most important estimated frequency is B̂

(3)
122 and is

obtained for one author from small first group co-authoring a paper with two authors of
the large second group. The remaining frequencies of size-3 hyperedges are negligible. This
characterizes further the first groups as being composed by authors that do co-author with
their own group as well as with authors from the second one.

Finally, looking now at size-4 hyperedges, the only non negligible estimated frequency
is obtained for B̂

(4)
1222 ≃ 4 · 10−6. We note here that the quantities B(3)’s and B(4)’s are

intrinsically on different scales, as are the quantities B(2)’s and B(3)’s. So again, authors
from group one co-authored with the others authors. (Note that the first group is not large
enough for a B(4) frequency with at least 2 authors in that group 1 to be non negligible).

4.6.3 Comparison with Hypergraph Spectral Clustering

We first compare our approach with the spectral clustering algorithm proposed in Ghosh-
dastidar and Dukkipati (2017). Let us recall that spectral clustering does not come with
a statistical criterion to select the number of groups; we look at the spectral gap, that
indicate the presence of 15 groups, but the result is not clear.

Looking at the partition obtained imposing Q = 2, spectral clustering outputs two
groups with sizes 24 and 55, respectively. The smaller group contains the only author with
12 co-authors and the remaining authors have a number of co-authors ranging from 1 to
4. The larger group has a distribution of the number of co-authors ranging from 1 to 11.
Moreover, the smaller group contains authors with small degree in the bipartite graph, i.e
having few co-published papers (all but one author have degrees less 4 and a last author
has degree 7), while the second large group contains the 3 authors with largest degree, the
rest of the authors having degrees ranging from 1 to 6. Thus, these groups are neither
characterized by the number of co-authors nor by their degrees in the bipartite graph.

Indeed, in our case the best clusters are not communities and their sizes are very dif-
ferent, while we recall that spectral clustering tends to: (i) extract communities; (ii) favor
groups of similar size.

137

Chapter 4. Model-based clustering in hypergraphs through a SB model

4.6.4 Comparison with a bipartite SB model

Finally, we also analyze the same dataset as a bipartite graph of authors/papers with the
R package SBM through the function estimateBipartiteSBM (Chiquet et al., 2022). This
method infers a latent block model (that in fact corresponds to a SB model for bipartite
graphs) and automatically selects a number of groups on both parts (authors and papers).
Let us underline here that while the bipartite stochastic block model can be written as a
particular case of a HSB model, the converse is not true (See Appendix G).

The bipartite SB model also selects two groups of authors (and one group of papers).
There is a small group with 4 authors, entirely contained in our first small group obtained
with the HyperSBM package; it corresponds to authors that have the highest degree in the
bipartite graph and the highest number of co-authors. So, the bipartite implementation
outputs a very small group of the most prolific and the most collaborative authors in this
dataset.

Here, two nodes may be considered as ambiguously classified: one node from the first
small group has posterior probability to belong to that group equal to 0.73, while one node
from the second large group has posterior belonging probability equal to 0.67. These two
nodes are not ambiguously classified by the HyperSBM package and both appears in our first
small group.

It is interesting to compare the situation of three particular authors here. Author
with index 48 has 7 co-authors (sixth highest value) and 6 co-authored papers (fifth highest
value). It is outside the small group with the bipartite approach model (posterior probability
1−0.67 = 0.33 to belong to that group); on the contrary HyperSBM clusters it unambiguously
in the first small group. Similarly, author with index 27 has 12 coauthors (highest value)
and only 7 co-authored papers (fourth highest value). This node was ambiguously classified
by the bipartite method in the first small group (posterior probability 0.73 only); while
HyperSBM clusters it unambiguously in the first small group. Now, conversely, author with
index 35 has 8 co-authors (the 6th highest) and 5 co-authored papers (also the 5th highest).
This author is unambiguously clustered from the two methods; but while HyperSBM puts it in
the first small graph, the bipartite approach excludes it from that group. The examination
of these 3 particular tangent cases seems to show that on this dataset, the bipartite-based
method was more sensible to authors’s degrees in the bipartite graph while HyperSBM paid
more attention to the sizes of the hyperedges (i.e. number of co-authors) an author was
involved in.

Finally, we also compute the parameters values B
(m)
q1,...,qm obtained with the groups es-

timated by the bipartite SB model. Considering m = 2, we obtain B̂
(2)
11 ≃ 16, 6% (to

138

4.7. Conclusions

be compared with 4.2% in HyperSBM), while B̂
(2)
12 ≃ 7% and B̂

(2)
22 ≃ 1% (more similar to

the results of HyperSBM, which are 5.1% and 0.8%, respectively). In this case, the first
group of authors behaves differently with respect to intra-group connections compared to
outer-group connections.

As a conclusion, we see that while the outputs of BSB and HSB models may seem close
on this specific dataset, they are nonetheless different. On the other hand, and still on
this specific dataset, the spectral clustering approach outputs results that are completely
different from those of HyperSBM.

4.7 Conclusions

Despite the broad variety of models developed for networks, modern applications in many
fields highlight the need to account for high-order interactions, in order to include the
information deriving from groups of more than two nodes. In this chapter, the notions of
hypergraphs and hyperedges are reviewed, generalizing the concepts of graphs and edges,
respectively, and providing the most accurate formalization for high-order interactions. In
particular, it is emphasized the difference between “simple” hypergraphs, where hyperedges
are subsets of distinct nodes taking part in an interaction, and “multisets” hypergraphs,
where repeated nodes are allowed in the same hyperedge. A proper choice has to rely on
the specificity of each dataset.

In the present chapter, focusing on simple hypergraphs where literature is quite scarce
and computational challenges increase, a stochastic block model is proposed to perform
model-based clustering, capturing the information deriving from higher-order interactions.
A discrete latent variable with k support points is associated with each node, identifying
the latent states in the population. The model parameters are the weight of each latent
state, and the occurrence probability of an hyperedge given the belonging latent states of
its nodes. The formulation of the model is sufficiently flexible to account for possible sim-
plified latent structures. Maximum likelihood estimation of model parameters is performed
through a variational expectation-maximization algorithm by maximizing a lower bound
of the log-likelihood function. Model selection is explored using the Integrated Classifi-
cation Likelihood criterion. The algorithm is implemented in C++ end employing parallel
computation for efficiency.

The model is applied to both synthetic and real data, and the performance of the
proposal is assessed in terms of parameter estimation and ability to recover the clusters
(through the Adjusted Rand Index). The proposed algorithm shows an appealing ability to
recover the correct clusters in many different scenarios, ensuring an optimal performance in

139

Chapter 4. Model-based clustering in hypergraphs through a SB model

detecting communities as well as disassortative behaviors. In each scenario the estimation
becomes more accurate as the number of the nodes increases.

Future work may consider the issue of extending and generalizing the proposed model to
a broader range of cases and situations. For example, our model could allow for self-loops
without any important changes. Following a different research direction, the conditional
Bernoulli distribution of the hyperedges could be replaced by any parametric distribution
to handle weighted hypergraphs (with or without self-loops); an obvious example is a (zero-
inflated or deflated) Poisson law. The case of multisets-hypergraphs could also be handled
and would result in a fastest algorithm (though requiring a distinct implementation, which
is not provided in our R package). Finally, likewise other discrete latent variable models, the
proposed hypergraph stochastic block model is possibly beset by the problem of convergence
to local maxima, and would benefit from the implementation of a tempered or evolutionary
version of the estimation algorithm, as introduced in the previous chapters.

140

Appendices

Appendices

A Proofs of theoretical results

Proof of Lemma 1.
Notation: for each pair of real numbers a, b ∈ R, we denote by Ja, bK the set of integer values
between a and b. Note that if a, b ∈ N, then the cardinality of Ja, bK is equal to b− a+ 1.

We consider a fixed value of m ≥ 2 and Q ≥ 1; let us recall that B(m) is a fully
symmetric tensor (4.1), so the number of free parameters in B(m) is equal to the number
of ordered sequences q1 ≤ · · · ≤ qm of elements in J1, QK. We denote by Q+ this set:

Q+ = {q = (q1, . . . , qm) : q1 ≤ . . . ≤ qm, qi ∈ J1, QK}.

Moreover we denote by L+ the set

L+ = {l = (l1, . . . , lm) : q1 < . . . < qm, qi ∈ J1, Q+m− 1K}.

Then we define a function f which, to any such sequence q ∈ Q+, associates f(q) =

(q1, q2 + 1, q3 + 2, . . . , qm + m − 1). Conversely, we define a function g such that, to any
sequence l ∈ L+ associates g(l) = (l1, l2 − 1, l3 − 2, . . . , lm −m + 1). It is easy to see that
(q1, q2 +1, q3 +2, . . . , qm +m− 1) ∈ L+ and (l1, l2− 1, l3− 2, . . . , lm−m+1) ∈ Q+. Thus,
for any q ∈ Q+ we get that f(q) ∈ L+ and for any l ∈ L+ we get that g(l) ∈ Q+.

As a consequence, the functions f and g are such that their composition is the identity
function: f ◦ g = g ◦ f = Id. These are one-to-one functions mapping Q+ to L+ and
conversely. This implies that the cardinalities of these two sets are equal. But an element
in L+ is exactly a subset of size m of J1, Q +m − 1K so that the cardinality of L+ is the
number of subsets of size m of J1, Q+m− 1K. This concludes the proof of the lemma.

Proof of Proposition 2.
We want to maximize J (θ, τ) with respect to τiq under the constraint

∑Q
q=1 τiq = 1 for all

i. Using the method of Lagrange multipliers, this is equivalent to maximizing with respect

141

Chapter 4. Model-based clustering in hypergraphs through a SB model

to τiq the Lagrangian function

Λ(θ, τ, λ) =
n∑

i=1

λi

(
Q∑

q=1

τiq − 1

)
+ J (θ, τ)

=
n∑

i=1

λi

(
Q∑

q=1

τiq − 1

)
+

Q∑
q=1

n∑
i=1

τiq log
πq
τiq

+
n∑

i=1

Q∑
q=1

M−1∑
m=1

∑
Q(m)

∑
V(m) ̸∋i

τiqτi1q1 · · · τimqm

[
Yii1...im log(B(m)

qq1...qm)

+(1− Yii1...im) log(1−B(m)
qq1...qm)

]
.

Computing the partial derivative of Λ(θ, τ ,λ) with respect to τiq, we obtain the following
expression

∂Λ

∂τiq
= λi + log

πq
τiq
− 1

+
M−1∑
m=1

∑
Q(m)

∑
V(m) ̸∋i

τi1q1 · · · τimqm

[
Yii1...im log(B(m)

qq1...qm) + (1− Yii1...im) log(1−B(m)
qq1...qm)

]
= λi + log πq − log τiq − 1

+ log
M−1∏
m=1

∏
Q(m)

∏
V(m) ̸∋i

[
(B(m)

qq1...qm)
Yii1...im · (1−B(m)

qq1...qm)
1−Yii1...im

]τi1q1 ···τimqm
,

which is equal to 0 if

τiq = eλi−1 πq

M−1∏
m=1

∏
Q(m)

∏
V(m) ̸∋i

[
(B(m)

qq1...qm)
Yii1...im · (1−B(m)

qq1...qm)
1−Yii1...im

]τi1q1 ···τimqm
.

The term eλi−1 = 1∑Q
q=1 τiq

is the normalizing constant such that
∑Q

q=1 τiq = 1 for each i.

Finally, let us remark that the Lagrangian function Λ is concave with respect to each τiq,
being the sum of a concave term (τiq log(πq/τiq)) and linear terms. Then the critical point
is a maximum.

Proof of Proposition 3.
For the prior probabilities πq, we want to maximize J (θ, τ) with respect to πq subject to the

142

Appendices

constraint
∑Q

q=1 πq = 1. Using again Lagrange multipliers, this is equivalent to maximizing

Λ(θ, τ, λ) = λ

(
Q∑

q=1

πq − 1

)
+ J (θ, τ)

Noting that the second term of J (θ, τ) does not depend on πq, the computation of the
partial derivative of Λ(θ, τ, λ) reduces to

∂

∂πq

[
λ

(Q∑
q=1

πq − 1

)
+

Q∑
q=1

n∑
i=1

τiq log
πq
τiq

]
= λ+

n∑
i=1

τiq
πq

.

This quantity is equal to 0 if

πq = −
1

λ

n∑
i=1

τiq,

where λ = −n is the normalizing constant in order to satisfy
∑Q

q=1 πq = 1.
Note the Lagrangian function Λ is concave with respect to each πq, being the sum of a
concave term (log(πq/τiq)), of a linear term (λ

∑Q
q=1 πq) and of a constant. The critical

point is then a maximum.
Finally, the partial derivative w.r.t. B

(m)
q1,...,qm is

∂J
∂B

(m)
q1,...,qm

=
∑
V(m)

τi1q1 · · · τimqm

[
Yi1...im

1

B
(m)
q1...qm

− (1− Yi1...im)
1

1−B
(m)
q1...qm

]
.

Through some basic algebraic manipulations, this quantity results equal to 0 if

B(m)
q1,...,qm =

∑
V(m) τi1q1 · · · τimqmYi1...im∑

V(m) τi1q1 · · · τimqm

.

Again, the Lagrangian function is the sum of a concave term (log(B(m)
q1,...,qm)) and of some

constant terms, thus being a concave function. The critical point is then a maximum.

Proof of Proposition 4.
Let us define the following two subsets of Q(m):

Q(m,1) =
{
{q1, . . . , qm} ∈ Q(m) : q1 = · · · = qm

}
⊂ Q(m),

Q(m,2) =
{
{q1, . . . , qm} ∈ Q(m) : |{q1, . . . , qm}| ≥ 2

}
⊂ Q(m).

It is straightforward to prove that Q(m,1) ⊔ Q(m,1) = Q(m) (here ⊔ denotes the disjoint

143

Chapter 4. Model-based clustering in hypergraphs through a SB model

union). Moreover, note that the summation
∑

Q(m,2) is equivalent to
∑Q

q=1. Then the
following decomposition of J (θ, τ) naturally holds:

J (θ, τ) =
Q∑

q=1

n∑
i=1

τiq log
πq
τiq

+

M∑
m=2

Q∑
q=1

∑
V(m)

τi1q · · · τimq

[
Yi1,...,im logα(m) + (1− Yi1,...,im) log(1− α(m))

]

+

M∑
m=2

∑
Q(m,2)

∑
V(m)

τi1q1 · · · τimqm

[
Yi1,...,im log β(m) + (1− Yi1,...,im) log(1− β(m))

]

The partial derivative w.r.t. α(m) is

∂J
∂α(m)

=

Q∑
q=1

∑
V(m)

τi1q · · · τimq

[
Yi1...im

1

α(m)
− (1− Yi1...im)

1

1− α(m)

]
,

hence it follows that:

α̂(m) =

∑Q
q=1

∑
V(m) τi1q . . . τimqYi1...im∑Q

q=1

∑
V(m) τi1q . . . τimq

.

Analogously, the partial derivative w.r.t. β(m) is

∂J
∂β(m)

=
∑

Q(m,2)

∑
V(m)

τi1q1 · · · τimqm

[
Yi1...im

1

β(m)
− (1− Yi1...im)

1

1− β(m)

]
,

and

β̂(m) =

∑
{q1,...,qm}∈Q(m,2)

∑
V(m) τi1q1 . . . τimqmYi1...im∑

{q1,...,qm}∈Q(m,2)

∑
V(m) τi1q1 . . . τimqm

.

This concludes the proof for the formulas under assumption (Aff-m). In the same way the
expressions for α and β under assumption (Aff) are computed.

144

Appendices

B Complete proof of the identifiability

For the sake of completeness, we provide here the complete proofs of Theorem 1 and Corol-
lary 2. These mostly reproduce the proof of Theorem 2 in Allman et al. (2011).

B.1 Proof of Theorem 1

The strategy relying on Kruskal’s result. The proof strongly relies on an algebraic
result from Kruskal (1977) that appeared to be a powerful tool to establish identifiability
results in various models whose common feature is the presence of discrete latent groups and
at least three conditionally independent random variables. We first rephrase Kruskal’s result
in a statistical context. Consider a latent random variable V with state space {1, . . . , r}
and distribution given by the column vector v = (v1, . . . , vr). Assume that there are three
observable random variables Uj for j = 1, 2, 3, each with finite state space {1, . . . , κj}. The
Ujs are moreover assumed to be independent conditional on V . Let Mj , j = 1, 2, 3 be the
stochastic matrix of size r × κj whose ith row is mj

i = P(Uj = · | V = i). Then consider
the 3-dimensional array (or tensor) with dimensions κ1 × κ2 × κ3 denoted [v;M1,M2,M3]

and whose (s, t, u) entry (for any 1 ≤ s ≤ κ1, 1 ≤ t ≤ κ2, 1 ≤ u ≤ κ3) is defined by

[v;M1,M2,M3]s,t,u =

r∑
i=1

vim
1
i (s)m

2
i (t)m

3
i (u)

=

r∑
i=1

P(V = i)P(U1 = s|V = i)P(U2 = t|V = i)P(U3 = u|V = i)

= P(U1 = s, U2 = t, U3 = u).

Note that [v;M1,M2,M3] is left unchanged by simultaneously permuting the rows of all
the Mj and the entries of v, as this corresponds to permuting the labels of the latent
classes. Knowledge of the distribution of (U1, U2, U3) is equivalent to knowledge of the
tensor [v;M1,M2,M3].
The Kruskal rank of a matrix M , denoted rankK M , is the largest number I such that
every set of I rows of M are independent. Note that for any matrix M , its Kruskal rank is
necessarily less than its rank, namely rankK M ≤ rankM , and equality of rank and Kruskal
rank does not hold in general. However, in the particular case when a matrix M of size
p × q has rank p, it also has Kruskal rank p. Now, let Ij = rankK Mj . Kruskal (1977)
established the following result. If

I1 + I2 + I3 ≥ 2r + 2, (4.12)

145

Chapter 4. Model-based clustering in hypergraphs through a SB model

then the tensor [v;M1,M2,M3] uniquely determines v and the Mj , up to simultaneous
permutation of the rows. In other words, the set of parameters {(v,P(Uj = · | V))} is
uniquely identified, up to label switching on the latent groups, from the distribution of the
random variables (U1, U2, U3).

To obtain generic identifiability, it is sufficient to exhibit a single parameter value for
which (4.12) is satisfied. Indeed, the set of parameter values for which rankK Mj is fixed
can be expressed through a Boolean combination of polynomial inequalities (̸=, or rather
non-equalities) involving matrix minors in those parameters. In the same way, the converse
condition of (4.12), namely inequality I1+I2+I3 ≤ 2r+1 is the finite Boolean combination of
polynomial non-equalities on the model parameters. This means that this set of parameters
is an algebraic variety. But an algebraic variety can only be either the whole parameter
space (in which case exhibiting a single value where (4.12) is satisfied would not be possible)
or a proper subvariety, thus a subspace of dimension strictly lower than that of the whole
parameter space.

The strategy of the proof for showing identifiability of certain discrete latent class models
developed in Allman et al. (2011) and other papers by the same authors is to embed these
models in the context of Kruskal’s result just described. Applying Kruskal’s result to the
embedded model, the authors derive partial identifiability results on the embedded model,
and then, using details of the embedding, relate these to the original model.

Embedding the HSBM into Kruskal’s setup. For some number of nodes n (to be
specified later), we let V = (Z1, Z2, . . . , Zn) be the latent random variable, with state
space {1, . . . , Q}n and denote by v the corresponding vector of its probability distribu-
tion. The entries of v are of the form πn1

1 · · ·π
nQ

Q for some integers nq ≥ 0 and such that∑
q nq = n. We fix m ≥ 2 and consider simple m-uniform hypergraphs on the set of nodes

V = {1, . . . , n}. Recall that V(m) is the set of all distinct m-tuples of nodes in V and
{Yi1,...,im ; {i1, . . . , im} ∈ V(m)} the set of all indicator variables corresponding to possible
(simple) hyperedges of a m-uniform hypergraph over V. We will construct below subsets
H1, H2, H3 ⊂ V(m) of distinct m-tuples of nodes such that Hi∩Hj = ∅ for any i ̸= j. Then,
we choose the 3 observed variables Uj (1 ≤ j ≤ 3) as the vectors of indicator variables
Uj = (Yi1,...,im){i1,...,im}∈Hj

. This induces that κj = 2|Hj | (where |Hj | is the cardinality of
Hj). As the subsets H1, H2, H3 do not share any m-tuple of nodes, the random variables
Uj are conditionally independent given V . We are in the statistical context of Kruskal’s
result.

The goal is now to construct the 3 subsets Hj of m-tuples such that their pairwise
intersections are empty and such that condition (4.12) is satisfied (for at least one param-

146

Appendices

eter value of the embedded model and thus generically for this embedded model). This
construction of the Hj ’s proceeds in two steps: the base case and an extension step.

Starting with a small set V0 = {1, . . . , n0} of nodes, we define a matrix A of dimension
Qn0 × 2(

n0
m). Its rows are indexed by latent configurations v ∈ {1, . . . , Q}n0 of the nodes

in V0, its columns by the set of all possible states of the vector of indicator variables
(Yi1,...,im){i1,...,im}∈V0

, and the entries of A give the probability of observing the specified
states of the vector of indicator variables, conditioned on the latent configurations v. Thus
each column index corresponds to a different simple m-uniform hypergraph on V0. The
base case consists in exhibiting a value of n0 such that this matrix A generically has full
row rank. Then, in an extension step, relying on n = n2

0 nodes, we construct the subsets
H1, H2, H3 with the desired properties (namely their pairwise intersections are empty and
(4.12) is generically satisfied).

From Kruskal’s theorem, we obtain that the vector v and the matrices M1,M2,M3

are generically uniquely determined, up to simultaneous permutation of the rows from the
distribution of a simple m-uniform HSBM.

With these embedded parameters v,M1,M2,M3 in hand, it is still necessary to recover
the initial parameters of the simple m-uniform HSBM: the group proportions πq and the
connectivity matrix B(m) = (B

(m)
q1,...,qm)1≤q1≤···≤qm≤Q. This will be done in the conclusion.

Base case. In the following, we drop the exponent (m) in the notation for the connection
probabilities B and simply let Bq1,...,qm = P(Yi1,...,im = 1 | Zi1 = q1, . . . , Zim = qm) =

1− B̄q1,...,qm . The initial step consists in finding a value of n0 such that the matrix A of size
Qn0 × 2(

n0
m) containing the probabilities of any simple m-uniform hypergraph over these n0

nodes, conditional on the hidden node states, generically has full row rank.
The condition of having full row rank can be expressed as the non-vanishing of at least

one Qn0 × Qn0 minor of A. Composing the map sending the parameters {Bq1,...,qm} → A

with this collection of minors gives polynomials in the parameters of the model. To see that
these polynomials are not identically zero, and thus are non-zero for generic parameters, it
is enough to exhibit a single choice of the {Bq1,...,qm} for which the corresponding matrix
A has full row rank. We choose to consider parameters {Bq1,...,qm} of the form

Bq1,...,qm =
sq1sq2 . . . sqm

sq1sq2 . . . sqm + tq1tq2 . . . tqm
, so B̄q1,...,qm =

tq1tq2 . . . tqm
sq1sq2 . . . sqm + tq1tq2 . . . tqm

,

with sq, tl > 0 to be chosen later. However, since the property of having full row rank is
unchanged under non-zero rescaling of the rows of the matrix A, and all entries of A are
monomials with total degree

(
n0

m

)
in Bq1,...,qm , B̄q1,...,qm}, we may simplify the entries of A

147

Chapter 4. Model-based clustering in hypergraphs through a SB model

by removing denominators, and consider the matrix (also called A) with entries in terms of
Bq1,...,qm = sq1sq2 . . . sqm and B̄q1,...,qm = tq1tq2 . . . tqm .

The rows of A are indexed by the composite node states v ∈ {1, . . . , Q}n0 , while its
columns are indexed by the m-uniform hypergraphs H = (yi1,...,im){i1,...,im}∈V0

∈ {0, 1}(
n0
m).

For any composite hidden state v ∈ {1, . . . , Q}n0 and any node i ∈ {1, . . . , n0}, let v(i) ∈
{1, . . . , Q} denote the state of node i in the composite state v. With our particular choice
of the parameters Bq1,...,qm , the (v,H)-entry of A is given by

∏
{i1...im}∈V(m)

0

B
yi1,...,im
v(i1),...,v(im)B̄

1−yi1,...,im
v(i1),...,v(im) =

n0∏
i=1

sdiv(i)t
n0−1−di
v(i) ,

where
di =

∑
{i1...im}∈V(m)

0
i∈{i1...im}

yi1,...,im

is the degree of node i in the hypergraph H = (yi1,...,im){i1,...,im}∈V0
. With this choice of

parameters {Bq1,...,qm}, the entries in a column of A are entirely determined by the degree
sequence d = (di)1≤i≤n0 of the hypergraph under consideration. Two different hypergraphs
may result in the same degree sequence, thus the same values in the two columns of A.
For any degree sequence d = (di)1≤i≤n0 arising from a simple m-uniform hypergraph on n0

nodes, let Ad denote a corresponding column of A. In order to prove that the matrix A

has full row rank, it is enough to exhibit Qn0 independent columns of A. To this aim, we
introduce polynomial functions whose independence is equivalent to that of corresponding
columns.

For each node i ∈ {1, . . . , n0} and each latent group q ∈ {1, . . . , Q}, introduce an
indeterminate Xi,q and a Qn0-size row vector X = (

∏
1≤i≤n0

Xi,v(i))v∈{1,...,Q}n0 . For each
degree sequence d, we have

XAd =
∑

v∈{1,...,Q}n0

∏
1≤i≤n0

sdiv(i)t
n0−1−di
v(i) Xi,v(i)

=
∏

1≤i≤n0

(
sdi1 tn0−1−di

1 Xi,1 + · · ·+ sdiQ tn0−1−di
Q Xi,Q

)
.

Now, independence of a set of columns {Ad} is equivalent to the independence of the
corresponding set of polynomial functions {XAd} in the indeterminates {Xi,q}. For a
set D of degree sequences, to prove that the polynomials {XAd}d∈D are independent, we

148

Appendices

assume that there exist scalars ad such that∑
d∈D

adXAd ≡ 0, (4.13)

and show that necessarily all ad = 0. This will be given by the following lemma from
Allman et al. (2011). This lemma is originally formulated for a set D of degree sequences.
However it is not specific to degree sequences; it applies for any sets D of sequences of
integers indexed by {1, . . . , n0} and thus we phrase it in this way. We refer to Allman et al.
(2011) for its proof.

Lemma 2. (Lemma 18 in Allman et al. (2011).) Assume n0 ≥ Q. Let D be a set of
n0-length integer sequences such that for each i ∈ {1, . . . , n0}, the set of i-th coordinates
{di | d ∈ D} has cardinality at most Q. Then for generic values of sq, tl, for each i and
each d⋆ ∈ {di | d ∈ D} there exist values of the indeterminates {Xi,q}1≤q≤Q that annihilate
all the polynomials XAd for d ∈ D except those for which di = d⋆.

The next step is to construct a set D of n0-length integer sequences that satisfies

• for each i ∈ {1, . . . , n0}, the set of i-th coordinates {di | d ∈ D} has cardinality at
most Q (condition in Lemma 2);

• any d ∈ D may be the degree sequence of a simple m-uniform hypergraph;

• |D| ≥ Qn0 .

With such a set at hand, by choosing one column of A associated to each degree sequence
in D, we obtain a collection of |D| ≥ Qn0 different columns of A. These columns are
independent since for each sequence d⋆ ∈ D, by Lemma 2 we can choose values of the
indeterminates {Xi,q}1≤i≤n0,1≤q≤Q such that all polynomials XAd vanish, except XAd⋆ ,
leading to ad⋆ = 0 in equation (4.13). Thus, exhibiting such a set D is the last step to
prove that A has generically full row rank.

In particular, let us consider the following set of integer-valued sequences:

D =
{
d = (d1, . . . , dn0) | for 1 ≤ i ≤ n0, di ∈ {m, 2m, 3m, . . . , Qm}

}
.

Lemma 3. The set D of n0-length integer sequences satisfies

(i) for each i ∈ {1, . . . , n0}, the set of i-th coordinates {di | d ∈ D} has cardinality at
most Q;

149

Chapter 4. Model-based clustering in hypergraphs through a SB model

(ii) For large enough n0 (depending on Q,m), any d ∈ D is the degree sequence of a
simple m-uniform hypergraph over n0 nodes;

(iii) |D| ≥ Qn0.

Note that conditions (i), (iii) imply that {di | d ∈ D} should have cardinality exactly
Q and that |D| = Qn0 .

Proof of Lemma 3. Points (i), (iii) are a consequence of the definition of D. For any integer
sequence d, a necessary condition for d to be a degree sequence of a simple m-uniform
hypergraph over n0 nodes is that m divides

∑
i di. Here, we rather need sufficient conditions

in order to prove (ii). We rely on Corollary 2.2 in Behrens et al. (2013).

Corollary 2.2 in Behrens et al. (2013). Let d be an integer-valued sequence with max-
imum term ∆ and let p be an integer such that ∆ ≤

(
p−1
m−1

)
. If m divides

∑
i di and∑

i di ≥ (∆− 1)p+ 1 then d is the degree sequence of a simple m-uniform hypergraph.

Fix some d ∈ D. Note that by construction, m divides
∑

i di. Let ∆ be the maximum
value of this sequence and note that ∆ ≤ Qm. Thus we choose p an integer such that
Qm ≤

(
p−1
m−1

)
. Moreover,

∑
i di ≥ mn0 and (∆− 1)p+ 1 ≤ ∆p ≤ Qmp. Then by choosing

n0 ≥ Qp, we obtain the desired result.

This concludes the proof of the base case.

The extension step. The extension step builds on the base case, in order to construct
a larger set of n = n2

0 nodes and subsets H1, H2, H3 ⊂ V(m) of distinct m-tuples of nodes
in V = {1, . . . , n} with the desired properties. This step was first stated as Lemma 16 in
Allman et al. (2009) in the context of simple graphs SBM and we extend it below to our
case.

Let us recall that we want to construct H1, H2, H3 ⊂ V(m) that are pairwise disjoint.
Then, with notation from above, we choose the 3 observed variables Uj (1 ≤ j ≤ 3) as the
vectors of indicator variables Uj = (Yi1,...,im){i1,...,im}∈Hj

. As the subsets H1, H2, H3 do not
share any m-tuple of nodes, the random variables Uj are conditionally independent given
V = (Z1, . . . , Zn). We let Mj denote the Qn × 2|Hj | matrix of conditional probabilities of
Uj given Z.

Lemma 4. Suppose that for some number of nodes n0, the matrix A of size Qn0 × 2(
n0
m)

defined above has generically full row rank. Then with n = n2
0 there exist pairwise disjoint

subsets H1, H2, H3 ⊂ V(m) of m-tuples of nodes in V = {1, . . . , n} such that for each j the
Qn × 2|Hj | matrix Mj has generically full row rank (Qn).

150

Appendices

Proof of Lemma 4. Let us describe the construction of Hj . We will partition the n2
0 nodes

into n0 groups of size n0 in three different ways, each way leading to one Hj . Then each
Hj will be the union of the n0 sets of all m-tuples made of some n0 nodes. Thus each Hj

has cardinality n0

(
n0

m

)
.

Labeling the nodes by (u, v) ∈ {1, · · · , n0}×{1, · · · , n0}, we picture the nodes as lattice
points in a square grid. We take as the partition leading to H1 the rows of the grid, as
the partition leading to H2 the columns of the grid, and as the partition leading to H3 the
diagonals. In other words, H1 is the union over n0 rows of all m-tuples of nodes within
each row. The same with columns and diagonals. Explicitly, we define two functions u, v

that associate to any i ∈ {1, . . . , n0} its coordinates (u(i), v(i)) on the n0 × n0 grid. Then,
the Hj are m-tuple of nodes defined as

H1 = ∪n0
u=1H1(u) = ∪n0

u=1{{i1, . . . , im} ∈ V
(m) | ∀k, u(ik) = u, v(ik) ∈ {1, · · · , n0}},

H2 = ∪n0
v=1H2(v) = ∪n0

v=1{{i1, . . . , im} ∈ V
(m) | ∀k, v(ik) = v, u(ik) ∈ {1, · · · , n0}},

H3 = ∪n0
s=1H3(s)

= ∪n0
s=1{{i1, . . . , im} ∈ V

(m) | ∀k, u(ik) = s, v(ik) = s+ tmodn0 for t ∈ {1, · · · , n0}}.

The Hj are pairwise disjoints as required.

The matrix Mj of conditional probabilities of Uj given Z has Qn rows indexed by
composite states of all n = n2

0 nodes, and 2n0(n0
m) columns indexed by m-tuples in Hj .

Observe that with an appropriate ordering of the rows and columns (which is dependent
on j), Mj has a block structure given by

Mj = A⊗A⊗ · · · ⊗A (n0 factors). (4.14)

(Note that since A is Qn0 × 2(
n0
m), the tensor product on the right is (Qn0)n0 ×

(
2(

n0
m)
)n0

which is Qn2
0 × 2n0(n0

m), the size of Mj .) That Mj is this tensor product is most easily seen
by noting the partitioning of the n2

0 nodes into n0 disjoint sets (rows, columns and diagonals
of the grid) gives rise to n0 copies of the matrix A, one for each set of all simple m-uniform
hypergraphs over n0 nodes. The row indices of Mj are obtained by choosing an assignment
of states to the nodes in Hj(u) for each u independently, and the column indices by the
union of independently-chosen simple m-uniform hypergraphs subgraphs on Hj(u) for each
u. This independence in both rows and columns leads to the tensor decomposition of Mj .

Now since A has generically full row rank (Qn0), equation (4.14) implies that Mj does
as well (i.e has row rank Qn2

0 = Qn).

151

Chapter 4. Model-based clustering in hypergraphs through a SB model

Next, with v,M1,M2,M3 defined by the embedding given in the previous paragraphs,
we apply Kruskal’s Theorem to the table [v;M1,M2,M3]. By construction of the Mj ,
condition (4.12) is generically satisfied since 3Qn ≥ 2Qn + 2. Thus the vector v and the
matrices M1,M2,M3 are generically uniquely determined, up to simultaneous permutation
of the rows from the distribution of a simple m-uniform HSBM.

It now remains to recover the original parameters of the simple m-uniform HSBM: the
group proportions πq and the connectivity matrix (B

(m)
q1,...,qm)1≤q1≤qm≤Q.

Conclusion for the original model. The entries of v are of the form πn1
1 · · ·π

nQ

Q with∑
nq = n, while the entries of the Mj contain information on the B

(m)
q1,...,qm . Although the

ordering of the rows of the Mj is arbitrary, crucially we do know how the rows of Mj are
paired with the entries of v.

By focusing on one of the matrices, say M1, and adding appropriate columns of it, we
can obtain marginal conditional probabilities of single hyperedge variables, namely a col-
umn vector with values (Pθ(Yi1,...,im = 1|(Z1, . . . , Zn) = v))v for any m-tuple {i1, . . . , im}.
Indeed, this vector is obtained by summing all the columns of M1 corresponding to simple m-
uniform hypergraphs with Yi1,...,im = 1. Thus, we recover the set {B(m)

q1,...,qm}1≤q1≤···≤qm≤Q,
but without order. Namely, we still do not know the B

(m)
q1,...,qm up to a permutation on

{1, . . . , Q} only, but rather up to a permutation on {1, . . . , Q}n.

In the following, we assume without loss of generality, as it is a generic condition, that
all {B(m)

q1,...,qm}1≤q1≤···≤qm≤Q are distinct.

We look at the first (m + 1) nodes V1 = {1, . . . ,m,m + 1} and consider the m + 1

different m-tuples {i1, . . . , im} ∈ V(m)
1 that can be made from these nodes (ik ∈ V1). Again,

for each of these m-tuples, adding appropriate columns of M1, we can jointly obtain the
vectors of conditional marginal probabilities (Pθ(Y{i1,...,im} = 1|(Z1, . . . , Zn) = v))v. Jointly
means that all those vectors share the same ordering over the index v ∈ {1, . . . , Q}n. In
other words, we recover the sets of values

∀v ∈ {1, . . . , Q}n, Rv = {B(m)
vi1 ,...,vim

; {i1, . . . , im} ∈ V(m)
1 }.

Now, we assumed the B’s are all distinct so the cardinalities of the sets Rv will help us
discriminate the different parameters (up to a permutation on {1, . . . , Q} only). Indeed,
there are exactly Q sets Rv with cardinality exactly one. These corresponds to the cases
were v = (q, q, . . . , q) for some 1 ≤ q ≤ Q. From this, we can distinguish the param-
eters of the form {B(m)

q,...,q; 1 ≤ q ≤ Q} from the complete set of parameters. Note that
the corresponding entries of v are given by πm

q . So we also recover the paired values

152

Appendices

{(πq, B(m)
q,...,q); 1 ≤ q ≤ Q}. Then, we continue with the sets Rv with cardinality two: these

are of the form {B(m)
q,...,q;B

(m)
q,...,q,l} for some 1 ≤ q ̸= l ≤ Q. As we already identified the

parameters {B(m)
q,...,q; 1 ≤ q ≤ Q} and all B’s are distinct, this enables us to identify the set

of parameters {B(m)
q,...,q,l; 1 ≤ q ̸= l ≤ Q}. By induction, we recover the set of parameters

{B(m)
q,...,q,l,l′ ; 1 ≤ q, l, l′ ≤ Q and q, l, l′ distinct} et caetera, ending with the set of parameters

{B(m)
q1,...,qm ; 1 ≤ q1 < q2 < · · · < qm ≤ Q}. This means that we finally have obtained the

parameters {πq, B(m)
q1,...,qm}1≤q≤Q;1≤q1≤···≤qm≤Q up to a permutation over {1, . . . , Q}.

Finally, note that all generic aspects of this argument, in the base case and the require-
ment that the parameters B(m)

q1,...,qm be distinct, concern only the B(m)
q1,...,qm . Thus if the group

proportions πq are fixed to any specific values, the theorem remains valid.

Remark 1. The requirement on large enough n is more precisely given as n ≥ Q2p2 where
p is the smallest integer such that

(
p−1
m−1

)
≥ Qm. A rough approximation gives that p is of

the order (Qm)1/(m−1) which gives that n should be larger than Q2(Qm)2/(m−1).

B.2 Proof of Corollary 2

From the probability distribution Pθ over simple hypergraphs H on a set of n nodes and
hyperedges with largest size M , we automatically obtain all the probability distributions
Pθ restricted to simple m-uniform hypergraphs Hm on the same set of nodes. Applying the
result of Theorem 1 for all values m is sufficient to obtain the desired result. Indeed, as M
is finite, the union of the finite number of lower-dimensional subspaces where identifiability
for fixed m may not be satisfied gives a lower-dimensional subspace, ensuring generic identi-
fiability. Moreover, for each value of m, we recover the parameter θ(m) up to a permutation
on {1, . . . , Q}. Now, for any m ̸= m′ it remains to be able to jointly order the parameters
θ(m) and θ(m

′) up to a permutation on {1, . . . , Q}. If all the πq’s are different, which is a
generic condition, this can be easily done because θ(m) and θ(m

′) share the same distinct
πq’s.

153

Chapter 4. Model-based clustering in hypergraphs through a SB model

C Artifacts induced by bipartite graph models

We give here additional considerations to the issues from Section 4.3.1.
First, in order to view a bipartite graph as a hypergraph, one first needs to select

the top and bottom parts. Swapping the role of the two parts will in general give another
hypergraph. Most statistical models of bipartite graphs handle the two parts symmetrically
and do not differentiate between a top and a bottom part. They are thus inadequate for
modeling hypergraphs.

One may also note that most random bipartite graphs models are designed for fixed
parts sizes, which induces, on top of a fixed number of nodes, a fixed number of hyperedges
in the corresponding hypergraph model, an artifact which is not always desirable. For
instance the random uniform hypergraphs model allows for any possible density on the
hyperedges.

A last example of inadequacy is given by configuration models on bipartite graphs that
induce configuration models on hypergraphs. In these models, the degree distributions
in each part are kept fixed. When projected in the hypergraphs space, that means that
the degrees of the nodes and the sizes of the hyperedges are kept fixed. Then, relying on
shuffling algorithms to explore the space of this configuration model, one will loose the
labels on the bottom part (the hyperedges part) as these are automatically induced by the
new edges of the bipartite graph and the labeling of the top part (the nodes part). As a
consequence, if a specific node tends to take part in large size hyperedges, this information
is lost in the configuration model issued from bipartite graphs.

To our knowledge, there is no configuration model on hypergraphs that only keeps the
nodes degrees sequence fixed. We mention that Section 4 from Chodrow (2020) provides
a discussion about the limitations of the embedding approach in terms of the types of
hypergraph null models from which we can conveniently sample. In particular, Chodrow
(2020) establishes that there is no obvious route for vertex-label sampling in hypergraphs
through bipartite random graphs.

154

Appendices

D Computational details

In order to provide an efficient implementation, the whole estimation algorithm is imple-
mented in C++ language using the Armadillo library for linear algebra. Moreover the im-
plementation is freely available by means of the R packages Rcpp (Eddelbuettel and François,
2011; Eddelbuettel, 2013) and RcppArmadillo (Eddelbuettel and Sanderson, 2014). In the
following, we consider some of the most relevant computational details.

Heavy computational cost Dealing with very large data structures, the main drawback
of the proposed algorithm is the intensive computational effort, in terms of both execution
time needed to converge and required memory space. The most outstanding example re-
gards the computation of the products τi1q1 · · · τimqm , required both in the VE-Step (see
Proposition 2, for τiq) and in the M-Step (see Proposition 3, for B(m)

q1,...,qm). The huge compu-
tational cost of this calculation derives from the large number of potential unordered node
tuples even for rather small values of n and m; indeed it is straightforward to show that
|V(m)| =

(
n
m

)
. A first possibility is to compute all the products τi1q1 · · · τimqm in a recursive

manner at the beginning of each VEM iteration and to store them in a matrix. Although
this is actually very beneficial for the computational time, the resulting matrix is huge,
having number of rows and columns equal to

(
n
m

)
and

(
Q+m−1

m

)
respectively. The result is a

structure that is intractable except for very small values of n, Q, and (especially) m. Taking
into account that every element requires 8 bytes, we report some examples in Table 4.7, in
order to better clarify the magnitude of the quantity to store. Stated the impossibility to
store a matrix of such sizes, the computation of the required products τi1q1 · · · τimqm is im-
plemented directly inside the VE- and M-Steps through nested loops; this process involves
an important increase in the computing times, but on the other hand requires a minimal
amount of memory. To handle the slowness of the computation, both the VE-Step and the
M-Step are efficiently implemented in parallel through the RcppParallel package (Allaire
et al., 2022).

Floating point underflow. Another crucial aspect is the possible occurrence of numer-
ical instability deriving from the multiplication of many small values in the computation of
τ̂iq. A simple remedy is provided by the calculation of log τ̂iq instead of τ̂iq. So, denoting
biq = log(τ̂iq − ci), we compute τ̂iq relying on

τ̂iq =
exp(biq − bmax,i)∑Q
p=1 exp(biq − bmax,i)

,

155

Chapter 4. Model-based clustering in hypergraphs through a SB model

n m Q Memory size n m Q Memory size

100 3 2 ≈ 5.2 MB 500 3 2 ≈ 0.6 GB
100 3 4 ≈ 25.9 MB 500 3 4 ≈ 3.3 GB
100 6 2 ≈ 66.8 GB 500 6 2 ≈ 1179.2 TB
100 6 4 ≈ 801.1 GB 500 6 4 ≈ 14150.8 TB

Table 4.7: Memory size of the matrix containing the products τi1q1 · · · τimqm for given
values of n (number of nodes), Q (number of latent groups) and m (hyperedge size)

where bmax,i = max
q=1...Q

biq prevents the denominator to grow excessively large, thus avoiding

new potential numerical issues related to the floating point underflow.

156

Appendices

E Spectral clustering

Spectral clustering is one of the most popular modern clustering algorithm. It is widely
used for partitioning of data with complex topological clustering. Several different spectral
clustering algorithms have been proposed for graphs and, more recently, for hypergraphs.
In the following we will not give a review of the whole literature on spectral clustering (this
would be impossible due to the overwhelming amount of literature on this subject, and
it would fall outside the purposes of this work). Instead we will go through the specific
algorithms and aspects useful . The following notation, introduced in Section 4.2.3, will be
used for both graphs and hypergraphs: H denotes the incidence matrix, A the adjacency
matrix, D and ∆ two diagonal matrices such that dii =

∑
e hie and δee =

∑
i hie.

Absolute spectral clustering for graphs Following Rohe et al. (2011), we enumerate
here the required steps:

1. Compute the graph Laplacian matrix as L = In −D1/2AD−1/2.

2. Find the eigenvectors of L corresponding to the Q eigenvalues of L that are largest
in absolute value. Define X ∈ Rn×Q as the matrix containing these eigenvectors as
columns.

3. Treating each row of X as a point in RQ, run the k-means algorithm (Forgy, 1965;
MacQueen, 1967) with Q clusters.

Spectral clustering for hypergraphs Following Ghoshdastidar and Dukkipati (2017,
Algorithm 1), we enumerate here the required steps:

1. Compute the hypergraph Laplacian matrix L as L = In −D−1/2H∆−1H ′D−1/2 (see
Section 4.2.3 for more details).

2. Compute the Q leading eigenvectors of L (i.e. the eigenvectors that corresponds to
the k smallest eigenvalues of L), and denote by X ∈ Rn×Q the matrix containing
these vectors as columns.

3. Normalize rows of X to have unit norm and call this matrix X̄.

4. Cluster the rows of X̄ with the k-means algorithm (Forgy, 1965; MacQueen, 1967)
into Q clusters.

157

Chapter 4. Model-based clustering in hypergraphs through a SB model

F More on the simulation study

F.1 Hyperparameters settings

All the simulations in Sections 4.5 and 4.6 were performed with the following hyperparame-
ters. Concerning the spectral clustering initializations, the k-means algorithm (on the rows
of the column leading eigenvectors matrix) is run with 100 different initializations. The
tolerance threshold ϵ used to stop the fixed point and the VEM algorithm is set to 10−6.
The maximum numbers of iterations for the fixed point and the VEM algorithm were set
to Umax = 50 and Tmax = 50, respectively.

F.2 Comparison of different initialization strategies

In the following we compare the performance of the proposed VEM algorithm under different
initialization strategies introduced in Section 4.4.3.3. In particular, we consider standard
spectral clustering, “soft” spectral clustering, and graph-component absolute spectral clus-
tering initializations. For each strategy, we compute the average ARI over the same 10
samples used in the simulation study in Section 4.5.1. Results are summarized in Table 4.8.

Scenario A Scenario B Scenario C

n SC SSC ASC SC SSC ASC SC SSC ASC

50 0.70 1.00 0.70 0.50 1.00 0.50 0.10 0.50 0.19
100 1.00 1.00 0.60 0.40 1.00 0.20 0.20 0.90 0.20
150 1.00 1.00 0.70 0.30 1.00 0.40 0.30 1.00 0.10
200 1.00 1.00 0.50 0.30 1.00 0.40 0.30 1.00 0.20

Table 4.8: Performance of the proposed VEM algorithm under different initialization
strategies: spectral clustering (SC), “soft” spectral clustering (SSC) and graph-component
absolute spectral clustering (ASC). Each value is the average Adjusted Rand Index over 10
simulated datasets

It is clear that the “soft” spectral clustering initialization provides the best performance
in each scenario, showing much higher values than those of the other two strategies; this
behavior is especially evident for settings B and C, while in scenario A the advantage is
generally less pronounced. We conjecture that a “hard” initialization prevents the VEM
algorithm to accurately explore the parameter space, thus leading the estimation algorithm
to fail when the starting value is not close enough to the correct solution. The result is
convergence to a local maximum. On the contrary, a “soft” initial value is able to explore
more thoroughly the solution space, thus reaching the global maximum and recovering the

158

Appendices

correct clustering in the overwhelming majority of samples. This analysis justifies the use
of “soft” spectral clustering initialization in the simulation study in Section 4.5.

F.3 Influence of the initial value on the VEM algorithm

As a final note, we also assess the influence of starting values on the behavior of the VEM
algorithm. To this aim, we preliminary analyze the performance of spectral clustering
algorithm, relying again on the ARI. Results are reported in Table 4.9 and clearly show
the opposite behavior of this clustering method in detecting communities (scenario A) and
disassortative behaviors (scenarios B and C): taking into account community detection,
spectral clustering algorithm perfectly recovers the true clusters, apart from a few cases
in which n is very small. On the contrary, considering disassortative behaviors, spectral
clustering algorithm completely fails in determining the correct clusters, all values of the
ARI being extremely close to 0. Hence, “soft” spectral clustering proves to be a very smart
initialization strategy for scenario A, while for scenarios B and C, it behaves analogously
to a random starting value. The optimal performance of VEM algorithm throughout all
scenarios, therefore, highlights a very weak influence of the starting value on the behavior of
the algorithm: a random initialization usually ensures a proper convergence and a correct
clustering; instead, the real advantage deriving from the adoption of a smart initial value
is a reduction in computing time (data not shown).

n Scenario A Scenario B Scenario C

50 0.69 −0.43 · 10−2 −3.57 · 10−3

100 0.99 0.43 · 10−2 −7.01 · 10−3

150 1.00 −0.12 · 10−2 4.60 · 10−5

200 1.00 −0.42 · 10−2 −4.51 · 10−3

Table 4.9: Adjusted Rand Index for different scenarios and number of nodes with respect
to the soft spectral clustering initialization. Each value is obtained as the average over 10
simulated datasets

F.4 Computational time

In this Section we assess the performance of the proposed VEM algorithm in terms of
computation al time. To this aim we rely again on the samples used in the simulation study
in Section 4.5.1, and we consider “soft” spectral clustering initialization. The estimation is
performed by employing an Intel(R) Core(TM) i7-8700T CPU @ 2.40GHz Windows desktop
with 8 GB of RAM. Table 4.10 reports the average time in seconds for each scenario.

159

Chapter 4. Model-based clustering in hypergraphs through a SB model

n Scenario A Scenario B Scenario C

50 13.96 18.00 32.61
100 98.11 311.00 570.34
150 1,054.75 3,113.51 3,269.17
200 5,755.97 18,629.58 19,181.36

Table 4.10: Computational time in seconds of the Variational Expectation-Maximization
algorithms for each setting, computed as the mean over 10 simulated samples as presented
in Section 4.5.1

160

Appendices

G The Hypergraph SB model is not a bipartite SB model

In this Section, we briefly outline that (i) while the bipartite stochastic block model can
be seen as a particular case of the HSB model, (ii) the converse is not true in general.

To see point (i), let us consider a bipartite SB mode on a graph G with nodes divided in
2 parts, say V = {1, . . . , n} and U = {1, . . . , e}. The model has Q groups (respectively, R
groups) on the subset of nodes V (respectively, U), with group proportions π (respectively,
η). We let Z1, . . . , Zn (respectively, W1, . . . ,We) denote the latent groups of the node set
V (respectively, U).

The model is also endowed with a connectivity matrix M of size Q × R whose entries
Mqr are the conditional probabilities that a node in V from group q connects a node in U
from group r. In other words Mqr = P(Xiu = 1|Zi = q,Wu = r) where X = (Xiu) is the
n× e incidence matrix of G.

Now consider the hypergraphH constructed on the set of nodes V and whose hyperedges
are obtained by looking at the set of nodes in V connected to a same node in U . (A similar
construction could be made with swapping the roles of V and U). Then, the probability
distribution of H under the induced bipartite SB model is exactly a HSB model with Q

groups, with group proportions π and parameters

B(m)
q1,...,qm = P(Yi1,...,im = 1|Zi1 = q1, . . . , Zim = qm)

= P(Xi1,u = 1, . . . , Xim,u = 1|Zi1 = q1, . . . , Zim = qm)

=

R∑
r=1

P(Xi1,u = 1, . . . , Xim,u = 1,Wu = r|Zi1 = q1, . . . , Zim = qm)

=

R∑
r=1

ηr

qm∏
q=q1

Mqr,

where u is the node that connects {i1, . . . , im} into a hyperedge. So, we see that the
bipartite SB model induces a HSB model with constrained connection probabilities.

Let us now explain why (ii) the converse is not true in general. We start from a HSB
model with Q groups and parameters ((πq)q, (B

(m)
q1,...,qm)q1,...,qm)2≤m≤M on a hypergraph H

with set of nodes V. Considering U = {1, . . . , e} where e is the number of hyperedges in
H, we construct a bipartite graph G with nodes V × U and links between any i ∈ V and
any u ∈ U whenever node i belongs to hyperedge u in the hypergraph H. Now, if there is a
bipartite SB model on G with the same distribution of H, then necessarily it has Q groups
on V, with group proportions given by π. We let R denote the number of groups of such a
model on U , together with η the corresponding group proportions, and M the Q×R matrix

161

Chapter 4. Model-based clustering in hypergraphs through a SB model

of connection probabilities. Then we observe that η and M should satisfy the relations

∀2 ≤ m ≤M,∀q1, . . . , qm ∈ {1, . . . , Q}m, B(m)
q1,...,qm =

R∑
r=1

ηr

qm∏
q=q1

Mqr. (4.15)

Here, we first remark that the bipartite SB model fit on the co-authorship dataset
(from Section 4.6) selects R = 1, thus inducing hyperedges connectivity parameters with a
product form

B(m)
q1,...,qm =

qm∏
q=q1

Mq1.

Our HSB model on this same dataset did not result in hyperedges connectivity parameters
with a product form, which establishes that the models are clearly different.

Now, more generally, we could ask whether for given parameters (B(m)
q1,...,qm)2≤m≤M , there

exist some values of R, η and M such that (4.15) is satisfied. The answer is: not always.
To see this, consider for instance Q = 2 and remark the relation between the two quantities

B
(2)
11 =

R∑
r=1

ηrM
2
1r,

B
(3)
111 =

R∑
r=1

ηrM
3
1r,

so that B
(2)
11 and B

(3)
111 cannot be chosen independently.

162

Bibliography

Ahn, K., Lee, K., and Suh, C. (2018). Hypergraph spectral clustering in the weighted
stochastic block model. IEEE J. Sel. Top. Signal Process., 12, 959–974.

Allaire, J., Francois, R., Ushey, K., Vandenbrouck, G., M., G., and Intel

(2022). RcppParallel: Parallel Programming Tools for Rcpp. R package version 5.1.5.

Allman, E., Matias, C., and Rhodes, J. (2009). Identifiability of parameters in latent
structure models with many observed variables. Ann. Statist., 37, 3099–3132.

Allman, E., Matias, C., and Rhodes, J. (2011). Parameters identifiability in a class
of random graph mixture models. J. Stat. Plan. Inference, 141, 1719–1736.

Balasubramanian, K. (2021). Nonparametric modeling of higher-order interactions via
hypergraphons. J. Mach. Learn. Res., 22, 1–35.

Battiston, F., Cencetti, G., Iacopini, I., Latora, V., Lucas, M., Patania, A.,

Young, J.-G., and Petri, G. (2020). Networks beyond pairwise interactions: Struc-
ture and dynamics. Phys. Rep., 874, 1–92.

Behrens, S., Erbes, C., Ferrara, M., Hartke, S., Reiniger, B., Spinoza, H.,

and Tomlinson, C. (2013). New results on degree sequences of uniform hypergraphs.
Electron. J. Comb., 20, 14–18.

Bick, C., Gross, E., Harrington, H., and Schaub, M. (2021). What are higher-order
networks? Technical report, arXiv:2104.11329.

Biernacki, C., Celeux, G., and Govaert, G. (2000). Assessing a mixture model for
clustering with the Integrated Completed Likelihood. IEEE Trans. Pattern Anal. Mach.
Intell., 22, 719–725.

Bolla, M. (1993). Spectra, euclidean representations and clusterings of hypergraphs.
Discrete Math., 117, 19–39.

Chelaru, M., Eagleman, S., Andrei, A., Milton, R., Kharas, N., and Dragoi,

V. (2021). High-order correlations explain the collective behavior of cortical populations
in executive, but not sensory areas. Neuron, 109, 3954–3961.

Chien, I., Lin, C., and Wang, I. (2019). On the minimax misclassification ratio of
hypergraph community detection. IEEE Trans. Inf. Theory, 65, 8095–8118.

Chapter 4. Model-based clustering in hypergraphs through a SB model

Chiquet, J., Donnet, S., großBM team, and Barbillon, P. (2022). sbm: Stochastic
Blockmodels. R package version 0.4.4.

Chodrow, P. (2020). Configuration models of random hypergraphs. J. Complex Netw.,
8, 1–26.

Chodrow, P., Veldt, N., and Benson, A. (2021). Generative hypergraph clustering:
From blockmodels to modularity. Sci. Adv., 7, 1–13.

Cole, S. and Zhu, Y. (2020). Exact recovery in the hypergraph stochastic block model:
A spectral algorithm. Linear Algebra Appl., 593, 45–73.

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete
data via the em algorithm (with discussion). J. R. Stat. Soc. Ser. B, 39, 1–38.

Eddelbuettel, D. (2013). Seamless R and C++ Integration with Rcpp. Springer, New
York. ISBN 978-1-4614-6867-7.

Eddelbuettel, D. and François, R. (2011). Rcpp: Seamless R and C++ integration.
Journal of Statistical Software, 40, 1–18.

Eddelbuettel, D. and Sanderson, C. (2014). RcppArmadillo: Accelerating R with
high-performance C++ linear algebra. Computational Statistics and Data Analysis, 71,
1054–1063.

Estrada, E. and Rodríguez-Velázquez, J. (2006). Subgraph centrality and clustering
in complex hyper-networks. Physica A, 364, 581–594.

Flamm, C., Stadler, B., and Stadler, P. (2015). Generalized topologies: Hyper-
graphs, chemical reactions, and biological evolution. In Advances in Mathematical Chem-
istry and Applications, pages 300–328. Bentham Science Publishers.

Forgy, E. (1965). Cluster analysys of multivariate data: Efficiency versus interpretability
of classifications. Biometrics, 21, 768–780.

Frank, O. and Harary, F. (1982). Cluster inference by using transitivity indices in
empirical graphs. J. Amer. Statist. Assoc., 77, 835–840.

Ghoshal, G., Zlatić, V., Caldarelli, G., and Newman, M. (2009). Random hy-
pergraphs and their applications. Phys. Rev. E, 79, 1–10.

164

Bibliography

Ghoshdastidar, D. and Dukkipati, A. (2014). Consistency of spectral partitioning of
uniform hypergraphs under planted partition model. In Advances in Neural Information
Processing Systems, volume 27, pages 1–9. Curran Associates, Inc., New York.

Ghoshdastidar, D. and Dukkipati, A. (2017). Consistency of spectral hypergraph
partitioning under planted partition model. Ann. Stat., 45, 289–315.

Guillaume, J. and Latapy, M. (2004). Bipartite structure of all complex networks. Inf.
Process. Lett., 90, 215–221.

Hatcher, A. (2002). Algebraic Topology. Cambridge University Press, Cambridge.

Holland, P., Laskey, K., and Leinhardt, S. (1983). Stochastic blockmodels: some
first steps. Soc. networks, 5, 109–137.

Hubert, L. and Arabie, P. (1985). Comparing partitions. J. Classif., 2, 193–218.

Jordan, M., Ghahramani, Z., Jaakkola, T., and Saul, L. (1999). An introduction
to variational methods for graphical models. Mach. Learn., 37, 183–233.

Kamiński, B., Poulin, V., Prałat, P., Szufel, P., and Théberge, F. (2019). Clus-
tering via hypergraph modularity. PLoS One, 14, 1–15.

Ke, Z., Shi, F., and Xia, D. (2020). Community detection for hypergraph networks via
regularized tensor power iteration. Technical report, arXiv:1909.06503.

Kruskal, J. (1977). Three-way arrays: rank and uniqueness of trilinear decompositions,
with application to arithmetic complexity and statistics. Linear Algebra Appl., 18, 95–
138.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate ob-
servations. In In 5-th Berkeley Symposium on Mathematical Statistics and Probability,
pages 281–297.

Matias, C. and Robin, S. (2014). Modeling heterogeneity in random graphs through
latent space models: a selective review. Esaim Proc. & Surveys, 47, 55–74.

Muyinda, N., De Baets, B., and Rao, S. (2020). Non-king elimination, intransitive
triad interactions, and species coexistence in ecological competition networks. Theor.
Ecol., 13, 385–397.

Newman, M. (2010). Networks: An Introduction. Oxford University Press, New York.

165

Chapter 4. Model-based clustering in hypergraphs through a SB model

Newman, M. (2016). Equivalence between modularity optimization and maximum likeli-
hood methods for community detection. Phys. Rev. E, 94, 1–8.

Ng, T. and Murphy, T. (2021). Model-based clustering for random hypergraphs. Adv.
Data Anal. Classif., 16, 691–723.

Rodríguez, J. (2002). On the laplacian eigenvalues and metric parameters of hypergraphs.
Linear Multilinear Algebra, 50, 1–14.

Rohe, K., Chatterjee, S., and Yu, B. (2011). Spectral clustering and the high-
dimensional stochastic blockmodel. Ann. Stat., 39, 1878–1915.

Roy, S. and Ravindran, B. (2015). Measuring network centrality using hypergraphs.
In Proceedings of the Second ACM IKDD Conference on Data Sciences, CoDS ’15, page
59–68.

Shannon, C. (1948). A mathematical theory of communication. Bell Labs. Tech. J., 27,
379–423.

Simmel, G. (1950). The sociology of Georg Simmel. The free press, New York.

Singh, P. and Baruah, G. (2021). Higher order interactions and species coexistence.
Theor. Ecol., 14, 71–83.

Suganya, R. and Shanthi, R. (2012). Fuzzy c-means algorithm - a review. Int. J. Sci.
Res. Publ., 2, 440–442.

Swan, M. and Zhan, J. (2021). Clustering hypergraphs via the mapequation. IEEE
Access, 9, 72377–72386.

Torres, L., Blevins, A., Bassett, D., and Eliassi-Rad, T. (2021). The why, how,
and when of representations for complex systems. SIAM Rev. Soc. Ind. Appl. Math., 63,
435–485.

Turnbull, K., Lunagómez, S., Nemeth, C., and Airoldi, E. (2021). Latent space
modelling of hypergraph data. Technical report, arXiv:1909.00472.

Vazquez, A. (2009). Finding hypergraph communities: a bayesian approach and varia-
tional solution. J. Stat. Mech. Theory Exp., 2009, 1–16.

Zhou, D., Huang, J., and Schölkopf, B. (2006). Learning with hypergraphs: Clus-
tering, classification, and embedding. In Advances in Neural Information Processing
Systems, volume 19, pages 1601–1608. MIT Press.

166

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	An overview of latent variable models
	General formulation of discrete latent variable models
	Maximum likelihood estimation
	Further estimation issues

	Relevant examples of discrete latent variable models
	Latent class model
	Hidden Markov model
	Stochastic block model

	Outline and main contributions
	Bibliography

	Tempered Expectation-Maximization algorithm for the estimation of discrete latent variable models
	Introduction
	Convergence to local maxima
	Simulation study of multimodality for latent class model

	Annealing and tempering techniques
	The origin of simulated annealing
	The simulated tempering variant
	The parallel tempering version
	Other features

	Tempered Expectation-Maximization algorithm
	Choice of the temperature parameter
	Tuning of the tempering profiles
	T-EM algorithm for the latent class model with categorical response variables
	T-EM algorithm for the hidden Markov model with categorical response variables
	T-EM algorithm for the hidden Markov model with continuous response variables

	Simulation study
	Settings of the experimental scenarios
	Simulation results
	Results in terms of computational time
	The role of the oscillating tempering profile
	Analysis of the tempered Expectation-Maximization algorithm with fixed tempering profile

	Initialization of the tempered Expectation-Maximization algorithm
	Applications
	Evaluation of anxiety and depression
	Discovering criminal trajectories
	Analyzing countries development

	Conclusions
	Appendices
	Characteristics of the simulated scenarios
	Additional simulation results
	Simulation results with fixed tempering profiles
	Real data analysis in terms of computational time

	Bibliography
	Evolutionary Expectation-Maximization algorithm for the estimation of discrete latent variable models
	Introduction
	Evolutionary algorithms
	Design of evolutionary algorithms
	Previous works

	Evolutionary Expectation-Maximization algorithm
	Initialization and convergence criterion
	Model selection

	Simulation study
	Results with real-world data
	Conclusions
	Appendices
	Additional simulation results
	Comparison with the oscillating T-EM algorithm
	Additional features about crossover and mutation

	Bibliography
	Model-based clustering in simple hypergraphs through a stochastic blockmodel
	Introduction
	Interacting systems and hypergraphs
	Higher-order interactions representation: from graphs to hypergraphs
	The need for simple hypergraphs models
	Matrix representations of higher-order interactions

	Preliminary works about hypergraph modeling
	The bipartite graph representation and its limits
	Hypergraphs modeling

	A stochastic block model for hypergraphs
	Model formulation
	Parameter identifiability
	Maximum likelihood estimation
	Model selection

	Simulation study
	Clustering performances
	Performance of model selection

	Analysis of a co-authorship dataset
	Dataset description
	Analysis with the HyperSBM package
	Comparison with Hypergraph Spectral Clustering
	Comparison with a bipartite SB model

	Conclusions
	Appendices
	Proofs of theoretical results
	Complete proof of the identifiability
	Artifacts induced by bipartite graph models
	Computational details
	Spectral clustering
	More on the simulation study
	The Hypergraph SB model is not a bipartite SB model

	Bibliography

