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1. Introduction

The non-perturbative effect of the topological theta term in quantum field theories has been
studied as a long-standing problem. Recently, the phase structure of 4D pure Yang-Mills (YM)
theory with a theta term has attracted a lot of attention. There was a novel progress on application
of ’t Hooft anomaly matching [1, 2], which suggests that the 4D SU(𝑁) pure YM theory cannot
have a unique trivial vacuum at \ = 𝜋. Indeed, this statement is consistent with the known phase
diagram for large 𝑁 , where the CP symmetry at \ = 𝜋 is spontaneously broken in the confined
phase. On the other hand, the phase diagram for small 𝑁 , in particular 𝑁 = 2, is not determined
yet. It is possible that the SU(2) YM theory has a qualitatively different phase structure.

Thus, it is an interesting challenge to investigate the phase structure by a first-principle method.
Since the effect of the theta term is genuinely non-perturbative, the SU(𝑁) YM theory with a theta
term should be analyzed by non-perturbative methods. However, usual Monte Carlo simulations of
the lattice gauge theory including the theta term is difficult due to the sign problem.

We propose a new method to probe the critical behavior at \ = 𝜋 based on the topological
charge distribution 𝜌(𝑞) at \ = 0. The crucial point of the method is that the expectation value ⟨𝑄⟩\
of topological charge for any \ is completely determined by the distribution 𝜌(𝑞). Thanks to this
property, we can investigate the behavior of ⟨𝑄⟩\ indirectly by the information at \ = 0. In order
to see the temperature dependence of the distribution 𝜌(𝑞) clearly, we introduce the imaginary \

parameter, which can enhance the tail structure of 𝜌(𝑞).

2. Identifying the CP restoration

The application of ’t Hooft anomaly matching condition [1, 2] to the 4D pure YM theory
suggests that the phase structure at \ = 𝜋 should be nontrivial. There are a lot of possible phase
structures which agree with this condition. Here we consider two kinds of phase transition. One
is the deconfinement transition at 𝑇 = 𝑇dec(\ = 𝜋), which corresponds to breaking of 𝑍𝑁 center
symmetry. Note that the deconfining temperature 𝑇dec(\) depends on \ in general. The other
transition is the restoration of CP symmetry at 𝑇 = 𝑇CP, which is broken at low temperature.
For large 𝑁 , these two transitions occur at the same temperature 𝑇CP = 𝑇dec(𝜋). Namely, the CP
symmetry is recovered simultaneously with the deconfinement transition. In this case, either the
𝑍𝑁 center symmetry or the CP symmetry is broken at any temperature. Thus, it is consistent with
the anomaly matching condition.

It is interesting to explore whether the theory with 𝑁 = 2 has a similar phase diagram. In fact,
the numerical study of 4D SU(2) YM theory by the subvolume method [3, 4] shows an indication
of the CP broken phase at low temperature. It is also confirmed that the instanton gas phase, which
is CP symmetric, appears at high temperature. Thus, the restoration of CP symmetry is expected
to occur also for 𝑁 = 2. However, the relation between the two critical temperatures 𝑇CP and
𝑇dec(𝜋) can be different. The anomaly matching condition for these two temperatures requires that
𝑇CP ≥ 𝑇dec(𝜋). The reason is that the CP symmetry can be broken not only in the confined phase
but also in the deconfined phase. The overlap of the CP broken phase and the 𝑍2 broken phase is
allowed. There is a related study of these two critical temperatures by using the super YM theory
[5]. Interestingly, the result shows 𝑇CP > 𝑇dec(𝜋) only for 𝑁 = 2, but 𝑇CP = 𝑇dec(𝜋) for 𝑁 ≥ 3.
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It is worth trying to numerically investigate the CP restoration temperature𝑇CP for the 4D SU(2)
YM theory and compare it with the deconfining temperature 𝑇dec(𝜋). However, the usual Monte
Carlo simulation at \ = 𝜋 suffers from the sign problem since the theta term is purely imaginary.
In this section we introduce a new method to determine 𝑇CP without direct simulation at \ = 𝜋.

First, we explain the property of topological charge 𝑄. Since the topological charge is a CP
odd operator, its expectation value ⟨𝑄⟩\ can be an order parameter of CP symmetry.

⟨𝑄⟩\ = −𝑖 𝜕
𝜕\

log 𝑍\ (1)

If CP symmetry at \ = 𝜋 is spontaneously broken, ⟨𝑄⟩\ should be discontinuous there:

Δ𝑄 =

���⟨𝑄⟩\=𝜋−𝜖 − ⟨𝑄⟩\=𝜋+𝜖
��� {> 0 : CP broken,

= 0 : CP restored.
(2)

Thus, the CP restoration temperature 𝑇CP can be regarded as a temperature at which Δ𝑄 vanishes.
To determine 𝑇CP, we need to investigate the temperature dependence of Δ𝑄. However, it is difficult
to directly evaluate Δ𝑄 due to the sign problem. But we can also study it from another direction.
Let us note that the partition function 𝑍\ and the topological charge distribution 𝜌(𝑞) at \ = 0 are
related via

𝜌(𝑞) = 1
𝑍0

∫
𝑑𝐴 𝛿(𝑞 −𝑄)𝑒−𝑆𝑔 =

1
𝑍0

∫
𝑑\

2𝜋
𝑒−𝑖 \𝑞𝑍\ . (3)

Since the distribution 𝜌(𝑞) is a Fourier transform of the partition function 𝑍\ ,

𝑍\ =

∫
𝑑𝐴 𝑒−𝑆𝑔+𝑖 \𝑄 = 𝑍0

∫
𝑑𝑞 𝑒𝑖 \𝑞𝜌(𝑞), (4)

we find that the expectation value ⟨𝑄⟩\ at any \ is completely determined by 𝜌(𝑞) as

⟨𝑄⟩\ = −𝑖 𝜕
𝜕\

log
∫

𝑑𝑞 𝑒𝑖 \𝑞𝜌(𝑞) =
∫
𝑑𝑞 𝑞𝑒𝑖 \𝑞𝜌(𝑞)∫
𝑑𝑞 𝑒𝑖 \𝑞𝜌(𝑞)

. (5)

This is nothing but the reweighting formula by using the information at \ = 0. Thus, to calculate
⟨𝑄⟩\ around \ ∼ 𝜋, we need exponentially large amount of statistics. However, our goal is not to
determine the complete \ dependence of ⟨𝑄⟩\ but to probe the critical temperature 𝑇CP. In fact, we
do not need the complete information of 𝜌(𝑞) in that case. It is enough to determine whether Δ𝑄
is zero or not from 𝜌(𝑞).

In this study, we propose to use the expectation value ⟨𝑄⟩ \̃ of the topological charge at an
imaginary theta \ = 𝑖\̃ (\̃ ∈ R) to probe the critical behavior;

⟨𝑄⟩ \̃ =
1
𝑍 \̃

∫
𝑑𝐴𝑄𝑒−𝑆𝑔− \̃𝑄 =

∫
𝑑𝑞 𝑞𝑒− \̃𝑞𝜌(𝑞)∫
𝑑𝑞 𝑒− \̃𝑞𝜌(𝑞)

. (6)

In practice, we normalize it by the topological susceptibility

𝜒0 =
1
𝑉
⟨𝑄2⟩\=0 (7)
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at \ = 0 and the volume 𝑉 , so that we just measure the ratio of two independent observables.

⟨𝑄⟩ \̃
𝜒0𝑉

=
⟨𝑄⟩ \̃
⟨𝑄2⟩0

(8)

Let us discuss the behavior of this observable in some well known models. The first example is the
instanton gas model, for which the free energy is obtained as

𝐹\ = − log 𝑍\ = 𝜒0𝑉 (1 − cos \). (9)

The \-dependence of ⟨𝑄⟩\ /𝜒0𝑉 for real \ is given by the sine function

⟨𝑄⟩\
𝜒0𝑉

= 𝑖 sin \, (10)

which indicates that CP symmetry at \ = 𝜋 is not broken. Correspondingly, the imaginary-\
dependence turns out to be the hyperbolic sine function.

⟨𝑄⟩ \̃
𝜒0𝑉

= − sinh \̃ (11)

The second example is the Gaussian model

𝐹\ =
1
2
𝜒0𝑉 min

𝑛
(\ − 2𝜋𝑛)2, (12)

which is known to be realized for large 𝑁 at low temperature. The real-\ dependence of ⟨𝑄⟩\ /𝜒0𝑉

is given by
⟨𝑄⟩\
𝜒0𝑉

= 𝑖(\ mod 2𝜋) (13)

for 𝑉 ≫ 1, which indicates that the CP is broken. For imaginary \, we find the linear behavior.

⟨𝑄⟩ \̃
𝜒0𝑉

= −\̃ (14)

We can see the clear difference between the behaviors of ⟨𝑄⟩ \̃ /𝜒0𝑉 for these two models. It behaves
as − sinh \̃ for the instanton gas model (CP restored), while it behaves as −\̃ for the Gaussian model
(CP broken). Although the 4D SU(2) YM theory will not be as simple as these models, this
observable is still useful to investigate the CP restoration. In fact, the expectation value ⟨𝑄⟩ \̃ for
imaginary \ is sensitive to the tail of the distribution of 𝜌(𝑞). The imaginary theta term enhances
the contribution of large-𝑞 sectors because of the factor 𝑒− \̃𝑞 in the integrand of (6). Note that, for
these two examples, the tail of 𝜌(𝑞) behaves for 𝑞 ≫ 1 as follows:

𝜌(𝑞) ∼


exp
(
−𝑞 log 2𝑞

𝜒0𝑉

)
: instanton gas,

exp
(
− 𝑞2

2𝜒0𝑉

)
: Gaussian.

(15)
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3. 4D SU(2) gauge theory with a theta term

In this study, we focus on the SU(2) pure Yang-Mills theory on the 4D Euclidean space. The
action for the gauge field 𝐴𝑎

` (𝑎 = 1, 2, 3) (` = 1, . . . , 4) is defined by

𝑆𝑔 =
1

4𝑔2

∫
𝑑4𝑥 𝐹𝑎

`a𝐹
𝑎
`a , (16)

where 𝑔 is the coupling constant and 𝐹𝑎
`a is the field strength.

𝐹𝑎
`a = 𝜕`𝐴

𝑎
a − 𝜕a𝐴

𝑎
` − 𝜖𝑎𝑏𝑐𝐴𝑏

`𝐴
𝑐
a (17)

The topological charge is given by

𝑄 =
1

64𝜋2

∫
𝑑4𝑥 𝜖`a𝜌𝜎𝐹

𝑎
`a𝐹

𝑎
𝜌𝜎 , (18)

which takes an integer value on the compact space. We introduce the topological theta term
𝑆\ = −𝑖\𝑄 with a parameter \ ∈ R, so that the total action is 𝑆 = 𝑆𝑔 + 𝑆\ . Since the partition
function

𝑍 =

∫
D𝐴 𝑒−𝑆𝑔+𝑖 \𝑄 (19)

is invariant under the shift \ → \ + 2𝜋, the theory has 2𝜋 periodicity with respect to \. Since the
parameter \ flips its sign by the CP transformation \ → −\, the theta term explicitly breaks the CP
symmetry for \ ≠ 0. However, thanks to the 2𝜋 periodicity, the CP symmetry exists also at \ = 𝜋.

Next, we define the lattice action for the numerical study. The gauge field is represented by the
link variable 𝑈𝑛,` ∈ SU(2). The index 𝑛 labels the lattice sites. The plaquette is given by

𝑃
`a
𝑛 = 𝑈𝑛,`𝑈𝑛+ ˆ̀ ,a𝑈

†
𝑛+â,`𝑈

†
𝑛,a , (20)

where ˆ̀ represents the unit vector along the `-th direction. Then we define the plaquette action
with the lattice coupling constant 𝛽.

𝑆𝑔 = − 𝛽

4

∑︁
𝑛

∑̀︁
≠a

Tr(𝑃`a
𝑛 ) (21)

Similarly, we can define the topological charge on the lattice by the so-called "clover leaf" formula,
[6]

𝑄cl = − 1
32𝜋2

∑︁
𝑛

1
24

±4∑︁
`,a,𝜌,𝜎=±1

𝜖`a𝜌𝜎Tr(𝑃`a
𝑛 𝑃

𝜌𝜎
𝑛 ). (22)

Here the orientation of the plaquette is extended to the negative directions as well. The corresponding
anti-symmetric tensor 𝜖`a𝜌𝜎 also has negative indices, so that

1 = 𝜖1234 = −𝜖2134 = −𝜖−1234 = · · · . (23)

It is known that the naively defined topological charge 𝑄cl does not take an integer value on the
lattice due to the discretization effect. In order to recover the topological property of the gauge
field, we need to eliminate short-range fluctuations. In fact, there are some smoothing techniques,
such as the gradient flow, stout smearing and so on. By using such a technique, we can define the
smeared topological charge so that it becomes close to an integer. In this study, we introduce the
stout smearing to the hybrid Monte Carlo simulation, which is discussed in section 4.
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4. Stout smearing for the HMC

Since the CP symmetry at \ = 𝜋 is related to the 2𝜋 periodicity of \, the topological property
of the theory is essential in the study of the phase structure. Thus, we use the stout smearing [7]
to define the topological charge. In the hybrid Monte Carlo simulation, the drift force is used to
update the configuration. If the action has the theta term with the smeared topological charge, it
also contributes to the drift force. We can explicitly calculate the drift force from the smeared
topological charge by using stout smearing. In this section, we briefly review the stout smearing in
the hybrid Monte Carlo simulation.

Stout smearing is an iterative procedure to obtain the smeared link �̃�𝑛,` starting from the
original link 𝑈𝑛,`. We call the number of iterations 𝑁𝜌.

𝑈𝑛,` = 𝑈
(0)
𝑛,` → 𝑈

(1)
𝑛,` → · · · → 𝑈

(𝑁𝜌 )
𝑛,` = �̃�𝑛,` . (24)

In one (isotropic) smearing step from 𝑘 to 𝑘 + 1, the link variable 𝑈
(𝑘 )
𝑛,` ∈ SU(2) is mapped to

𝑈
(𝑘+1)
𝑛,` ∈ SU(2) defined by following formulae:

𝑈
(𝑘+1)
𝑛,` = 𝑒𝑖𝑌𝑛,`𝑈

(𝑘 )
𝑛,`, (25)

𝑖𝑌𝑛,` = − 𝜌

2
Tr(𝐽𝑛,`𝜏𝑎)𝜏𝑎, (26)

𝐽𝑛,` = 𝑈𝑛,`Ω𝑛,` −Ω†
𝑛,`𝑈

†
𝑛,`, (27)

Ω𝑛,` =
∑︁

𝜎 (≠`)

(
𝑈𝑛+ ˆ̀ ,𝜎𝑈

†
𝑛+�̂�,`

𝑈†
𝑛,𝜎 +𝑈

†
𝑛+ ˆ̀− �̂�,𝜎

𝑈
†
𝑛− �̂�,`

𝑈𝑛− �̂�,𝜎

)
. (28)

Here 𝜏𝑎 are the SU(2) generators in fundamental representation. The smearing step parameter
𝜌 > 0 should be chosen appropriately depending on the system.

In the hybrid Monte Carlo simulation, we obtain the smeared link �̃�𝑛,` by this procedure, and
then we use �̃�𝑛,` to calculate the topological charge (22) instead of the original link 𝑈𝑛,`. The
topological charge given by the stout smearing

𝑄 := 𝑄cl(�̃�) (29)

is used in the theta term 𝑆\ = −𝑖\𝑄 as well as in measuring the observable. In the step of molecular
dynamics, we need to calculate the drift force

𝐹𝑛,` = 𝑖𝜏𝑎𝐷𝑎
𝑛,`𝑆\ (30)

from the theta term. Although 𝑆\ is a complicated function of the original link variable 𝑈𝑛,`, it is
possible to calculate the drift force by reversing the smearing steps (24).

5. Result of the HMC

In this section, we show the result of the hybrid Monte Carlo simulation with the imaginary theta
term. For the stout smearing, we set 𝑁𝜌 = 40 and 𝜌 = 0.09 so that the topological charge is close
to an integer. In Fig. 1, we plot −⟨𝑄⟩ \̃/𝜒0𝑉 against \̃/𝜋 = \/𝑖𝜋 for various values of temperature

6
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Figure 1: The imaginary \ dependence of − ⟨𝑄⟩ \̃ /𝜒0𝑉 for various values of temperature in 0.92 ≤
𝑇/𝑇dec (0) ≤ 1.20 with increments of 0.04. The green solid curve is obtained by the instanton gas approxi-
mation, which is valid at high temperature. The purple solid line is obtained by the Gaussian model.

in the range 0.9 ≤ 𝑇/𝑇dec(\ = 0) ≤ 1.2. We found that, at high temperature, the data points are
consistent with the instanton gas approximation. On the other hand, the data points approach the
behavior of the Gaussian model at low temperature. It is convincing that the SU(2) YM theory
behaves as the instanton gas model at high temperature. However, it does not necessarily coincides
with the Gaussian model at low temperature since the situation of 𝑁 = 2 can be different from that
of large 𝑁 . Nevertheless, this observable is suitable for probing the phase structure. Indeed, we can
see that the behaviors of ⟨𝑄⟩ \̃/𝜒0𝑉 change drastically slightly above the deconfining temperature
𝑇dec(0) at \ = 0.

In order to see the temperature dependence of −⟨𝑄⟩ \̃/𝜒0𝑉 , we plot it against temperature at
fixed \/𝜋 = 0.75𝑖 in Fig. 2. The left figure is the result for 𝑉 = 163 × 5, and the right figure
is the result for 𝑉 = 203 × 5. The yellow curve shows the result of fitting by a cubic function
𝑓 (𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 where 𝑎, 𝑏, 𝑐 and 𝑑 are fitting parameters. The orange curve is the
derivative of 𝑓 (𝑥). We find that the derivative is the largest at around 𝑇peak ∼ 1.06𝑇dec(0). We also
find that the height of the peak grows as the spatial volume 𝑉s increases.

In Fig. 3(left), we plot the peak position 𝑇peak/𝑇dec(0) against 1/𝑉s obtained by the same
analysis for \/𝜋 = 0.6𝑖, 0.75𝑖 and 0.9𝑖. The significant volume dependence of 𝑇peak is not observed.
These results suggest that there is a phase transition around 𝑇/𝑇dec(0) ∼ 1.06. In Fig. 3(right), the
peak height of the fitting function is plotted against𝑉1/3

s . This non-linear finite size scaling suggests
that the phase transition is of the second order or higher.

The existence of the transition indicates that the distribution 𝜌(𝑞) of the topological charge
changes drastically around𝑇/𝑇dec(0) ∼ 1.06. Assuming that CP symmetry at \ = 𝜋 is spontaneously
broken at low temperature, the drastic change of 𝜌(𝑞) should correspond to the critical behavior
of ⟨𝑄⟩\=𝜋 . Thus, we identify the critical temperature 𝑇peak as the CP restoration temperature 𝑇CP,
which suggests 𝑇CP > 𝑇dec(0).
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Figure 2: The temperature dependence of − ⟨𝑄⟩ \̃ /𝜒0𝑉 at \/𝜋 = 0.75𝑖 for𝑉 = 163×5 (left) and𝑉 = 203×5
(right). We fit the data points by a cubic function 𝑓 (𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑. The orange solid line shows
the result of fitting. The red solid line is derivative of 𝑓 (𝑥) with respect to 𝑥.
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s . The straight lines represent
the fit to the behavior 𝑎𝑉1/3

s .

6. Summary

Recent studies on the ’t Hooft anomaly matching condition for the 4D SU(𝑁) gauge theory
have suggested that the phase structure at \ = 𝜋 should be nontrivial. For large 𝑁 , it is known that
the CP symmetry at \ = 𝜋 is spontaneously broken in the confined phase, while it is restored in the
deconfined phase. However, for small 𝑁 , a qualitatively different phase structure can be realized,
as long as the anomaly matching condition is satisfied. In this work, we investigated this issue for
𝑁 = 2 by hybrid Monte Carlo simulation of lattice gauge theory. We probed the restoration of the CP
symmetry by a sudden change of the topological charge distribution at \ = 0, which can be seen by
simulating the theory with imaginary \. This method is free from the sign problem. We measured
the normalized expectation value ⟨𝑄⟩ /𝜒0𝑉 of the topological charge as a probe of the distribution.
We found that this observable has a finite-temperature transition around 𝑇/𝑇dec(0) ∼ 1.06.

Although the deconfinement temperature 𝑇dec at \ = 𝜋 is not known, it is expected to be lower
than 𝑇dec(0). Thus, our results suggest that the CP symmetry at \ = 𝜋 is restored at the temperature
higher than the deconfinement temperature—unlike the situation at large 𝑁 . We plan to refine this
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result by taking the continuum limit. We are also trying to extend this method to the 4D SU(3) YM
theory, in order to see a possible qualitative difference between 𝑁 = 2 and 𝑁 = 3, as suggested
from the result in super YM theory.
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