
Probability Theory and Related Fields (2021) 181:329–375
https://doi.org/10.1007/s00440-021-01068-y

Phase transitions for spatially extended pinning

Francesco Caravenna1 · Frank den Hollander2

Dedicated to the memory of Harry Kesten, who for over half a century generously
showed the way in probability theory

Received: 10 June 2020 / Revised: 11 April 2021 / Accepted: 26 May 2021 / Published online: 9 June 2021
© The Author(s) 2021

Abstract
We consider a directed polymer of length N interacting with a linear interface. The
monomers carry i.i.d. random charges (ωi )

N
i=1 taking values in R with mean zero and

variance one. Each monomer i contributes an energy (βωi −h)ϕ(Si ) to the interaction
Hamiltonian, where Si ∈ Z is the height of monomer i with respect to the interface,
ϕ : Z → [0,∞) is the interaction potential,β ∈ [0,∞) is the inverse temperature, and
h ∈ R is the charge bias parameter. The configurations of the polymer are weighted
according to theGibbsmeasure associatedwith the interactionHamiltonian, where the
referencemeasure is givenby aMarkov chain onZ.We studyboth thequenched and the
annealed free energy permonomer in the limit as N → ∞.We show that each exhibits
a phase transition along a critical curve in the (β, h)-plane, separating a localized phase
(where the polymer stays close to the interface) from a delocalized phase (where the
polymer wanders away from the interface). We derive variational formulas for the
critical curves and we obtain upper and lower bounds on the quenched critical curve
in terms of the annealed critical curve. In addition, for the special case where the
reference measure is given by a Bessel random walk, we derive the scaling limit of the
annealed free energy as β, h ↓ 0 in three different regimes for the tail exponent of ϕ.
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1 Introduction

1.1 Motivation

Homogeneous pinning models, where a directed polymer receives a reward for every
monomer that hits an interface, have been the object of intense study. Both discrete and
continuous models have been analysed in detail, and a full understanding is available
of the free energy, the phase diagram and the typical polymer configurations as a
function of the underlying model parameters. Disordered pinning models, where the
reward depends on random weights attached to the interface or where the shape of the
interface is random itself, are much harder to analyse. Still, a lot of progress has been
made in past years, in particular, the effect of the disorder on the scaling properties of
the polymer has been elucidated to considerable depth. For an overview the reader is
referred to the monographs by Giacomin [21,22] and den Hollander [24], the review
paper by Caravenna et al. [13], and references therein.

Spatially extended pinning, where the interaction of themonomers depends on their
distance to the interface, remains largely unexplored. For a continuum model with an
interaction potential that decays polynomially with the distance, pinning-like results
have been obtained in Lacoin [25]. A continuum model for which the interaction
potential is non-zero only in a finite window around the interface was analysed in
Cranston et al. [18]. The goal of the present paper is to investigate what happens for
more general interaction potentials, both for discrete and for continuous models with
disorder.

The remainder of this section is organised as follows. In Sect. 1.2 we define our
model, which consists of a directed polymer carrying random charges that interact with
a linear interface at a strength that depends on their distance. In Sects. 1.3 and 1.4 we
look at the quenched, respectively, the annealed free energy, and discuss the qualitative
properties of the phase diagram. In Sect. 1.5 we recall certain scaling properties of
the Bessel random walk and its relation to the Bessel process, both of which play an
important role in our analysis. In Sect. 1.6 we state three theoremswhen the underlying
reference measure (describing the polymer without interaction) is a Markov chain. In
Sect. 1.7 we state three theorems for the limit of weak interaction when the reference
measure is the Bessel randomwalk, and show that this limit is related to the continuum
version of our model when the reference measure is the Bessel process. In Sect. 1.8 we
place the theorems in their proper perspective. In Sect. 1.9 we list some open problems
and explain how the proofs of the theorems are organised.
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Phase transitions for spatially extended pinning 331

1.2 Themodel

Let N0 = N ∪ {0}. Our model has three ingredients:

(1) An irreducible nearest-neighbour recurrent Markov chain S := (Sn)n∈N0 on Z

starting at S0 = 0, with law P = P0.
(2) An i.i.d. sequences of random charges ω := (ωn)n∈N on R, with law P.
(3) A non-negative function ϕ : Z → [0,∞), playing the role of an interaction poten-

tial, such that

0 < ‖ϕ‖∞ < ∞, lim
x→∞ϕ(x) = 0, lim

x→−∞ϕ(x) exists. (1.1)

Our model is defined through the quenched partition function

Zω
N ,β := E

[
eβ

∑N
n=1 ωnϕ(Sn)

]
, N ∈ N0, (1.2)

which describes a directed polymer chain n �→ (n, Sn) of length N carrying charges
n �→ ωn that interact with a linear interface according to the interaction potential
x �→ ϕ(x) at inverse temperature β ∈ [0,∞). Without loss of generality we may
replace βωn by βωn − h, with h ∈ R the charge bias parameter, and assume that ω is
standardized, i.e.,

E[ωn] = 0, Var[ωn] = 1, (1.3)

after which (1.2) becomes

Zω
N ,β,h := E

[
e
∑N

n=1(βωn−h)ϕ(Sn)
]
, N ∈ N0. (1.4)

Throughout the sequel we assume that

M(t) := E
[
etω1

]
< ∞ ∀ t ∈ R. (1.5)

Moreover, defining τ1 := inf{n ∈ N : Sn = 0} to be the first return time of S to 0, we
assume that there exists an α ∈ [0,∞) such that

∑
n∈N

P(τ1 = n) = 1, P(τ1 = n) = n−(1+α)+o(1), n → ∞. (1.6)

Note that E(τ1) = ∞ for all α ∈ (0, 1). If S has period 2, then the last asymptotics is
assumed to run along 2N.

Remark 1.1 (Bessel random walk). An example of a Markov chain S satisfying (1.6)
that will receive special attention in this paper is the one with transition probabilities

P(Sn+1 = x ± 1 | Sn = x) =: 1
2

[
1± d(x)

]
, x ∈ Z, (1.7)
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where

d(x) = −d(−x), x ∈ Z, d(x) = −(α − 1
2 ) x−1 + O(|x |−(1+ε)), |x | → ∞,

(1.8)

for some α ∈ (0, 1) and ε > 0. This choice, which is referred to as the Bessel random
walk, has a drift away from the origin (α < 1

2 ) or towards the origin (α > 1
2 ) that decays

inversely proportional to the distance. The case d(x) ≡ 0 (α = 1
2 ) corresponds to

simple randomwalk. The Bessel randomwalkwas studied by Lamperti [26] and, more
recently, by Alexander [2] (who actually considered the one-sided version (|Sn|)n∈N0 ).
It is known that (1.6) holds in a sharp form [2, Theorem 2.1], namely,

P(τ1 = n) ∼ c n−(1+α), n → ∞, (1.9)

along 2N for some c ∈ (0,∞). More refined asymptotics are available as well (see
Sect. 1.5 below).

Remark 1.2 The model defined in (1.4) provides a natural interpolation between the
pinning model and the copolymer model, which correspond to the choices

ϕpin(x) = 1{x=0}, ϕcop(x) = 1{x≤0}. (1.10)

See Giacomin [21,22] and den Hollander [24] for details. Actually, in the copoly-
mer model the interaction is via the bonds rather than the sites of the path, i.e.,
ϕcop((x, y)) = 1{x+y≤0}, but we will ignore such refinements. Moreover, the stan-
dard parametrisation of the disorder in the copolymer model is −2β(ωn + h) rather
than βωn −h. Again, this is the same after a change of parameters. Our choice has the
advantage that the free energy is jointly convex in (β, h) and that the critical curve is
non-negative (see Fig. 1).

1.3 The quenched free energy

The quenched free energy is defined by

fque(β, h) := lim
N→∞

1

N
log Zω

N ,β,h P-a.s. and in L1(P). (1.11)

For the constrained partition function

Zω,c
N ,β,h := E

[
e
∑N

n=1(βωn−h)ϕ(Sn) 1{SN=0}
]
, N ∈ N0, (1.12)

the existence of the limit

lim
N→∞

1

N
log Zω,c

N ,β,h P-a.s. and in L1(P) (1.13)
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follows by standard super-additivity arguments. Since ϕ is bounded and P has finite
exponential moments (recall (1.5)), the limit is finite.We will show in “Appendix A.2”
that

lim
N→∞

1

N
log

Zω,c
N ,β,h

Zω
N ,β,h

= 0 P-a.s. and in L1(P), (1.14)

so that (1.11) follows.
By (1.1), for every ε > 0 there is an M ∈ N0 such that 0 ≤ ϕ(x) ≤ ε for x ≥ M .

Therefore

Zω,c
N ,β,h ≥ e−‖ϕ‖∞∑M−1

n=1 (β|ωn |+|h|)−ε
∑N

n=M (β|ωn |+|h|) P(Sn ≥ M ∀ M < n ≤ N )

∀ M ∈ N0. (1.15)

We will show in “Appendix A.1” that, by (1.6),

lim
N→∞

1

N
log P(Sn ≥ M ∀ M < n ≤ N ) = 0 ∀ M ∈ N0, (1.16)

and so it follows that fque(β, h) ≥ −ε(βE[|ω1|] + |h|). Since ε > 0 is arbitrary, we
obtain the important inequality

fque(β, h) ≥ 0 ∀β ∈ [0,∞), h ∈ R. (1.17)

It is therefore natural to define the two phases

Lque := {(β, h) : fque(β, h) > 0},
Dque := {(β, h) : fque(β, h) = 0}, (1.18)

which we refer to as the quenched localized phase, respectively, the quenched delo-
calized phase.

By (1.11), (β, h) �→ fque(β, h) is the pointwise limit of jointly convex functions.
Moreover, h �→ Zω

N ,β,h is non-increasing, so that h �→ fque(β, h) is non-increasing
as well. Furthermore, β �→ E[log Zω

N ,β,h] is convex and (by direct computation) has

zero derivative at β = 0, so that β �→ fque(β, h) is non-decreasing on [0,∞).
From the monotonicity of h �→ fque(β, h) it follows that Lque and Dque are sep-

arated by a quenched critical curve hque
c : [0,∞) → [0,∞) whose graph is ∂Dque

(see Fig. 1):

Lque := {(β, h) : h < hque
c (β)},

Dque := {(β, h) : h ≥ hque
c (β)}. (1.19)

From the convexity of (β, h) �→ fque(β, h) it follows that the lower level set Dque =
{(β, h) : fque(β, h) ≤ 0} is convex. Since Dque is the upper graph of hque

c , it follows
that hque

c is convex and hence continuous. In Sect. 1.6 we will see that hque
c is finite
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Fig. 1 Qualitative plot of

β �→ h
que
c (β)

everywhere. Since S is recurrent, it follows from the theory of the homogeneous
pinning model (Giacomin [21,22], den Hollander [24]) that fque(0, h) > 0 for h < 0
and fque(0, h) = 0 for h ≥ 0. Hence hque

c (0) = 0. (Note that ϕ(x) ≥ ϕ(x∗)1{x∗}(x) for
any x∗ ∈ Z with ϕ(x∗) > 0. Therefore we can dominate the quenched free energy for
β = 0 by the free energy of the homogeneous pinning model with a strictly positive
pinning reward.)

Finally, from the monotonicity of β �→ fque(β, h) on [0,∞) it follows that
fque(β, h) ≥ fque(0, h) > 0 for h < 0, so that hque

c (β) ≥ hque
c (0) = 0 forβ ≥ 0. Since

hque
c is convex, this implies that hque

c is non-decreasing, and is strictly increasing as
soon as it leaves zero. In Sect. 1.6wewill see that hque

c (β) > 0 for allβ > 0 (see Fig. 1).

1.4 The annealed free energy

The annealed partition function associated with (1.4) is

Z ann
N ,β,h := E[Zω

N ,β,h] = E
[
e
∑N

n=1 ψβ,h(Sn)
]
, N ∈ N0, (1.20)

where

ψβ,h(x) := logM(βϕ(x)) − hϕ(x). (1.21)

This is the partition function of the homogeneous pinning model with potential ψβ,h .
A delicate point is that ψβ,h does not have a sign: it may be a mixture of attractive and
repulsive interactions. This comes from the fact that both the charge distribution and
the interaction potential are general.

The annealed free energy is defined by

fann(β, h) := lim
N→∞

1

N
log Z ann

N ,β,h . (1.22)

For the constrained partition function

Z ann,c
N ,β,h := E

[
e
∑N

n=1 ψβ,h(Sn) 1{SN=0}
]
, N ∈ N0, (1.23)
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Fig. 2 Qualitative plot of
β �→ hannc (β)

the existence of the limit

lim
N→∞

1

N
log Z ann,c

N ,β,h (1.24)

again follows by standard super-additivity arguments. Sinceψβ,h is bounded, the limit
is finite. The analogue of (1.14), which will be proved in Appendix A.3, reads

lim
N→∞

1

N
log

Z ann,c
N ,β,h

Z ann
N ,β,h

= 0, (1.25)

so that (1.22) follows.
The annealed localized phase, annealed delocalized phase and annealed critical

curve are defined as

Lann := {(β, h) : fann(β, h) > 0} = {(β, h) : h < hann
c (β)},

Dann := {(β, h) : fann(β, h) = 0} = {(β, h) : h ≥ hann
c (β)}. (1.26)

As is clear from (1.21) and the fact that ϕ is non-negative, fann(β, h) is non-increasing
and convex as a function of h, and non-decreasing as a function of β but not necessarily
convex. Laterwewill see that nonethelessβ �→ hann

c (β)has a shape that is qualitatively
similar to that of β �→ hque

c (β) (see Fig. 2).
An important property of the annealed free energy is that it provides an upper bound

for the quenched free energy: by Jensen’s inequality we have fque(β, h) ≤ fann(β, h)

for all β ∈ [0,∞) and h ∈ R. Recalling (1.17), we therefore see that

0 ≤ hque
c (β) ≤ hann

c (β) ∀β ≥ 0. (1.27)

Unlike for the pinning model and the copolymer model, for general potentials ϕ the
annealed free energy and the annealed critical curve are not known explicitly.

1.5 Scaling properties of the Bessel randomwalk

Part of our results below involve the annealed free energy and the annealed critical
curve associated with a Brownian version of themodel, where the referencemeasure is
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based on theBessel process X := (Xt )t≥0 of dimension 2(1−α) (see [27, ChapterXI])
defined by

dXt = dBt − α − 1
2

Xt
dt on [0,∞) with reflection at 0, (1.28)

where α ∈ (0, 1) and (Bt )t≥0 is standard Brownian motion on R.1 Informally, X
makes infrequent visits to 0 when α < 1

2 and frequent visits to 0 when α > 1
2 . The

choice α = 1
2 corresponds to reflected Brownian motion, i.e., Xt = |Bt | with (Bt )t≥0

standard Brownian motion. We write P̂x to denote the law of X given X0 = x . When
x = 0, we simply write P̂ = P̂0.

For the semigroup gt (x, y) := P̂x (Xt ∈ dy)/dy of X there is an explicit formula,
namely,

gt (x, y) = xα y1−α

t
e−

x2+y2

2t J−α

(
xy

t

)
, x, y ∈ (0,∞), t > 0, (1.29)

where J−α(z) = ∑
m∈N0

(−1)m

m!
(m+1−α)
( z
2 )

2m−α is the Bessel function of index −α.
Since

J−α(z) ∼ 2α


(1− α)
z−α, z ↓ 0, (1.30)

we also have the explicit formula

gt (y) := gt (0, y) := P̂(Xt ∈ dy)

dy
= 2α


(1− α)

y1−2α

t1−α
e−

y2

2t , y ∈ [0,∞), t > 0.

(1.31)

It follows that

P̂(Xt < ε) ≤ ε2(1−α)

cα t1−α
, t, ε > 0, cα := 
(2− α)

2α−1 , (1.32)

and this inequality becomes sharp as ε ↓ 0, namely,

lim
ε↓0

cα

ε2(1−α)
P̂x (Xt < ε) = lim

ε↓0
cα

ε2(1−α)

∫ ε

0
gt (x, y) dy = ĝt (x, 0), x ≥ 0,

(1.33)

where

ĝt (x, 0) := 1

t1−α
e−

x2
2t , x ∈ [0,∞), t > 0. (1.34)

1 Formally, the squared Bessel process (Yt )t≥0 is defined by dYt = 2
√

Yt dBt + 2(1 − α) dt on [0,∞)

with reflection at 0, and (Xt )t≥0 is defined by setting Xt = √
Yt .
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The local time of X at 0 up to time T ≥ 0 is defined as the following limit in
probability:

L̂T (0) := lim
ε↓0

cα

ε2(1−α)

∫ T

0
dt 1(0,ε)(Xt ). (1.35)

We will informally write

L̂T (0) =:
∫ T

0
dt δ̂0(Xt ). (1.36)

Note that Ê[L̂T (0)] = ∫ T
0

dt
t1−α = ∫ T

0 ĝt (0, 0) dt = 1
α

T α .
The relation of the Bessel process with the Bessel random walk defined in

Remark 1.1 is that the latter satisfies the invariance principle (see Lamperti [26])

(|S�Nt�|/
√

N
)

t≥0 �⇒ (Xt )t≥0, N → ∞. (1.37)

Write Pk′( · ) := P( · | S0 = k′) to denote the law of the Bessel random walk started at
k′ ∈ Z, so that P = P0. Local limit theorems for the transition probabilities Pk′(|Sn| =
k) of the Bessel randomwalk have been established in [2, Theorem 2.4]. The following
formulas hold in the limit as n → ∞, uniformly in a specified range of k, k′ ∈ N0. We
assume that k − k′ has the same parity as n, i.e., k − k′ − n is even, because otherwise
Pk′(|Sn| = k)=0.

• Low ending heights: For any ε > 0 and k̄n = o(
√

n ), uniformly in 0 ≤ k′ ≤ √
n/ε

and 0 ≤ k ≤ k̄n ,

Pk′(|Sn| = k) ∼ 2 c(k)

n1−α
ĝ1

(
k′√

n
, 0

)
1{k−k′−n is even}, n → ∞, (1.38)

where ĝ1 is defined in (1.34) and c : N0 → (0,∞) is an explicit function (which
depends on the function d : Z → R in (1.7)) such that

c(k) ∼ 2α


(1− α)
k1−2α, k → ∞. (1.39)

In case of a low starting height k′ = o(
√

n ), (1.38) simplifies because ĝ1(
k′√

n
, 0) ∼

ĝ1(0, 0) = 1.
• Intermediate ending height: For any ε > 0, uniformly in 0 ≤ k′ ≤ √

n/ε and
ε
√

n ≤ k ≤ √
n/ε,

Pk′(|Sn| = k) ∼ 2√
n

g1

(
k′√
n,

k√
n

)
1{k−k′−n is even}, n → ∞, (1.40)
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where g1 is the density in (1.29) at time 1. In case of a low starting height k′ =
o(
√

n ), (1.38) simplifies because g1(
k′√

n
, k√

n
) ∼ g1(0, k√

n
) = g1(

k√
n
) reduces to

(1.31).
• High ending heights: There exists a C = C(α) < ∞ such that, for all k ≥ √

n,

P(|Sn| = k) ≤ C√
n
e−

k2
8n 1{k−n is even}. (1.41)

It follows from (1.38)–(1.41) that, for some C < ∞,

∀ n ∈ N ∀ k ∈ Z : P(|Sn| = k) ≤ C
(1+ |k|)1−2α

n1−α
e−

k2
8n 1{k−n is even}. (1.42)

This uniform bound will be needed to control scaling computations.

Remark 1.3 Equations (1.38) and (1.40) for k′ = 0 are proved in [2, Theorem 2.4],
while the case k′ �= 0 follows via the relation Pk′(|Sn| = k) = ∑n

m=1 Pk′(τ1 =
m) P0(|Sn−m | = k) + O(Pk′(τ1 > n)) (see also the estimates on Pk′(τ1 = m) pro-
vided in [2, Theorem 2.2]). We further point out the duality relation Pk′(|Sn| = k) =
1+d(k′)
1+d(k)

λk′
λk

Pk(|Sn| = k′), where λk :=∏k
x=1

1−d(x)
1+d(x)

.

1.6 General properties

Our first set of theorems concerns the quenched and the annealed critical curve.

Theorem 1.4 β �→ hque
c (β) and β �→ hann

c (β) can be characterized in terms of
variational formulas (see Theorems 2.4–2.5 below).

Theorem 1.5 For every β ≥ 0,

(1+ α) hann
c

(
β

1+ α

)
≤ hque

c (β) ≤ hann
c (β). (1.43)

As already noted in (1.27), the second inequality in (1.43) is an immediate consequence
of Jensen’s inequality applied to (1.12) and (1.23). The first inequality in (1.43), which
is known as the Monthus–Bodineau–Giacomin bound, was previously shown to hold
for the copolymer model [9], [11]. We show that it holds for the general class of
potentials satisfying (1.1).

In Sect. 3.3 we will show that Fann(β, 0) > 0 for all β > 0. This implies that
hann

c (β) > 0 for all β > 0, which via (1.43) settles the claim made at the end of
Sect. 1.3 that hque

c (β) > 0 for all β > 0.

1.7 Scaling for weak interaction

Our second set of theorems looks at the scaling of the annealed free energy in the
limit of weak interaction, for the special case where S is the Bessel random walk
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with parameter α ∈ (0, 1) defined in Remark 1.1 and the interaction potential ϕ is
symmetric: ϕ(−x) = ϕ(x) for all x ∈ Z. We consider three different regimes for the
tail behaviour of ϕ, namely,

lim|x |→∞ |x |ϑϕ(x) = c ∈ (0,∞) (1.44)

with

ϑ ∈ (0, 1− α),

ϑ ∈ (1− α, 2(1− α)),

ϑ ∈ (2(1− α),∞).

(1.45)

Theorem 1.6 Suppose that α ∈ (0, 1) and ϑ ∈ (0, 1− α). For every β̂ ∈ (0,∞) and
ĥ ∈ (0,∞),

lim
δ↓0 δ−1 Fann

(
β̂ , δ(1−ϑ)/2, ĥ δ(2−ϑ)/2

)
= F̂ann(β̂, ĥ), (1.46)

where

F̂ann(β̂, ĥ) := lim
T→∞

1

T
log Ê

[
exp

(
1
2 β̂2c2

∫ T

0
dt X−2ϑ

t − ĥc
∫ T

0
dt X−ϑ

t

)]
(1.47)

with c the constant in (1.44).

Theorem 1.7 Suppose that α ∈ (0, 1) and ϑ ∈ (1−α, 2(1−α)). For every β̂ ∈ (0,∞)

and ĥ ∈ (0,∞),

lim
δ↓0 δ−1 Fann

(
β̂ , δα/2, ĥ δ(2−ϑ)/2

)
= F̂ann(β̂, ĥ), (1.48)

where

F̂ann(β̂, ĥ) := lim
T→∞

1

T
log Ê

[
exp

(
1
2 β̂

2 c∗[ϕ2] L̂T (0) − ĥc
∫ T

0
dt X−ϑ

t

)]
(1.49)

with c the constant in (1.44) and c∗[ϕ2] = ∑
x∈Z ϕ2(x) c(x), where x �→ c(x) :=

c(|x |) is the function in (1.38)–(1.39).

Theorem 1.8 Suppose that α ∈ (0, 1) and ϑ ∈ (2(1− α),∞). For every β̂ ∈ (0,∞)

and ĥ ∈ (0,∞),

lim
δ↓0 δ−1 Fann

(
β̂ , δα/2, ĥ δα

)
= F̂ann(β̂, ĥ), (1.50)
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Fig. 3 Plot of β̂ �→ ĥannc (β̂) in
(1.53)

where

F̂ann(β̂, ĥ) := lim
T→∞

1

T
log Ê

[
exp

({
1
2 β̂

2 c∗[ϕ2] − ĥ c∗[ϕ]
}

L̂T (0)
)]

(1.51)

with c∗[ϕ] = ∑
x∈Z ϕ(x)c(x), where x �→ c(x) := c(|x |) is the function in (1.38)–

(1.39).

Note that, because of (1.39) and (1.44), c∗[ϕ2] < ∞ when ϑ > 1−α and c∗[ϕ] <

∞ when ϑ > 2(1 − α). In Appendix B.1 we will show that the annealed partition
functions associated with the Bessel process appearing in Theorems 1.6–1.8 are finite,
and so are the corresponding annealed free energies.

The annealed free energy F̂ann(β̂, ĥ) appearing in Theorems 1.6–1.8 has its own
phase diagram, with phases

ˆLann := {(β̂, ĥ) : F̂ann(β̂, ĥ) > 0},
ˆDann := {(β̂, ĥ) : F̂ann(β̂, ĥ) = 0}, (1.52)

and with a critical curve that is a perfect power law (see Fig. 3), namely,

ĥann
c (β̂) = Ĉ β̂E , β̂ ∈ (0,∞), (1.53)

where

E = E(α, ϑ) =
⎧⎨
⎩

(2− ϑ)/(1− ϑ), ϑ ∈ (0, 1− α),

(2− ϑ)/α, ϑ ∈ (1− α, 2(1− α)),

2, ϑ ∈ (2(1− α),∞),

(1.54)

plays the role of a critical exponent (see Fig. 4). The scaling of the annealed critical
curve in Theorems 1.6–1.8 can be summarised as saying that hann

c (β) ∼ ĥann
c (β),

β ↓ 0.
The constant Ĉ depends on α, ϕ and can be characterized as the unique solution

Ĉ ∈ (0,∞) of the equation F̂ann(1, Ĉ) = 0. This constant is hard to identify in the
first two regimes. In the third regime ϑ ∈ (2(1−α),∞) it is found by inserting (1.53)
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Fig. 4 Plot of the critical
exponent E in (1.54) as a
function of ϑ for fixed α.
The three regimes for ϑ are
indicated. No information is
available at the two crossover
points

into the equation

�
(
β̂, ĥann

c (β̂)
) = 0 with �(β̂, ĥ) := 1

2 β̂
2 c∗[ϕ2] − ĥ c∗[ϕ], (1.55)

which gives

Ĉ = c∗[ϕ2]
2c∗[ϕ] . (1.56)

We show in “Appendix B.2” that, for the the third regime ϑ ∈ (2(1 − α),∞), the
annealed free energy F̂ann(β̂, ĥ) can be computed explicitly, namely,

F̂ann(β̂, ĥ) =
(

(α)

[
0 ∨ �(β̂, ĥ)

])1/α
. (1.57)

Remark 1.9 In view of the scaling limit for the annealed free energies described in
Theorems 1.6–1.8, it is natural to expect a scaling limit for the corresponding annealed
critical curves as well. Indeed, the continuum critical curve is the perfect power law
in (1.53), where Ĉ and E depend on α and ϕ (and hence on ϑ). We conjecture that
(1.53) captures the asymptotic behaviour for weak interaction of the discrete critical
curve hann

c (β) as well, in the sense that in all three regimes we should have

lim
β↓0 β−E hann

c (β) = Ĉ . (1.58)

This scaling relation cannot be simply deduced fromTheorems 1.6–1.8, because point-
wise convergence of the free energies does not imply convergence of their zero-level
sets, of which the critical curves are the boundaries. However, half of (1.58) follows
because if the continuum free energy is strictly positive, then the rescaled discrete free
energy eventually becomes strictly positive too in the weak interaction limit, which
leads to

lim inf
β↓0 β−E hann

c (β) ≥ Ĉ . (1.59)

In order to prove (1.58) extra work is needed: the scaling of the free energies in (1.46),
(1.48) and (1.50) must be strengthened to a perturbative scaling, as shown in [10,12]
for the copolymer model and in [16] for the pinning model.
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1.8 Discussion

We comment on the results in Sects. 1.6–1.7.

1. The results in Theorems 1.4–1.5 are known for the special case where the inter-
action potential is that of the pinning model or the copolymer model defined in
(1.10). However, the techniques used for these two cases do not carry over to the
general class of potentials considered in (1.1). Intuitively, the reason why exten-
sion is possible is that the conditions stated in (1.1) say that, outside a large interval
around the origin in Z, the interaction potential is controlled by a multiple of that
of the copolymer model.

2. As we will see in Sect. 2, the variational formula for hque
c (β) mentioned in The-

orem 1.4 involves a supremum over the space of all shift-invariant probability
distributions on the set of infinite sequences of words of arbitrary length drawn
from an infinite sequence of letters taking values inR×Z. The supremum involves
a quenched rate function that captures the complexity of the interplay between the
disorder of the charges and the excursions of the polymer away from the inter-
face. This variational formula is hard to manipulate, but it is the starting point
for the proof of Theorems 1.5. The variational formula for hann

c (β) mentioned in
Theorem 1.4 is simpler, but still not easy to manipulate (see (1.62) below).

3. Note that for h = 0 and β > 0 the annealed partition function Z ann
N ,β,h is bounded

frombelowby the partition function of a homogenous pinningmodelwith a strictly
positive reward, which is localized. The lower bound in Theorem 1.5 therefore
shows that hque

c (β) > 0 for every β > 0. Since β �→ hque
c (β) is convex, it must

therefore be strictly increasing (see Fig. 1).
4. Disorder has a tendency to smoothen the phase transition. In Caravenna and den

Hollander [14] a general smoothing inequality is derived that reads as follows:

• For every β > 0 there exist C(β) < ∞ and δ(β) > 0 such that

0 ≤ fque(β, hque
c (β) − δ) ≤ C(β)δ2 ∀ 0 ≤ δ ≤ δ(β), (1.60)

i.e., the quenched phase transition is at least of second order.

Unfortunately, the key assumption under which this smoothing inequality is
derived is not obviously met by spatially extended pinning: it does when the
tail exponent of ϕ (recall (1.44)) satisfies ϑ ∈ (2,∞), but it is unclear whether
it also does when ϑ ∈ (0, 2]. Indeed, the key assumption in [14] requires that
Zω,c

N ,β,h ≥ N−γ cω
β,h for some γ > 0 with E[log cω

β,h] > −∞. Applying Jensen’s
inequality to (1.12), we get

Zω,c
N ,β,h ≥ e

∑N
n=1(βωn−h)E[ϕ(Sn)|SN=0] P(SN = 0), N ∈ N. (1.61)

In general, if P(SN = 0) ≥ C N−γ for some γ, C > 0 and all N ∈ N and,
furthermore, supN∈N

∑N
n=1 |E[ϕ(Sn) | SN = 0]| < ∞, then the assumption

is met (recall (1.3)). For the Bessel random walk, the former holds by (1.38) for
γ = 1−α, while the latter holds by (1.41) when ϕ(x) ∼ c |x |−ϑ with ϑ ∈ (2,∞),
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because in that case, for n ≤ N/2 (by symmetry), supN∈N E[ϕ(Sn) | SN = 0] �
ϕ(
√

n ) � n−ϑ/2 is summable.
5. Theorems 1.6–1.8 give detailed information about the scaling of the annealed

free energy and the annealed critical curve in the limit of weak interaction. The
scaling limits correspond to annealed free energies and annealed critical curves
for Brownian versions of the model involving the Bessel process Xα , which are
interesting in their own right. The result is only valid for the Bessel random walk,
and shows a trichotomy depending on the parameters α and ϑ .

• The regimeϑ ∈ (0, 1−α) corresponds to a long-range interaction potential and
is not pinning-like. When localized, the continuum polymer spends a positive
fraction of the time near any height x ∈ R, and this fraction tends to zero as
|x | ↓ 0 or |x | → ∞. Away from 0 it does not behave like the Bessel process
conditioned to return to 0.

• The regime ϑ ∈ (1 − α, 2(1 − α)) corresponds to an intermediate-range
interaction potential and exhibits some pinning-like features. When localized,
the continuum polymer visits 0 a positive fraction of the time. Away from 0 it
does not behave like the Bessel process conditioned to return to 0.

• The regime ϑ ∈ (2(1−α),∞) corresponds to a short-range interaction poten-
tial and is pinning-like. When localized, the continuum polymer visits 0 a
positive fraction of the time. Away from 0 it behaves like the Bessel process
conditioned to return to 0.

In the last regime the behaviour is similar to that of the homogeneous pinning
model with ϕ(x) = c1{x=0}, for which it is known that hann

c (β) ∼ 1
2cβ2, β ↓ 0

(see Giacomin [21], [22], den Hollander [24]). In fact, the proof of Theorem 1.8
will show that the scaling in the last regime is valid for any ϕ such that c∗[ϕ2]
and c∗[ϕ] are finite, i.e., (1.44) may be replaced by the weaker condition ϕ(x) =
O(|x |−2(1−α)−ε) for some ε > 0.

6. The three regimes for ϑ represent three universality classes. The critical cases
ϑ = 1 − α and ϑ = 2(1 − α) are more delicate and we have skipped them.
Also, we have not investigated what happens when the scaling of the interaction
potential in (1.44) is modulated by a slowly varying function. For the same reason
we have assumed that the error term in (1.8) is O(|x |−(1+ε))with ε > 0 rather than
o(|x |−1), since the latter may give rise to modulation by slowly varying functions
in (1.38) and (1.39) (see Alexander [2]).

7. Theorems 1.6–1.8 are deduced from scaling properties of the annealed partition
function. They are not specific to the annealed model. In fact, analogous results
hold for every homogeneous pinning potential that is a linear combination of
potentials with a polynomial tail. See Sect. 4 for more details.

8. By the considerations made in Sect. 3, the annealed model defined in (1.20)–(1.21)
is localized (i.e., fann(β, h) > 0, h < hann

c (β)) if and only if

∑
m∈N

E

[
e
∑m

n=1 ψβ,h(Sn) 1{τ1=m}
]

> 1, (1.62)
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where we recall that τ1 denotes the first return time of S to 0. Although the starting
point 0 seems to play a special role in (1.62), it can be shown that the criterion in
(1.62) is invariant under spatial shifts of ψβ,h (see Appendix C).

A natural question iswhat happenswhen the randomwalk S is transient, i.e., P(τ1 <

∞) = ∑
n∈N K (n) =: r < 1. For the constrained partition function Zω,c

N ,β,h , working
with a transient renewal process with law K is equivalent to working with a recurrent
renewal process with law K/r and adding a depinning term

∑N
n=1(log r)1{Sn=0} in the

exponential in (1.12). This amounts to replacing ψβ,h(x) by ψβ,h(x)+ (log r)1{x=0},
and so instead of (1.62) the localization condition for the annealed model becomes

∑
m∈N

E
[
e
∑m

n=1 ψβ,h(Sn) 1{τ1=m}
]

>
1

r
. (1.63)

(I) For the copolymer model we have ϕ(x) = ϕcop(x) = 1{x≤0} (recall (1.10)) and
ψβ,h(x) = ( 12β

2 − h)1(−∞,0](x). Therefore hann
c (β) = 1

2β
2 and, in fact, the

left-hand side of (1.62) is ≤ 1 for h ≤ hann
c (β) and is = ∞ for h > hann

c (β).
This means that the annealed critical curve hann

c does not depend on r , and hence
neither do the bounds in (1.43). In other words, making the underlying renewal
process transient or, equivalently, adding a homogeneous depinning term at zero,
does not modify the annealed critical curve of the copolymer model. In essence
this is due to the fact that the copolymer potential is long range (i.e.,ψβ,h(x) does
not vanish as x → −∞).

(II) For the pinning model, adding a depinning term at zero amounts to shifting h and
this may have an effect. In essence this is due to the fact that the pinning potential
ϕ(x) = ϕpin(x) = 1{x=0} is short range.

1.9 Open problems and outline

1. Are the inequalities in (1.43) strict for allβ > 0? For the copolymer model (ϕ(x) =
1{x≤0}) the answer is yes for all α > 0 (Bolthausen et al. [11]). Moreover, it is
known that (Bolthausen and den Hollander [10], Caravenna and Giacomin [12])

lim
β↓0 β−1hann

c (β) = 1, lim
β↓0 β−1hque

c (β) = C(α), (1.64)

with C(α) ∈ (1/(1 + α), 1) for 0 < α < 1 (Bolthausen et al. [11]) and C(α) =
1/(1+α) for α ≥ 1 (Berger et al. [4]). For the pinning model (ϕ(x) = 1{x=0}) the
answer depends on α: no for 0 < α < 1

2 (the upper bound is an equality), yes for
α > 1

2 . Moreover, it is known that

lim
β↓0 β−2hann

c (β) = 1
2 , lim

β↓0 β−2hque
c (β) = C ′(α), (1.65)

with C ′(α) = 1
2 for 0 < α < 1 and C ′(α) ∈ (0, 1

2 ) for α > 1. As a matter of fact,
refined estimates are available:
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• α ∈ (0, 1
2 ): hann

c (β) = hque
c (β) for β > 0 small enough (Alexander [1], see

also Cheliotis and den Hollander [17]);
• α ∈ ( 12 , 1): hann

c (β) − hque
c (β) ∼ cα β2α/(2α−1) as β ↓ 0 for a universal

constant cα ∈ (0,∞) (Caravenna et al. [16], and previously Alexander and
Zygouras [3], Derrida et al. [20]).

• α = 1
2 : hann

c (β) − hque
c (β) = exp(− π

2β2 [1 + o(1)]) (Berger and Lacoin [6],
and previously Giacomin et al. [23]).

For an overview, we refer the reader to Giacomin [22].
2. Determine the order of the quenched phase transition. For the copolymer model it

is known that the phase transition is of infinite order when α = 0 (Berger et al. [5]).
The same is conjectured to be true for α ∈ (0, 1).

3. Identify the scaling for weak interaction of the annealed model in the critical cases
ϑ = 1− α and ϑ = 2(1− α).

4. Identify the scaling for weak interaction of the quenched model. Because of The-
orem 1.5, the same exponent E as in (1.54) applies.

5. The qualitative shape of the critical curve in Fig. 1 depends on our assumption
in (1.1) that ϕ ≥ 0. A reflected picture holds when ϕ ≤ 0. It appears that for ϕ

with mixed signs there are two critical curves β �→ hque
c,1 (β) and β �→ hque

c,2 (β),
separating a single quenched delocalized phaseDque from two quenched localized
phases Lque

1 and Lque
2 that lie above Dque, respectively, below Dque. What are the

properties of these critical curves?
6. What happens when β = βN and h = hN with βN , hN ↓ 0 as N → ∞.
7. Is it possible to include non-nearest-neighbour random walks?

Outline The remainder of this paper is organized as follows. Theorem 1.4 is proved in
Sect. 2, Theorem 1.5 in Sect. 3 and Theorems 1.6–1.8 in Sect. 4. “Appendices A and
B” collect a few technical facts that are needed along the way.

2 Proof of Theorem 1.4

In Sect. 2.1 we formulate annealed and quenched large deviation principles (LDPs)
that are an adaptation to our model of the LDPs developed in Birkner [7] and
Birkner et al. [8]. The latter concern LDPs for random sequences of words cut out
from random sequences of letters according to a renewal process. In Sect. 2.2 we for-
mulate variational characterizations of the annealed and quenched critical curves that
are an adaptation of the characterizations derived for the pinning model in Cheliotis
and den Hollander [17] and for the copolymer model in Bolthausen et al. [11]. In
Sect. 2.3 we explain how the variational characterizations follow from the LDPs via
Varadhan’s lemma.

2.1 Annealed and quenched LDP

Our starting observation is that the partition function in (1.4) depends on the sequence
of words Y = (Yi )i∈N determined by the disorder and by the excursions of the polymer,
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namely,

Yi = Yi (ω, S) := (
(ωτi−1+1, . . . , ωτi ), (Sτi−1+1, . . . , Sτi )

)
, i ∈ N, (2.1)

where τ = (τi )i∈N is the sequence of epochs of the successive visits of the polymer
to zero (τ0 = 0). Note that the random variables Yi take their values in the space

̃ :=⋃

n∈N 
n with 
 := R× Z.
To capture the role of Y , we introduce its empirical process,

RM = Rω
M := 1

M

M−1∑
i=0

δϑ̃ i (Y1,...,YM )per ∈ P inv(
̃N), (2.2)

whereP inv(
̃N) denotes the set of probability measures on 
̃N that are invariant under
the left-shift ϑ̃ acting on 
̃N. The superscript ω reminds us that the random variables
Yi are functions of ω. We must average over S while keeping ω fixed. Note that, under
the annealed law P⊗ P, Y is i.i.d. with the following marginal law q0 on 
̃:

q0
(
(dx1, . . . , dxn) × {(s1, . . . , sn)})

:= (P⊗ P)
(
Y1 ∈ (dx1, . . . , dxn) × {(s1, . . . , sn)})

= K (n) ν(dx1) · · · ν(dxn) P
(
(S1, . . . , Sn) = (s1, . . . , sn)

∣∣ τ1 = n
)
,

n ∈ N, x1, . . . , xn ∈ R, s1, . . . , sn ∈ Z,

(2.3)

where K (n) := P(τ1 = n) and ν(dx) := P(ω1 ∈ dx).
The specific relative entropy of Q w.r.t. q⊗N

0 is defined by

H
(

Q | q⊗N

0

)
:= lim

N→∞
1

N
h
(
π̃N Q | q N

0

)
, (2.4)

where π̃N Q ∈ P(
̃N ) denotes the projection of Q onto the first N words, h( · | · )
denotes relative entropy, and the limit is non-decreasing. The following annealed LDP
is standard (see Dembo and Zeitouni [19, Section 6.5]).

Proposition 2.1 (Annealed LDP). The family (P⊗ P)(Rω
M ∈ · ), M ∈ N, satisfies the

LDP on P inv(
̃N) with rate M and with rate function I ann given by

I ann(Q) := H
(

Q | q⊗N

0

)
, Q ∈ P inv(
̃N). (2.5)

This rate function is lower semi-continuous, has compact level sets, has a unique zero
at q⊗N

0 , and is affine.

The quenched LDP is more delicate and requires extra notation. The reverse oper-
ation of cutting words out of a sequence of letters is glueing words together into a
sequence of letters. Formally, this is done by defining a concatenation map κ from 
̃N
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to
N. Thismap induces in a naturalway amap fromP(
̃N) toP(
N), the sets of prob-
ability measures on 
̃N and 
N (endowed with the topology of weak convergence).
The concatenation q⊗N

0 ◦ κ−1 of q⊗N

0 equals ν⊗N, as is evident from (2.3).
For Q ∈ P inv(
̃N), let m Q := EQ(τ1) ∈ [1,∞] be the average word length under

Q (EQ denotes expectation under the law Q and τ1 is the length of the first word).
Let

P inv,fin(
̃N) := {Q ∈ P inv(
̃N) : m Q < ∞}. (2.6)

For Q ∈ P inv,fin(
̃N), define

�Q := 1

m Q
EQ

[
τ1−1∑
k=0

δϑkκ(Y )

]
∈ P inv(
N). (2.7)

Think of �Q as the shift-invariant version of Q ◦ κ−1 obtained after randomizing the
location of the origin. This randomization is necessary because a shift-invariant Q in
general does not give rise to a shift-invariant Q ◦ κ−1.

The following quenched LDP is a straight adaptation of the one derived in Birkner,
Greven and den Hollander [8].

Proposition 2.2 (Quenched LDP). For P-a.e. ω the family P(Rω
M ∈ · ), M ∈ N, satis-

fies the LDP on P inv(
̃N) with rate M and with rate function given by

I que(Q) :=
{

H(Q | q⊗N

0 ) + α m Q H(�Q | ν⊗N), Q ∈ P inv,fin(
̃N),

limδ↓0 infQ′∈Bδ(Q)∩P inv,fin(
̃N) I que(Q′), Q ∈ P inv(
̃N)\P inv,fin(
̃N),

(2.8)

where α is the exponent in (1.6) and Bδ(Q) is the δ-ball around Q (in any appropriate
metric). This rate function is lower semi-continuous, has compact level sets, has a
unique zero at q⊗N

0 , and is affine.

Remark 2.3 In [8] a formula was claimed for I que on P inv(
̃N) \ P inv,fin(
̃N) based
on a truncation approximation for the average word length. As pointed out by Jean-
ChristopheMourrat (private communication), the proof of this formula in [8] is flawed.
The formula itselfmay still be correct, but no proof is currently available. In the present
paper we will only need to know I que on P inv,fin(
̃N).

2.2 Variational criterion for localization

For N ∈ N, let �N be the number of returns to zero of the polymer before epoch N ,
i.e.,

�N := max{i ∈ N0 : τi ≤ N }. (2.9)
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Let � : 
̃ → R be defined by

�β,h
(
(x1, . . . , xn), (s1, . . . , sn)

) :=
n∑

m=1

(βxm − h)ϕ(sm). (2.10)

Then the constrained quenched partition function defined in (1.12) can be written as

Zω,c
N ,β,h = E

[
e
∑�N

i=1 �β,h(Yi ) 1{SN=0}
]
= E

[
e
�N

∫

̃

�β,h d(π̃1R
ω
�N

)
1{SN=0}

]
,

(2.11)

while the constrained annealed partition function defined in (1.23) can be written as

Z ann,c
N ,β,h = (E⊗ E)

[
e
∑�N

i=1 �β,h(Yi ) 1{SN=0}
]
= (E⊗ E)

[
e
�N

∫

̃

�β,h d(π̃1R
ω
�N

)
1{SN=0}

]
,

(2.12)

where π̃1Q denotes the projection of Q onto the space 
̃ of the first word.
With the help of Propositions 2.1–2.2 we can derive the following variational char-

acterization of the annealed and the quenched critical curve. Note that fann(β, h) > 0
if and only if h < hann

c (β) and fque(β, h) > 0 if and only if h < hque
c (β).

Theorem 2.4 [Annealed localization]. For every β, h > 0,

fann(β, h) > 0 ⇐⇒ sup
Q∈P inv(
̃N) :

m Q<∞, I ann(Q)<∞

{∫


̃

�β,h d(π̃1Q) − I ann(Q)

}
> 0.

(2.13)

Theorem 2.5 [Quenched localization]. For every β, h > 0,

fque(β, h) > 0 ⇐⇒ sup
Q∈P inv(
̃N) :

m Q<∞, I ann(Q)<∞

{∫


̃

�β,h d(π̃1Q) − I que(Q)

}
> 0. (2.14)

As we will see below, the role of the conditions m Q < ∞ and I ann(Q) < ∞ under
the two suprema is to ensure that

∫

̃

�β,h d(π̃1Q) < ∞, so that the suprema are
well defined. The condition m Q < ∞ under the second supremum allows us to use
the representation in (2.8). We will see in Sect. 3 how the variational formulas in
(2.13)–(2.14) can be exploited.

2.3 Proof of Theorems 2.4–2.5

Theproof uses arguments developed inBolthausen et al. [11]. Theorems2.4–2.5 follow
fromPropositions 2.1–2.2with the help of Varadhan’s lemma applied to (2.11)–(2.12).
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The only difficulty we need to deal with is the fact that both Q �→ m Q and Q �→
�∗

β,h(Q) = ∫

̃

�β,h d(π̃1Q) are neither bounded nor continuous in theweak topology.
Therefore an approximation argument is required, which is worked out in detail in [11,
Appendices A–D] for the case of the copolymer interaction potential in (1.10). This
approximation argument shows why the restriction to m Q < ∞ and I ann(Q) < ∞
may be imposed, a key ingredient being that I ann(Q) < ∞ implies �∗

β,h(Q) < ∞.
The proof in [11, Appendices A–D] readily carries over because our condition on
the interaction potential in (1.1) reflects the properties of the copolymer interaction
potential. We sketch the main line of thought. Throughout the sequel β, h > 0 are
fixed.

Proof of Theorem 2.5 Following the argument in [11, Appendix A], we show that

(1) For every g > 0, M �→ �β,h(Rω
M ) − gm Rω

M
is bounded ω-a.s.

(2) For every � ∈ P(N), ν ∈ P(R) and p = (pn)n∈N with pn ∈ P(Zn), there exist
γ > 0 and K = K (�, ν, p; γ ) > 0 such that �∗

β,h(Q) ≤ γ h(π̃1Q | q�,ν,p) + K

for all Q ∈ P inv(
̃N) with h(π̃1Q | q�,ν,p) < ∞, where (compare with (2.3))

q�,ν,p
(
(dx1, . . . , dxn)×{(s1, . . . , sn)}) = �(n) ν(dx1) · · · ν(dxn) pn(s1, . . . , sn),

n ∈ N, x1, . . . , xn ∈ R, s1, . . . , sn ∈ Z. (2.15)

The proof uses the fact that the conditions in (1.1) allow us to approximate ϕ by a
multiple of ϕcop (recall (1.10)) uniformly on Z \ [−L, L] at arbitrary precision as
L → ∞. The proof also uses a concentration of measure estimate for the disorder,
which is proved in [11, Appendix D].

For g > 0, define the quenched free energy

fque(β, h; g) := lim
N→∞

1

N
log Zque

N ,β,h,g, (2.16)

where

Zque
N ,β,h,g := E

[
e

N
{
�∗

β,h(Rω
M )−gm Rω

M

}]
(2.17)

is the quenched partition function in which every letter gets an energetic penalty −g.
Following the argument in [11, Appendix B], we use (1) and (2) to show that, for every
g > 0,

fque(β, h; g) = sup
Q∈R :

m Q<∞, I ann(Q)<∞

{∫


̃N

�∗
β,h(Q) − gm Q − I ann(Q)

}
, (2.18)

whereR is the set of shift-invariant probability measures under which the concatena-
tion of words produces a letter sequence that has the same asymptotic statistics as a
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typical realisation of Y , i.e.,

R :=
{

Q ∈ P inv(
̃N) : w − lim
M→∞

1

M

M−1∑
k=0

δϑkκ(Y ) = μ⊗N Q − a.s.

}
(2.19)

(w − lim means weak limit). The proof of (2.18) carries over verbatim. What (2.18)
says is that Varadhan’s lemma applies to (2.16)–(2.17) because of the control enforced
by (1) and (2).

Following the argument in [11, Appendix C], we show that

lim
g↓0 f

que
(β, h; g) = fque(β, h) (2.20)

with

fque(β, h) = sup
Q∈P inv(
̃N) :

m Q<∞, I ann(Q)<∞

{∫


̃N

�∗
β,h(Q) − I que(Q)

}
. (2.21)

Here, in the passage from (2.18) to (2.21), the constraint in R disappears from the
variational characterization, while I ann(Q) is replaced by I que(Q). The reason is
that for every Q ∈ P inv(
̃N) there exists a sequence (Qn)n∈N in R such that Q =
w− limn→∞ Qn = Q and limn→∞ I ann(Qn) = I que(Q). The proof of (2.21) carries
over verbatim. The supremum in the right-hand side of (2.21) is the same as the
supremum in the right-hand side of (2.14). ��

Proof of Theorem 2.4 Varadhan’s lemma also applies to

Z ann
N ,β,h := E

[
eN�∗

β,h(Rω
M )
]
, (2.22)

and yields

fann(β, h) := lim
N→∞

1

N
log Z ann

N ,β,h (2.23)

with

fann(β, h) = sup
Q∈P inv(
̃N) :

m Q<∞, I ann(Q)<∞

{∫


̃N

�∗
β,h(Q) − I ann(Q)

}
. (2.24)

Again, this works because of the control enforced by (2). The supremum in the right-
hand side of (2.24) is the same as the supremum in the right-hand side of (2.13).

��
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3 Proof of Theorem 1.5

The upper bound in (1.43) is immediate from Theorems 2.4–2.5 and the inequality
I que ≥ I ann (see also (1.27)). In Sects. 3.1–3.3 we prove the lower bound in (1.43).
This lower bound is the analogue of what for the copolymer model is called the
Monthus–Bodineau–Giacomin lower bound (see Giacomin [21], den Hollander [24]).

3.1 A sufficient criterion for quenched localization

The quenched rate function can be written as

I que(Q) = (1+ α)I ann(Q) − α R(Q), m Q < ∞, (3.1)

with

R(Q) := H(Q | q⊗N

0 ) − m Q H(�Q | ν⊗N). (3.2)

It can be shown that R(Q) ≥ 0 for all Q ∈ P inv(
̃N): R(Q) has the meaning of a
concatenation entropy (see Birkner et al. [8]). Therefore, dropping this term in (2.14)
we obtain the following sufficient criterion for quenched localization:

fque(β, h) > 0 ⇐� sup
Q∈P inv(
̃N) :

m Q<∞, I ann(Q)<∞

{∫


̃

� d(π̃1Q) − (1+ α)I ann(Q)

}
> 0.

(3.3)

The right-hand side resembles the necessary and sufficient criterion for annealed local-
ization in (2.13), the only difference being the extra factor 1+ α.

3.2 Reduction

Among the laws Q ∈ P inv(
̃N) with a given marginal law q ∈ P(
̃), the product
law Q = q⊗N is the unique minimizer of the specific relative entropy H(Q | q⊗N

0 ).
Therefore the right-hand side of (3.3) reduces to

sup
q∈P inv(
̃) :

mq<∞, h(q|q0)<∞

{∫


̃

� dq − (1+ α)h(q | q0)

}
> 0, (3.4)

where h(· | ·) denotes relative entropy.
We next show that (3.3) reduces to an even simpler criterion. To that end, let

CN := ⋃N
n=1 
n be the subset of words of length at most N . Consider the law
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q̂N ∈ P(
̃) defined by

dq̂N

dq0
:= e

1
1+α

� 1CN

Nα,N
, (3.5)

where

Nα,N :=
∫


̃

e
1

1+α
� 1CN dq0 < ∞ (3.6)

is the normalizing constant. The latter is finite because, by (2.10), � restricted to CN

is the sum of at most N random variables with finite exponential moments. Note that
also

∫


̃

� e
1

1+α
� 1CN dq0 < ∞, (3.7)

which yields h(q̂N | q0) < ∞. Trivially, mq̂N ≤ N < ∞. Therefore we are allowed
to pick q = q̂N in (3.4), so that (3.4) is satisfied when

(1+ α) logNα,N > 0. (3.8)

Since N is arbitrary, this in turn is satisfied when

Nα > 1 with Nα := sup
N∈N

Nα,N =
∫


̃

e
1

1+α
� dq0, (3.9)

whereNα = ∞ is allowed. Conversely, ifNα ≤ 1, then (3.4) is not satisfied. Indeed,
as soon as Nα < ∞ we may introduce the law q̂ ∈ P(
̃) defined by

dq̂

dq0
:= e

1
1+α

�

Nα

, (3.10)

and rewrite h(q | q0) = h(q | q̂) − 1
1+α

∫

̃

� dq + logNα , so that

∫


̃

� dq − (1+ α)h(q | q0) = (1+ α) logNα − h(q | q̂) ≤ 0, (3.11)

where the last inequality holds for any q because Nα ≤ 1, and so (3.4) fails. Thus,
(3.3) reduces to

fque(β, h) > 0 ⇐� Nα > 1. (3.12)
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3.3 Application

As we remarked below (3.3), (2.13) resembles (3.3), the only difference being the
factor 1+α instead of 1 in front of I ann(Q) = H(Q | q⊗N

0 ). Therefore, repeating the
above steps and recalling (2.14), we conclude that

fann(β, h) > 0 ⇐⇒ N0 > 1. (3.13)

It follows from (2.10), (2.12) and (3.9) that the condition Nα > 1 is equivalent to

fann
( 1
1+α

β, 1
1+α

h
)

> 0, (3.14)

i.e., 1
1+α

h < hann
c ( 1

1+α
β), which by (3.12) implies fque(β, h) > 0, i.e., h < hque

c (β).
This completes the proof of the lower bound in (1.43).

Recalling (2.3), (2.10) and the function ψβ,h defined in (1.21), we may write N0
as

N0 =
∫


̃

e� dq0 =
∑
m∈N

E

[
E

[
e
∑m

n=1(βωn−h)ϕ(Sn) 1{τ1=m}
]]

=
∑
m∈N

E

[
e
∑m

n=1 ψβ,h(Sn) 1{τ1=m}
]
.

(3.15)

We will analyse this expression in Sect. 4 in the weak interaction limit β, h ↓ 0 for
the Bessel random walk.

Note that for h = 0 the expression in (3.15) reduces to

∑
m∈N

E

[
E

[
e
∑m

n=1 βωnϕ(Sn) 1{τ1=m}
]]

. (3.16)

By Jensen and the fact that ϕ �≡ 0, this sum is> 1 for all β > 0. Hence Fann(β, 0) > 0
for all β > 0, which settles the claim made at the end of Sect. 1.6.

4 Proof of Theorems 1.6–1.8

To prove our scaling results for weak interaction, we will exploit the invariance prin-
ciple in (1.37). Recall (1.20)–(1.21). Since ‖ψβ,h‖∞ tends to zero as β, h ↓ 0, we can
do a weak coupling expansion in the spirit of Caravenna et al. [15].

The proof is long and technical. In Sect. 4.1 we outline the general strategy, which
leads to three tasks. These tasks are carried out in Sects. 4.2–4.4, respectively.
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4.1 General strategy

Fix β̂, ĥ ∈ (0,∞) and βN , hN such that, as N → ∞,

βN ∼ β̂ ×

⎧⎪⎨
⎪⎩

N−(1−ϑ)/2, ϑ ∈ (0, 1− α),

N−α/2, ϑ ∈ (1− α, 2(1− α)),

N−α/2, ϑ ∈ (2(1− α),∞),

(4.1)

and

hN ∼ ĥ ×

⎧⎪⎨
⎪⎩

N−(2−ϑ)/2, ϑ ∈ (0, 1− α),

N−(2−ϑ)/2, ϑ ∈ (1− α, 2(1− α)),

N−α, ϑ ∈ (2(1− α),∞).

(4.2)

We will prove that, for any T ∈ (0,∞),

lim
N→∞ Z ann

T N ,βN ,hN
= Ẑ ann

T ,β̂,ĥ
:= Ê

[
exp

(∫ T

0
ψ̂

β̂,ĥ(Xt ) dt

)]
(4.3)

(for ease of notation we pretend that T N is integer), where we set

ψ̂
β̂,ĥ(x) :=

⎧⎪⎨
⎪⎩

1
2 β̂

2c2 |x |−2ϑ − ĥc |x |−ϑ , ϑ ∈ (0, 1− α),
1
2 β̂

2 c∗[ϕ2] δ̂0(x) − ĥc |x |−ϑ , ϑ ∈ (1− α, 2(1− α)){ 1
2 β̂

2 c∗[ϕ2] − ĥ c∗[ϕ]} δ̂0(x), ϑ ∈ (2(1− α),∞).

(4.4)

We recall that the renormalized Dirac-function δ̂0(·) is the notation introduced in
(1.36) to make the time integral

∫ T
0 ψ̂

β̂,ĥ(Xt ) dt in (4.3) well-defined.
Once the convergence in (4.3) is established, Theorems 1.6–1.8 follow. Indeed,

recalling the definitions of F̂ann in (1.47), (1.49) and (1.51), respectively, we can
write

F̂ann(β̂, ĥ) = limT→∞ 1
T log Ẑ ann

T ,β̂,ĥ
= limT→∞ 1

T log
(
limN→∞ Z ann

T N ,βN ,hN

)

= limN→∞ N
(
limT→∞ 1

T N log Z ann
T N ,βN ,hN

)

= limN→∞ N Fann
(
βN , hN

)
, (4.5)

where the interchange of the limits T → ∞ and N → ∞ is justified in Appendix A.4.
To prove (4.3), we write Z ann

T N ,βN ,hN
as a series, recall (1.20). Since the potential

ϕ is assumed to be symmetric, i.e., ϕ(−x) = ϕ(x) for all x ∈ Z, we can write
ψβ,h(Sn) = ψβ,h(|Sn|), and hence

Z ann
T N ,βN ,hN

= E

[
T N∏
n=1

{
1+ (

eψβN ,hN (|Sn |) − 1
)}] = 1+

∑
k∈N

CT N ,k (4.6)
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with

CT N ,k :=
∑

1≤n1<···<nk≤T N

E

[
k∏

�=1

χβN ,hN (|Sn�
|)
]

, χβ,h(x) := eψβ,h(x) − 1. (4.7)

We can write a similar decomposition for Ẑ ann
T ,β̂,ĥ

, namely,

Ẑ ann
T ,β̂,ĥ

= 1+
∑
k∈N

ĈT ,k (4.8)

with

ĈT ,k := 1

k! Ê
[(∫ T

0
dt ψ̂

β̂,ĥ(Xt )

)k ]
. (4.9)

Formally, if we rewrite the k-th power of the integral as a k-fold integral and afterwards
switch the integral and the expectation, then we get the expression

ĈT ,k =
∫

0<t1<···<tk<T
x1,...,xk∈[0,∞)

k∏
�=1

{
gt�−t�−1(x�−1, x�) ψ̂

β̂,ĥ

(
x�

)}
dt1 · · · dtk dx1 · · · dxk (4.10)

with t0 := x0 := 0. This is justified by Fubini’s theorem in the first regime in (4.4),
because ψ̂

β̂,ĥ(x) is a genuine function (see (4.4)). However, the second and third

regime in (4.4) are more delicate because ψ̂
β̂,ĥ(x) contains the formal term δ̂0(x). We

claim that (4.10) holds in these regimes as well, provided we use the interpretation

“ gt�−t�−1(x�−1, x�) δ̂0(x�) dx� ” := ĝt�−t�−1(x�−1, 0) δ0(dx�), (4.11)

where ĝ is the function defined in (1.34) and δ0 is the usual Dirac measure at zero,
both of which are proper. We prove (4.10) in Sect. 4.2 below.

Remark 4.1 In the third regime, both terms in ψ̂
β̂,ĥ(x) contain δ̂0(x) (see (4.4)). There-

fore (4.10) can be simplified, by the recipe in (4.11), to give

ĈT ,k = { 1
2 β̂

2 c∗[ϕ2] − ĥ c∗[ϕ]}k
∫

0<t1<···<tk<T

k∏
�=1

{
ĝt�−t�−1(0, 0)

}
dt1 · · · dtk

= { 1
2 β̂

2 c∗[ϕ2] − ĥ c∗[ϕ]}k
∫

0<t1<···<tk<T

k∏
�=1

1

(t� − t�−1)1−α
dt1 · · · dtk

=
[{ 1

2 β̂
2 c∗[ϕ2] − ĥ c∗[ϕ]}T α 
(α)

]k


(αk)
,

(4.12)
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where the last equality can be seen to hold by the normalisation constant of theDirichlet
distribution (see also (B.9)). Therefore (4.10) is delicate only in the second regime.

We will prove in Sect. 4.3 that the series in (4.6) and (4.8) have negligible tails:

∀ T ∈ (0,∞) ∀ ε ∈ (0, 1) ∃ K̄ = K̄ (T , ε) < ∞:
lim sup

N→∞

∑

k>K̄

CT N ,k < ε ,
∑

k>K̄

ĈT ,k < ε. (4.13)

We will show in Sect. 4.4 that

∀ k ∈ N : lim
N→∞ CT N ,k = ĈT ,k . (4.14)

The last two equations combine to yield (4.3) and complete the proof. ��

4.2 Proof of (4.10)

For ε > 0 we define a genuine function δ̂ε
0(x) that is meant to approximate δ̂0(x) as

ε ↓ 0 (recall (1.35)–(1.36)):

δ̂ε
0(x) := cα

ε2(1−α)
1(0,ε)(x). (4.15)

We also define an approximate version ψ̂ε(x) of ψ̂(x) in (4.4) by setting (suppressing
the dependence on β̂, ĥ)

ψ̂ε(x) := the expression obtained from(4.4)after replacing δ̂0(x)byδ̂ε
0(x), (4.16)

so that

lim
ε↓0

∫ T

0
ψ̂ε(Xt ) dt =

∫ T

0
ψ̂(Xt ) dt in probability. (4.17)

Below we prove that this convergence also holds in Lk , k ∈ N. Then, via (4.9), we
can write

ĈT ,k = 1

k! limε↓0 Ê

[(∫ T

0
dt ψ̂ε(Xt )

)k ]

= lim
ε↓0

∫

0<t1<···<tk<T
x1,...,xk∈[0,∞)

k∏
�=1

{
gt�−t�−1(x�−1, x�) ψ̂ε(x�

)}
dt1 · · · dtk dx1 · · · dxk,

(4.18)
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which coincides precisely with our target Eq. (4.10) with the recipe in (4.11) via
the characterization of ĝ in (1.33)–(1.34) (note that x �→ gt (x, y) is continuous on
[0,∞)).

To prove that (4.17) holds in Lk , k ∈ N, it is enough to show that all moments of∫ T
0 ψ̂ε(Xt ) dt are uniformly bounded:

∀ n ∈ N : sup
ε∈(0,1)

Ê

[(∫ T

0
ψ̂ε(Xt ) dt

)n]
< ∞. (4.19)

Since ψ̂ε(x) is a genuine function, Fubini’s theorem tells us that, for every ε > 0,

1

n! Ê0

[(∫ T

0
ψ̂ε(Xt ) dt

)n]
=

∫

0<t1<···<tn<T

Ê0

[ n∏
�=1

ψ̂ε(Xt�

)]
dt1 · · · dtn . (4.20)

Combining (4.4) abd (4.15)–(4.16), we can bound |ψ̂ε(x)| ≤ ψ̄ε(x) := C1 δ̂ε
0(x) +

C2 |x |−γ for suitable constants C1, C2 and γ ∈ {ϑ, 2ϑ} < 2(1 − α). Since ψ̄ε is
decreasing, and since P̂0(Xt ∈ ·) is stochastically dominated by P̂x (Xt ∈ ·) for any
x ≥ 0, we can bound

1

n! Ê0

[(∫ T

0
ψ̂ε(Xt ) dt

)n]
≤

∫

0<t1<···<tn<T

n∏
�=1

Ê0
[
ψ̄ε
(
Xt�−t�−1

)]
dt1 · · · dtn

=
∫

0<t1<···<tn<T

n∏
�=1

{
C1

cα

ε2(1−α)
P̂0(Xt�−t�−1 < ε) + C2 Ê0

[|Xt�−t�−1 |−γ
]}

dt1 · · · dtn

≤
∫

0<t1<···<tn<T

n∏
�=1

{
C1

(t� − t�−1)1−α
+ C ′

2

(t� − t�−1)γ /2

}
dt1 · · · dtn,

(4.21)

where the last inequality holds by (1.31)–(1.32), for a suitable (and explicit) C ′
2 < ∞

(note that Ê0[|Xt�−t�−1 |−γ ] < ∞ because γ < 2(1 − α)). The last expression is a
finite constant, and so we have completed the proof of (4.10). ��
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4.3 Proof of (4.13)

The second inequality in (4.13) follows from the bounds in (4.18)–(4.21), namely, for
some constant C = C(T ) < ∞ (recall that γ < 2(1− α))

∀ T ∈ (0,∞) ∀k ∈ N :

ĈT ,k ≤
∫

0<t1<···<tk<T

{ k∏
�=1

C

(t� − t�−1)1−α

}
dt1 · · · dtk =

(
C T α 
(α)

)k


(αk)

(4.22)

(see also Appendix B.1 ).
To prove the first inequality in (4.13), we recall that, by (4.7),

CT N ,k =
∑

1≤n1<···<nk≤T N

E

[
k∏

�=1

χβN ,hN (|Sn�
|)
]

, χβN ,hN (x) = eψβN ,hN (x) − 1.

(4.23)

In the sequel, C, C ′ < ∞ denote absolute constants, possibly depending on T , β̂, ĥ,
that may change from line to line. Since βN , hN ↓ 0, it follows from (1.21) that for
N → ∞ (recall that ϕ is bounded):

uniformly in x ∈ Z : χβN ,hN (x) ∼ ψβN ,hN (x) ∼ 1
2β

2
N ϕ(x)2 − hN ϕ(x).

(4.24)

Since lim|x |→∞ |x |ϑϕ(x) = c ∈ (0,∞) by (1.44), we can bound

∀x ∈ Z : ∣∣χβN ,hN (|x |)∣∣ ≤ χ̄βN ,hN (|x |)
:= C

( 1
2β

2
N (1+ |x |)−2ϑ + hN (1+ |x |)−ϑ

)
. (4.25)

Next, recall the uniform upper bound in (1.42). For any γ �= 2(1 − α) we can
bound

∀n ∈ N : E
[
(1+ |Sn|)−γ

] ≤ C

n1−α

∑
k∈Z

(1+ |k|)1−2α−γ e−
|k|2
8n ≤ C ′

n(1−α)∧(γ /2)

(4.26)

(where a ∧ b := min{a, b}). Indeed,
• forγ > 2(1−α)wedrop the exponential andnote that

∑
k∈Z(1+|k|)1−2α−γ < ∞;

• for γ < 2(1−α) a Riemann sum approxmation shows that the sum can be bounded
by a multiple of n1−α−γ /2 (note that

∫∞
0 x1−2α−γ e−x2/8 dx < ∞).

It follows from (4.25)–(4.26) that

∀ n, N ∈ N : E
[
χ̄βN ,hN (|Sn|)

] ≤ C

(
β2

N

n(1−α)∧ϑ
+ hN

n(1−α)∧(ϑ/2)

)
. (4.27)
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Setting n = Nt with t ∈ (0, T ], and recalling that βN , hN are given in (4.1)–(4.2),
we obtain

∀ N ∈ N, ∀t ∈ (0, T ] ∩ N−1
N :

E
[
χ̄βN ,hN (|SNt |)

] ≤ C

N

(
1

t (1−α)∧ϑ
+ 1

t (1−α)∧(ϑ/2)

)
≤ C ′

N

1

t1−α
. (4.28)

Next, by (4.23) we can bound

CT N ,k ≤
∑

1≤n1<···<nk≤T N

k∏
�=1

E
[
χ̄βN ,hN (|Sn�−n�−1 |)

]
, (4.29)

because the function χ̄βN ,hN (|x |) is decreasing in |x | and the lawP(|Sn| ∈ · | |Sn′ | = m)

stochastically dominates P(|Sn| ∈ · | Sn′ = 0) = P(|Sn−n′ | ∈ ·) for all m ≥ 0 (as can
be seen via a coupling argument). Then, setting n� = Nt�, via (4.28) we get

CT N ,k ≤ 1

N k

∑
0<t1<···<tk≤T

such that Nt1,...,Ntk∈N

k∏
�=1

C

(t� − t�−1)1−α

≤
∫

0<t1<···<tk<T

{ k∏
�=1

C

(t� − t�−1)1−α

}
dt1 · · · dtk . (4.30)

This is the same bound as in (4.22), and hence the first inequaltiy in (4.13) is proved.��

4.4 Proof of (4.14)

Intuitively, we can get (4.14) by substituting the asymptotic relation (4.24) into the
definition (4.23) of CT N ,k and performing a Riemann sum approximation, recalling
(1.44). However, some care is required to properly implement this strategy.

1.Recall from (4.24) thatχβN ,hN (x) ∼ β2
N
2 ϕ(x)2−hN ϕ(x) as N → ∞, and by (1.44)

the terms ϕ(x)2 and ϕ(x) decay polynomially as |x |−γ as |x | → ∞, with γ = 2ϑ
and γ = ϑ , respectively. Fix ε > 0 small and introduce an approximation χε

βN ,hN
(x)

of χβN ,hN (x) in which each term is restricted to a relevant range: either |x | ≈ 1 (more
precisely, |x | ≤ 1

ε
) or |x | ≈ √

N (more precisely, ε
√

N ≤ |x | ≤ 1
ε

√
N ), depending

on the decay exponent γ . Indeed, the bound in (4.26) on E
[
(1+ |SN |)−γ

] ≤ tells us
that

• for γ > 2(1− α) the relevant contribution comes from |x | = |SN | ≈ 1;
• for γ < 2(1− α) the relevant contribution comes from |x | = |SN | ≈

√
N .
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This motivates the following definition:

χε
βN ,hN

(x)

:=

⎧⎪⎪⎨
⎪⎪⎩

{
1
2β

2
N ϕ(x)2 − hN ϕ(x)

}
1{ε√N≤|x |≤ 1

ε

√
N }, ϑ ∈ (0, 1− α),

1
2β

2
N ϕ(x)21{|x |≤ 1

ε
} − hN ϕ(x) 1{ε√N≤|x |≤ 1

ε

√
N }, ϑ ∈ (1− α, 2(1− α)),{

1
2β

2
N ϕ(x)2 − hN ϕ(x)

}
1{|x |≤ 1

ε
}, ϑ ∈ (2(1− α),∞).

(4.31)

We correspondingly define an approximation Cε
T N ,k of CT N ,k (see (4.23)):

Cε
T N ,k =

∑
1≤n1<···<nk≤T N

E

[
k∏

�=1

χε
βN ,hN

(|Sn�
|)
]

. (4.32)

This allows us to split the proof of (4.14) in two parts: For fixed k ∈ N,

lim
ε↓0 lim sup

N→∞
∣∣CT N ,k − Cε

T N ,k

∣∣ = 0, lim
ε↓0 lim

N→∞ Cε
T N ,k = ĈT ,k . (4.33)

2. The first claim in (4.33) is a consequence of the bounds that we have derived in
Sect. 4.3 for the proof of (4.13). Indeed, we can use a telescopic argument based on
the bound

∣∣∣∣
k∏

�=1

a� −
k∏

�=1

b�

∣∣∣∣ ≤
k∑

i=1

( i−1∏
�=1

|a�|
)
|ai − bi |

( k∏
�=i+1

|b�|
)

(4.34)

to replace a� := χβN ,hN (Sn�
) by b� := χε

βN ,hN
(Sn�

) in the definition (4.23) of CT N ,k .
Note that both |a�| and |b�| are bounded by χ̄βN ,hN (|Sn�

|) defined in (4.25). Similarly,
we can bound |ai − bi | = |(χβN ,hN − χε

βN ,hN
)(Sni )| ≤ �χ̄ε

βN ,hN
(|Sni |), where we

define �χ̄ε
βN ,hN

(|x |) to be χ̄βN ,hN (|x |) in (4.25) with the terms (1 + |x |)−2ϑ and

(1+ |x |)−ϑ replaced as follows:

(1+ |x |)−γ �
{

(1+ |x |)−γ 1{|x |> 1
ε
}, γ > 2(1− α)

(1+ |x |)−γ 1{|x |<ε
√

N }∪{|x |> 1
ε

√
N }, γ < 2(1− α).

(4.35)

This leads to

∣∣CT N ,k − Cε
T N ,k

∣∣

≤
k∑

i=1

∑
1≤n1<···<nk≤T N

E

⎡
⎣�χ̄ε

βN ,hN
(|Sni |) ×

∏
�∈{1,...,k}\{i}

χ̄βN ,hN (|Sn�
|)
⎤
⎦ . (4.36)
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3. Recall the bound (4.27) for E[χ̄βN ,hN (|Sn|)]. A similar but improved bound holds
for E

[
�χ̄ε

βN ,hN
(|x |)], namely,

∀ n, N ∈ N : E
[
�χ̄ε

βN ,hN
(|Sn|)

] ≤ C ηε

(
β2

N

n(1−α)∧ϑ
+ hN

n(1−α)∧(ϑ/2)

)

with lim
ε↓0 ηε = 0.

(4.37)

Indeed, by (4.26) and the lines following it, we can choose

ηε :=
{∑

k>1/ε(1+ |k|)1−2α−γ , γ > 2(1− α)∫
(0,ε)∪(1/ε,∞)

x1−2α−γ e−x2/8 dx, γ < 2(1− α).
(4.38)

Consequently, arguing as in (4.28)–(4.29), we get the following improvement of
(4.30):

∣∣CT N ,k − Cε
T N ,k

∣∣ ≤ k ηε

∫

0<t1<···<tk<T

{ k∏
�=1

C

(t� − t�−1)1−α

}
dt1 · · · dtk (4.39)

(set n0 = 0, x0 = 0), from which the first equation in (4.33) readily follows. With
similar arguments we can show that in (4.32) we can further restrict the sum to n� −
n�−1 ≥ εN for all � = 1, . . . , k, with a negligible error as N → ∞ followed by ε ↓ 0
(we omit the details). We can thus update the definition (4.32) of Cε

T N ,k , where we
also sum over space variables:

Cε
T N ,k =

∑
1≤n1<···<nk≤T N :

n�−n�−1≥εN ∀ �=1,...,k
x1,...,xk∈N0

k∏
�=1

Px�−1(|Sn�−n�−1 | = x�) χε
βN ,hN

(x�). (4.40)

4.Weare left with proving the second claim in (4.33). To do so, we distinguish between
the three regimes in (4.31).

• First regime. In the regime ϑ ∈ (0, 1 − α), the function χε
βN ,hN

(x�) restricts all

variables x� in the diffusive range {ε
√

N ≤ x ≤ 1
ε

√
N } (“intermediate heights”). This

allows us to apply the local limit theorem in (1.40), which we may rewrite as follows:
Uniformly in t ∈ [ε, T ] and ε ≤ z′, z ≤ 1/ε,

P√N z′(|SNt | =
√

N z) ∼ 2√
N

gt (z
′, z) 1{√N z−√

N z′−Nt is even}, N → ∞, (4.41)

where we recall that gt (z′, z) = g1(z′/
√

t, z/
√

t)/
√

t . (For notational simplicity, we
will ignore the parity constraint and remove the compensating factor 2.) Note that
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ϕ(x) ∼ c/xϑ as x → ∞ (see (1.44)). Therefore, by (4.1)–(4.4) and (4.31), uniformly
in ε ≤ z ≤ 1/ε,

χε
βN ,hN

(
√

N z) ∼ { 1
2β

2
N c2 (

√
N z)−2ϑ − hN c (

√
N z)−ϑ

} ∼ ψ̂
β̂,ĥ(z)

N
. (4.42)

Introducing macroscopic space-time variables n� = Nt�, x� = √
N z�, we get from

(4.40) that

Cε
T N ,k ∼

∑
0<t1<···<tk≤T :

Nt�∈N and t�−t�−1≥ε ∀ �
z1,...,zk∈[0,∞):√

N z�∈Z and ε≤z�≤1/ε ∀ �

k∏
�=1

gt�−t�−1(z�−1, z�)√
N

ψ̂
β̂,ĥ(z�)

N

−−−−→
N→∞

∫

0<t1<···<tk≤T :
t�−t�−1≥ε ∀ �

z1,...,zk∈[0,∞) :
ε≤z�≤1/ε ∀ �

k∏
�=1

{
gt�−t�−1(z�−1, z�) ψ̂

β̂,ĥ(z�)
}
dt1

. . . dtk dz1 . . . dzk . (4.43)

When we let ε ↓ 0, the last integral converges to ĈT N ,k (see (4.10)). This proves the
second claim in (4.33).

• Third regime. In the regime ϑ ∈ (2(1 − α),∞), the function χε
βN ,hN

(x�) restricts

all variables x� to the O(1) range {x ≤ 1
ε
} (“low heights”). This allows us to apply the

local limit theorem in (1.38), whichwemay rewrite as follows: Uniformly in t ∈ [ε, T ]
and 0 ≤ x ′, x ≤ 1/ε,

Px ′(|SNt | = x) ∼ 2 c(x)

N 1−α t1−α
1{x−x ′−Nt is even}, N → ∞, (4.44)

where we recall that ĝ1(x ′/
√

n, 0) ∼ ĝ1(0, 0) = 1 (see (1.34)). (We again ignore the
parity constraint and remove the compensating factor 2.) Moreover, it follows from
(4.1)–(4.2) and (4.31) that uniformly for x ≤ 1/ε,

χε
βN ,hN

(x) =
{
1
2β

2
N ϕ(x)2 − hN ϕ(x)

}
∼

1
2 β̂

2 ϕ(x)2 − ĥ ϕ(x)

Nα
. (4.45)
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Introducing the macroscopic time variables n� = Nt�, while keeping the microscopic
space variables x�, we get by (4.40) that

Cε
T N ,k ∼

∑
0<t1<···<tk≤T :

Nt�∈N and t�−t�−1≥ε ∀ �
x1,...,xk∈N0 :

x�≤1/ε ∀ �

k∏
�=1

c(x�)

N 1−α (t� − t�−1)1−α

1
2 β̂

2 ϕ(x�)
2 − ĥ ϕ(x�)

Nα

−−−−→
N→∞

∫

0<t1<···<tk≤T :
t�−t�−1≥ε ∀ �

k∏
�=1

{ 1
2 β̂

2 ∑
x≤1/ε c(x)ϕ(x)2 − ĥ

∑
x≤1/ε c(x)ϕ(x)

}

(t� − t�−1)1−α
dt1

. . . dtk . (4.46)

When we let ε ↓ 0, the term in brackets converges to

1
2 β̂

2
∑
x∈N0

c(x)ϕ(x)2 − ĥ
∑
x∈N0

c(x)ϕ(x) =: 1
2 β̂

2 c∗[ϕ] − ĥ c∗[ϕ]. (4.47)

Hence Cε
T N ,k converges to ĈT N ,k (see (4.12)). This proves the second claim in (4.33).

• Second regime. In the regime ϑ ∈ (1 − α, 2(1 − α)), the function χε
βN ,hN

(x�) is

the sum of two terms with different restrictions, namely, {x ≤ 1
ε
} and {ε√N ≤ x ≤

1
ε

√
N }. Expanding the product over χε

βN ,hN
(x�) in (4.40), we obtain 2k different terms,

where every variable x� is subject to one of the two restrictions. Each of these terms
can be analysed by arguing precisely as in the previous regimes:

– for {ε√N ≤ x� ≤ 1
ε

√
N } we apply the local limit theorem in (4.41), introducing

the macroscopic space variable z� ∈ [0,∞) defined by x� =
√

N z�;
– for {x� ≤ 1

ε
} we apply the local limit theorem in (4.44), keeping the microscopic

variable x� ∈ N0.

The choice ofβN ,hN in (4.1)–(4.2) ensure that the appropriateRiemann factor appears,
so that the sum definingCε

N T ,k converges to the integral in (4.10) as N → ∞ followed

by ε ↓ 0. This integral defines ĈN T ,k , with the recipe in (4.11). We omit the details,
which are notationally tedious because of the need to specify the restriction for each
variable x�, but are ultimately straightforward.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
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copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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Appendix A: Equivalence

In “Appendices A.1–A.3” we prove (1.16), (1.14) and (1.25), respectively. In
“Appendix A.4” we show that the limits N → ∞ and T → ∞ in (4.5) may be
interchanged.

A.1. Proof of (1.16)

For N ∈ N0 and x ∈ N0, define

fx (N ) := Px
(
Sn ≥ x ∀ 0 < n < N , SN = x

)
. (A.1)

(If S has period 2, then replace N by 2N .) By superadditivity,

lim
N→∞

1

N
log fx (N ) =: Cx ∈ (−∞, 0] exists. (A.2)

For z ∈ [0,∞) and x ∈ N0, define

Fx (z) :=
∑

N∈N0

zN fx (N ). (A.3)

Then, clearly,

Cx = 0 ⇐⇒ Fx (1+ ε) = ∞ ∀ ε > 0. (A.4)

By (1.6), we have C0 = 0. Below we show that this implies Cx = 0 ∀ x ∈ N0. The
proof is by induction on x .

Any path that starts at x , ends at x and does not go below x can be cut into pieces
that zig–zag between x and x + 1 and pieces that start at x + 1, end at x + 1 and do
not go below x + 1. Hence we have

Fx (z) = rx zQx (z)

1− Fx+1(z)Qx (z)
, Qx (z) := 1

1− zrx
, rx := px,x+1 px+1,x > 0,

(A.5)

where px,x+1 := P(S1 = x + 1 | S0 = x). We know that F0(1 + ε) = ∞ ∀ ε > 0.
We show that this implies Fx (1+ ε) = ∞ ∀ ε > 0 for every x ∈ N. The proof is by
induction on x .

Fix x ∈ N0 and suppose that Fx (1+ ε) = ∞ ∀ ε > 0. We argue by contradiction.
Suppose that Fx+1(1+ ε) < ∞ for ε small enough. Because rx > 0 and Qx (1+ ε) <

∞ for ε small enough, it follows that Fx+1(1 + ε)Qx (1 + ε) ≥ 1 ∀ ε > 0, and
by continuity that Fx+1(1)Qx (1) ≥ 1. To get the contradiction it therefore suffices to
show that Fx+1(1)Qx (1) < 1.Now, because (Sn)n∈N0 is recurrent,we have Fx+1(1) =
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px+1,x+2. Because Qx (1) = 1/(1− rx ), it follows that

Fx+1(1)Qx (1) = px+1,x+2

1− rx
= px+1,x+2

1− px+1,x px,x+1
= Px+1(Sn ≥ x ∀ n ∈ N0) < 1,

(A.6)

where for both the last equality and the inequality we again use recurrence.
To prove (1.16), note that for any 0 ≤ M ≤ N ,

P0(Sn ≥ M ∀ M < n ≤ N )

= P0(Sn = n ∀ 0 < n ≤ M) PM (Sn ≥ M ∀ M < n ≤ N )

≥
[

M−1∏
x=0

px,x+1

]
fM (N − M). (A.7)

Hence

lim inf
N→∞

1

N
log P0(Sn ≥ M ∀ M < n ≤ N ) ≥ CM ∀ M ∈ N0. (A.8)

Since CM = 0 for all M ∈ N0, this implies (1.16).

A.2. Proof of (1.14)

Note that Zω,c
N ,β,h ≤ Zω

N ,β,h for all N ∈ N0. Hence we only need to show that Zω
N ,β,h ≤

eo(N ) Zω,c
N ,β,h P-a.s. Define the constrained partition function

Zω,x,y
N ,β,h := Ex

[
e
∑N

n=1(βωn−h)ϕ(Sn) 1{Sn=y}
]
, N ∈ N0, x, y ∈ Z. (A.9)

Then

Zω
N ,β,h =

∑
y∈Z

Zω,0,y
N ,β,h, Zω,c

N ,β,h = Zω,0,0
N ,β,h . (A.10)

By (1.1), for every ε > 0 there is an M ∈ N0 such that

|ϕ(x) − γ+| ≤ ε, x ≥ M, |ϕ(x) − γ−| ≤ ε, x ≤ −M . (A.11)

where we abbreviate γ± = limx→±∞ ϕ(x) and recall that γ+ = 0, γ− ∈ [0,∞)

according to (1.1). For N ≥ M , split

Zω
N ,β,h = I + II + III (A.12)
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with

I =
∑

y≥2M

Zω,0,y
N ,β,h, II =

∑
y≤−2M

Zω,0,y
N ,β,h, III =

∑
−2M<y<2M

Zω,0,y
N ,β,h . (A.13)

We will show that all three terms are bounded by eo(N )Zω,0,0
N ,β,h . For ease of notation we

will pretend that the Markov chain has period 1. This is easily fixed when the period
is 2.

Consider I. Let σN = max{0 ≤ n ≤ N : Sn = M}, and split

I =
∑

M≤m≤N−M

E0

[
e
∑N

n=1(βωn−h)ϕ(Sn) 1{SN≥2M} 1{σN=m}
]
. (A.14)

Replace (Sm, . . . , SN ) by an (N − M −m)-step path from M to M that is everywhere
≥ M , followed by an M-step downward path (M, . . . , 0). The cost of this replacement
is at most

exp
([
2ε(N − M − m) + 2M‖ϕ‖∞

]
(β �N (ω) + |h|)

)
(A.15)

for the weight factor, with �N (ω) = max1≤n≤N ωn , and at most

PM (Sn ≥ M ∀ 0 < n < N − M, SN ≥ 2M)

PM (Sn ≥ M ∀ 0 < n < N − M − m, SN−M−m = M)�M
(A.16)

for the path probability, with �M := ∏1
x=M px,x−1. The probability in the denomi-

nator equals fM (N − M − m), and so we get

I ≤ e[2εN+2M‖ϕ‖∞] (β �N (ω)+|h|) �−1
M

fM (N − M − m)
Zω,0,0

N ,β,h . (A.17)

Since M is fixed, �M > 0, ‖ϕ‖∞ < ∞, �N = O(log N ) P-a.s. and
max1≤n≤N 1/ fM (n) = eo(N ), we get I = eo(N )Zω,0,0

N ,β,h P-a.s.
The argument for II is similar. For III we replace (SN−M , . . . , SN ) by an M-step

path from SN−M to 0 at a finite cost (depending on M and �N ).

A.3. Proof of (1.25)

Copy the argument in “Appendix A.2” starting from the analogue of (A.9):

Z ann,x,y
N ,β,h := Ex

[
e
∑N

n=1 ψβ,h(Sn) 1{Sn=y}
]
, N ∈ N0, x, y ∈ Z. (A.18)

Use that ‖ψβ,h‖∞ < ∞, and that for every ε > 0 there is an M ∈ N0 such that

|ψβ,h(x) − η+| ≤ ε, x ≥ M, |ψβ,h(x) − η−| ≤ ε, x ≤ −M, (A.19)

with η± = ψβ,h(γ±) = log M(βγ±) − hγ± (recall (1.21)).
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A.4. Interchange of limits

The following two lemmas, which give us a sandwich for the annealed free energies
in the discrete and in the continuous model, are the key to showing that the limits in
(4.5) may be interchanged.

Lemma 4.2 For M, N ∈ N0, β ∈ (0,∞) and h ∈ R, define

Z ann,−
M,N ,β,h := min|x |≤M

∑
|y|≤M

Z ann,x,y
N ,β,h ,

Z ann,+
N ,β,h := sup

x∈Z

∑
y∈Z

max
0≤N ′≤N

Z ann,x,y
N ′,β,h . (A.20)

Assume that lim|x |→∞ ϕ(x) = 0 (recall (1.44)). Then, for all β ∈ (0,∞) and h ∈ R,

lim
N→∞

1

N
log Z ann,−

M,N ,β,h = Fann(β, h) = lim
N→∞

1

N
log Z ann,+

N ,β,h ∀ M ∈ N0. (A.21)

Proof Note that Z ann,−
M,N ,β,h ≤ Z ann,+

N ,β,h for all M, N ∈ N0. Hence we only need to show

that Z ann,+
M,N ,β,h ≤ eo(N )Z ann,−

N ,β,h as N → ∞ for all M ∈ N0. Indeed, this will imply

(A.21) because Fann(β, h) = limN→∞ 1
N log Z ann,0,0

N ,β,h , as proved in Appendix A.3. In

what follows we fix β, h and abbreviate HN (S) :=∑N
n=1 ψβ,h(Sn).

Recall (A.19), where η± = 0 because γ± = limx→±∞ ϕ(x) = 0 by assumption.
Define τM := min{n ∈ N0 : |Sn| ≤ M} and split

Ex

[
eHN (S)

]
= Ix + IIx (A.22)

with

Ix = Ex

[
eHN (S)1{τM >N }

]
, IIx = Ex

[
eHN (S)1{τM≤N }

]
. (A.23)

For x ≥ M and x ≤ −M ,

Ix ≤ eεN Px (τM > N ) ≤ eεN ,

IIx ≤ Ex

[
eετM 1{τM≤N } max

z=±M
Ez

[
eHN−τM (S)

]]

≤ eεN max|z|≤M
max

0≤N ′≤N
Ez

[
eHN ′ (S)

]
. (A.24)

Combining (A.22) and (A.24), we obtain

Z ann,+
N ,β,h ≤ (1+ eεN ) max|z|≤M

max
0≤N ′≤N

Ez

[
eHN ′ (S)

]
. (A.25)

For every |x |, |y| ≤ M we have

Ex

[
eHN ′ (S)

]
≥ �M e−M‖ψβ,h‖∞ Ey

[
eHN ′ (S)

]
(A.26)
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with �M =∏M−1
x=−M px,x+1 ∧∏−M+1

x=M px,x−1. Since �M > 0, it follows that

Z ann,+
N ,β,h ≤ eεN+o(N ) max

0≤N ′≤N
E0

[
eHN ′ (S)

]
, N → ∞. (A.27)

As shown in Appendix A.3,

E0

[
eHN ′ (S)

]
= Z ann

N ′,β,h = eo(N ′)Z ann,0,0
N ′,β,h , N ′ → ∞. (A.28)

Since N �→ log Z ann,0,0
N ,β,h is super-additive, it follows that

max
0≤N ′≤N

E0

[
eHN ′ (S)

]
= eo(N ) E0

[
eHN (S)

]
, N → ∞. (A.29)

Combining (A.27) and (A.29), we obtain

Z ann,+
N ,β,h ≤ eεN+o(N )Z ann,0,0

N ,β,h , N → ∞. (A.30)

But

Z ann,0,0
N ,β,h ≤ E0

[
eHN (S) 1{|SN |≤M}

]
. (A.31)

Appealing once more to (A.26), we arrive at

Z ann,+
M,N ,β,h ≤ eεN+o(N )Z ann,−

M,N ,β,h, N → ∞, (A.32)

which proves the claim because ε > 0 is arbitrary. ��
Lemma 4.3 For S, T ≥ 0, β̂ ∈ (0,∞) and ĥ ∈ R, define

Ẑ ann,−
S,T ,β̂,ĥ

:= min|x |≤S
Ex

[
e
∫ T
0 dt ψ̂

β̂,ĥ(Xt )1{|XT |≤S}
]

,

Ẑ ann,+
T ,β̂,ĥ

:= sup
x∈R

max
0≤T ′≤T

Ex

[
e
∫ T ′
0 dt ψ̂

β̂,ĥ(Xt )

]
, (A.33)

with ψ̂
β̂,ĥ defined in (4.4). Then, for all β̂ ∈ (0,∞) and ĥ ∈ R,

lim
T→∞

1

T
log Ẑ ann,−

S,T ,β̂,ĥ
= F̂ann(β̂, ĥ) = lim

T→∞
1

T
log Ẑ ann,+

T ,β̂,ĥ
∀ S ∈ (0,∞).(A.34)

Proof The proof is similar to that of Lemma 4.2. ��
Whatmakes Lemma 4.2 useful is that N �→ log Z ann,−

M,N ,β,h is superadditive for every

M ∈ N0, while N �→ log Z ann,+
N ,β,h is subadditive. Consequently,

1

N
log Z ann,−

M,N ,β,h ≤ Fann(β, h) ≤ 1

N
log Z ann,+

N ,β,h ∀ M, N ∈ N. (A.35)
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Let A, B be the pair of exponents appearing in part (a) of Theorems 1.6–1.8, i.e.,

(A, B) =
⎧⎨
⎩

((1− ϑ)/2, (2− ϑ)/2), ϑ ∈ (0, 1− α),

(α/2, (2− ϑ)/2), ϑ ∈ (1− α, 2(1− α)),

(α/2, α), ϑ ∈ (2(1− α),∞).

(A.36)

Fix T , S ∈ (0,∞), in (A.35) replace N by T N , and pick M = S
√

T N , β = β̂N−A,
h = ĥN−B , to obtain

1

T
log Z ann,−

S
√

T N ,T N ,β̂N−A,ĥN−B ≤ N Fann(β̂N−A, ĥN−B) ≤ 1

T
log Z ann,+

T N ,β̂N−A,ĥN−B

∀ N ∈ N, T , S ∈ (0,∞).

(A.37)

Let N → ∞ to obtain

1

T
log Ẑ ann,−

S,T ,β̂,ĥ
≤ lim inf

N→∞ N Fann(β̂N−A, ĥN−B)

≤ lim sup
N→∞

N Fann(β̂N−A, ĥN−B) ≤ 1

T
log Ẑ ann,+

T ,β̂,ĥ
∀ T , S ∈ (0,∞). (A.38)

Here, the fact that

Ẑ ann,−
S,T ,β̂,ĥ

= lim
N→∞ Z ann,−

S
√

T N ,T N ,β̂N−A,ĥN−B ,

Ẑ ann,+
T ,β̂,ĥ

= lim
N→∞ Z ann,+

T N ,β̂N−A,ĥN−B , (A.39)

follows from the same argument as used in Section 4 to prove that

lim
N→∞ Z ann

T N ,β̂N−A,ĥN−B = Ẑ ann
T ,β̂,ĥ

. (A.40)

In particular, the scaling M = S
√

T N fits well with the invariance principle in (1.37).
Finally, let T → ∞ in (A.38) and use Lemma 4.3, to obtain

lim
N→∞ N Fann(β̂N−A, ĥN−B) = F̂ann(β̂, ĥ). (A.41)

Appendix B: Properties of the annealed scaling limit

In this appendix we show that the annealed partition functions and the corresponding
annealed free energies encountered in Theorems 1.6–1.8 are finite in each of the three
regimes. We also give an explicit characterization of the annealed free energy and the
annealed critical curve in the regime where ϑ ∈ (2(1− α),∞).
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B.1. Finite free energies for the Bessel process

For μ, T , γ ∈ [0,∞), define

Ẑμ,T := Ê0

[
exp

(
μ

∫ T

0
dt X−γ

t

)]
, Z̃μ,T := Ê0

[
exp

(
μL̂T (0)

)]
. (B.1)

We show that, for 0 < γ < 2(1− α), these quantities grow at most exponentially as
T → ∞:

∀μ ∈ [0,∞), ∀ 0 < γ < 2(1− α) : lim sup
T→∞

1

T
log Ẑμ,T < ∞,

lim sup
T→∞

1

T
log Z̃μ,T < ∞. (B.2)

By Cauchy-Schwarz, this implies that all the free energies in Theorems 1.6–1.8 are
finite.

We first focus on Ẑμ,T , which we rewrite as

Ẑμ,T = 1+
∑
k∈N

μkĈk,T (B.3)

with

Ĉk,T :=
∫

0≤t1<···<tk≤T
dt1 · · · dtk Ê0

[
k∏

�=1

X−γ
t�

]
. (B.4)

We use the Markov property at times t1, . . . , tk to estimate

Ê0

[
k∏

�=1

X−γ
t�

]
=
∫

0≤x1,...,xk<∞

k∏
�=1

P̂x�−1(Xt�−t�−1 ∈ dx�) x−γ

�

≤
∫

0≤x1,...,xk<∞

k∏
�=1

P̂0(Xt�−t�−1 ∈ dx�) x−γ

�

(B.5)

where the inequality holds because P̂0(Xt ∈ ·) stochastically dominates P̂x (Xt ∈ ·)
for any x ≥ 0 (by a standard coupling argument and the fact that X is aMarkov process
with continuous paths) and because x �→ x−γ is non-increasing. We thus obtain

Ĉk,T ≤
∫

0≤t1<···<tk≤T
dt1 · · · dtk

k∏
�=1

Ê0

[
X−γ

t�−t�−1

]
(B.6)
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with t0 = 0. By diffusive scaling we have Ê0[X−γ
t ] = t−γ /2C , with C = Ê0[X−γ

1 ] <

∞ for 0 < γ < 2(1− α) (recall (1.31)). The change of variables tk = T sk yields

Ẑμ,T ≤ 1+
∑
k∈N

(μC T 1−γ /2)k Ik(γ /2) (B.7)

where, for ϑ ∈ (0, 1),

Ik(ϑ) :=
∫

0≤s1<···<sk≤1
ds1 · · · dsk

k∏
�=1

(s� − s�−1)
−ϑ (B.8)

with s0 = 0. Since

∫

0≤u1<...<uk−1≤1
du1 · · · duk

k∏
�=1

(u� − u�−1)
−ϑ = 
(1− ϑ)k


(k(1− ϑ))
(B.9)

with u0 = 1 and uk = 1 is the normalization of the Dirichlet distribution, after setting
si = sk ui for i = 1, . . . , k − 1 in (B.8) we obtain

Ik(ϑ) =
∫

0≤sk≤1
dsk sk(1−ϑ)−1

k

(1− ϑ)k


(k(1− ϑ))
= 
(1− ϑ)k


(k(1− ϑ) + 1)

≤ 
(1− ϑ)k exp
(
− (1− ϑ)k

{
log[(1− ϑ)k] − 1

})
, (B.10)

where we have used Stirling’s bound 
(x + 1) ≥ ex(log x−1). Substitute ϑ = γ /2 and
set

A := (1− γ /2), B := log
(
μ C 
(1− γ /2)

)
, (B.11)

to obtain

Ẑμ,T ≤ 1+
∑
k∈N

exp
(
− Ak

[
log

(
Ak
)− 1

]+ Ak log T + Bk
)
,

= 1+
∑
k∈N

exp
(

T · k
T

{
− A

[
log

(
A k

T

)− 1
]+ B

})
. (B.12)

We now set x := k/T and note by direct computation that, with x̄ := A−1eB/A,

sup
x∈[0,∞)

x{−A
[
log(Ax) − 1

]+ B} = x̄{−A
[
log(Ax̄) − 1

]+ B} = eB/A. (B.13)

Therefore the leading contribution to the sum in (B.12) is given by k ≈ x̄T (more
precisely, the sum restricted to 0 ≤ k < 2x̄T is at most 2x̄ T exp(T eB/A), while the
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contribution of the remaining terms with k ≥ 2x̄T is negligible). It follows that

lim sup
T→∞

1

T
log Ẑμ,T ≤ eB/A = [

μ C 
(1− γ /2)
] 1
1−γ /2 < ∞. (B.14)

We next focus on Z̃μ,T , which equals

Z̃μ,T = 1+
∑
k∈N

μkC̄k,T (B.15)

with

C̄k,T := 1

k! Ê
[

L̂T (0)k
]
. (B.16)

We recall from (1.35) that we can write L̂T (0) = limε↓0 L̂ε
T (0) in probability, where

L̂ε
T (0) := cα

ε2(1−α)

∫ T

0
ds 1{Xs∈(0,ε)}, with cα := 
(2− α)

2α−1 . (B.17)

Let us focus on L̂ε
T (0) for a moment. By explicit computation, for any k ∈ N (with

t0 := 0)

1

k! Ê
[

L̂ε
T (0)k

]
= ck

α

ε2(1−α)k

∫

0≤t1<···<tk≤T
dt1 · · · dtk P̂0

( k⋂
�=1

{Xt� ∈ (0, ε)}
)

≤ ck
α

ε2(1−α)k

∫

0≤t1<···<tk≤T
dt1 · · · dtk

k∏
�=1

P̂0
(
Xt�−t�−1 ∈ (0, ε)

)

≤
∫

0≤t1<···<tk≤T
dt1 · · · dtk

k∏
�=1

(t� − t�−1)
−(1−α) = T α Ik(1− α),

(B.18)

where the first inequality holds because P̂0(Xt ∈ ·) stochastically dominates P̂x

(Xt ∈ ·) for any x ≥ 0, while the last inequality holds by (1.32) and the defini-
tion (B.8) of Ik(·). This shows that, as ε ↓ 0, L̂ε

T (0) is uniformly bounded in Lk , for

any k ∈ N. By uniform integrability, we can therefore exchange limε↓0 and Ê to get,
recalling (B.16),

C̄k,T = lim
ε↓0

1

k! Ê
[

L̂ε
T (0)k

]
= T α Ik(1− α), (B.19)
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where the last equality holds because the inequality in (B.18) becomes sharp as ε ↓ 0.
Hence

Z̃μ,T = 1+
∑
k∈N

μk
∫

0≤t1<···<tk≤T
dt1 · · · dtk

k∏
�=1

(t� − t�−1)
−(1−α)

= 1+
∑
k∈N

(μT α)k Ik(1− α). (B.20)

The steps in (B.10)–(B.14) (with ϑ = 1− α instead of ϑ = γ /2) show that not only
Z̃μ,T < ∞ for all μ, T , but also limT→∞ 1

T log Z̃μ,T < ∞ for all μ.

B.2. Formula for the annealed free energy

To compute the annealed free energy F̂(β̂, ĥ) in the regime ϑ ∈ (2(1 − α),∞),
we use the first line in (B.20) to compute the Laplace transform of Z̃μ,T . Writing
e−λT = (

∏k
�=1 e

−λ(t�−t�−1)) e−λ(T−tk ) for λ ≥ 0, we get

∫ ∞

0
dT λ e−λT Z̃μ,T = 1+

∑
k∈N

(
μ

∫ ∞

0
tα−1 e−λt dt

)k

= 1

1− μλ−α 
(α)
.

(B.21)

Hence

F(μ) = lim
T→∞

1

T
log Z̃μ,T =

{
(μ
(α))1/α, μ ≥ 0,

0, μ < 0,
(B.22)

which proves (1.57).

Appendix C: Localization criterion for the annealedmodel

In this appendix we take a closer look at the criterion in (1.62) and show that it
does not depend on the starting point of the walk. For the purpose of this appendix,
let S = (Sn)n∈N0 be any recurrent Markov chain on a countable space E , and let
ψ : E → R be an arbitrary function. Denote by τ x := min{n ∈ N : Sn = x} the first
return time of S to x . Define

Ax :=
∑
m∈N

Ex

[
e
∑m

n=1 ψ(Sn) 1{τ x=m}
]
∈ (0,∞]. (C.1)

We will prove the following property:

∀x, y : Ax > 1 ⇐⇒ Ay > 1. (C.2)
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It is convenient to introduce the following shorthand notation, for (possibly random)
σ ∈ N:

H(σ ) :=
σ∑

n=1

ψ(Sn), (C.3)

so that we may simply write Ax = Ex [eH(τ x )]. Given an arbitrary y, we can split this
expected value according to the two complementary events {τ x < τ y} and {τ y < τ x }:

Ax = Ex
[
eH(τ x ) 1{τ x <τ y}

]+ Ex
[
eH(τ x ) 1{τ y<τ x }

]
. (C.4)

The second term can be expanded by summing over all visits of S to y that precede
the first return to x . If we define

Bxy := Ex
[
eH(τ x ) 1{τ x <τ y}

]
, Cxy := Ex

[
eH(τ y) 1{τ y<τ x }

]
, (C.5)

then by the strong Markov property we get

Ax = Bxy +
∞∑

�=0

Cxy (Byx )
� Cyx = Bxy + Cxy Cyx

1− Byx
, (C.6)

with the convention that Ax = ∞ if Byx ≥ 1. Exchanging the roles of x and y, we
get

Ay = Byx + Cxy Cyx

1− Bxy
. (C.7)

Weare now ready to prove (C.2). Fix x, y.We show that if Ax ≤ 1, then also Ay ≤ 1.
To simplify the notation, we abbreviate b := Bxy , b′ := Byx and c := CxyCyx , so
that

Ax = b + c

1− b′
, Ay = b′ + c

1− b
, (C.8)

with the convention that the ratios equal∞ if b′ ≥ 1, respectively, b ≥ 1. Assume that
Ax ≤ 1. Then we must have b′ < 1 and the formula Ax = b + c

1−b′ applies, which
shows that also b < 1 (because c > 0). Hence we can write

Ay = b′ + c

1− b
= b′ + 1− b′

1− b

c

1− b′

= b′ + 1− b′

1− b
(Ax − b) ≤ b′ + 1− b′

1− b
(1− b) = 1, (C.9)

i.e., Ay ≤ 1.
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