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1 Introduction

After the tenth anniversary of the Higgs boson discovery at the Large Hadron Collider
(LHC) [1, 2], the study of its fundamental properties is still a very active field of research.
Among all of the properties already measured — see for example refs. [3, 4] and references
therein — or in the processes to be measured [5, 6], one of the most important parameters
connected with the electroweak symmetry breaking (EWSB) mechanism is the Higgs boson
self-coupling, which, so far, has not yet been directly measured [7–10]. Even with the
future high-luminosity phase of the LHC, the Higgs self-coupling is only predicted to be
constrained by around 50% [11].

The measurement of the Higgs self-coupling is extremely dependent on precise theoretical
predictions, and, at hadron colliders, it can be probed primarily through the production
of a pair of Higgs bosons. Other indirect ways of estimating the self-coupling that exploit
electroweak corrections in high precision observables have been proposed and studied [12–14].
Similar to the production of a single Higgs boson at hadron colliders, the main production
mechanism of a Higgs pair is through a top-quark loop produced via gluon-gluon fusion [15].
This means that already at the first non-trivial order in perturbation theory, one has to
deal with a one-loop calculation [15–17], which makes the inclusion of higher-order terms
particularly difficult. However, just as in the single Higgs boson case, one can treat the top
quark as being infinitely heavy with respect to the Higgs boson, thus obtaining an effective
gluon-gluon-Higgs vertex [15]. Within this so-called heavy-top limit (HTL), the first results
at next-to-leading-order (NLO) accuracy in QCD have been computed in ref. [18], those
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at next-to-next-to-leading order (NNLO) in refs. [19, 20], and at next-to-next-to-next-to-
leading order (N3LO) in refs. [21, 22]. Beyond the HTL, NLO results with full top-quark
mass dependence have been presented in refs. [23–26]. Approximations to include finite
top-quark mass effects in fully differential calculations were discussed in refs. [27, 28] up to
the NNLO and in ref. [29] at N3LO. Furthermore, the exact NLO results were combined
with a resummation of logarithms of the transverse momentum of the Higgs pair system
to next-to-leading logarithmic (NLL) accuracy [30], and a soft-gluon resummation to NLL
was performed in ref. [28]. Exact NLO results matched to the parton shower appeared
in refs. [31–33], while techniques to systematically include finite-mass effects had been
studied [34–36] before the exact NLO results became available. Several approaches towards
analytical results for the two-loop amplitudes with full top-mass dependence based on
different expansions were discussed in the literature [37–48].

In this work we provide the first implementation of the production of a Higgs pair at
NNLO QCD in gluon-gluon fusion, using the HTL, matched to the parton shower. We do
so using the well-established Geneva framework, which has been extensively exploited to
provide fully differential results for various other colour singlet production processes [49–54].
Our results feature the resummation of the zero-jettiness (T0) at next-to-next-to-leading-
logarithmic accuracy within the primed counting (NNLL′). While it is well known that
the heavy-top approximation does not work as well for double Higgs production as it
does for single Higgs boson [23, 27, 32], the problem of including finite top-quark (and
bottom-quark) mass effects is largely orthogonal to the problem of matching a NNLO
calculation for gg → HH to the NNLL′ resummation of T0 and to the parton shower. For
this reason, in this work we neglect all power-like heavy-quark mass effects, but we note that
for an accurate event generator these would have to be included. We leave the study of the
inclusion of mass effects to a future publication. Note that other methods for the matching
of NNLO calculations to the parton shower (NNLOPS in short) are available [55–57], but
as far as we are aware no predictions for this specific process are available to date, using
any of these methods.

The outline of this work is the following. First, in section 2, we review the main
features of the Geneva method, highlighting the differences with previous implementations
which have been specifically designed for this process. Second, in section 3, we validate our
results by comparing to a fixed-order NNLO calculation provided by an independent code,
Matrix [20, 58]. Next, in section 4, we discuss the impact of the parton shower, presenting
our results. Finally, in section 5 we present our conclusions.

2 Theoretical framework

At hadron colliders, the production of a pair of Higgs bosons proceeds via two mechanisms.
In the Standard Model (SM), at tree level, two Higgs bosons can be produced through
heavy-quark (charm or bottom) annihilation through s- and t-channel diagrams [59]. At
one-loop, one can instead produce a pair of Higgs bosons via a top-quark loop in triangle
and box topologies in the gluon-gluon fusion channel. In the SM, the latter represents the
dominant production mode, despite being suppressed by two powers of αS compared to
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Figure 1. Leading-order diagrams for the production of a Higgs pair in the HTL.

heavy-quark annihilation. This is due to the larger values of the gluon parton distribution
function (PDF) at the relevant momentum transfer, combined with the larger coupling of
the top quark to the Higgs boson. In the same spirit as the production of a single Higgs
boson, to simplify the inclusion of higher-order effects, one can make the approximation
that the top-quark mass is much larger than the hard scale of the process. This produces
effective vertices directly coupling Higgs bosons and (two) gluons, and is normally referred
to as HTL. We show in figure 1 the two leading-order (LO) diagrams contributing to this
process in this approximation.

It is important to stress that it is well known that the HTL is a much worse approx-
imation in this particular case [23, 27, 32] compared to single Higgs boson production.
There are two main causes for this. First, as this approximation receives corrections of
the order O

(
Q2/m2

t

)
, taking as a typical value for the momentum transfer Q the peak

of the invariant-mass distribution of the Higgs pair instead of the Higgs boson mass, we
see that corrections are roughly three to four times larger for di-Higgs than for single
Higgs production.1 Second, the two diagrams depicted in figure 1 arise from two different
loop topologies: the triangle (left) and the box (right). While the latter is relatively well
approximated in the HTL, the former is known, from the single scalar production case, to
be a poor approximation for larger invariant masses of the s-channel particle. In this case,
this is the mass of the virtual Higgs boson which can acquire extremely large values, thus
spoiling the approximation. Moreover, in the exact result it is known that the interference
between these two diagrams is large and negative, thus causing a large overall cancellation
— this is not well-captured in the HTL.

In order to have a realistic event generator for this process, heavy-quark mass effects
have to be included, and ways to include them order-by-order using approximants have been
studied [60]. However, the present work is mainly concerned with the effects of matching
the NNLO calculation for the FO production to the resummation of T0 and the subsequent
matching to the parton shower, for this process. For these aspects, mass effects can be
safely considered an orthogonal problem as they are not expected to considerably change
the conclusions drawn in this paper. Lastly, due to the lack of available experimental data,
for the time being we can safely ignore these effects. In the same spirit, when discussing
the interface to the parton shower in section 4, we also ignore all effects given by the
hadronisation and fragmentation of hadrons in the shower, as well as those coming from
multi-parton scattering.

1Note that this is by itself a poor approximation, as the invariant-mass spectrum has a wide distribution,
well sustained up to very large values of MHH , meaning that the average invariant-mass value is actually
much larger than the position of the peak, and our previous reasoning only provides an underestimate of the
actual corrections.
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In the rest of this section we recap the main features of the Geneva method, highlighting
the main differences with respect to quark-induced processes that have been considered so
far, and stressing the novelties developed during the completion of this work.

2.1 The Geneva method

Since the Geneva framework has already been extensively discussed in previous publica-
tions [49, 50, 52–54], for the sake of conciseness, we explicitly refrain from entering into the
details of the method and only briefly recall the general formulae, highlighting some key
features that are important for this process.

Geneva employs IR-safe resolution variables to discriminate between events, which
are classified as having 0, 1 or 2 jets according to whether the value of a given resolution
variable is smaller or larger than a given cutoff. Within this framework, from which the
definition of “physical events” in a Monte Carlo generator naturally follows [61], unresolved
emissions below the resolution cutoff are integrated over, and the IR safety of each event and
at each perturbative order is ensured. For all the processes previously studied, a single cut
in the resolution variable discriminating between zero or more jets, either on zero-jettiness
T cut

0 or on the transverse momentum of the colour singlet qcut
T , had always been used

both for the resummed and the nonsingular components of the calculation. However, it is
perfectly legitimate to move as much of the nonsingular contribution as possible into the
resolved region of the phase space, such that it can be better described with the full event
kinematics, while still maintaining the IR safety requirements. We recall that the variable
N -jettiness [62] is defined as

TN =
∑
k

min [q̂a · pk, q̂b · pk, q̂1 · pk, . . . , q̂N · pk] , (2.1)

with N = 0, 1, q̂a,b are the beam directions and q̂k represents any final-state massless four-
vector that minimises TN , and pk are the momenta of the final-state partons. Therefore,
in the following we explicitly use 0-jettiness as our main resolution variable and consider
two separate cuts: T cut

0,re acting on the resummed singular contribution and T cut
0,ns acting

on the nonsingular. These effectively replace the common T cut
0 used in previous Geneva

implementations. Choosing T cut
0,ns smaller than T cut

0,re allows us to push down the calculation
of the nonsingular contributions to lower values, thereby reducing the subleading power
corrections. Note, however, that the result should be independent of the exact choice of
T cut

0,re , modulo higher-order corrections.
With these definitions, the differential cross sections for the production of events with

0, 1, and ≥ 2 emissions are given by2

dσmc
0

dΦ0
(T cut

0,re ,T cut
0,ns)

= dσNNLL′

dΦ0
(T cut

0,re)− dσNNLL′

dΦ0
(T cut

0,ns)
∣∣∣∣
NNLO0

+(B0+V0+W0)(Φ0) +
∫ dΦ1

dΦ0
(B1+V1)(Φ1)θ

(
T0(Φ1)< T cut

0,ns
)

+
∫ dΦ2

dΦ0
B2(Φ2)θ

(
T0(Φ2)< T cut

0,ns
)
, (2.2)

2With NkLOl we refer to the FO calculation at kth order in QCD for the final state with l resolved jets.
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dσmc
1

dΦ1
(T0> T cut

0,ns;T cut
0,re ;T cut

1 )

=
{

dσNNLL′

dΦ0dT0
P(Φ1)θ(T0> T cut

0,re)+
[
(B1+V C1 )(Φ1)− dσNNLL′

dΦ0dT0

∣∣∣∣
NLO1

P(Φ1)
]
θ(T0> T cut

0,ns)
}

×U1(Φ1,T cut
1 )+

∫ [ dΦ2

dΦT1
B2(Φ2)θ

(
T0(Φ2)> T cut

0,ns
)
θ(T1< T cut

1 )− dΦ2

dΦC1
C2(Φ2)θ(T0> T cut

0,ns)
]

−B1(Φ1)U (1)
1 (Φ1,T cut

1 )θ(T0> T cut
0,ns) , (2.3)

dσmc
≥2

dΦ2
(T0> T cut

0,ns;T cut
0,re ;T1> T cut

1 )

=
{[

(B1+V C1 )(Φ1)− dσNNLL′

dΦ0dT0

∣∣∣∣
NLO1

P(Φ1)
]
θ(T0> T cut

0,ns)
∣∣∣
Φ1=ΦT

1 (Φ2)

]

+ dσNNLL′

dΦ0dT0
P(Φ1)θ(T0> T cut

0,re)
∣∣∣
Φ1=ΦT

1 (Φ2)

}
U ′1(Φ1,T1)P(Φ2)θ(T1> T cut

1 )

+B2(Φ2)θ(T1> T cut
1 )θ

(
T0(Φ2)> T cut

0,ns
)

−B1(ΦT1 )U (1)′
1
(
Φ1,T1

)
P(Φ2)Θ(T1> T cut

1 )θ
(
T0(Φ2)> T cut

0,ns
)
. (2.4)

In the previous formulae B0,1,2 represents the 0, 1, 2-parton tree-level contributions, V0,1 the
0, 1-parton one-loop contributions and W0 the two-loop contributions. We have introduced
the notation

dΦM

dΦTN
= d ΦMδ[ΦN − ΦTN (ΦM )] ΘT (ΦM ), N ≤M , (2.5)

to indicate that the integration over a region of the M -body phase space is done keeping
the N -body phase space and the value of the observable T fixed. The ΘT (ΦN ) term limits
the integration region to the phase space points included in the singular contribution for
the observable T . The V C

1 term includes contributions of soft and collinear origin and it is
defined as

V C
1 (Φ1) = V1(Φ1) +

∫ dΦ2
dΦC

1
C2(Φ2) , (2.6)

where C2 acts as a local NLO subtraction counterterm that reproduces the singular behaviour
of B2. The subtraction counterterms are integrated over the radiation variables dΦ2

dΦC1
considering the singular limit C of the phase space mapping.

We have also introduced normalised splitting functions P(ΦN+1) to make the resummed
TN spectrum fully differential in ΦN+1. These splitting functions are normalised such that

∫
P(ΦN+1) dΦN+1

dΦN dTN
= 1, (2.7)

where two extra emission variables, the energy ratio z and the azimuthal angle φ, are needed
besides TN to define a splitting ΦN → ΦN+1. The normalised splitting probability is given
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by

P(ΦN+1) = fkj(ΦN , TN , z)
N+2∑
k′=1

∫ zk′
max(ΦN ,TN )

zk′
min(ΦN ,TN )

dz′ Jk′(ΦN , TN , z′) Ik
′

φ (ΦN , TN , z′)
nk′

split∑
j′=1

fk′j′(ΦN , TN , z′)

, (2.8)

where
Ikφ(ΦN , TN , z) = φkmax(ΦN , TN , z)− φkmin(ΦN , TN , z) . (2.9)

In the formula above fkj (ΦN , TN , z) are generic functions based on the Altarelli-Parisi
splitting functions, zmin,max(ΦN , TN , z), φmin,max(ΦN , TN , z) are the integration limits, respec-
tively, in z and φ defined in ref. [63], and J (ΦN , TN , z) is the Jacobian related to the change
of variable. Further details about this new implementation of the splitting probabilities are
discussed in a separate publication [64].

In equations (2.3) and (2.4) we introduce the Sudakov factor U1(Φ1, T cut
1 ) which resums

the dependence of T cut
1 to next-to-leading-logarithmic (NLL) accuracy. In addition to the

formulae for the quark channels already presented in ref. [65], for gluon-initiated processes
we have

Uggg1 (Φ1, T cut
1 ) = U

Γ
(

1 + 6CA ηNLL
cusp (µS , µH)

) , (2.10)

with Γ the Euler gamma function and

lnU = 6CA
[
2KNLL

Γcusp(µJ , µH)−KNLL
Γcusp(µS , µH)

]
+ CA

[
− ln

(
Q2
aQ

2
bQ

2
J

µ6
H

)
ηNLL

Γcusp(µJ , µH) + ln
(
Q2
aQ

2
bQ

2
J

stu

)
ηNLL

Γcusp(µS , µH)
]

− 6 γE CA ηNLL
Γcusp(µS , µJ) + 3KNLL

γgJ
(µJ , µH). (2.11)

The functions appearing in the formula above are common in the SCET literature, see e.g.
ref. [66], and are given by

KNLL
Γcusp(µ1, µ2) = − Γ0

4β2
0

[ 4π
αS(µ1)

(
1− 1

r
− ln r

)
+
(Γ1

Γ0
− β1
β0

)
(1− r ln r) + 1

2
β1
β0

ln2 r

]
,

ηNLL
Γcusp(µ1, µ2) = −1

2
Γ0
β0

[
ln r + αS(µ1)

4π

(Γ1
Γ0
− β1
β0

)
(r − 1)

]
,

KNLL
γJ

= −1
2
γ0
β0

ln r , (2.12)

with r = αS(µ2)
αS(µ1) , the scales µH = T max

1 , µS = T cut
1 and µJ = √µHµS . The kinematics-

dependent terms are given by

Qa = paQHH e
YHH , Qb = pbQHH e

−YHH , QJ = 2 pJ EJ , (2.13)

where QHH is the invariant mass of the di-Higgs system, YHH its rapidity, pa,b are the
incoming momenta, pJ is the momentum and EJ the energy of the jet in the final state (in
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the frame in which the Higgs pair system has YHH = 0). The cusp and noncusp anomalous
dimensions are given by

Γ0 = 4 , Γ1 = 4
[(67

9 −
π2

3

)
CA −

20
9 TFnf

]
,

γ0 = 12CF + 2β0 , β0 = 11
3 CA −

4
3TFnf ,

β1 = 34
3 C

2
A −

10
3 CAnf − 2CFnf . (2.14)

With U ′1 we denote the first derivative of U1(Φ1, T1) with respect to T1, and with U ′(1)
1 and

U
(1)
1 their O(αS) expansions, respectively.

All the non-projectable regions of Φ1 and Φ2, due to events that e.g. result in an invalid
flavour projection or come from points in the phase space not covered by the T0-preserving
mapping, are included in the event samples with 1 or 2 additional emissions below the
resolution cutoffs. We assign them the following cross sections,

dσmc
1

dΦ1
(T0≤T cut

0,ns;T cut
1 ) = (B1+V1)(Φ1)ΘFKS

map (Φ1)θ(T0< T cut
0,ns) , (2.15)

dσmc
≥2

dΦ2
(T0> T cut

0,ns;T1≤T cut
1 ) =B2(Φ2)ΘTmap(Φ2)θ(T1< T cut

1 )θ
(
T0(Φ2)> T cut

0,ns

)
. (2.16)

The quantity ΘX
map encodes the constraints due to the projections in the two mappings:

the FKS map in the case of the Φ1 → Φ0 projection and the T0-preserving map for the
Φ2 → Φ1 projection. The overlined versions represent their complements.

2.2 T0 resummation

In order to compute our results in the region below T cut
0 , as well as to perform the T0

resummation, we rely on the factorisation theorem for the zero-jettiness in the SCET
formalism. For the particular case at hand, it means that we can write the factorised
differential cross section as [67]

dσSCET

dΦ0 dT0
= Hgg→HH(Q2, µ)

∫
Bg(ta, xa, µ)Bg(tb, xb, µ)Sgg

(
T0 −

ta + tb
Q

,µ

)
dta dtb.

(2.17)
In the above formula Hgg→HH is the hard function, Bg the beam function and Sgg the soft
function. The hard function is process dependent and contains the corresponding Born and
virtual matrix elements. The soft function depends on the external partons in the process:
for colour singlet production in the gluon fusion channel, its perturbative component is
derived from that calculated for the quark channels through Casimir rescaling. Similarly,
the beam functions also depend on whether the process is quark- or gluon-initiated. They
depend on the transverse virtualities ta,b, and for ta,b � ΛQCD they satisfy an operator
product expansion (OPE) in terms of perturbative collinear matching coefficients and
standard parton distribution functions.

Each of these three functions admits a perturbative expansion in powers of the strong
coupling and manifests a logarithmic dependence on a single characteristic scale. The
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canonical choice of scales that minimises these logarithmic terms is

µH = Q, µB =
√
QT0, µS = T0. (2.18)

Provided this choice of scales is made, there are no leftover large logarithms in the per-
turbative expansion of H, B and S. However, the factorisation formula requires all the
components to be evaluated at a single common scale µ. This is achieved by acting with
the renormalisation group evolution (RGE) operator on each function, which results in the
following schematic representation of the resummed T0 spectrum,

dσNNLL′

dΦ0dT0
= Hgg→HH(Q2, µH)UH(µH , µ)

×
∫

dta dtb [Bg(ta, xa, µB)⊗ UB(µB, µ)] [Bg(tb, xb, µB)⊗ UB(µB, µ)]

×
[
Sgg(T0 −

ta + tb
Q

,µS)⊗ US(µS , µ)
]
, (2.19)

where we abbreviated the convolution over internal variables using the symbol ⊗. In the
formula above the large logarithms arising from ratios of disparate scales in eq. (2.17) have
been resummed by the RGE factors Ui(µi, µ).

At NNLL′ accuracy the anomalous dimensions appearing in the evolution factors need
to be known at 2- and 3-loop order for the noncusp [66] and cusp terms [68–70], respectively.
Similarly, the QCD beta function [71, 72] is required to be known at 3-loop order. In
addition, the hard, beam and soft functions have to be computed at 2-loop order. The
necessary soft function has been computed at 2-loops in refs. [73, 74]. The hard function
is taken from refs. [75] and [38], translating the result from the Catani scheme to the
MS scheme, which we use in Geneva. The details of this calculation can be found in
appendix A. Finally, the beam functions are known up to 3-loops [76, 77].

In order to extend the resummation accuracy of Geneva to N3LL, the noncusp and
cusp anomalous dimensions [66, 78, 79], the QCD beta function [78] and the running of the
strong coupling have to be included at one order higher.

2.2.1 Choice of scales and their impact on observables

In this section we describe the procedure we use to set all the scales entering both the FO
and the resummed parts of our calculation. To be able to smoothly match the regions
where the logarithms of τ = T0/Q are large and where they are sub-dominant, we need to
turn off the resummation around a value of T0 ∼ Q, for some hard scale Q. We choose Q to
be equal to the FO scale, which in turn equals the invariant mass of the Higgs boson pair,
MHH . For larger values of T0, since the cross section is well approximated by the FO result,
it is important to switch off the resummation as T0 → Q. Failing to do so would spoil the
cancellation between the singular and the nonsingular terms. In the SCET approach, where
the resummation is carried out via RGE, this can be achieved by evolving the soft and
beam functions to the same common nonsingular scale µNS = MHH as that of the hard
function, which is always computed at µNS. The evolution of the soft and beam functions

– 8 –
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is done by using profile scales µS(T0) and µB(T0). These conventions have been introduced
in ref. [66], and are given by

µS(T0) = µNS frun(T0/Q),

µB(T0) = µNS

√
frun(T0/Q), (2.20)

where frun is defined as

frun(x) =



x0[1 + (x/(2x0))2] x ≤ 2x0,

x 2x0 < x ≤ x1,

x+ (2−x1−x2)(x−x1)2

2(x2−x1)(x3−x1) x1 < x ≤ x2,

1− (2−x1−x2)(x−x3)2

2(x3−x1)(x3−x2) x2 < x ≤ x3,

1 x3 < x.

(2.21)

This functional form ensures the canonical scaling, given by eq. (2.18), between x0 and
x1 and switches off the resummation above x3. The region below 2x0 corresponds to the
region where we freeze the running of all couplings to avoid the Landau pole. The point x2
corresponds to an inflection point in the profile function frun. In figure 2 we compare the
absolute sizes of the singular and nonsingular contributions to the cross section as functions
of τ at LO1 and NLO1 accuracy, where LO1 and NLO1 refer to the order relative to the
partonic phase space with one extra emission. By default we set the profile parameters to

x0 = 1 GeV
Q

, {x1, x2, x3} = {0.2, 0.275, 0.35}. (2.22)

The values of x1 and x3 are chosen at the points where FO and singular contributions are
of similar size and where the nonsingular contribution becomes dominant, respectively.

We obtain theoretical uncertainties for the FO prediction by varying the central scale
µNS up and down by a factor of two and taking the maximal absolute deviation from the
central value as a measure of uncertainty. For the resummed case we vary the central
choices for the profile scales µS and µB independently, as e.g. detailed in [50], keeping
µH = µNS fixed. We include also two more profiles where all the xi are varied by ±0.05
simultaneously, while keeping all the other scales at their central values. In total we get six
profile variations and take the maximal absolute deviation in the result from the central
value as the resummation uncertainty. The total uncertainty is then given by the quadrature
sum of the resummation and FO uncertainties.

Due to the dependence on T0 of the profile scale µ, the integral over the spectrum is
not equal to the cumulant,∫ T max

0

0

dσNNLL′

dΦ0dT0
(µ(T0)) dT0 = dσNNLL′

dΦ0
(T max

0 , µ(T max
0 )) +O(N3LL), (2.23)

where T max
0 is the upper kinematical limit. While the difference is of higher order it can be

numerically large [80]. When matching this resummed result to a FO calculation, this can
cause a sizeable difference between the total matched cumulant and a purely fixed-order
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Figure 2. Comparison between the absolute values of the fixed-order distribution, of the expansion
of the resummed contribution up to O(α2

S) (Singular) and of their difference (Nonsingular), as a
function of τ at LO1 (left) and NLO1 (right).

NNLO cross section, even in the absence of subleading power corrections. To obviate this
problem, we add an additional higher-order term to our spectrum,

dσimprovedXS

dΦ0dT0
(µ(T0)) = dσNNLL′

dΦ0dT0
(µ(T0))

+ pK(T0,Φ0)
[ d

dT0

dσNNLL′

dΦ0
(T0, µh(T0))− dσNNLL′

dΦ0dT0
(µh(T0))

]
,

(2.24)

where µh(T0) is a dedicated profile scale and K(T0,Φ0) is a smooth function defined as

K(T0,Φ0) = 1
2 −

1
2 tanh

[
32
( T0
MHH

− 1
4

)]
. (2.25)

Note that by construction the additional term in eq. (2.24) is of higher order, consequently
the NNLL′ accuracy of the spectrum is not spoiled. Moreover, its effects are limited to the
resummation region, since µh(T0) = Q in the FO region so that the difference in the square
brackets of eq. (2.24) vanishes. The function K(T0,Φ0) is chosen such that it tends to zero
for large values of T0, and that the effects of the induced higher-order terms are compatible
with the scale uncertainties of the original spectrum in the peak region. Consequently, the
additional higher-order terms induced by this procedure contribute mostly in the peak and
transition regions, where they are expected to be larger. Lastly, we tune the p values to
ensure that we recover the total inclusive cross section upon integration. In order to do
so, we fix the value of p by requiring that the integral over this modified version of the
spectrum is equal to that of the cumulant,

p =

∫
dΦ0

∫
dT0

[
d

dT0
dσNNLL′

dΦ0
(T0, µh(T0))− dσNNLL′

dΦ0dT0
(µh(T0))

]
∫

dΦ0
∫

dT0

[
d

dT0
dσNNLL′

dΦ0
(T0, µh(T0))− dσNNLL′

dΦ0dT0
(µh(T0))

]
K(T0,Φ0)

. (2.26)
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Figure 3. Resummed predictions matched to the appropriate fixed-order results at different
accuracies for the T0 distribution in the peak (left), transition (centre) and tail (right) region.

One must however pay attention to the fact that both the value of p in eq. (2.26) and
the K(T0,Φ0) factor in eq. (2.25) are obtained integrating over the Born variables Φ0. In
particular, there is a nontrivial interplay between the Higgs pair invariant mass MHH

and the definition of K(T0,Φ0). Since the MHH distribution presents a maximum around
4mH ∼ 450− 500 GeV, but spans over a wide range, using a single value of p across all the
possible values of MHH has a sizable effect on the predicted MHH differential distribution,
despite the fact that the correct inclusive cross section is obtained by construction. We
discuss this issue in more detail in the validation against the NNLO result, in section 3.

2.2.2 Partonic predictions

We now discuss the numerical impact of the T0 resummation as well as that of the choice
of the resummation cut T cut

0,re . In figure 3 we show resummed predictions for the T0
distribution divided into three different regions: peak, transition and tail. We present
the resummed results at different resummation orders matched to the appropriate FO
calculations: NLL′+LO1, NNLL+LO1, NNLL′+NLO1 and N3LL + NLO1. In this, and
in all the following plots, we report both the statistical errors due to the Monte Carlo
integration, which appear as vertical bars, as well as the scale variation band, obtained
by the procedure previously discussed. The lower insets of the plots show instead the
normalised relative ratios between the curves. As expected, the peak region at small T0 is
where the resummation has the largest impact, which is reflected by a large spread among
the predictions at different resummation accuracies. In the transition and tail regions the
difference between the various predictions is driven by the FO accuracy, with LO1 results
being consistently smaller than the NLO1 ones across the whole range. We observe a
reasonable convergence of the perturbative predictions: the scale variations at N3LL+NLO1
and NNLL′ + NLO1 are smaller than those at lower orders, especially in the peak and
transition regions. We notice however that, contrary to what one might have anticipated,
resummation effects are still visible up to values of T0 . 300GeV in the small difference
between the N3LL and the NNLL′ results, at the order of a few percent. This can be
explained by the fact that the actual resummed variable is τ0 = T0/MHH , which, in this
particular process, can be small even for relatively large values of T0, when MHH becomes
very large.
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Figure 4. Comparison between T cut
0,re = 1, 2 GeV at fixed T cut

0,ns = 0.5 GeV for pHHT (left), pH1
T (centre)

and T0 (right) distributions.

As discussed in the previous section, we use different cuts for the 0-jet resolution for
the resummed and the nonsingular components. We remark that a variation in the value of
T cut

0,re only amounts to shifting part of the resummed contribution from the 0-jet bin to the
spectrum, and vice versa. In general, the resummed calculation might be problematic when
the soft and beam scales reach small values of the order ΛQCD, due to the running of the
strong coupling. The introduction of profile scales that smoothly turn off the divergence,
freezing the soft scale and preventing it from approaching ΛQCD, partially solves this
problem, but renders the perturbative resummed calculation unreliable in that extreme
region. Moreover, T cut

0,re is eventually tied to the starting scale of the parton shower inside
the 0-jet bin. Therefore, for both of the previous reasons, it is advisable not to push the
T cut

0,re to too small values. In figure 4 we study the dependence of the Geneva partonic
results on the choice of T cut

0,re for a fixed T cut
0,ns = 0.5GeV. As expected, this choice does not

impact in a statistically significant way the distributions shown, which are the transverse
momentum of the Higgs pair pHHT , the transverse momentum of the hardest Higgs boson
pH1
T and the zero-jettiness, respectively.

2.3 Nonsingular and power-suppressed corrections

In the Geneva framework, all the contributions below the cut on the 0-jet resolution
variable are given in eq. (2.2). This expression is NNLO accurate and fully differential in the
phase space Φ0. In principle one could use a local NNLO subtraction for the implementation
of such terms. Alternatively, one can approximate, up to power corrections, the expression
in eq. (2.2) with

d̃σMC
0

dΦ0
(T cut

0,re , T cut
0,ns) = dσNNLL′

dΦ0
(T cut

0,re )− dσNNLL′

dΦ0
(T cut

0,ns)
∣∣∣∣
NLO0

+ (B0 + V0)(Φ0)

+
∫
B1(Φ1) θ(T0(Φ1) < T cut

0,ns)
dΦ1
dΦ0

. (2.27)

This formula only requires a NLO subtraction and the expansion of the resummed contribu-
tion at O(αS) relative to the leading order. It is based on the fact that the singular and
FO contributions cancel up to power corrections below the resolution cutoff at O(α2

S). The
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Figure 5. Singular and nonsingular contributions to the double Higgs production cross section as a
function of T0 at NLO (left) and NNLO (right).

cancellation between these two terms as a function of the resolution cutoff T0 is shown in
figure 5 by plotting the absolute values of their central predictions, both at LO1, which is
of absolute order α3

S , on the left and the pure α4
S contribution on the right. We notice that

the nonsingular distribution correctly approaches zero while the separate FO and singular
contributions are diverging, both at order α3

S and α4
S . This is despite the appearance

of numerical instabilities in the region where the α4
S nonsingular changes sign, around

T0 ∼ 1.5GeV. In practice, however, for any finite choice of T cut
0,ns there are always remaining

nonsingular power corrections below the cutoff, identified by the difference between eq. (2.2)
and (2.27), which reads

dΣ(2)
ns

dΦ0
(T cut

0,ns) = − dσNNLL′

dΦ0
(T cut

0,ns)
∣∣∣∣
NNLO0

+ dσNNLL′

dΦ0
(T cut

0,ns)
∣∣∣∣
NLO0

+W0(Φ0)

+
∫
V1(Φ1) θ(T0(Φ1) < T cut

0,ns)
dΦ1
dΦ0

+
∫
B2(Φ2) θ(T0(Φ2) < T cut

0,ns)
dΦ2
dΦ0

. (2.28)

This term scales like a power correction in T cut
0,ns/Q and is of O(α2

S) relative to the Born
contribution. We show its absolute size as a function of T cut

0,ns in figure 6, as well as its
relative size as a fraction of the NNLO cross section computed by Matrix [20, 58] on
the right axis. For the results presented in this work we choose T cut

0,ns = 0.5 GeV. The
size of the missing corrections associated to that value is around 1.2% of the total cross
section. These missing contributions only affect events below the cutoff, and we can recover
the exact NNLO cross section by reweighting these events by this difference. Note that,
while we could have chosen smaller values of T cut

0,ns to further minimise the impact of power
corrections, lowering this value has shown to cause instabilities in the matrix elements used
for our calculation.
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T cut

0,ns. The green band represents the statistical uncertainty.

3 Details of the calculation and validation of NNLO results

We consider the process pp → HH + X and work in the HTL, taking into account only
the gluon fusion production channel and requiring two on-shell Higgs bosons in the final
state. The centre-of-mass energy considered is

√
S = 13TeV, and we use the following

input parameters:

mH = 125.09 GeV, v = 246.32 GeV, mt = 173.1 GeV. (3.1)

We set both the factorisation and renormalisation scales to the invariant mass MHH of
the Higgs pair, and we use the PDF4LHC15_nnlo_100 PDF [81] set from LHAPDF 6 [82],
including the corresponding value of αS(MZ). By default, we use the three-loop running
of αS for both Matrix and Geneva predictions. To evaluate the beam functions we use
the beamfunc module of scetlib [83, 84]. We set our resolution cutoffs as T cut

0,re = 1 GeV,
T cut

0,ns = 0.5 GeV and T cut
1 = 1 GeV, which provide a reasonable compromise in terms of the

size of the neglected power-suppressed terms and the stability of the singular-nonsingular
cancellation. All tree-level matrix elements are calculated using Recola [85, 86] via a novel
custom-built interface to Geneva, while all the one-loop terms are calculated through the
standard Openloops [87] interface already used for processes previously implemented.

To validate the NNLO accuracy of the results obtained with Geneva, we compare
our results to an independent calculation implemented in Matrix [20, 58]. Note that this
comparison is done at partonic level, before interfacing to the parton shower. In section 4
we will show the results at the showered level, highlighting how all the inclusive quantities
presented in this section are well preserved by the shower stage. We report the result
of this comparison in figure 7 and figure 8 where we show the invariant mass MHH , the
rapidity yHH of the Higgs pair, the transverse momentum of the softest of the two Higgs
bosons and an observable depending on the rapidity difference between the two Higgs
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Figure 7. Comparison of the distribution for the Higgs pair invariant mass (left) and rapidity
(right) between Matrix and Geneva.

bosons, respectively. In figure 7, we show the comparison between Matrix (red), Geneva
(blue) and, in the left panel, the Geneva line obtained by using eq. (2.26) and eq. (2.24)
at face value (green). As anticipated, higher-order effects do play a significant role for
the invariant-mass distribution of the Higgs pair. Indeed, we remind the reader that the
green and blue lines here differ only by higher orders. To be precise, the blue line, which
corresponds to the default Geneva prediction in this work, is obtained by computing the
value p of eq. (2.26) — and thus eq. (2.25) — in different bins of MHH . The reason for this
is given by the fact that, as explained in section 2.2, the resummation we perform is for
small τ0 values, which means that one can have large resummation effects even at large
values of T0 and MHH provided their ratio is small. We have therefore combined various
runs in different MHH bins, distributed more densely in the peak region where the cross
section is larger. As can be seen, the difference between these two curves spans a range
from −5% to roughly +10%. While in general we find a reasonable agreement for these
inclusive distributions within the uncertainty bands of the two calculations, obtained with
the 3-point µR and µF variations, only the blue line shows perfect agreement with the
Matrix result.

In figure 8 we report the comparison for the transverse momentum of the softest Higgs
boson and the hyperbolic tangent of the rapidity difference between the two Higgs bosons,
defined as

χ = tanh
( |yH1 − yH2 |

2

)
, (3.2)

where yH1,H2 are the rapidities of each Higgs boson. Similarly to what is observed in
the previous figure, we notice a good agreement, except in the regions of small pH2

T or
large χ. These differences are expected, as although predictions obtained in the Geneva
framework are NNLO accurate, they include a certain amount of higher-order effects, as well
as power-suppressed corrections, which can lead to these kind of discrepancies. Note that

– 15 –



J
H
E
P
0
6
(
2
0
2
3
)
2
0
5

0.00

0.02

0.04

0.06

0.08

0.10
d
σ
/d
pH

2

T
[f

b
/G

eV
]

PDF4LHC15(NNLO),HTL

pp→ HH +X
√
S = 13 TeV, µ = MHH

Matrix

Geneva

0 100 200 300 400 500

pH2

T [GeV]

−0.1

0.0

0.1

ra
ti

o−
1

0

5

10

15

20

25

30

35

d
σ
/d
χ

[f
b

]

PDF4LHC15(NNLO),HTL

pp→ HH +X
√
S = 13 TeV, µ = MHH

Matrix

Geneva

0.0 0.2 0.4 0.6 0.8 1.0

χ

−0.30

−0.15

0.00

0.15

0.30

ra
ti

o−
1

Figure 8. Comparison of the distributions for the transverse momentum of the softest Higgs boson
(left) and the absolute value of their scattering angle (right) between Matrix and Geneva.
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Figure 9. Comparison of the transverse momentum of the hardest Higgs boson between Matrix and
Geneva (left) and breakdown of all relevant contributions that account for the differences. (right).

these power corrections arise from a different physical treatment of kinematics compared to
a FO calculation [88].

To see how such differences can arise between results that are formally at the same
accuracy, we studied the discrepancies for pT of H1 and H2 and the χ distribution, and in
the following we report detailed results for the transverse momentum distribution of the
hardest Higgs boson, where these effects are largest. In figure 9, we report a breakdown of
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all possible sources of differences between a purely FO calculation such as that obtained via
Matrix and the Geneva partonic prediction. All quantities shown in the sub-panels are
expressed in terms of their relative size to the total distribution obtained with Matrix, and
we detail each of them in the following. Firstly, it can be seen that in the small transverse
momentum region we have a discrepancy — considerably bigger in size than that observed
with the pT of the softest Higgs boson — which can reach 100%. In the upper right panel
of figure 9 the first term that we look at is A1, defined as

A1 ≡

dσNNLL′

dpH1
T

− dσNNLL′

dpH1
T

∣∣∣∣
α2
S

dσMatrix

dpH1
T

, (3.3)

which represents the difference between the resummed contribution and the resummed
expanded up to O(α2

S) coming from Geneva, normalised to the Matrix NNLO result.
This difference is purely due to logarithmic terms beyond NNLO, and, as can be seen, in
the region of interest gives rise to a large positive effect. In the second and third ratio plot
we consider the contributions from projectable configurations with T0 < T cut

0,ns at relative
O(αS), A2, and with T0 > T cut

0,ns and T1 < T cut
1 at relative O(α2

S), A3, defined as

A2 ≡

dσNLO0
diff

dpH1
T

dσMatrix

dpH1
T

, A3 ≡

dσNLO1
diff

dpH1
T

θ(T0 > T cut
0,ns)

dσMatrix

dpH1
T

, (3.4)

where the subscript diff refers to taking the difference between the observables evaluated
on exact kinematical configurations, and those evaluated on projected kinematics below
the respective resolution cutoffs. The effect of these two terms are pure power corrections
as they arise from the projections used in Geneva to assign the event kinematics below
the resolution cutoffs. Once again they are large and positive. Lastly, we examine the
following quantity,

A4 ≡

dσnonSing
α2
S

dpH1
T

θ(T0 < T cut
0,ns)

dσMatrix

dpH1
T

, (3.5)

which represents the difference between the pure O(α2
S) contributions of Geneva and

Matrix below T cut
0,ns, normalised to the same value as before. This last term corresponds

to the contribution in eq. (2.28), projected onto pH1
T . Note that, in order to compute this

quantity, one needs to take the O(α2
S) from Matrix and subtract it from the resummed-

expanded Geneva result at the same order. As shown in the respective sub-panel, this
difference is negative and much larger than those considered above, thus being the main
driver of the discrepancy. To conclude, and to show that there are no other possible sources
of differences between Geneva and Matrix, we report in the last panel the difference
between the partonic Geneva result and Matrix, subtracted of all the Ai contributions
which, as expected, is compatible with zero.
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Figure 10. Lund Plane representation of shower emissions and their interplay with the resumma-
tion region.

4 Parton shower interface

The general idea behind how the interface to the parton shower is performed in Geneva
has been presented in various references, see in particular ref. [49] for a detailed discussion.
As such, in this context, we limit to a brief recap of the main features, highlighting the main
novelties introduced for this specific process. The main issues one faces when matching
a resummed calculation to the parton shower is to ensure that both the accuracy of the
variable in which the resummation is performed and the accuracy of the parton shower
are preserved.

In the specific case at hand, the resummation is performed in TN , from a hard scale Q
down to a lower scale T cN . This can be represented graphically, as done in figure 10 with
the purple-shaded triangular region (ACE), in the phase-space that an extra emission can
have (commonly referred to as Lund Plane). As explained in the previous sections, Geneva
produces events with 0, 1 or 2 final-state partonic jets, each of which determines different
lower scales for the resummation, corresponding to T cut

0,re , T cut
1 and T1 (Φ2), respectively. The

value of this scale corresponds to a diagonal line on the Lund Plane, and its intersection with
the maximum available energy fraction an emission can have (E) sets the maximum relative
transverse momentum of an emission (k⊥(T cN )) given the lower resummation scale (T cN ).
This, in turn, determines the starting scale for the parton shower. Now, the parton showers
considered in this work produce emissions ordered in the relative transverse momentum,
meaning that the allowed region for any emission from the parton shower is given by
the trapezium (BCDE) spanning from the horizontal line determined by k⊥(T cN ) to that
determined by T cN . This clearly produces a double-counted region, identified by the hashed
triangle (BCE), where the shower could in principle produce emissions in the resummation
region. To avoid this, we perform a veto procedure — much like what is done in matrix
element merging techniques, such as CKKW-L [89] — that consists in discarding and
retrying any event for which, after showering, we obtain a value of TN > T cN .
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To see that this procedure correctly ensures that no single shower emission can end up
in the vetoed region, thus spoiling the NNLL accuracy of our T0 spectrum, recall that for
any given final-state multiplicity M , TM (ΦM ) = 0. Thus, for any one emission from the
parton shower that produces a final state with M + 1 partons, we have that TM (ΦM+1) = T
encodes the hardness of that emission, and can be compared to T cN . In addition, N -jettiness
is an additive variable of strictly positive terms, and the following relation, for a given
final-state multiplicity, holds:

TN (ΦM ) ≥ TN+1(ΦM ) . (4.1)

To prove then that no single emission enters the vetoed region, consider the case the parton
shower starts with a N -parton configuration, with N = 0, 1, 2. After the parton shower, we
end up with a N + k partonic final state, where k stands for the total emissions performed
by the shower. Our veto implies that

TN (ΦN+k) ≤ T cN . (4.2)

Combining the previous relations, we get that

TN+k−1(ΦN+k) ≤ TN+k−2(ΦN+k) ≤ · · · ≤ TN (ΦN+k) ≤ T cN , (4.3)

which implies that also the hardness of each of the kth emissions has to be smaller than
T cN , given the additive property of N -jettiness. This means that the final events accepted
after the veto could always be generated via a sequence of T -ordered emissions, even if
the actual showering might not have respected that condition locally. To better clarify
the meaning of eq. (4.3), let us consider the following explicit example. Imagine that we
start the parton shower from a configuration with two partons, Φ2, which represents the
bulk of the events generated by Geneva after the resummation of T0 and T1 has been
performed at the parton level. Thus, the value of T cN = T1(Φ2) determines the starting scale
of the parton shower k⊥(T1(Φ2)). An additional emission of the shower has a hardness of
T = T2(Φ3) which by construction has to be smaller than T cN to respect the veto condition.
When a second emission is performed its hardness is given by T = T3(Φ4) ≤ T2(Φ4) which
by construction needs to be smaller than T1(Φ2) to satisfy the veto. Iterating this, one can
reconstruct the full chain of inequalities appearing in eq. (4.3). As the variable N -jettiness
is additive, it is also true that the hardness of the first emission is constrained by the veto
to be lower than the lower resummation scale. Clearly this does not impose any ordering
between the hardness of the two emissions, T2(Φ3) and T3(Φ4), it just implies that they
are both lower than T1(Φ2). Note that, as a consequence, this implies that the accuracy
of the parton shower is not spoiled by our matching procedure. In fact, the resummation
region has a higher accuracy than that of the shower, and in the shower region there is no
double-counted contribution. Thus the accuracy on any observable computed with this
matching is at least as accurate as the parton shower is.

The argument presented above does not imply that the resummed variable — T0 in
this case — is numerically preserved, as shown in figure 11. However, it can be seen that
the shift in the spectrum induced by the parton shower is of similar size as that given
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Figure 11. Comparison of the effects of the shower and the effects of the N3LL resummation.

by including higher-order effects in the resummation. Compared to other colour-singlet
production processes studied in the past with the Geneva framework, one can notice that,
in this case, the impact of the shower on the T0 distribution can be numerically sizeable.
This has to do with two key differences with respect to other processes [50, 53, 54, 90].
First, since this process is dominated by gluon channels, we expect effects due to gluon
emissions to be scaled by a factor CA/CF ∼ 2. Second, this is one of the first processes
which features a hard scale, MHH , which spans different orders of magnitude and does
not really present a sharp peak. This implies that even at relatively large values of T0 —
given that the scale we have control over is τ0 = T0/MHH — one can have a small value
of τ0 with MHH still large. The consequence is that, for any fixed value of T0, the large
logarithmic terms associated to this Higgs pair production can be significantly larger than
the corresponding terms for the same value of T0 in other processes.

In addition, as a validation of the matching with the shower, we show in the left panel
of figure 12 how the shower correctly preserves the spectrum of fully inclusive variables
such as the invariant mass of the Higgs pair. This implies that the total inclusive cross
section is also preserved by the shower.

To further study the impact of parton showers, we extend Geneva’s default shower
interface to Pythia 8 to both Dire [91], as implemented in Pythia 8, and the default
shower in Sherpa [92–94]. These three parton showers differ most notably by the choice of
the evolution variable, which, together with the starting scale imposed by our matching,
determines how much of the phase space away from the strict soft and collinear limits is
available to the parton shower.

As shown in figure 12, right panel, the impact of the choice of the parton shower can be
relatively large for small (≤ 10GeV) values of T0. Indeed, while all the three showers present
deviations from the partonic result of roughly the same magnitude, they differ significantly
among each other, which can be approximately viewed as a shower matching uncertainty.
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Geneva, Geneva + Pythia 8, Geneva + Dire and Geneva + Sherpa.

The fact that this process can be highly sensitive to different choices of evolution variables,
and thus different parton showers, was shown in ref. [32]. The net result is that, for the
default choice of the evolution variable, the Catani-Seymour based shower as implemented
in Sherpa has an evolution variable t on average larger than that of Dire, leading to its
phase space reach being more constrained. This is reflected in the suppression in the small
T0 region.

Lastly, in figure 13 we show how the different showers affect the transverse momentum
of the Higgs pair system and that of the hardest Higgs boson. In this case, although in
principle the parton shower is not required to preserve either of these observables, we see
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that all shower predictions largely agree among themselves and with the partonic result,
aside from the very first bin where they agree within uncertainties. This is likely due to
the fact that partonic events produced by Geneva already feature both a T0 and a T1
resummation, both of which have a non-trivial interplay with the transverse momentum
distribution of the colour-singlet system.

5 Conclusions

With the detailed study of the properties of the Higgs boson, discovered ten years ago at
the LHC, set to dominate the research focus of the next twenty to fifty years, the ability
to constrain the self-coupling of the Higgs boson is one of the fundamental milestones.
While many of such properties are largely dominated by the reach of the experimental
set-up, the Higgs self-coupling determination is instead limited by statistics, from the
experimental point of view, and by uncertainties in the theoretical predictions for both
signal and background. Indeed, even after the high-luminosity phase of the LHC, it is
predicted that with the current theoretical knowledge the value of the self-coupling will
only be constrained to about 50% [11].

From the theoretical standpoint, the process affecting the most the determination of
this fundamental parameter of the Standard Model Lagrangian, at hadron colliders, is the
production of a Higgs pair in the gluon-gluon fusion channel. Similarly to the production
of a single Higgs boson this process proceeds via a top-quark loop, thus rendering the
inclusion of higher corrections in the exact theory, with full heavy-quark mass dependence,
highly non-trivial. Indeed only NLO corrections are known exactly [23] for this process, as
they require a state-of-the-art two-loop calculation with both internal and external masses.
Nevertheless, similarly to the single Higgs case, one can expand the Lagrangian of the
Standard Model in inverse powers of the top-quark mass thus constructing an effective
theory where the top quark is decoupled and Higgs bosons couple directly to gluons, usually
referred to as HTL. While this approach is known to be a poor approximation for double
Higgs production, it still provides useful insights if the main interest is to study the effects
of the inclusion of higher-order QCD corrections, resummation and the interface to the
parton shower.

In this work we take the latter approach and present an implementation of the production
of a pair of Higgs bosons via gluon-gluon fusion in the HTL in Geneva. By employing
this framework we are able to produce fully-differential NNLO results matched to a T0
NNLL′ resummation, using the SCET formalism, further interfaced to the parton shower.
We show that, using a traditional value of the hard scale in the argument of the logarithms,
such as the Higgs pair invariant mass, resummation effects affect exclusive observables at
much larger values than in processes previously studied. This is a consequence of the fact
that the MHH distribution spans over a large range. Moreover, we study in detail how
the inclusion of resummation and subleading power corrections can impact the comparison
with standard fixed-order results, such as those obtained with Matrix, tracking down all
sources of possible differences at higher order. Lastly, we present and discuss the impact of
interfacing our partonic predictions to different parton showers and find that this process is
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subject to large parton shower effects. This is the first step towards a more comprehensive
estimation of parton shower matching uncertainties.

It is clear that, while the approach taken in this work to use the HTL works well as
far as we only discuss the effect of pure QCD higher-order effects, in order to develop a
realistic event generator for the production of a Higgs pair, we need to include mass effects
if not in an exact way, at least in some approximation. Indeed, the natural continuation of
this work is to explore ways, such as those devised in ref. [60], to include partial top-quark
mass effects in our implementation.
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A Hard function for gg → HH in the MS scheme

In this appendix, we report the necessary ingredients to obtain the hard function in the MS
scheme. Its perturbative expansion, in a generic subtraction scheme X reads

HX =
(
αS
4π

)2
[
H(0) + αS

4πH
(1)
X +

(
αS
4π

)2
H

(2)
X +O(α3

S)
]
. (A.1)

Note that H(0) is scheme independent, since it is given by the cross section at LO, defined,
for this process, as

H(0) = sC2
LO

144 v4 . (A.2)

Defining s as the squared centre-of-mass energy of the process, v the vacuum expectation
value, mH the Higgs boson mass one has

CLO = 6λv2

s−m2
H

− 1, 2λv2 = m2
H and v4 = 1

2G2
F

. (A.3)
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In the Catani subtraction scheme (X = C), the expressions for the one- and two-loop
coefficients of the hard function are given in refs. [75] and [38]. To extract the results needed
for the implementation in Geneva, we start by defining

H
(i)
C = dσ(i)

fin
dt

dt
dΦ2

(A.4)

where we used the following Jacobian,

dΦ2
dt = 1

8πs
1

Γ(1− ε)

[
s
(
s− 4m2

H

)
− (t− u)2

16πs

]−ε
. (A.5)

We can express the coefficients of eq. (A.1) in the MS scheme (X = MS) by exploiting the
following relations

H
(1)
MS = H

(1)
C + lim

ε→0
2 Re [2 I(1)(ε) + Z(1)(ε)]H(0),

H
(2)
MS = H

(2)
C + lim

ε→0

{
2 Re [2 I(1)(ε) + Z(1)(ε)]

}
H

(1)
C +

{
| lim
ε→0

[2 I(1)(ε) + Z(1)(ε)]|2

+ 2Re lim
ε→0

(
4 I(2)(ε) + 2 I(1)(ε)[2 I(1)(ε) + Z(1)(ε)] + Z(2)(ε)

)}
H(0) , (A.6)

where for simplicity we dropped the µ dependence from the H(i)
X , I(i) and Z(i). In the

equation above, I(i) are the perturbative coefficients of the I operator defined as [95]

I(ε, µ) = 1 +
(
αS
2π

)
I(1)(ε, µ) +

(
αS
2π

)2
I(2)(ε, µ) +O(α3

S) , (A.7)

where

I(1)(ε, µ) = −
(
µ2

−s

)ε exp(ε γE)
Γ(1− ε)

(
Cg

1
ε2

+ γg
1
ε

)
,

I(2)(ε, µ) =
(
µ2

−s

)ε exp(εγE)
72 Γ(1− ε)ε4

{
12ε(Cg + εγg)(11CA − 2nf )

− 36 exp(εγE)
(Γ(1− ε)

(
µ2

−s

)ε
(Cg + εγg)2 + ε

(
µ2

−s

)ε[
36ε2Hg

+ 2(3 + 5ε)(Cg + 2εγg)nf + CA(Cg + 2εγg)(−33− 67ε+ 3επ2)
]}

, (A.8)

and for gluon-initiated processes one finds

Cg = CA, γg = β0
2 ,

Hg = C2
A

(1
2ζ3 + 5

12 + 11π2

144

)
− CAnf

(29
27 + π2

72

)
+ 1

2CFnf + 5
27n

2
f . (A.9)

The Z(i) in eq. (A.1) are obtained from the following expansion of the Z factor [96],

Z−1(ε, µ) = 1 +
(
αS
4π

)
Z(1)(ε, µ) +

(
αS
4π

)2
Z(2)(ε, µ) +O(α3

S) , (A.10)
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where

Z(1)(ε, µ) = − Γ′0
4ε2 −

Γ0
2ε ,

Z(2)(ε, µ) = (Γ′0)2

32ε4 + 3β0Γ′0 + 2Γ′0Γ0
16ε3 + 4β0Γ0 + 2Γ2

0 − Γ′1
16ε2 − Γ1

4ε , (A.11)

and

Γi = −CAΓi ln
(
µ2

−s

)
+ 2γgi , Γ′i = −2CAΓi ,

γg1 = C2
A

(
− 692

27 + 11π2

18 + 2ζ3

)
+ CATFnf

(256
27 −

2π2

9

)
+ 4CFTFnf , (A.12)

with CA, CF the colour factors, nf the number of light flavours and TF = 1/2. Considering
eq. (A.6) and setting µ2 = s, we find the following results for the translation to the MS
scheme of the hard function coefficients

H
(1)
MS = H

(1)
C + 7CAπ2

3 H(0),

H
(2)
MS = H

(2)
C + 7CAπ2

3 H
(1)
C

+
(167

6 C2
Aπ

2 − 367
54 CAnfπ

2 +
11n2

fπ
2

27 + 73
36C

2
Aπ

4 − 11
3 C

2
Aζ3 + 2

3CAnfζ3

)
H(0).

(A.13)

Finally, in order to restore the exact µ dependence of the hard function we use the
RGE equation

d
d ln(µ2)H(µ2) = Re[Γ(µ2)]H(µ2). (A.14)

Taking the first order of the expansion O(α3
S), we have:

d
d ln(µ2)H

(1)(µ2)− 2β0H
(0) = Re[Γ0(µ2)]H(0) , (A.15)

having used

1
4π

d
d ln(µ2)αS = −

(
αS
4π

)2 ∑
n=0

(
αS
4π

)n
βn. (A.16)

For the second order of the expansion O(α4
S) in eq. (A.14) we have

d
d ln(µ2)H

(2)(µ2)− 2β1H
(0) − 3β0H

(1)(µ2) = Re[Γ0(µ2)]H(1)(µ2) + Re[Γ1(µ2)]H(0) ,

(A.17)

where β1 is defined in eq. (2.14). In conclusion, the hard function in the MS scheme is
given by

HMS(µ2) =
(
αS
4π

)2
[
H(0)(µ2) +

(
αS
4π

)
H

(1)
MS(µ2) +

(
αS
4π

)2
H

(2)
MS(µ2) +O(α3

S)
]
, (A.18)
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where

H(0)(µ2) = H(0),

H
(1)
MS(µ2) = H

(1)
MS(s)− 2CA ln2

(
µ2

s

)
H(0),

H
(2)
MS(µ2) = H

(2)
MS(s)−H(1)

MS(s)
[
2CA ln2

(
µ2

s

)
− 11

3 CA ln
(
µ2

s

)
+ 2

3nf ln
(
µ2

s

)]

+H(0)
[

ln
(
µ2

s

)(
−772

27 C
2
A + 76

27CAnf + 11
9 C

2
Aπ

2 − 2
9CAnfπ

2 + 4C2
Aζ3

)

+ ln2
(
µ2

s

)(
−134

9 C2
A + 20

9 CAnf + 2
3C

2
Aπ

2
)

+ ln3
(
µ2

s

)(
−22

9 C
2
A + 4

9CAnf
)

+ 2C2
A ln4

(
µ2

s

)]
. (A.19)
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