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Abstract

Multimodal Artificial Intelligence Strategies for Remote Sensing
Earth Observation

Ph.D. Dissertation of: Mirko Paolo Barbato

The study of the land is one of the most relevant tasks for the influence that Earth and

the management of its resources have on our lives as individuals and as a society. From

the location in which we live to the distribution of the population, the food we consume,

the culture, and the socio-relationship between the different societies of the world are

partially defined by the characteristics of the surrounding lands. These are the reasons

that create our necessity of observing and studying the Earth. These studies have the

scope to describe the features of the terrains and can be linked to many tasks, varying from

classification, segmentation, estimation of soil characteristics, etc., with the final goal to

obtain information that is fundamental in many applications from agriculture of precision

to study of land cover and land use. To this end, the use of remote sensing technologies

has exponentially increased, consequently enhancing the availability and collection of data.

This increment and the use of new technologies open the remote sensing field to two

crucial advantages: 1) the possibilities of using AI techniques for Earth Observation and

2) data that not only increase in cardinality but also in the kinds of information that

they convey. The former of these opportunities allows for the use of incredibly efficient

techniques derived in particular from computer vision that can greatly improve our ability

to study Earth. The latter enables us to multimodal strategies. These strategies aim to

combine different kinds of data (modalities), such as RGB images, hyperspectral data,

LiDAR, etc., to exploit the information that comes from each of them. In many computer

vision tasks, multimodal approaches have posed themselves as a new step for a better

understanding of reality, thus improving our ability to handle data resources. However,

in remote sensing applications, it is still difficult to consider these approaches together

with AI techniques due to the lack of datasets that involve both high cardinality and

modalities. This thesis wants to analyze and deepen the usefulness of multimodality in

remote sensing. With this goal, different tasks that can characterize a remote sensing

multimodal application will be investigated, starting from the acquisition of new data



to the study of specific tasks and their integration in a real scenario. In particular, the

considered tasks will consist of 1) Hyperspectral Pansharpening for the enhancement of

this kind of data; 2) Unsupervised Segmentation with Hyperspectral data; 3) Multimodal

Supervised Semantic Segmentation; 4) Digital Soil Mapping for the estimation of soil

parameters (such as chemical and texture features). For each of these tasks, the goal will

be to demonstrate the usefulness of information that differs from the typical RGB images

and the advantages that derive from combining these data using AI techniques. Finally,

the knowledge derived from these studies will result in the creation of a real case pipeline

for the estimation of the parameters in agricultural areas to help manage the resources.

The analysis presented in this work demonstrates that each of these tasks benefits from

the use of multimodality, also providing new data and techniques that can support future

studies in Earth Observation.
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Chapter 1

Introduction

The land is the foundational element on which all human activities rely. It affects and

differentiates the way human populations live, their distribution on Earth, and all the

socio-economic dynamics that characterize our society. The land determines the food

available in certain areas, water supplies, forest distribution, etc. In general, any kind

of resources available in specific areas depend on the land, also influencing the economy

and socio-relationship between countries [1]. Thus analyzing and understanding land

characteristics is crucial in many fields, spanning environmental, economic, social, and

scientific domains [2]. Earth Observation (EO) has been fundamental in environmental

conservation, management of natural resources such as agriculture and food security, and

infrastructure development. Most importantly, due to recent years climate changes, it

is crucial to have instruments that help to mitigate the phenomenon. In such matters,

land studies become one of the most important resources we dispose of for reducing

the risk of natural disasters and intervening to reduce the damages [3]. The natural

conclusion is that a comprehensive understanding of the characteristics of the land allows

us for a better understanding of natural and human-made factors that influence different

aspects of our life on Earth. This understanding is essential to balance human needs with

environmental sustainability and emergencies, leading to a more resilient and efficient

society, and less damage to the environment. These are some of the reasons that inspired the

Pignoletto project, a collaboration between the Lombardia region, the Istituto Nazionale

di Fisica Nucleare (INFN - National Institute for Nuclear Physics) and the University of

Milano-Bicocca. This project aimed to combine knowledge from different departments of

the scientific community to better observe, describe, and understand Earth. Pignoletto

included the use of different technologies and sensors to extract the characteristics of

the soil. From the use of satellites, drones, ground means of transportation, and direct

collection on the field, the aim was to gather all the different information and knowledge

to improve our efficiency in handling Earth’s resources.

In this context, Remote Sensing (RS) is one of the most significant sources of information
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Figure 1.1: Examples of RGB remote sensing images.

that can lead to a full grasp of the land and its properties. RS allows us to use sensors

mounted on drones, aircraft, or satellites to acquire images about the Earth’s surface,

atmosphere, and oceans from a distance, enabling the monitoring and study of our planet’s

environment and changes over time. Figure 1.1 shows examples of what are the information

that RS can help us to collect. These images are firstly acquired by the sensors, then

received from a Processing station on the surface, analyzed with the help of software

tools and environments, such as QGIS [4], and finally used in different tasks dedicated

to the description of Earth. This technology includes many satellites, such as Landsat-8,

Sentinel-2, Sentinel-3 [5], ASI PRISMA [6] and many others, that in recent years have

revolutionized our ability to observe and analyze our planet from a vantage point above

the Earth’s surface [7]. In fact, the analysis of data gathered by sensors onboard satellites

or aircraft allows to infer useful information about the land, water, and atmospheric

systems of the Earth. Thanks to the ease which characterizes the acquisition of new

data, this technology has continuously gained more and more importance in several fields,

such as agriculture [8], resource exploration [9], environmental monitoring [10], urban

planning [11], and disaster management [12]. This new availability of RS data made it

possible, even when it comes to EO studies, to exploit the advantages of AI, machine

learning and, in particular, deep learning techniques. As already happened in other fields

of computer vision, the combination of this technology and its capacity to collect data,

and AI methodologies allowed for accurate and high-resolution soil mapping [13], speeding

up and making the process of soil characterization [14], segmentation and mapping more

scalable.

Following other computer vision tasks, and thanks to the development of RS sensors,

different kinds of data (or modalities) that offer complementary information with respect

to standard RGB information were introduced, allowing for multimodal approaches to

18



Figure 1.2: Representation of the multimodal remote sensing pipeline investigated in this work. In blue
are highlighted the main work on which this thesis focuses.

become an important topic in this field of study [15]. A single sensor may not provide

a complete understanding of a scene or object. A multimodal approach, instead, com-

bines data from multiple sensors to overcome these limitations and enhance the analysis,

potentially yielding a better description of the data, and better performance in many

AI tasks. For instance, these approaches enhance material identification on the Earth’s

surface [16], therefore enabling more detailed and precise scene understanding, particularly

in challenging scenarios. In fact, combining complementary modalities allows for exploiting

the best advantages of each information kind, potentially achieving improved perfor-

mance based on the task and the information. In RS, each modality is often associated

with a specific sensor, serving as a distinct information source characterized by its own

unique statistical attributes [17]. Apart from the typical RGB modalities, RS can count

on complementary information such as LiDAR, multispectral (MS), hyperspectral (HS),

panchromatic, etc. [18].

In this thesis, the usefulness of remote sensing and its novel multimodal power will be

studied with a focus on land cover, use, and description of the properties of the terrain. The

entire analysis, that will be elaborated in this work, will include the complete process that

characterizes the use of RS and multimodality, starting from the sources (or modalities)

used to the application of these data in a real scenario. Figure 1.2 shows how starting from

the sensors and resources of the Earth, it is possible to collect different data, enhance them,

and finally use them for different scopes in the EO to better understand the characteristics

of the soil and, at the same time, can be combined together to improve our use of the

terrain. With this goal, and the possibility to exploit different sources and thus combined

information, multimodality and AI can become one of the most powerful tools at our
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disposal. The main scope is to fulfill EO gaps when it comes to multimodal and AI

techniques in the RS field. The main issue that prevents the use of AI and multimodal

approaches in RS is mainly the lack of multimodal datasets that do not allow for a proper

introduction and study of these techniques and their advantages. This problem will be

deepened in this thesis and the usefulness of multimodality will be discussed in many tasks

that characterize EO, where the advantages of different kinds of data were analyzed and

demonstrated.

Starting from the acquisition and thus the data used, where it was possible, existing

datasets were used, in any other case, datasets that could reasonably fit the needs of high

cardinality and multimodality were built from scratch. The investigation brought in this

work focused on different aspects that characterize RS images and satisfy the possibly

divergent necessities of different tasks. In particular, an all-around analysis of spatial,

color, spectral and morphological information were considered in this work.

The spatial and color information is the most common modality when it comes to

computer vision tasks and this includes even RS. A high-detail representation of these

characteristics are the typical RGB images that present three high-resolution bands,

covering the visible part of the spectrum (from 400 nm to 700 nm).

The spectral information, in particular, has been proven to be especially useful in many

tasks. Nowadays, new sensors and satellites such as ASI PRISMA [6] and Sentinel-3 allow

for collecting spectral information in multi- or hyperspectral format. These images consist

of 3D image cubes where the first and second dimensions represent the spatial information,

while the third one represents the spectral information. As shown in Figure 1.3, the

difference between MS and HS images is that MS usually has a big grain spectral resolution

that ends up in images with a limited number of bands usually less than 13), while HS has a

really high spectral resolution which results in having images with a high number of bands

(sometimes even more than one-hundred). They allow for a more precise differentiation of

materials, that typically have spectral signatures with different characteristics [19]. For

instance, in RS, this can help to better distinguish between buildings, cultivations, rivers

etc. [10]. For these reasons, the spectral information helps improve accuracy and efficiency

in many tasks spanning classification, segmentation, estimation of soil parameters, etc.

Nevertheless, these types of images are characterized by a significant trade-off between

spatial resolution and the number of bands. The trade-off is mostly driven by the costs

associated with launching a satellite into space. Consequently, it is necessary to carefully

balance the selection of sensor design and components. This limitation, elaborated upon

in chapter 3, plus the requirement to minimize energy usage, result in a disparity between

spatial and spectral resolution. As a consequence, spectral images, especially HS, exhibit

a significantly reduced spatial resolution. For these reasons, combining the information of

high-spatial-resolution images, such as RGB, with spectral information can be crucial in
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Figure 1.3: Difference between multispectral and hyperspectral signals. Differently from multispectral,
hyperspectral presents a continuous signal for every pixel.

many tasks, like for instance semantic segmentation.

In this thesis, the morphological structure of the terrain is mainly described as Digital

Elevation Model (DEM) and Digital Terrain Model (DTM). Usually, DEM is used to

generally describe the elevation of soil and generated from Synthetic Aperture Radar

interferometry 1, while DTM can be considered as a specialized version of DEM that

usually describes the natural terrain elevation, thus being both extremely important in

characterizing the relationship between different portions of the terrain and, together with

other information, immediately identifying features of specific kinds of grounds.

Considering and focusing mainly on these kinds of data, in this thesis, different remote

sensing tasks were addressed to demonstrate that, in each of them, specific kinds of

data and combinations achieve better performance. In this work an analysis of these

modalities is presented, including the creation of novel approaches to handle these data

on different EO tasks. As mentioned, an important part consists of acquiring data from

different complementary sources and harmonizing them with proper labeling based on the

pursued task. Both inputs and labelings require refinement to make them compatible and

increase the quality of the raw data. Once the data is acquired and refined it is possible

to work on EO tasks that allow for a better understanding of the Earth and, finally, this

comprehension can be transposed to real use cases that help in the management of the

resources we dispose of. In this thesis, four main fields of EO are addressed covering

the use of multimodality in the entire pipeline that goes from acquisition to application.

Finally, the EO investigated are combined to demonstrate their usefulness in real use cases.

These fields of study will be described in each of the following chapters as follows:

• Hyperspectral Pansharpening [20];

• Unsupervised Segmentation of hyperspectral images [10];

• Multimodal Supervised Semantic Segmentation [21, 22];

1DEM generation: https://step.esa.int/docs/tutorials/S1TBX DEM generation with Sentinel-1 IW
Tutorial.pdf
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• Digital Soil Mapping [23];

• Multimodality in a Real Scenario - Estimation of Soil Parameters for Agricultural

Areas Management [24].

Each of the topics provides a different insight into the modalities, demonstrating the

advantages of combining them and which modalities are better to be fused. Starting with

describing the characteristics of the soil and ending with a semantic comprehension of the

different areas in an RS image, each topic analyzes the usefulness of specific data, their

advantages and disadvantages, how to reduce the influence of these disadvantages, and

finally, the potential of combining them together exploiting their complementarity.

The Hyperspectral Pansharpening consists of fusing a PAN and an HS images to

enhance the spatial resolution of the spectral cube, bringing the HS image to reach the

same spatial resolution as the PAN image. A panchromatic image is a high-spatial-

resolution gray-level image. If this single-band image shares the same geographical area,

the same time of acquisition as the spectral data (HS or MS) and consequently the same

content, then a new image can be obtained by fusing the spatial information of PAN with

the spectral information of HS. This new pansharpened image will have the same number

of bands as HS and the same m/px as PAN. This well-known strategy is really important in

RS because it allows for compensating the low spatial resolution of spectral images, mainly

caused by the high cost of the sensors. However, even if well known, the researchers in

this field focused on MS data that as mentioned above has less potential in describing the

spectral characteristics of an area. The main problem is relative to the lack of numerous

HS datasets, whereas, on the other side, the availability of MS datasets is higher. This

means that the state-of-the-art pansharpening techniques usually concern MS and when

it considers HS data, it usually revolves around machine learning techniques or adapted

deep learning techniques which are not fully capable of expressing the real advantages

of these methodologies and cannot define a statically valid evaluation. In this thesis, a

comprehensive analysis and adaptation of hyperspectral pansharpening techniques in the

state of the art is reported. This analysis is based on a novel hyperspectral dataset, built

and presented in this work, which allows for proper use of deep learning techniques and a

statistically valuable evaluation of the methods. Chapter 3 describes in detail how the

dataset was built and how all the methodologies were adapted to different data than MS.

The second main task described in this thesis is Unsupervised Segmentation. The

Segmentation is fundamental for the description of the land use and cover because it allows

to identify each pixel of an image with a specific class. The Unsupervised Segmentation,

in particular, consists of making a prior analysis of the terrain and segmenting the area

into different classes where the number of these classes and the real labels are not known.

In segmentation and generally in EO, this is a really important task because creating
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maps and labels for supervised methods is a really complex, effortful and time-demanding

manual work. Being able to provide a fast and efficient unsupervised analysis can make

the work of creating new ground truths easy, thus improving the quality and speeding up

the entire procedure of producing semantic segmentation labels. In this chapter 4, the HS

information is used to provide a solid unsupervised segmentation technique, demonstrating

at the same time the usefulness of this kind of data when it comes to semantic segmentation

and providing important hints on how to work and adapt the algorithms to challenging

data such as HS.

In chapter 5, the Multimodal Supervised Semantic Segmentation topic combines all

the main modalities considered in this thesis and different fusion methodologies in a

comprehensive work where a multimodal dataset called Ticino is presented to become a

first step for any other research in this field. To the best of the author’s knowledge, the

proposed Ticino dataset is the biggest and most diverse dataset in terms of covered area for

RS semantic segmentation, also including a high cardinality of images for all the modalities

and presenting an HS source of information. This dataset includes spatial (RGB), spectral

(HS) and morphological (DTM) information on a wide area in the South of Milan and

wants to fill the lack of multimodal datasets with hyperspectral information in the state

of the art. It also presents two pixel-wise semantic labelings, one dedicated to Land

Cover and one to Soil Agricultural Use (SAU). The proposal of Ticino also comes with a

benchmark on the dataset based on CNN, where different combinations of multimodal

and single-modal are compared, demonstrating the advantages of multimodal even in the

RS segmentation task. To further observe the impact of multimodal and fusion techniques

on RS semantic segmentation, a comprehensive analysis of multimodal fusion methods

with the use of a Transformer is also presented in this thesis. The main purpose of this

work on Multimodal Supervised Semantic Segmentation is to show the real influence that

a fusion method has on the resulting segmentation. Moreover, the utility of multimodal

approaches is investigated in comparison with RGB, considering not only the performance

but also the complexity of the different methods in terms of memory and computation.

Once again, multimodal approaches are proven to be preferable.

Digital Soil Mapping involves the estimation of the parameters of the soil and the

creation of different maps relative to each parameter. The estimation of these parame-

ters is a regression task that consists of approximately esteeming texture and chemical

characteristics of the terrain. These parameters can vary in nature. For instance, when it

comes to texture characteristics, clay, silt, sand and coarse become important to estimation

because they play a determining role when it comes to behaviors such as water-holding

capacity, drainage characteristics, nutrient retention, and susceptibility to erosion, influ-

encing plant growth and agricultural productivity [24]. Different plants have specific pH

requirements for optimal growth. Chemical characteristics, such as the presence of specific
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substances like K, N, CaCO3 and pH can effectively help in soil and resource management,

being particularly interesting in the agricultural field. For example, pH affects nutrient

availability and microbial activity in the soil, giving important information on soil health.

Not only this task is really important in EO and can benefit from RS technology, but

it is also an interesting benchmark to understand the possibility and the potential of

multimodal approaches. The investigation of this task, in this thesis, focused on the use

of MS and DEM information, comparing the use of MS-only with the combination of

the two modalities. The analysis, detailly described in Chapter 6, demonstrates that RS

and AI together achieve good performance, and, in particular, multimodal approaches

utterly improve the quality of the estimation. More importantly, it also demonstrates how

including DEM information can guarantee a better description and understanding of the

soil.

Finally, in chapter 7, these investigations will be combined to reach the goal of a real

use case. In this chapter, a possible real strategy will be presented and discussed with

the specific aim of estimating the necessities of agricultural areas and thus improving the

management of resources. Even in this case, the advantages of multimodality over single

modality will be reported to empower the importance of this field of study.

The main contributions of this dissertation are as follows:

• a study of multimodality for Digital Soil Mapping on the widest and variegated area

in the state of the art;

• an original method of unsupervised segmentation using hyperspectral images that

helps the creation of ground truth without the necessity of a-priori knowledge of the

scene;

• an analysis of deep learning pansharpening techniques for hyperspectral data with

a new pansharpening dataset that provides the highest cardinality and variety of

scenes from all the World thus being statistically relevant for AI strategies;

• a multimodal dataset for semantic segmentation that includes a wide area of interest,

a cardinality suitable for AI strategies and a total of five modalities including HS

and DTM for the study of multimodal strategies;

• a study of different CNN and Transformers fusion methods for semantic segmentation

that involve the introduction of original strategies was introduced;
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Chapter 2

State of art of datasets, algorithms,

and methods

As mentioned above, many factors affect RS, multimodality and AI techniques. In

particular, AI, with machine learning and even more with deep learning, has many

advantages but also flaws that prevent the use of such techniques. First of all, one of

the most problematic issues is the necessity of large and diversified amounts of data to

train a model and make it able to generalize a task in different contexts. When it comes

to multimodal approaches and RS, this translates into many issues that depend on the

specific tasks. Other difficulties when it comes to AI are represented by the engineering

and design of the techniques used. Especially in multimodal approaches, methods can

vary in how they extract and use data from different kinds of sources, combining them

with strategies that can also vary based on the data and influencing the performance and

results.

In this chapter, the state of the art related to RS will be deepened. It will be divided

into sections, one for each topic of the pipeline described in Chapter 1. For each of

them, the main datasets and techniques will be illustrated focusing on the results already

achieved in the state of the art and challenges still open.

2.1 Hyperspectral Pansharpening

The field of pansharpening has made significant advancements thanks to data-driven

approaches and novel methods. This section focuses on the current state of the art in

pansharpening, highlighting two important aspects: the development of benchmarks for

a comprehensive evaluation and the design of novel methods that effectively improve

spatial resolution while maintaining spectral fidelity. By reviewing these benchmarks and

methods, a comprehensive overview of the most recent advancements is provided.
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Table 2.1: List of existing datasets used for RS image pansharpening. Here are reported, for each dataset,
the number of images of the dataset, the number of bands, and the coverage in terms of wavelength. The
image resolutions reported in this table are taken from the original dataset descriptions.

Dataset Cardinality Images resolution Type # of bands Wavelength coverage
Pavia University [25] 1 610 × 610 airborne 103 430 - 838 nm
Pavia Center [25] 1 1096 × 1096 airborne 102 430 - 860 nm
Houston [26, 27] 1 349 × 1905 airborne 144 364 - 1046 nm
Chikusei [28] 1 2517 × 2335 airborne 128 363 - 1018 nm
AVIRIS Moffett Field [29] 1 37 × 79 airborne 224 400 - 2500 nm
Garons [29] 1 80 × 80 airborne 125 400 - 2500 nm
Camargue [29] 1 100 × 100 airborne 125 400 - 2500 nm
Indian Pines [25, 30] 1 145 × 145 airborne 224 400 - 2500 nm
Cuprite Mine 1 400 × 350 airborne 185 400 - 2450 nm
Salinas [25] 1 512 × 217 airborne 202 (224) 400 - 2500 nm
Washington Mall [31] 1 1200 × 300 airborne 191 (210) 400 - 2400 nm
Merced [26] 1 180 × 180 satellite 134 (242) 400 - 2500 nm
Halls Creek [32] 1 3483 × 567 satellite 171 (230) 400 - 2500 nm

2.1.1 Datasets

The choice and characteristics of the benchmark datasets play a crucial role in evaluating

and comparing different algorithms for RS pansharpening. Each dataset has unique prop-

erties that differentiate it from others, including cardinality, image resolution, acquisition

setup, number of spectral bands, and wavelength coverage. For an immediate comparison

of the existing datasets in the state of the art, please refer to Table 2.1 which summarizes

all of them and their properties.

It is possible to divide the existing datasets into different groups by mainly considering

three properties: the wavelength coverage, image resolution, and acquisition setup of

each dataset. Regarding the wavelength coverage, four datasets range from visible to

near-infrared (VNIR), while the remaining ones cover the entire spectrum, from visible to

short-wave infrared (SWIR). The use of data with limited spectral coverage for the design

of pansharpening algorithms could limit their applicability to real-case scenarios, which

may require the use of bands and data not covered by those datasets.

Another important aspect is the image resolution, associated to the dataset cardinality.

While datasets like Halls Creek [32] can potentially be tiled in smaller samples for training

or validation purposes, the other ones are limited due to the low cardinality and low

resolution of the data. Furthermore, even if an image is tiled, the variety of the content of

the scenes considered is limited to the area covered by the single image, making it hard to

evaluate algorithms in different scenarios. Finally, most of the datasets in the state of the

art are tagged as “airborne” type, which means that are collected by using airplanes or

low-altitude flying devices, while only two are made of satellite-collected images.
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2.1.2 Pansharpening Methods

Pansharpening methods can be grouped into five categories: component substitution (CS),

multiresolution analysis (MRA), Bayesian, matrix factorization (as defined by Loncan et

al. [29]) and deep learning.

Component substitution methods consist of substituting the spatial component of the

spectral images with the high-resolution panchromatic images. The results are obtained

by projecting a high-resolution version of the spectral image into its spatial component

and then reverting the transformation using the panchromatic information instead of the

spatial projection extracted. CS includes methods such as principal component analysis

(PCA) [33], intensity-hue-saturation (IHS) [34], Gram-Schmidt (GS) [35], and GS Adaptive

(GSA) [36]. These methods are usually easy to implement, achieve high spatial fidelity,

and are robust to misregistration, but can create significant spectral distortions [29].

In multiresolution analysis, Loncan et al. [29] includes methods such as Decimated

Wavelet Transform (DWT) [37], Undecimated Wavelet Transform (UDWT) [38], “à-trous”

wavelet transform (ATWT) [39], and Laplacian pyramid [40], which consist of using a

filtered version of the PAN signal, to extract high-resolution details and inject them into

the spectral image. Compared to the CS methods, the MRA techniques are more difficult

to implement and computationally more complex but also allow for achieving a better

spectral consistency with the original spectral information.

Some other approaches, for instance, Guided Filter PCA [41], combine the two tech-

niques to gather the advantages from both, but the results on hyperspectral images were

not promising, being the technique with the worst results on hyperspectral data in Loncan

et al.’s investigation [29].

Bayesian approaches are based on the estimation of the posterior probability of the

full-resolution image that would be obtained considering the original panchromatic and

spectral information. These methods typically consider the sensor characteristics to

enhance the resolution, thus achieving state-of-the-art performance but also being less

generalizable and more complex to use [29].

Matrix factorization techniques are described by Loncan et al. [29] as the only ones

purposely used for hyperspectral pansharpening, and instead of using the panchromatic

information, use a high-resolution multispectral image to convey the spatial information of

the hyperspectral data into a higher resolution space. Even in this case, to exploit the best

factorization to reconstruct the new image, the characteristics of the sensors are taken

into consideration, making them less viable compared to other methods.

Deep Learning approaches, due to the recent success of the Neural Networks, have been
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proposed in recent years and using different models for multispectral pansharpening. [42].

Masi et al. [43] in 2016 propose the first Convolutional Neural Network designed for

multispectral pansharpening. They presented a simple neural network made of few

convolutional layers, capable to outperform the machine-learning-free approaches on three

standard datasets. In 2018, Scarpa et al. [44] tried to compensate for the lack of data,

proposing the Adaptive-PNN strategy by fine-tuning the model extracting samples from the

reference image, and refining the pansharpened reconstruction by closing the gap between

training and testing in pansharpening. Yang et al. [45] proposed a new model with the

focus on spectral information preservation, which operates mainly on the high-frequency

components of the multispectral images, while trying to keep low-frequency information

as much as possible unaltered. In 2018, Yuan et al. [46] proposed a multi-branch network,

being the first approach to fuse PAN and MS images in feature domain and reconstruct

the pan-sharpened image from the fused features, instead of approaching the problem as a

super-resolution task. In 2020, Liu et al. [47] presented a multi-resolution based approach

for image fusion, based on wavelets decomposition, which represents the first approach to

explicitly perform a deep fusion operation between the panchromatic information and the

multispectral bands. In the same year, Cai et al. [48] proposed a method for progressive

pansharpening, while recently, in 2021, Xie et al. [49] proposed a progressive PAN-injected

fusion method based on super-resolution. This last approach extracts information from the

panchromatic image with dedicated encoder branches, from both low and high frequencies,

in order to better exploit features from the panchromatic image, achieving state-of-the-art

results.

Some attempts at deep learning approaches for hyperspectral data have also been

investigated. In 2019, He at al. [31] proposed HyperPNN, a phases CNN that firstly extracts

spatial features from the panchromatic image and spectral features from the hyperspectral

one, secondly fuses the spatial and spectral features with dedicated convolutional layers,

and thirdly predicts the spectral information of the pansharpened image with convolutional

layers that focus only on the spectral signatures. This model has been followed in 2020 by

the improved version called HySpecNet [32]. In the same year of HyperPNN, Zheng et

al. [50] investigated the use of the residual network for pansharpening, firstly guiding the

upscaling and enhancing the edge details of the hyperspectral data with Contrast Limited

Adaptive Histogram Equalization (CLAHE) and a guided filter to fuse the image with the

panchromatic information, and then using a Deep Residual Convolutional Neural Network

(DRCNN) to boost the reconstruction. Xie et al. [51] developed the HS Pansharpening

method with Deep Priors (HPDP), exploiting the power of different deep learning modules

to improve all parts of the pansharpening pipeline. In particular, they used a Super

Resolution Deep Learning (SRDL) module to upscale the HS image and fuse it with the

panchromatic information by also considering high-frequency information extracted by the
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proposed High-Frequency Net (HFNet). They finally obtained the final high-resolution HS

by injecting the high-frequency structure in the upscaled HS, using a Sylvester equation.

It is worth noticing that they used multispectral images for training to compensate for the

limited number of training samples. Recently, in 2023, He et al. [26] proposed dynamic

hyperspectral pansharpening that uses a learn-to-learn strategy to adapt the pansharpening

to the spatial variations of an image.

Despite the increased adoption of CNNs and deep learning in the field of pansharpening,

and the increased interest in the use of hyperspectral images for satellite image analysis,

the limited number of hyperspectral samples is still an issue. In order to study the impact

and the possible advantages of the application of deep neural models on hyperspectral pan-

sharpening, these models are adapted and retrained to hyperspectral data, collected from

the PRISMA dataset, and compared with a subset of machine-learning-free approaches.

2.2 Unsupervised Segmentation of hyperspectral im-

ages

Methods belonging to the state of the art for unsupervised and semi-supervised hyper-

spectral image segmentation should take into consideration both the spectral and the

spatial information to avoid noisy results [52, 53]. Depending on the order by which these

two information are addressed, it is possible to define a taxonomization of the methods

composing the state of the art. Table 2.2 shows pros and cons of each method of the state

of the art.

Spatial regulation methods Audebert et al. [54] perform in first place a per-pixel

segmentation followed by a spatial regularization done with a context-dependent criteria.

In this context, Wu et al. [55] propose a Laplacian Support Vector Machine (LapSVM)

to classify each pixel and then use a Conditional Random Field (CRF) to regularize the

results according to the surrounding of the pixel under consideration.

Pre-segmentation methods perform a first step of spatial regularization as an

unsupervised pre-processing and then aggregate the spectral features for each segmented

region to enforce spatial consistency. The spatial regularization is enforced through

clustering or superpixels [56]. Gillis et al. [57] designed a fast hierarchical clustering

algorithm for hyperspectral images (HNMF). The algorithm uses a rank-two nonnegative

matrix factorization to split the data into clusters. This approach showed effectiveness

on synthetic and real-world HS images, outperforming standard clustering techniques

such as k-means, spherical k-means, and standard NMF. Zhang et al. [58] extend the

SLIC algorithm for HS image segmentation. The authors state that the reduction of the

spectrum, in their case, degrades the performance. Visual attention mechanisms can also

be used to better highlight the salient parts [59, 60].
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In this context, the compression of the spectral signal with dimensionality reduction

techniques such as the Principal Component Analysis (PCA), helps to decrease the size of

the problem and to improve the overall performance. In 2017, Zhang et al. [53] proposed

a multiscale superpixel representation starting from the first principal component. Using

this representation, a multiscale classification is achieved and then fused using a majority

voting to exploit the final labels. Similarly, in 2019, Zhang et al. [61] used the Entropy

Rate Superpixel segmentation and a kernel-based extreme learning machine. Starting from

the first principle they successfully combined the spectral and spatial information with

performance improvement over other spectral approaches. Zu et al. [62] took advantage of

the spatial information combining a band reduction technique with SLIC segmentation

and a feature extraction based on principal components. This approach demonstrated to

achieve results comparable to other techniques with few labeled samples.

Self-supervised methods use autoencoders to learn a compact representation of the

input data [63]. To learn a meaningful representation, those methods usually use a

normalization term [64] or add noise during training [65]. Chen et al. [66] and Abdi et

al. [67] use stacked autoencoders to create a latent space of lower dimensionality through

the use of a normalization term. Similarly, Xing et al. [68] use stacked autoencoders

but during training time they add noise to the embeddings and treat the problem as a

denoising task. Nalepa et al.[69] introduce dependency among samples through the use

of 3D convolutional autoencoders. Zhang et al.[70] use an information fusion network

that combines hyperspectral images with light detection and ranging data (LiDAR). An

autoencoder is trained to reconstruct both signals in a self-supervised way. The intermediate

representation is then used by a two-branch CNN for final classification. Paul et al. [71]

use a U-net architecture along with spectral partitioning. The proposed architecture is

called HyperUnet. Tulczyjew et al. [72] propose the use of an asymmetric autoencoder

based on recurrent neural networks to address the low cardinality and imbalance that is

typical of HS image datasets. Chen et al. [73] use adversarial training to fill the lack of

samples. As stated by Wambugu et al. [74], the generation of synthetic samples through

data augmentation can improve robustness.

Graph theory is also broadly used in this context to leverage spatial relationships.

In this context, Aletti et al. [75] propose a semi-supervised method that uses a random

walker method to perform segmentation. Ding et al. [76] use a graph neural network

(GNN) with autoregressive moving average filters for leveraging structures present in the

HS images. Similarly, Luo et al. [77] use GNN in combination with a multi-structure

unified discriminative embedding to enforce spatial consistency.

Joint learning methods attempt to learn simultaneously spatial and spectral features.

Zhang et al. [78] developed a classification framework using gradient-fusion of bands

combined with watershed superpixel segmentation to convey contextual information and
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spatial dependencies. By doing so, the classification will be less sensitive to noise and

segmentation scales. Murphy et al. [19] proposed an unsupervised spectral-spatial diffusion

learning technique (DLSS) that combines spectral and spatial information considering the

modes of classes. This active learning strategy can be helpful in those contexts where

the hyperspectral information varies along time and the system must adapt to new data.

Xie et al. [79] proposed a Deep Embedded Clustering (DEC) to simultaneously learn

feature representations and cluster assignments using deep neural networks. DEC maps

the data space to a lower-dimensional feature space optimizing a clustering objective. The

experimental evaluations on state of art images showed significant improvement. Starting

from this approach, Obeid et al. [80] proposed a balanced version of DEC (BDEC). In

particular, they developed an additional search and extraction step to balance the data

before the training of DEC, making use of a-priori knowledge of the context of data

and labeling, to further improve the overall quality of the segmentation on a variety of

state-of-the-art datasets. They compared their method with other clustering techniques

such as k-means [80], Gaussian mixture model (GMM [80]), and sparse manifold clustering

and embedding (SMCE [81]).

2.3 Multimodal Supervised Semantic Segmentation

This section, as for pansharpening, is divided into two parts, one dedicated to the datasets

and one to the semantic segmentation methods in computer vision and RS. The first part

is particularly important to show the lack of RS multimodal datasets in the field of RS

semantic segmentation, especially when HS information is considered. It describes the

state-of-the-art datasets in detail for a better understanding of their lacks and weaknesses.

The second part focuses on showing how even with a scarcity of multimodal datasets

properly built for segmentation, this field is still one of the most studied and challenging.

2.3.1 RS Datasets for semantic segmentation

Remote sensing data have greatly increased in numerosity, modality, and variety. Nonethe-

less, due to labeling difficulties, when it comes to semantic segmentation, there is not

the same quality of datasets available in other tasks like classification [82]. However,

several datasets such as the TorontoCity dataset, the ISPRS 2D semantic labeling dataset,

the Mnih dataset, the SpaceNet dataset, and the ISPRS Benchmark for Multi-Platform

Photogrammetry have been proposed in the literature for semantic segmentation [83].

Three bands datasets Focusing on RGB images, one of the most important datasets

is Deepglobe [83]. This dataset covers an area of 1716.9 km2 that includes Thailand,

Indonesia, and India. It is composed of 1156 images with a resolution of 0.5 meters per
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Table 2.2: Pros and cons of the methods representing the state of the art.

Method Pros Cons

[67] The architecture is very simple and easily replicable The use of NNs instead of CNNs makes the system
more data-hungry

[75] Consensus-based methods show more robustness
to noise

Dataset-tailored similarity index can lead to mis-
judgement

[66] Self-supervised approach helps to deal with small
amount of data

The size of the neighbor region has a huge impact
on the performance of the system and it is dataset-
dependent

[73] The local manifold learning helps to discover rela-
tionships among samples

Adversarial prediction can face a partial or a total
mode collapse

[76] Graph neural networks can be effective in describ-
ing structures

Requires a great amount of labeled data that often
is not available

[81] Through the use of sparse coding the method is
robust to data nuisances such as noise and outliers

the refactorization of each sample as a linear com-
bination of remaining samples can be misleading
in presence of many outliers

[57] Nonnegative matrix factorization can be a powerful
splitting technique

Requires to know in advance the number of classes

[52] Only five parameters required and a moderate num-
ber of training samples

High computational time both in training and test-
ing due to the construction of the similarity graph

[77] Intraclass and interclass neighborhood structure
graphs can help to improve the description in the
feature space of the HS images

It’s unclear how much is the contribution of the
tangential structure information on the final per-
formance

[19] The proposed algorithm can be complemented with
few real samples, boosting the performance in an
active learning fashion

Based on the assumption that different classes have
different densities

[69] Representation learned in a self-supervised fashion 3D convolutions introduce in-batch samples depen-
dency

[80] Extremely fast (up to 2600X w.r.t. [79]). Address
the problem of data imbalance

The extraction of data subsets that are equally rep-
resentative can lead to misrepresentation in pres-
ence of low cardinality classes

[56] Fast and simple as the computation is limited to
neighbors

Generalization limited by bag of words which must
be small to avoid a performance drop

[55] Pixelwise classification is simple and fast low resolution of hyperspectral images leads to pixel
misclassification

[79] Feature representation is learned during the process.
Less sensitive to hyperparameters

Kullback-Leibler divergence minimization can lead
to errors when the auxiliary distribution has low
cardinality

[68] Very simple architecture Poor results

[78] The proposed fusion method requires less samples
with respect to other methods

The use of Local Binary Patterns (LBPs) heavily
affects the performance as the scale changes. This
is due to the limited field of view of LBPs.

[53] The multiscale approach avoids the choice of the
optimal superpixel size

Major voting strategy considers all scales equally

[58] Exploits the consolidated SLIC algorithm to define
superpixels, extending it to hyperspectral informa-
tion

It is semi-supervised and requires some labeled
samples to propagate their label to the pixels in
the same superpixel

[61] Captures local as well as global spatial characteris-
tics of the HS images

Extreme learning machine (EML) uses single hid-
den layer feedforward neural networks (SLFNs),
whose representativity is low

[70] Improves performance by integrating LiDAR data requires LiDAR data

[62] Lower dimensionality promotes meaningfulness of
feature vectors

Superpixel-independent dimensionality reduction
through robust PCA can lead to non-comparable
feature vectors
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pixel and 2448x2448 pixels per sample. The labeling consists of 7 classes for land cover and

land use segmentation: urban, agriculture, rangeland, forest, water, barren, and unknown.

The TorontoCity dataset [84] includes RGB and LIDAR information, focusing on

building footprints and road segmentation and covering an area of 712.5 km2 in Toronto

with a resolution of 0.10 meters per pixel. Some RGB datasets as a variant of the

SpaceNet dataset [85] and the INRIA aerial dataset [86] focus on the binary segmentation

of buildings and non-buildings. The former considers only the RGB components of the

standard SpaceNet dataset [87]. It wants to be an alternative and more approachable

dataset than the original SpaceNet. It consists of 300x300 pixels per image, divided into a

training set of 280741 images, a validation set of 60317 images, and a test set of 60697

images, focusing on the segmentation of building and non-building classes. The latter

dataset presents 360 images of 1500x1550 pixels that cover an area of 810 km2, with a

resolution of 0.3 meters per pixel.

Another RGB dataset is the Urban dataset from the Campinas region in Brazil [88].

This dataset was created in 2003 including three different urban classes that consist of

residential, commercial, and industrial areas. The other regions were all included in a non-

urban area which included highways, roads, native, vegetation, crops, and rural buildings.

The dataset is composed of 9 images of 1000×1000 pixels and a spatial resolution of 0.62

meters per pixel. The same article also presents the Coffee dataset [88]. It considers images

of 3 bands using the NIR-R-G part of the spectrum instead of the classical RGB. Taken

by the SPOT sensor in 2005 over Monte Santo de Minas in Brazil, the dataset focuses on

the detection of manually segmented coffee crops and, even in this case, is composed of 9

images. Each image has 1000x1000 pixels with a spatial resolution of 2.5 meters per pixel.

Multispectral datasets To better extract information from the spectrum, other datasets

consider multispectral modality alone or together with other source types. The Zurich

Summer dataset [89] consists of 20 images by the QuickBird satellite in 2002. The data

include four bands in the NIR-RGB part of the spectrum, an average size of 1000x1150

pixels, and a spatial resolution of 0.61 meters per pixel achieved after pan-sharpening.

The labeling represents eight urban classes: roads, trees, bare soil, rails, buildings, grass,

water, and pools.

Multimodal datasets with multispectral information SpaceNet [90, 87] consist of

images from different sensors: WorldView-1, WorldView-2, WorldView-3, WorldView-4,

and GeoEye-1 [91]. Each sensor presents a variety of data and the most complementary

between them is the WorldView-3 which includes a panchromatic image and 8 multispectral

data, respectively in the VNIR and SWIR portions of the spectrum. Spacenet presents

tiles of 666x666 with a resolution of 0.3/0.5 meters per pixel for the panchromatic data,

depending on the sensor. In this case, the original multispectral images have different
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resolutions in a range from 1.24 to 1.85 meters per pixel but are upscaled using the

pansharpening and in their final versions share the same resolution of the panchromatic

component. It covers different cities and presents various kinds of segmentation depending

on the type of task aimed.

Other multimodal datasets are 2D Semantic Labeling Potsdam and Vaihingen datasets [92]

that present both multispectral/RGB and Digital Surface Model (DSM) information (an-

other specialization of the Digital Elevation Model which characterizes the heights of

the surface, including artificial and natural elements). They respectively have 38 and 33

images of 6000x6000 and 2000x2500 pixels [90]. Potsdam also involves more versions of

the same ground tiles. It includes two three-band images in the RGB or the IR-RG part

of the spectrum and a third multispectral image of 4 bands with IR-RGB information that

comprehends all the spectral information of the dataset. Vaihingen instead presents only

RGB information when it comes to the spectrum. The spatial resolution is different for the

two datasets, with Potsdam with a high resolution of 5cm and Vaihingen with a resolution

of 9cm. The two datasets present a labeling that includes six classes. The classes involve

impervious surfaces, buildings, low vegetation, trees, cars, and clutter/background.

Another multi-source dataset that includes multispectral information is the DSTL

dataset [93]. The dataset consists of 1km x 1km satellite samples from the WorldView-3

sensor. For each sample, it includes an RGB image from Deepglobe [83], a one-band

panchromatic image, an eight-band multispectral image with NIR and visible information

from 400 to 1400nm (red, red edge, coastal, blue, green, yellow, near-IR1, and near-IR2),

and an eight-band multispectral image in the short wavelengths part of the spectrum

(from 1195 to 2365nm). Each source has different spatial resolutions. Panchromatic image

is 0.31 meters per pixel, multispectral 1.24m, and Swir 7.5m. The dataset is built to

identify 10 classes: buildings (large building, residential, non-residential, fuel storage

facility, fortified building), misc (Manmade structures), road, track (poor/dirt/cart track,

footpath/trail), trees (woodland, hedgerows, groups of trees, standalone trees), crops

(contour ploughing/cropland, grain crops, row with potatoes and turnips), waterway,

standing water, large vehicle, small vehicle.

Hyperspectral datasets Another group of datasets represents hyperspectral data

that possess the highest spectral resolution compared to any other sources. Typically,

these datasets include single images, so they are not suitable for standard modern deep

learning techniques due to a low cardinality and variety of data. Some of the most popular

datasets are the Indian Pines [30], Salinas, SalinasA, Pavia Center, and Pavia University

datasets [25].

The Indian Pines by AVIRIS sensor consists of 145x145 pixels and 224 spectral bands

in the 400–2500 nm wavelength range and a spatial resolution of 3.7 meters per pixel.
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The final number of bands is reduced to 200 by removing the region of water absorption

bands. The ground truth available includes sixteen classes: alfalfa, corn-notill, corn-mintill,

corn, grass-pasture, grass-trees, grass-pasture-mowed, hay-windrowed, oats, soybean-notill,

soybean-mintill, soybean-clean, wheat, woods, buildings-grass-trees-drives, stone-steel-

towers.

Salinas and SalinasA [25] have also been acquired by the AVIRIS sensor and present

224 bands in the 400–2500nm portion of the spectrum, like Indian Pines. Even in this

case, the final datasets have 204 bands because the 20 noisy channels in the region of

water absorption have been discarded. The spatial resolution is 3.7 meters per pixel, and

the two images are respectively of 512x217 and 86x83 pixels. In particular, the SalinasA

dataset represents a subset of the Salinas dataset. Consequently, the labeling is different

between the two datasets. Salinas is annotated with 16 classes representing the region of

cultures such as broccoli, fallow, grapes, etc., while SalinasA, being a subset of the Salinas

labeling, includes only six classes.

Pavia Center and Pavia University datasets [25] by the ROSIS sensor are respectively

1096x1096 and 610x610 images with 102 and 103 channels. In both cases, part of the

samples has been discarded because of missing information, resulting in two images re-

spectively of 1096x715 and 610x340 pixels with a spatial resolution of 1.3 meters per pixel.

The labeling includes nine labels for both datasets, representing typical classes of land

cover such as asphalt, meadows, trees, bare soil, etc.

The use of different modalities can achieve better performance [94] when it comes

to remote sensing semantic segmentation, but due to the problem of providing semantic

labelings [10], the existing remote sensing datasets for semantic segmentation usually consist

of single modality or sources that possess less discriminative power such as multispectral

instead of hyperspectral. These are the main reasons to push the creation of a dataset

capable of exploiting the advantages and complementarities of multimodal approaches

using more discriminative sources. The Ticino dataset proposed in this work aims to

address these challenges.

2.3.2 Deep Learning for Semantic Segmentation

In this section, the most popular deep learning models used for semantic segmentation

will be described. In computer vision, the Convolutional Neural Network and recently

Transformers represent the most used architectures to build models and analyze images.

Convolutional Neural Networks In semantic segmentation, different CNN models

have been created to purposely extract features from each pixel and classify them to achieve

segmentation. Usually, the general idea of these architectures consists of convolution,
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deconvolution, and fusion that is typically in the form of skip connection to recover

spatial information during the deconvolution [90]. Some models [95] extended classic

CNN architectures such as AlexNet [96], VGGNet [97], GoogleNet [98], and ResNet [99]

to adapt them to semantic segmentation. Unet [100], SegNet [101], DeepLab [102], and

DenseNet [103] are created directly with the aim of semantic segmentation.

Unet [100] is a CNN divided into two main phases: convolution and deconvolution. The

former encodes the images using convolutional 3x3 filters, ReLU, and pooling to extract

feature maps. The latter starts from the feature maps to reconstruct the dimension of the

original image and classify each pixel. Between the encoder and the decoder part, Unet

also implements skip connections betwixt the correspondent layer to recover the spatial

structure of the original images.

SegNet [101] is divided into encoder and decoder as Unet. The encoder is the same

as Unet and other CNNs and it is built to extract features of greater semantic meanings.

At the same time, the spatial information in the deepest layers becomes ambiguous [90].

SegNet address this issue by storing the element index and using it for the upsampling

of the decoder. Basically, SegNet differs from Unet because instead of concatenating

the outputs of the encoder with the inputs of the decoders through skip connection, it

reconstructs the spatial information by guiding the upsampling process using indexes that

memorize the spatial position before operations of convolution or pooling.

DeepLab [102] extends CNN changing the classic convolution filters with dilated filters.

By enlarging the neighborhood considered, these filters incorporate more context at

each convolution operation without increasing the number of parameters of the network.

To improve the spatial localization and edge accuracy of segmentation, degraded from

downsampling and pooling operations [90], DeepLab applies Conditional Random Field

(CRF). DeepLab V3 [104] and DeepLab V3+ [105] are variants of DeepLab that abandon

the use of CRF and implement standard convolution and concatenation of feature maps

to recover spatial information. In addition to DeepLab V3, DeepLab V3+ introduces a

decoder to refine the boundary details.

DenseNet [103] is an extension of ResNet [99]. It introduces the concept of dense blocks

helping to reduce the problem of vanishing gradient, enabling the reuse of features, and

consequently needing fewer parameters to learn [90]. A dense block consists of a layer that

receives in input every output of the previous layers incrementing the existing connections

in the standard ResNet.

When it comes to remote sensing semantic segmentation, SegNet [106, 107, 108, 109],

Unet [110, 111, 112, 113, 114, 115], DeepLab [111, 116, 106], and DenseNet [103] have

been tested, achieving state of the art performance.
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Transformers Since 2017, Transformers have become a reference point in the deep

learning community, gradually increasing their importance in the state of the art [117].

The first Transformer architecture [118] had the aim to overcome long short-term memory

methods for natural language processing. Transformers introduce the concept of self-

attention that, simply using fully connected layers and multiplication between matrices,

is capable of computing an association between every element of the input with each

other (e.g.: every word of a sentence with every word of the same sentence). Transformer

models have recently demonstrated exceptional performance on a broad range of language

tasks, machine translation, and question-answering [119]. In computer vision, some models

have been developed to take advantage of these architectures and have been proven to be

comparable to or better than CNNs [120]. Contrary to the CNNs that have a local point of

view of the images thanks to convolutional operations, the main advantage of Transformers

is the global context knowledge achieved thanks to self-attention. Moreover, compared to

their convolutional counterparts, Transformers assume minimal prior knowledge about

the structure of the problem. Consequently, they can be pre-trained on pretext tasks on

large-scale (unlabelled) datasets reducing the necessity of annotations [119].

Vision Transformer (ViT) [121] is the first Transformer applied in computer vision.

The main problem addressed by ViT is how to create the input token of the network.

Generally, in natural language processing, the main idea is that every word of a sentence

becomes an input token of the Transformer, and the model computes the self-attention

between the tokens. In computer vision, this ideally translates into using every pixel as an

independent token and elaborating the attention between them. Due to token cardinality,

this approach would be computationally unfeasible. ViT addresses this problem using

patches in a grid shape to generate tokens instead of single pixels. The original model

works perfectly for classification, but it is easily adaptable to segmentation problems by

attaching a decoder for segmentation to the Transformer and using the latter as an encoder

of features of the patches.

Pyramid Vision Transformer (PVT) [122] is the first hierarchical Transformer built for

pixel-dense prediction. The encoder architecture consists of 4 stages where the dimension

of the patches continues to increment. Instead of dividing the images in a regular grid

of big patches as ViT [121], PVT starts with 4x4 patches. Each stage computes the

relationship between the tokens using a Transformer block, and at the end of each stage,

the features are reshaped as an image, and the process is repeated, doubling the dimensions

of the patches.

Shifted Window Transformer (SWIN Transformer) [120] is another hierarchical Trans-

former, and as such, can extract hierarchical features considering different scales and also

has linear complexity, being efficient both in terms of performance and computation. As

PVT [122], SWIN starts with 4x4 patches but uses a sliding window of 4x4 patches to
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compute the attention only on the ones inside. The model also uses a Shifted Window

approach where the window alternately changes shape to capture the relationship between

the patches that overlap the borders of the previous window shape. After the computation

with the two different forms, the patches merge, composing new patches, and the process

is iterated till the window covers the entire image. So, dissimilarly from ViT, SWIN can

capture relationships almost at pixel level without renouncing efficiency.

SegFormer [123] is a Transformer based architecture built to aim semantic segmentation.

As PVT [122] and SWIN [120], it is a hierarchical Transformer, but differently from the

other Transformer models, it doesn’t need positional encodings that are usually considered

together with the tokens to imply positional information. The model is divided into

a hierarchical Transformer encoder to generate multi-scale features and a lightweight

all-MLP decoder to fuse them and produce the final semantic segmentation mask.

Recently, another Transformer based model called MaskFormer [124] has been proposed.

The idea behind MaskFormer is to change the base paradigm used to segment an image.

Instead of classifying every pixel of an image, this model creates and classifies different

sets of masks that combined achieve the final semantic segmentation.

In remote sensing, semantic segmentation some attempts to use Transformers alone

or in combination with CNNs have been explored, for instance, Efficient-T [125], CCT-

Net [126], Stranfuse [127], Trans-CNN [128], SwinTF [129], UnetFormer [130] have achieved

competitive results combining the advantages of CNNs and Transformers.

Multimodal and fusion approaches Multimodal approaches have been really useful

in many tasks such as image fusion, change detection, image localization, target recognition

and tracking, image matching, etc. [131]. These strategies are used in various fields, from

medical analysis, language translation, and image annotation, to remote sensing monitor-

ing [132, 131]. The combination of different sources to achieve relevant improvements by

exploiting the advantages of each type of data has been and is still being investigated. In

semantic segmentation, various methods to fuse modalities have been studied and depend

on the datasets, the model chosen, and the kind of fusion applied.

In RS, these kinds of fusion can be divided into two groups: heterogenous and homoge-

nous [94]. Heterogeneous fusions represent the fusion techniques to combine modalities

with different meanings, such as hyperspectral, LIDAR, and DTM. The homogeneous

group indicates the fusion of modalities of the same type. For instance, these kinds of

fusions include spatio-temporal fusion and pansharpenig [29, 94, 133]. The former is the

fusion of the same images collected in diverse timesteps. The latter is typically used

to upscale multispectral images and recently also involved the spatial improvement of

hyperspectral data to the resolution of the panchromatic component, characterized by

high spatial information.
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Typically, with CNNs, the methods can be divided into 3 groups: early fusion (or

data-level), middle fusion, and late fusion [134]. The fusion strategy usually involves

concatenating the features of the different modalities to merge their characteristics. The

main difference between each strategy resides in the position of the CNN model where the

concatenation is applied. For instance, in early fusion, concatenation is the first step of

the pipeline, directly combining the sources in a shallow way. The late fusion methods

imply the merging after extracting high-level features from each modality independently

and using the decisions on each source to define the final segmentation. Middle fusion, as

the name suggests, is a middle-ground strategy between early and late techniques. The

combination is in the middle of the pipeline, extracting features from each modality before

concatenating them.

With Transformers’s popularity and performance, new architectures purposely adapted

for fusing have been investigated. Nonetheless, Transformer-based architectures have

emerged as a prominent choice in multimodal learning research, but their utilization

for semantic segmentation of RS images remains relatively underexplored [135]. These

architectures give rise to different possible strategies [136]. For instance, the fusion of the

tokens, by summing or concatenating them, can characterize the multimodal approaches

with Transformers [137, 138]. Following the concatenation approach, hierarchical attention

represents another example of multimodal techniques with transformers. It consists of

concatenating and splitting the tokens before or after the attention mechanism. The

hierarchical attention can be divided into two versions depending on the application

order of the concatenation and splitting operations (from multi-stream to one-stream or

vice versa) [139]. Another strategy modify the structure of the self-attention mechanism.

A typical method among these strategies is represented by the Cross Attention [140]

that swaps the query of a modality with another one during the computation of the

classical attention. Finally, combinations of these techniques used concatenation and Cross

Attention together [141, 142].

2.4 Digital Soil Mapping

Remote sensing, as described before, involves the use of sensors mounted on drones, aircraft,

or satellites for observing and monitoring the Earth from a distance. When coupled with

Machine Learning, this technology can also be applied to soil characterization, expediting

and scaling up the soil characterization process [14]. The integration of these technologies

facilitates accurate and high-resolution soil mapping, empowering land managers, farmers

and policymakers with vital information for sustainable land use planning, precision

agriculture and environmental conservation initiatives [13].

Several research make use of machine learning techniques to improve the quality of
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the estimation of soil parameters. For instance, Ladoni et al. [143] use partial least

square regression to estimate the soil organic carbon (SOC) from hyperspectral images.

Forkuor et al. [144] tackled the estimation of sand, silt, clay, CEC, SOC, and nitrogen (N)

across a West African landscape by leveraging RapidEye and Landsat images, employing

random forests (RF), support vector machines (SVM), and stochastic gradient boosting

(SGB) techniques. Similarly, Safanelli et al. [145] estimate the clay, sand, SOC, calcium

carbonates (CaCO3), CEC and pH present in water using the gradient boosting regression

algorithm. Zhou et al. [146] harnessed RF, SGB, and SVM to foresee SOC and the C:N

ratio from multispectral data in Switzerland [147].

Hu et al. [148] utilized RF with hyperspectral and multispectral data to estimate soil

salinity. Guo et al. [149] perform the SOC prediction using vis-NIR (visible near-infrared)

technology. Two approaches are compared: a direct method, which estimates directly the

SOC from spectral information, and an indirect method, which in the first place estimates

the soil organic matter (SOM) and the soil bulk density (SBD), and then computes the

SOC value on the basis of the estimated variables.

Meng et al. [150] estimated SOC from hyperspectral images obtained from the Gaofen-5

(GF-5) satellite, employing a multiscale approach that featured the three bands with the

highest SOC correlation as input features, and prediction models like RF [151], SVM [152],

and backpropagation neural networks. Chambers et al. [153] created two datasets for soil

nutrient prediction (P, K and M) and then investigated the use of several machine learning

techniques for the prediction. The two datasets are, respectively, called global and local

datasets, as the former covers several locations in Slovenia while the latter corresponds

to a local farm. Both datasets are augmented using subsampling, reaching a total of 350

and 56 samples, respectively. Data acquisition of the spectra was performed within the

UV-VIS (ultra-violet visible) range, specifically between 200 nm and 11,000 nm.

Li et al. [154] performed a prediction of soil properties (OC, N, and Clay) starting from

vis-NIR signals. The investigation was conducted on two datasets: a small dataset collected

by the authors and the LUCAS (Land Use and Coverage Area frame Survey) dataset [155].

The prediction is achieved through a multi-branch neural network that evaluates both the

signal as-is and the corresponding 2D spectrum map, obtained through the use of the Fourier

transform. The latter treats the vis-NIR as a temporal signal. Three different preprocessing

methods are investigated: the Savitzky–Golay (S-G) smoothing algorithm [156, 157],

multivariate scattering correction (MSC) [158, 159] and centralization methods.
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Chapter 3

Hyperspectral Pansharpening

The hyperspectral pansharpening analysis described in this chapter can be found on arXiv

and refers to the article entitled Deep Learning Hyperspectral Pansharpening on large scale

PRISMA dataset [20].

Remote Sensing (RS) has revolutionized our ability to observe and analyze our planet

from a vantage point beyond the Earth’s surface [7]. The analysis of data gathered by

sensors on board of satellites or aircraft, in fact, allows the inference of useful information

about the land, water and atmospheric systems of the Earth. This technology became

fundamental in several fields, such as environmental monitoring [10], agriculture [8], urban

planning [11], disaster management [12], and resource exploration [9].

However, the costs to put a satellite in Earth orbit are very high. They range from

2.6k$/kg with SpaceX to 22k$/kg with NASA, with an intermediate value of 17.6k$/kg

with Soyuz, the Russian rockets [160, 161]. Minimizing the payload is therefore the major

goal that drives the choice and the design of every component on a satellite [162]. This

constraint, in combination with the need to use as little energy as possible, results in a huge

trade-off between the spatial resolution and the number of acquired bands when designing

optical remote sensing devices. On the one hand, in fact, several orbital expeditions

such as Landsat 6/7 [163], SPOT 6/7 [164], Sentinel-2 [165] included a panchromatic

imaging device acquiring at high resolution [166]. On the other hand, missions carrying

hyperspectral imaging devices such as ASI PRISMA [6], had to decrease the spatial

resolution in favor of a higher number of acquired bands [167].

The loss of spatial resolution can be partially solved through the use of pansharpen-

ing [168]. In this context, the panchromatic image could be used as a source of information

to extend the spatial resolution of the multispectral (MS) and hyperspectral (HS) images.

The first attempts of image pansharpening are machine-learning-free approaches [169],

designed to handle data in the range of visible radiations (400 - 700 nm). These approaches

assume the possibility of exploiting the existing relation between the panchromatic image

and the spectral bands in the input data. This assumption may not be valid when handling
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Table 3.1: List of existing datasets used for RS image pansharpening. For each dataset, the number of
images, the number of bands, and the coverage in terms of wavelength are reported and compared with
the dataset presented in this investigation. The image resolutions reported in this table are taken from
the original dataset descriptions. The last row describes the dataset used in this work.

Dataset Cardinality Images resolution Type # of bands Wavelength coverage
Pavia University [25] 1 610 × 610 airborne 103 430 - 838 nm
Pavia Center [25] 1 1096 × 1096 airborne 102 430 - 860 nm
Houston [26, 27] 1 349 × 1905 airborne 144 364 - 1046 nm
Chikusei [28] 1 2517 × 2335 airborne 128 363 - 1018 nm
AVIRIS Moffett Field [29] 1 37 × 79 airborne 224 400 - 2500 nm
Garons [29] 1 80 × 80 airborne 125 400 - 2500 nm
Camargue [29] 1 100 × 100 airborne 125 400 - 2500 nm
Indian Pines [25, 30] 1 145 × 145 airborne 224 400 - 2500 nm
Cuprite Mine 1 400 × 350 airborne 185 400 - 2450 nm
Salinas [25] 1 512 × 217 airborne 202 (224) 400 - 2500 nm
Washington Mall [31] 1 1200 × 300 airborne 191 (210) 400 - 2400 nm
Merced [26] 1 180 × 180 satellite 134 (242) 400 - 2500 nm
Halls Creek [32] 1 3483 × 567 satellite 171 (230) 400 - 2500 nm
OURS based on PRISMA 190 1259 × 1225 satellite 203 (230) 400 - 2505 nm

data outside the range of visible wavelengths, i.e. when there is partial or missing spectral

overlap between the panchromatic image and the spectral bands to be processed.

Alongside these methods, neural network-based approaches have been recently devel-

oped, showing promising results. However, data-driven approaches are limited by the lack

of high-cardinality datasets in the state of the art. Table 3.1 reports the most relevant

datasets in the literature used for multispectral and hyperspectral RS pansharpening. The

majority of them are composed of only one single satellite or aerial image covering a small

portion of land (at most few km2), with limited variability in the content of the scene.

In order to overcome the limitations relative to the lack of data, this work presents:

• a new large-scale dataset covering 262200 km2 for qualitative assessment of deep

neural models for hyperspectral image pansharpening. Such dataset is collected

from the PRISMA satellite, preprocessed and adopted for the retraining of current

state-of-the-art approaches for image pansharpening;

• an in-depth comparison, both in quantitative and qualitative terms, of the current

deep learning approaches, re-trained and tested on the newly proposed large-scale

dataset, and traditional machine-learning-free approaches.

The presented study is the first one based on a large-scale dataset, covering a wide

variety of ground areas. The proposed investigation wants to be a starting point for the

design of new deep-learning approaches for RS image pansharpening.
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Table 3.2: Ranges of wavelengths covered by the panchromatic image and by the hyperspectral cubes
VNIR and SWIR, and the corresponding number of bands. The PAN image covers most of the range of
the VNIR cube, while the SWIR cube is completely outside of that range.

Cube
Wavelengths covered

# of bands
Resolution

nm m/px pixels
panchromatic 400 – 700 1 5 7554 × 7350

VNIR 400 – 1010 66 30 1259 × 1225
SWIR 920 – 2505 174 30 1259 × 1225

Figure 3.1: Map of the patches acquired using the PRISMA satellite. On average, every patch covers
about 1380 km2 of soil.

3.1 Data

In order to assess the performance of the approaches for hyperspectral image pansharpening,

a new dataset of HS images has been collected using the PRISMA satellite. A collection

of 190 images covering different areas, from Europe, Japan, Korea, India and Australia for

a total of about 262200 km2 has been gathered. The actual locations of the images are

shown in Figure 3.1, while in the last row of Table 3.1, the proposed dataset is reported

with a summary of its characteristics, compared with other existing datasets.

The data used for the construction of the proposed datasets has been collected by

using the level-2D image data product downloaded from the ASI PRISMA portal for data

distribution [6]. Visible and Near-InfraRed (VNIR), Short-Wave InfraRed (SWIR) cubes

and the panchromatic (PAN) band have been extracted from these downloaded products,

according to the Hierarchical Data Format (HDF5) standard. The hyperspectral cubes

from the level-2D refer to the geocoded at-surface (Bottom-of-Atmosphere) reflectance

data [170]. PAN images are at a spatial resolution of 5 meters per pixel, while VNIR

and SWIR cubes (respectively 66 and 174 spectral bands) are at a spatial resolution of
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PAN

HS

HS↓

Figure 3.2: Examples of PRISMA dataset entries, visualized in true color RGB (641 nm, 563 nm, 478 nm).
PAN image is at a resolution of 5 meters per pixel, HS images at 30 meters per pixel and HS↓ at 180
meters per pixel

30 meters per pixel. Table 3.2 reports the details of each cube, while Figure 3.2 shows

some examples of PRISMA data visualized in true-color RGB. Each PAN image is at a

resolution of 7554 × 7350 pixels, while HS bands are at a resolution of 1259 × 1225 pixels.

Each collected image has been pre-processed by performing an image co-registration

step and a cleaning step, with the last one used to remove bands that contain noisy or

invalid data. Each image is then divided into tiles at different resolutions, to produce two

sets of images for two different training and evaluation protocols: the Full Resolution (FR)

protocol and Reduced Resolution (RR) protocol.

3.1.1 Data cleaning procedure

The VNIR and SWIR PRISMA level-2D product cubes cannot be directly used because of

two problems:

• slight misalignment between panchromatic image and VNIR and SWIR cubes (VNIR
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(a)

(b)

Figure 3.3: Distribution of the invalid band for each PRISMA image collected. In (a), the scale indicates
the percentage of invalid pixels for each band of each image collected from the PRISMA satellite. Bands
that are considered invalid for at least one image (with more than 5% of the entries invalid), have been
selected for removal. In (b) are shown the average spectral signatures per image and the bands excluded
in the final version of the dataset.

and SWIR are assumed to be aligned already);

• presence of pixels marked as invalid from the Level-2D Prisma pre-processing.

To tackle the first problem, we adopted the AROSIC framework [171] to align the

VNIR and SWIR cubes to the corresponding panchromatic images. A reference band has

been manually selected for the VNIR and SWIR cube to be used for the calculation of the

transformation. The same alignment has been used for all the 240 bands of VNIR and

SWIR cubes.

Invalid bands are removed through a cleaning procedure. From the PRISMA HDF5

data, the VNIR PIXEL L2 ERROR and SWIR PIXEL L2 ERROR matrices have also

been extracted. These matrices contain pixel-specific annotations regarding the status

of the information collected by the satellite. The bands having at least 5% of the pixels

labeled as invalid have been removed. More details on the labeling system are available

at [170]. The selected bands have been removed from all the scenes collected from PRISMA.

Figure 3.3(a) shows the distribution of the invalid bands (x-axis) over all the 190 selected

PRISMA images (y-axis). Figure 3.3(b) shows the average spectral signature for each

image (blue lines) and the spectral bands that have been removed (pink stripes). After
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Table 3.3: Size and resolution of the input PAN images, HS bands, and pansharpened outputs in both RR
and FR protocols.

Size (px) Resolution (m/px)
Usage

FR RR

PAN 2304 × 2304 5 input -
PAN↓ 384 × 384 30 - input
HS 384 × 384 30 input reference
HS↓ 64 × 64 180 - input

ĤSFR 2304 × 2304 5 output -

ĤSRR 348 × 348 30 - output

this cleaning procedure, VNIR and SWIR bands are concatenated, thus obtaining a final

HS cube of 203 spectral bands.

3.1.2 Full Resolution and Reduced Resolution datasets

The experimentation is made adopting two different protocols which require two different

versions of the dataset:

1. Full Resolution (FR): this dataset is used to evaluate the goodness of pansharpening

algorithms without a reference image. Due to missing reference images, this dataset

cannot be used for model training but only for evaluation purposes. This dataset is

made of couples of the type < PAN,HS >.

2. Reduced Resolution (RR): this dataset is created in order to perform full-reference

evaluation since it presents reference bands alongside the input HS and the PAN,

and for training the deep learning model. This dataset is made of triplets of the

type < PAN↓, HS↓, HS >.

To create the two versions of the dataset, the original collected images were tiled and

resized with different parameters. Table 3.3 provides a summary of the characteristics of

the two versions.

The FR dataset is made of tiles of size 2304 × 2304 at the original spatial resolution of

5m/px, for the PAN image, and 384 × 384 pixels at 30m/px resolution for the HS bands.

In this study’s experimental setup, the pansharpening algorithms are used to scale up the

HS bands from 30m/px by a factor of 6×, thus obtaining a no-reference reconstruction

ĤSFR of HS bands at a size of 2304 × 2304 at a spatial resolution of 5m/px.

The RR dataset is obtained by subsampling the FR version and generating triples of

the type < PAN↓, HS↓, HS >. Firstly, the VNIR-SWIR bands are tiled at a dimension

of 384 × 384 pixels, which corresponds to a resolution of 30 m/px (HS). These images
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are used as references for the evaluation of the algorithms performance. Then, the same

cubes are further reduced at 1/6 of their original resolution, obtaining new tiles at size

64×64 at a spatial resolution of 180 m/px (HS↓) which are the input of the pansharpening

algorithm. The panchromatic images are also reduced to 1/6 of the original resolution and

tiled at size 384 × 384 pixels at a spatial resolution of 30 m/px (PAN↓), in order to be

used as input for the pansharpening operation. The pansharpening algorithm is defined as

a function that takes as input the pair < PAN↓, HS↓ >, and it outputs an approximation

ĤSRR of the original HS, which is a 6× version of the HS↓.

3.2 Reduced Resolution Metrics

The following evaluation metrics have been used to compare the pansharpened ĤSRR

image and the reference HS:

• ERGAS [172] (Error Relative Global Dimensionless Synthesis) is an error index that

tries to propose a global evaluation of the quality of the fused images. This metric is

based on the RMSE distance between the bands that constitute the fused and the

reference images and is computed as:

RMSE(x, y) =

√√√√ 1

m

m∑
j=1

(xj − yj)2 (3.1)

ERGAS(x, y) = 100
h

l

√√√√ 1

N

N∑
i=1

(
RMSE(xi, yi)

µ(yi)

)2

(3.2)

where x and y are the output pansharpened image and the reference, respectively,

m is the number of the pixels in each band, h and l are the spatial resolution of the

PAN image and HS image, respectively, µ(yi) is the mean of the i− th band of the

reference and N is the number of total bands.

• The Spectral Angle Mapper (SAM) [173] denotes the absolute value of the angle

between two vectors v and v̂.

SAM(v, v̂) = cos−1 < v, v̂ >

||v||2 · ||v̂||2
(3.3)

where v and v̂ are respectively the flattened versions of ĤSRR and HS. A SAM

value of zero denotes complete absence of spectral distortion but possible radiometric

distortion (the two vectors are parallel but have different lengths).
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• The Spatial Correlation Coefficient (SCC)[174] is a spatial evaluation index that

analyses the difference in high-frequency details between two images. SCC is

computed as follows:

SCC(x, y) =

∑w
i=1

∑h
j=1(F (x)i,j − µF (x))(F (y)i,j − µF (y))√∑w

i=1

∑h
j=1(F (x)i,j − µF (x))2

∑w
i=1

∑h
j=1(F (y)i,j − µF (y))2

(3.4)

where µF (x) and µF (y) are the means of F (x) and F (y) respectively and and w

and h are the weight and height of an image. F is a filter for the extraction of

high-frequency details, defined as follows:

F =

−1 −1 −1

−1 8 −1

−1 −1 −1

 (3.5)

• The Q2n index is a generalization of the Universal Quality Index (UQI) defined by

Wang et al. [175] for an image x and a reference image y.

Q2n(x, y) =
σx,y

σxσy

· 2x̄ȳ

(x̄)2 + (ȳ)2
· 2σxσy

σ2
x + σ2

y

(3.6)

Here σx,y is the covariance between x and y, and σx and x̄ are the standard deviation

and mean of x, respectively. The Q2n metric represents a good candidate to give an

overall evaluation of both radiometric and spectral distortions in the pansharpened

images.

3.3 Full Resolution Metrics

For the FR assessment, it has been decided to use the Quality with No Reference index

(QNR), as done by Vivone at al. [133]. This index is obtained as the product of the

spectral distortion index Dλ and the spatial distortion index Ds.

The spectral distortion index Dλ is computed as proposed in the Filtered-based QNR

(FQNR) quality index [176]. In this definition, each fused HS band is spatially degraded

using its specific Modulation Transfer Function (MTF) matched filter1, then the Q2n

index between the set of spatially degraded HS images and the set of original HS data

is computed, and eventually the unit complementary value is taken in order to obtain a

1The filter is defined for ensuring the consistency property of the Wald’s protocol [177]. As done by
Vivone et al. [133], it has been assumed that the HS sensor’s MTFs follow a Gaussian shape with a
standard deviation set all equal to 0.3.
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distortion measure:

Dλ = 1 −Q2n(ĤL↓, H) (3.7)

where, ĤL↓ is the pansharpened image which has been spatially degraded using the

MTF filter and decimated to input spatial dimension and H are the input hyperspectral

bands. As done by Vivone et al. [133], the Q (UQI) index has been adopted instead of

the Q2n index for computational reasons due to the high number of HS bands. As stated

by Vivone et al. [133], comparable performance can be obtained with this modification,

while drastically improving the computation time.

Spatial consistency Ds is computed as described by Alparone et al. [178]. Adopting

a linear regression framework, the PAN image is modeled as a linear combination of the

fused HS bands. To measure the extent of the spatial matching between the fused HS

bands and the PAN image, the coefficient of determination is exploited [178].

Ds = 1 −R2 (3.8)

Finally, the QNR index is calculated as:

QNR = (1 −Dλ)α · (1 −Ds)
β (3.9)

Here the two exponents α and β determine the non-linearity of response in the interval

[0, 1]. The value of these two parameters has been set to 1, based on previous work

choices [133].

3.4 Hyperspectral Pansharpening Methods

Six deep learning and three traditional machine-learning-free approaches have been com-

pared. The selection of the methods has been done taking into consideration two factors:

how recent is the approach and the availability of the source code. For what concerns

the machine-learning-free approaches, the methods considered were Principal Component

Analysis (PCA) [33], Gram-Schmidt Adaptive (GSA) [36] and HySure [179]. For all these

methods, the implementation available in the Mini Toolbox PRISMA 2 has been used.

Regarding the deep learning methods, PNN [43], PanNet [45], MSDCNN [46], TFNet [47],

SRPPNN [48] and DIPNet [49] have been selected.

Since the main interest is the evaluation of the 6× upscaling pansharpening task, the

methods originally designed for scale factors power of 2 (e.g. 2×, 4×, 8×, etc...) have

been modified. These methods are:

2https://openremotesensing.net/wp-content/uploads/2022/11/Mini-Toolbox-PRISMA.zip
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• SRPPNN [48]: the architecture proposed by Cai et al. [48] is characterized by

multiple progressive upsampling steps, that correspond to a first 2× and a secondary

latter 4× upscaling operations. Those two upsampling operations have been changed

by modifying the scale factors to 3× and 6× respectively. The rest of the original

architecture has not been changed.

• DIPNet [49]: this model is made of 3 main components. The first two are feature

extraction branches, respectively for the low-frequency and high-frequency details

of the panchromatic image; here, the stride value of the second convolutional layer

used to reduce the features’ spatial resolution has been changed, from 2 to 3, in

order to bring the extracted features at the same dimension of the input bands to

perform feature concatenation. The third component is the main branch, which uses

the features extracted from the previous components along with the input images to

perform the actual pansharpening operation. The main branch can be also divided

into two other components: a first upsampling part and an encoder-decoder structure

for signal post-processing. The scaling factor of the upscaling module has been

changed from 2 to 3, and in the encoder-decoder part, the stride values of the central

convolutional and deconvolutional layers have been changed from 2 to 3.

Each method has been retrained on the proposed PRISMA dataset (RR version) by

using a workstation equipped with a Titan V GPU and Ubuntu 22.04 Operating System.

The environment for the training has been written in PyTorch v1.10.0. For all the

methods the training process lasted 1000 epochs, with a learning rate of 1e−4 and the

Adam optimizer. The loss functions used are the ones adopted in the original papers of

each method.

3.5 Results

3.5.1 Quantitative Comparison

Table 3.4 and Table 3.5 report the numerical results of the different selected approaches

with the RR and FR protocols respectively.

The two best methods for RR pansharpening protocol are DIPNet and TFNet. In-depth

analysis reveals that DIPNet outperforms all other approaches across various metrics,

except for the SCC index, where it ranks fourth. As the second-best algorithm, TFNet

demonstrates commendable results that are comparable to those achieved by SRPPNN.

Notably, machine-learning-free approaches generally exhibit lower performance compared

to the majority of neural-network-based methods.

Figure 3.4 reports a graphical comparison between network-based approaches (in the

RR protocol). The comparison evaluates the performance in terms of ERGAS versus SAM
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Table 3.4: Results of the methods for the Reduced Resolution (RR) protocol. The dimensions (millions of
parameters) of each model are reported alongside the results.

Method # of parameters (M) ERGAS ↓ SAM ↓ SCC ↑ Q2n ↑
PCA [33] - 8.9545 4.8613 0.6414 0.6071
GSA [36] - 7.9682 4.3499 0.6642 0.6686
HySure [179] - 8.3699 4.8709 0.5832 0.5610
PNN [43] 0.08 12.8840 3.8465 0.8237 0.6702
PanNet [45] 0.19 6.7062 2.7951 0.8705 0.7659
MSDCNN [46] 0.19 9.9105 3.0733 0.8727 0.7537
TFNet [47] 2.36 6.4090 2.4644 0.8875 0.7897
SRPPNN [48] 1.83 6.4702 2.3823 0.8890 0.7708
DIPNet [49] 2.95 5.1830 2.3715 0.8721 0.7929
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Figure 3.4: Graph comparison of the results of the analyzed methods with the RR protocol. The larger is
the size of the circle the higher is the number of parameters (measured in millions).
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Table 3.5: Results of the methods for the Full Resolution (FR) protocol. The dimensions (millions of
parameters) of each model are reported alongside the results.

Method # of parameters (M) Dλ ↓ Ds ↓ QNR ↑
PCA [33] - 0.9411 1.5277 0.0558
GSA [36] - 0.3820 0.0016 0.6170
HySure [179] - 0.4151 0.0009 0.5843
PNN [43] 0.08 0.3801 0.0101 0.6136
PanNet [45] 0.19 0.3507 0.0203 0.6360
MSDCNN [46] 0.19 0.3915 0.0068 0.6044
TFNet [47] 2.36 0.3552 0.0066 0.6405
SRPPNN [48] 1.83 0.3948 0.0139 0.5965
DIPNet [49] 2.95 0.3681 0.0348 0.6098

(Figure 3.4a) and SCC versus Q2n (Figure 3.4b), along with the number of parameters

associated with the neural models. The size of the circles in the figure corresponds to

the number of parameters, measured in millions. Larger circles indicate a higher number

of parameters. Ideally, the optimal approach would be represented by a small circle

positioned in the bottom-left part of Figure 3.4a and the top-right part of Figure 3.4b.

In practice, the best neural methods are DIPNet, SRPPNN, and TFNet which have a

number of parameters that is about 30 times the number of parameters of less-performing

approaches, such as PanNet and MSDCNN.

The results obtained in the FR protocol are presented in Table 3.5, revealing a significant

shift in the behavior of the models. Notably, TFNet emerges as the top-performing model

in terms of QNR index. Surprisingly, DIPNet, which was the winning method in the RR

protocol, demonstrates considerably poorer results compared to other approaches. Even

the simpler and smaller PanNet outperforms DIPNet, securing the second position in the

comparison.

Analyzing the spatial distortion aspect (Ds), the top-performing models are TFNet

and MSDCNN, while DIPNet exhibits the weakest performance among the deep learning

models. It is worth mentioning that HySure is the best method in terms of Ds; however,

additional insights regarding its performance can be found in Section 3.5.2, showing various

issues in the spatial reconstruction of this technique.

On the other hand, from a spectral distortion perspective (Dk
λ), PanNet emerges as the

best approach, followed by TFNet and DIPNet. A comprehensive qualitative comparison

of these two aspects of the reconstruction is presented in the subsequent section. Notably,

PanNet’s achievement of the second-best position in the FR leaderboard is particularly

noteworthy, given its comparatively smaller size compared to TFNet and other more recent

approaches.

In conclusion, TFNet emerges as the most successful approach when evaluating both
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Input (30m/px) DIPNet (5m/px) PanNet (5m/px) TFNet (5m/px) PAN (5m/px)

Figure 3.5: Pansharpening results on a 512 × 512 tile of a test set image. For visualization purposes,
images have been linearly stretched between the 1 and 99 percentile of the image histogram. In the first
row, images are visualized in true color (641 nm, 563 nm, 478 nm), and in the second row, images are in
false color (1586 nm, 1229 nm, 770 nm).

the RR and FR protocols. Notably, TFNet exhibits a commendable ability to strike a

balance between preserving spectral and spatial information throughout the pansharpening

process, particularly evident in the FR test case. When compared to SRPPNN and

DIPNet, TFNet demonstrates superior generalization capabilities when transitioning from

the training resolution of 180 m/px to the native resolution of 30 m/px of the PRISMA

satellite hyperspectral images.

3.5.2 Qualitative Comparison

In this section, a qualitative comparison of the results on a selection of test images

is presented, analyzing the results in terms of the preservation of spatial and spectral

distortions after the pansharpening process.

Figures 3.5, 3.6, and 3.7 show the results of the best models on three images of the FR

protocol. Here are shown center crops of dimensions 512× 512 of the pansharpened images

(5 m per pixel) alongside the same crop of the original input image (30 m per pixel). For

visualization purposes, images have been linearly stretched between the 1 and 99 percentile

of the image histogram. In the first row, images are visualized in true color (641 nm, 563

nm, 478 nm), and in the second row, images are in false color (1586 nm, 1229 nm, 770 nm).

For what concerns the spatial information, as can be seen here and as already highlighted

by the quantitative comparison, TFNet presents the overall best-looking structures and

details. Among the considered methods and especially in comparison with DIPNet, TFNet

reconstructs much cleaner images, with good edges and a lot more details. PanNet still

achieves good results compared to DIPNet but with still few artifacts and aberrations of

different kinds. In Figures 3.6 and 3.7, it is easy to notice the presence of such artifacts,
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Input (30m/px) DIPNet (5m/px) PanNet (5m/px) TFNet (5m/px) PAN (5m/px)

Figure 3.6: Pansharpening results on a 512 × 512 tile of a test set image. For visualization purposes,
images have been linearly stretched between the 1 and 99 percentile of the image histogram. In the first
row, images are visualized in true color (641 nm, 563 nm, 478 nm), and in the second row, images are in
false color (1586 nm, 1229 nm, 770 nm).

Input (30m/px) DIPNet (5m/px) PanNet (5m/px) TFNet (5m/px) PAN (5m/px)

Figure 3.7: Pansharpening results on a 512 × 512 tile of a test set image. For visualization purposes,
images have been linearly stretched between the 1 and 99 percentile of the image histogram. In the first
row, images are visualized in true color (641 nm, 563 nm, 478 nm), and in the second row, images are in
false color (1586 nm, 1229 nm, 770 nm).
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GSA HySure DIPNet PanNet TFNet

Figure 3.8: Zoom of areas from the test images. Crops of dimension 128× 128, at resolution 5 m/px, in
true color (641 nm, 563 nm, 478 nm). As can be seen, repeated artifacts along the edges can be observed
for the HySure method.

due to the high amount of details in the scenes. Overall, DIPNet presents the most blurry

results, with a very poor amount of details and the presence of artifacts, particularly

noticeable in the false color composite version of the reported scenes.

Figure 3.8 shows zoomed crops at dimension 128 × 128 of areas of the same images

processed by the best neural-based and the two best machine-learning-free methods. As

can be seen, even if HySure numerically represents the best approach from the spatial

point of view (see Table 3.5, Ds index), a pattern of artifacts occurs over all the images

processed by the HySure algorithm. This last comparison shows a potential problem in

the adoption of QNR index as a metric for the no-reference analysis when this type of

artifacts occurs in the pansharpened images.

Figure 3.9 reports the average differences between the spectral signatures of each

method and the reference one, alongside the normalized version of the same difference,

computed on 5 different tiles. These tiles have been randomly extracted from the test set.

From this comparison, it is possible to notice how DIPNet’s average error is much smaller

with respect to the other approaches. Compared with the results from the quantitative

evaluation with the FR protocol, where DIPNet reaches third place, this is the only

unexpected behavior. This unexpected result could be an insight into a possible flaw in

adopting the spectral component of the QNR metric as it is usually done in the literature.

Figure 3.10 shows the spectral signatures of both input and pansharpened images

for each method. Here only selected groups of pixels are considered, specifically labeled
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Figure 3.9: Difference between spectral signatures of the fused images with respect to the input image.
The difference is evaluated as the average of the differences for each pixel of the five images reported in
the row below the graph. The graph on the left shows the average spectral difference, while the graph on
the right shows the difference normalized for each band.

as Forest, Urban, Agriculture, and Water, highlighted in red in the images aside the

graphs. The best method is expected to show signatures closer to the input ones; both

the machine-learning-free and the best deep-learning approaches are reported. From this

qualitative comparison and according to the numbers in Table 3.5, PCA and HySure are

the worst-performing methods in terms of spectral fidelity. For all the reported classes,

these methods perform badly over the entire spectrum, and, in particular, PCA and Hysure

performance is even worse than GSA. Regarding the deep learning approaches, DIPNet

seems to show the lowest difference from the input, despite the score obtained in terms of

Dλ (see Table 3.5). TFNet and PanNet instead have a behavior more coherent with the

results obtained in the quantitative evaluation with the FR protocol. PanNet seems to

perform better from a spectral fidelity point of view with respect to TFNet, which, however,

performs better than all of the machine-learning-free approaches. Overall, the results in

Table 3.5 can be confirmed, with DIPNet, PanNet, and TFNet as the best approaches,

with performance higher in comparison to the machine-learning-free approaches.

Images at higher resolution are available at https://thezino.github.io/HSbenchmarkPRISMA/.

3.6 Final remarks on hyperspectral pansharpening

techniques

The increasing availability of hyperspectral remote sensing data presents new opportunities

for studying Earth’s soil. However, this type of data is typically collected at low resolution,
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Figure 3.10: Spectral signatures obtained in six different areas, labeled as Forest, Urban, Agriculture,
and Water areas. For each area are reported the spectral signatures of the input bands and the ones
obtained by each pansharpening method. The area used to extract the signatures is the one in the red
box highlighted in each image. The images thumbnails are in true colors (641 nm, 563 nm, 478 nm).
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posing challenges in their effective usability in RS tasks. Therefore, the process of image

pansharpening becomes crucial in the enhancement of hyperspectral remote sensing images.

In literature, deep learning approaches have shown promising results. These methods,

however, are data hungry and state-of-the-art datasets strive to support sufficient data.

To overcome this limitation, a newly collected large-scale dataset is proposed, using the

PRISMA ASI satellite for training and assessment models.

This work is the first to present an analysis based on a big and various hyperspectral

dataset for pansharpening in the state of the art (more than 1000 tiles, of which more

than 200 are used for testing). The dataset tiles have been collected from 190 PRISMA

images with 203 bands3 covering both the VNIR and SWIR parts of the spectrum, making

this investigation the optimal benchmark for hyperspectral pansharpening.

The comparison includes machine-learning-free and deep learning techniques tested

using two experimental protocols for 6× upscaling factor: Reduced Resolution (RR) and

Full Resolution (FR). The former is used for training and testing, and the latter to test the

methods on the original resolution, evaluating their ability to generalize the upsampling

operation at different starting resolutions with respect to the training phase.

The RR protocol consists of a comparison between the reconstructed data and the

original hyperspectral images as target references. The results show that the neural net-

works generally work better than the machine-learning-free methods for spatial information

improvement and spectral information coherency. In particular, DIPNet and TFNet archi-

tectures outperform any other techniques evaluated. In the FR protocol, the comparison

with ground truths is not possible thus quantitative and also qualitative evaluations have

been reported to have a complete understanding of the investigated methods. Based on

both assessments, the architecture that achieves the best overall performance is TFNet

which remains coherent with the RR results. DIPNet instead shows worse results when it

comes to spatial reconstruction, not demonstrating good abilities of adaptation when the

original resolution is involved and thus not being the best option for tests in real-world

applications. It is also valuable to notice that machine-learning-free methods are generally

worse at reconstructing the spectral information, degrading the signals.

The investigation conducted in this work clearly shows that data-driven neural ar-

chitectures are generally better for hyperspectral pansharpening, both in spectral and

spatial reconstruction, using a dataset that allows for meaningful analysis of the different

approaches. On the contrary, The machine-learning-free methods are not adaptable to the

new environment based on hyperspectral data and wavelengths outside the visible part of

the spectrum.

To further improve hyperspectral pansharpening performance, future research should

3The original number of PRISMA spectral bands is 240. The number reported above is obtained after
a proposed pre-processing procedure.
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focus on creating new data-driven neural architectures which directly focus on hyperspectral

data and the relationship between the different portions of the spectrum.
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Chapter 4

Unsupervised Segmentation of

hyperspectral images

The study reported in this chapter has been published in Elsevier Remote Sensing Applica-

tions: Society and Environment journal and refers to the paper Unsupervised segmentation

of hyperspectral remote sensing images with superpixels [10].

The analysis of hyperspectral remote sensing images has become more and more

important in a wide number of fields, such as environmental monitoring, conservation goals,

spatial planning enforcement, or ecosystem-oriented natural resources management [2].

The use of HS images permits the analysis of specific electromagnetic ranges that allow a

precise differentiation of observed materials, based on their spectral signatures [19]. Its

ability to distinguish among several materials has shown to be a great boost in terms of

performance for HS image classification. For example, buildings, cultivations, and rivers

can be easily discerned in the images as their spectral profile is different.

To fruitfully exploit HS image classification, in particular for data-hungry methods

such as neural networks [180], it is necessary to rely on large and properly annotated

image datasets. Unfortunately, labeled datasets publicly available in the state of the art

are few and extremely small, with most of them composed of a single image [90]. The

main problem in the generation of remote sensing image ground truth is that the labeling

creation is usually an interactive task that takes a lot of time and effort [82], and it is an

operation susceptible to errors [181]. To overcome these problems in pixel annotations,

a pre-processing of segmentation can be applied to divide the data into homogeneous

regions and objects [182]. Most segmentation methods do not directly extract meaningful

image objects, but clusters with generic labels, which can be used as the foundation of

a succeeding procedure [183]. To provide a pixelwise image segmentation that can be

later exploited in an interactive labeling process to speed up ground truth creation [184],

different approaches of unsupervised clustering have been proposed [61, 80].

Previous studies report on the possibility of using superpixels to group pixel-sharing
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homogeneous characteristics for semi-supervised image segmentation [185, 58]. A recent

and relevant segmentation method is the Balanced Deep Embedded Clustering (BDEC [80])

that works directly on the raw hyperspectral image. This method is a variant of the Deep

Embedded Clustering (DEC - [79]) adapted to work properly with imbalanced data. This

method is not completely unsupervised since it requires an a-priori knowledge about the

land to be segmented (e.g. water, vegetation, building, etc.).

In this study, it is proposed an unsupervised method for hyperspectral remote sensing

pixelwise image segmentation that exploits the mean-shift algorithm [186] that takes as

input a preliminary superpixels segmentation together with the spectral pixel information.

The preliminary superpixels segmentation is obtained using a modified version of the Simple

Linear Iterative Clustering (SLIC) [187] algorithm that considers as input a concatenation

between the hyperspectral image and a clustered-hyperspectral information achieved by

using unsupervised clustering. The use of clustered information reduces the effect of noise,

typical in hyperspectral remote sensing images.

The proposed method, differently from the state of the art, does not require the number

of segmentation classes as input parameters [188], as well as it does not require a-priori

knowledge about the type of land-cover or land-use to be segmented. The effectiveness of

the proposed method is demonstrated with respect to the state of the art on four publicly

available datasets of hyperspectral remote sensing images.

Despite its simplicity, the proposed method outperforms the state of the art in terms

of average Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI). In

addition, it permits to overcome some limitations found in the literature that limit the

applicability in real case scenarios, in particular:

• it does not require the training of a specific neural model since it is based on

handcrafted features

• it does not require a-priori knowledge about the number of classes present in the

image;

• it does not require external knowledge about the image content such as the vegetation

index, water, etc;

Moreover, two variants of the proposed method are presented, one totally automatic

and one that can be easily tweaked through a single parameter to improve the performance

on a new dataset.

4.1 Proposed method

Figure 4.1 and 4.2 show the pipeline of the proposed method. It can be divided into two

steps: 1) augmented hyperspectral superpixels are achieved by using a modified version of
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Figure 4.1: Pipeline of the proposed method. In the first step, given the hyperspectral image, the
augmented hyperspectral superpixels are calculated. In the second step, the centers of the superpixels
along with the hyperspectral image are then used for unsupervised region segmentation using the mean-shift
algorithm and major voting.

Figure 4.2: Augmented Hyperspectral Simple Linear Iterative Clustering (SLIC). In the first step, given
the hyperspectral image, an unsupervised clustering is applied and the output is merged with the input
hyperspectral image to finally achieve the augmented hyperspectral superpixels.

the Simple Linear Iterative Clustering (SLIC) that takes as input the hyperspectral image

and a clustered-hyperspectral information achieved by using unsupervised clustering; 2)

augmented superpixels along with the hyperspectral image are used by an unsupervised

region segmentation module to achieve the final segmentation. In the following, each step

of the pipeline is presented.

4.1.1 Augmented Hyperspectral SLIC superpixels

Hyperspectral remote sensing images are usually very large images that, due to the imaging

conditions, may be afflicted by different artifacts. As a consequence, superpixels calculated

on hyperspectral images may present imprecise boundaries. To improve the goodness of

superpixels, a modification of the original SLIC algorithm is proposed. This new version of

SLIC is composed of two steps: a preliminary unsupervised clustering using the mean-shift

algorithm [189] whose output (that here is defined as clustered-hyperspectral information)

is used together with the original image by the SLIC algorithm.

4.1.1.1 Unsupervised clustering

The pipeline of the augmented superpixels method is depicted in Figure 4.2. Given an input

hyperspectral image I made of N pixels Pi = (bi1, · · · , biL) and L bands, pixel similarity

information is extracted using the mean-shift algorithm [190] which is an unsupervised

clustering algorithm that iteratively finds the best number of clusters U that better fits

the input data. Each cluster center is defined by the mean of pixels of the hyperspectral
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Figure 4.3: Results of the modified SLIC algorithm. On the left, it is possible to see a projection of a
portion of the Pavia Center dataset on a single band, while in the center and on the right it is shown the
results of the modified SLIC algorithm, respectively with m = 0.2 and m = 1. In these examples, mclust

is fixed to 0.

image that are assigned to the u-th cluster defined as follows: Qu = (qu1 , · · · , quL).

To avoid outliers in the spectral signal, a normalization of the hyperspectral image is

performed by considering its maximum value V as for the 95% of the spectral data. All

the values of the image are clipped between 0 and V and then divided by the same value

V so that the final image is normalized between 0 and 1.

Once the algorithm has found the clusters, the spectral information of each pixel of the

image is concatenated with the center of the cluster to which it belongs to. The resulting

vector describing a pixel at a position xi and yi is therefore Fi = ⟨Pi, Qu, xi, yi⟩ which is of

a size equal to (2 × L) + 2. The augmented hyperspectral image {Pi, Qu, xi, yi}Ni=1 is the

input of a modified version of the SLIC method.

4.1.1.2 Modified SLIC

The original SLIC algorithm takes as input RGB color and spatial information of the

image, namely N pixels Pi = (biR, b
i
G, b

i
B) at position xi and yi, and it exploits the k-means

algorithm to cluster them into superpixels [187]. The algorithm initially considers a

number K of superpixel cluster centers Ck taken at regular grid intervals S =
√
N/K.

The higher is the number of K and the smaller is the size of the initial superpixels. Ideally,

S2 represents the area of each superpixel. To assign the pixel to the cluster k a search
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region of 2S × 2S around the cluster center is used. This strategy reduces the complexity

of the SLIC algorithm so that it is linear to the number of pixels N and independent from

the number of superpixels K.

After the initialization of the grid, the algorithm iteratively assigns each pixel Pi to

the nearest superpixel, whose search area overlaps the pixel itself. For each iteration,

the assignment is determined by a distance that, in the original formulation of the SLIC

algorithm, is defined as follows:

Ds = drgb + m

(
dxy
S

)
(4.1)

where m is a parameter used to control the regularity of superpixels using spatial

information, while drgb and dxy are respectively, the color and spatial differences between

a pixel and the center of the corresponding superpixel.

The algorithm repeats the assignment process between pixels and superpixels until the

Euclidian distance between the old centers and the new centers is lower than a certain

threshold.

In the modified version of the SLIC algorithm, instead of Ds, a new distance Dahs

is defined in order to handle the hyperspectral image and the clustered hyperspectral

information at the same time. The new distance Dahs between a pixel Fi and k-th

superpixel center Ck is defined as follows:

Dahs =
dspec√

L
+ mclust

(
dclust√

L

)
+ m

(
dxy

S
√

2

)
(4.2)

where

dspec =

√√√√ L∑
j=1

(bkj − bij)
2 (4.3)

dclust =

√√√√ L∑
j=1

(qkj − quj )2 (4.4)

and

dxy =
√

(xk − xi)2 + (yk − yi)2 (4.5)

To make the distance Dahs independent from the number of bands, the distances dspec

and dclust are normalized by a factor
√
L that is achieved considering the maximum L2

distance between two most diverse hyperspectral pixels. Since each hyperspectral band

ranges between 0 and 1, the most diverse pixels are the following: P0 = (0, · · · , 0) and

P1 = (1, · · · , 1). The dspec (as well as dclust) between these two pixels is therefore
√
L.

The same idea is applied for the normalization of the spatial information. Considering

the standard search region of the SLIC algorithm, the maximum spatial distance between
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Figure 4.4: On the left it is possible to see a projection of the Salinas dataset on a single band, while on
the right its ground truth and the corresponding color labeling. Note that the black color represents the
background.

a superpixel center and a pixel in the search region is 2S/
√

2 = S
√

2.

The parameters m and mclust are used to control the regularity of superpixels using

spatial and clustered hyperspectral information respectively. Figure 4.3 shows an example

of the proposed SLIC achieved on a hyperspectral image as m varies between 0 and 1. As

you can see the higher is the value of m, the higher is the compactness of the superpixels

that tend to resemble the square shape of standard pixels. In these examples, mclust is

fixed to 0, but analogous considerations can be done by varying the parameter mclust.

4.1.2 Unsupervised region segmentation

This module takes as input the concatenation of the original hyperspectral image {Pi =

(bi1, · · · , biL)}Ni=1 with the corresponding centers of the superpixels {Ck = (bk1, · · · , bkL, xk, yk)}Ki=1

that are the average color (over the L bands of the hyperspectral image) of the pixels and

their spatial positions. The input, in short ⟨Pi, Ck, xk, yk⟩, is processed by the mean-shift

algorithm [189] along with a major voting strategy to generate the final segmentation map

{St}Tt=1.

The use of mean-shift is motivated by the fact that, differently from other clustering

methods, the knowledge of the number of clusters to be predicted is not required, moreover,

it is demonstrated to reduce the number of mislabeled samples with respect to other

methods in the state of the art [181].

At the end of the clustering, the segmentation results are further improved by elimi-

nating small regions that are likely due to noise. This is done by re-assigning a label to a

given region that is more frequent in its neighborhood.

4.2 Hyperspectral Datasets

The first two datasets used are Salinas and SalinasA (respectively in figure 4.4 and 4.5) [25].

These images have been collected by the AVIRIS sensor and present 224 bands in the
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Figure 4.5: On the left it is possible to see a projection of the SalinasA dataset on a single band, while on
the right its ground truth and the corresponding color labeling. Note that the black color represents the
background.

Figure 4.6: On the left it is possible to see a projection of the Pavia Center dataset on a single band, while
on the right its ground truth and the corresponding color labeling. Note that the black color represents
the background.

400–2500nm portion of the spectrum, where 20 noisy bands in the region of water absorption

have been discarded, resulting in two images with 204 channels. The dimensions of the

datasets are respectively 512x217 and 86x83 with a high spatial resolution of 3.7m per

pixel. The labeling is different between the two datasets. Salinas presents 16 classes that

represent the region of culture such as broccoli, fallow, grapes, etc., while SalinasA is

segmented in a subset of the former dataset, representing only 6 classes from broccoli to

corn and different variations of lettuce.

The Pavia Center and Pavia University datasets [25] have also been considered. They

are respectively images of 1096x1096 with 102 channels and 610x610 with 103 channels

(see figure 4.6 and 4.7). However, in both images part of the samples have been discarded

because the information was missing, resulting in two images respectively of 1096x715

and 610x340. The two scenes have been acquired by the ROSIS sensor with a geometric

resolution of 1.3 meters. These datasets are both annotated with 9 labels typical of a city

such as asphalt, meadows, trees, bare soil, etc..

4.3 Evaluation metrics

The method is composed of two modules. The former segments the input image using

superpixels while the latter clusters data using spectral and spatial information to perform
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Figure 4.7: On the left it is possible to see a projection of the Pavia University dataset on a single
band, while on the right its ground truth and the corresponding color labeling. Note that the black color
represents the background.

the final segmentation. Following the guidelines of Achanta et al. [187], the superpixel

segmentation step has been evaluated with the UE (Undersegmentation Error), while the

second step has been evaluated by using ARI (Adjusted Rand Index), NMI (Normalized

Mutual Information) and F-measure [80].

4.3.1 Superpixel Segmentation - Undersegmentation error

An undersegmentation error (UE) occurs when pixels belonging to different classes con-

sidered in the task are grouped together into a single region/class. Given a region of the

ground truth gi, the UE is defined as follows:

UE =
1

N

[ M∑
i=1

( ∑
Sj |Sj∩gi>B

|Sj|
)
−N

]
(4.6)

where M is the number of ground truth segments, B is a minimum number of pixels

in Sj overlapping gi and N is the number of pixels of the image. B is used to compensate

for possible errors in the ground truth segmentation data. The lower is the UE and the

better is the method.

4.3.2 Unsupervised region segmentation

To measure the performance of the whole method, three evaluation metrics have been

used: normalized mutual information (NMI), adjusted rand index (ARI) [191, 192], and

F1-score [193]. NMI and ARI are defined as:

NMI =

∑
i

∑
j nij log(

n·nij

ni·nj
)√∑

i ni log ni

n

∑
j nj log

nj

n

(4.7)
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ARI =

∑
ij

(
nij

2

)
− [

∑
i

(
ni

2

)∑
j

(
nj

2

)
]/
(
n
2

)
1
2
[
∑

i

(
ni

2

)
+
∑

j

(
nj

2

)
] − [

∑
i

(
ni

2

)∑
j

(
nj

2

)
]/
(
n
2

) (4.8)

where n is the total number of samples, ni is the number of samples in a cluster i, nj is

the number of samples in class j, and nij is the number of samples in both clusters i and

class j. For both the NMI and ARI, the higher is the value the better is the method.

F1-score [193] for unsupervised clustering, where the number of classes is unknown is

defined as:

Precision =

∑
k maxs{aks}∑

k

∑
s aks

(4.9)

Recall =

∑
s maxk{aks}∑

k

∑
s aks

(4.10)

F1 = 2 × Precision×Recall

Precision + Recall
(4.11)

where k is the number of clusters predicted, s is the number of classes, and aks denotes

the number of samples clustered to cluster k and belonging to class s.

4.4 Results

The results section is divided into two subsections, the first one discusses the results achieved

with just the augmented version of the superpixel segmentation while the second one

presents the results with the entire pipeline applied for unsupervised region segmentation.

4.4.1 Superpixel segmentation

The metric adopted for the evaluation of the superpixel segmentation is the under-

segmentation error (UE), which strongly depends on the precision of both the segmentation

and the ground truth on the boundaries [187]. Since the most precise ground truth

annotation is available for the Salinas and SalinasA datasets, the focus here is only on

these datasets. Due to the imprecision of the ground truths on the boundaries derived

from the remote sensing nature of the images, the parameter B of the equation (4.6) has

been fixed to the 15% of the pixels in Sj.

In the experiments, the number of superpixels required is set to K = 1000 for Salinas,

while K = 500 for SalinasA. The bandwidth for the clustering has been empirically fixed

to 0.1 for both datasets.

The augmented SLIC segmentation has two weight parameters: spatial m and clustered

information mclust. By setting the value mclust = 0 the augmented SLIC is turned into the

original SLIC applied to a hyperspectral image.
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Table 4.1: Evaluation of superpixel segmentation on (a) SalinasA and (b) Salinas datasets with under-
segmentation error. The table shows the error considering difference values of m and mclust. For each
column, cells in orange show the maximum values (worst results). Values in bold-face represent the best
value for each column while underlined values show the best value overall.

m = 0.2 m = 0.4 m = 0.6 m = 0.8 m = 1

mclust = 0 0.2148 0.2102 0.2102 0.2098 0.2098
mclust = 0.2 0.2088 0.2073 0.2067 0.2067 0.2067
mclust = 0.4 0.2051 0.2080 0.2071 0.2067 0.2067
mclust = 0.6 0.2053 0.2088 0.2073 0.2067 0.2067
mclust = 0.8 0.2030 0.2061 0.2047 0.2043 0.2040
mclust = 1 0.2055 0.2050 0.2032 0.2024 0.2018

m = 0.2 m = 0.4 m = 0.6 m = 0.8 m = 1

mclust = 0 0.2766 0.2856 0.2938 0.2998 0.3019
mclust = 0.2 0.2714 0.2845 0.2986 0.3087 0.3066
mclust = 0.4 0.2661 0.2867 0.2954 0.3011 0.3065
mclust = 0.6 0.2649 0.2828 0.2874 0.2986 0.3071
mclust = 0.8 0.2575 0.2800 0.2846 0.2950 0.3015
mclust = 1 0.2583 0.2773 0.2844 0.2911 0.2985

(a) SalinasA (b) Salinas

In table 4.1(a), the UE achieved by the algorithm is reported with different values of

m and mclust on Salinas A. The lower is the value and the better is the result. The first

row corresponds to the original SLIC while the other rows correspond to the proposed

algorithm with different settings of the parameter mclust. Whatever is the value of m,

with mclust higher than zero, better results than the original SLIC are always achieved.

As visible from the table, the best value is when m = 0.2 and mclust = 0.8.

The table 4.1(b) reports the UE on Salinas and it also demonstrates and confirms

that considering also the clustered information improves the results of the superpixel

segmentation. Even in this case, the best overall result is achieved when m = 0.2 and

mclust = 0.8.

4.4.2 Unsupervised region segmentation

The entire pipeline for unsupervised segmentation has been evaluated on all the four

datasets described in section 4.2. For the sake of comparison, the unsupervised region

segmentation has been evaluated by considering different types of input information (see

the pipeline in Figure 4.1) using both the k-means (assuming known the number of classes)

and the mean-shift:

• hyperspectral information: the clustering algorithm applied directly to the input

hyperspectral image;

• superpixels centers: the clustering algorithm applied to the superpixels Ck;

• hyperspectral and superpixels centers: the clustering algorithm applied to the

concatenation of superpixels Ck and the input hyperspectral image;

• reduced hyperspectral information: the clustering algorithm applied to the output of

the feature reduction phase that is based on Principal Component Analysis (PCA)

applied to the input hyperspectral image;
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Table 4.2: The number of bands before and after the application of PCA is shown for both the original
spectral information of the image and the information of the superpixels centers.

Dataset Spectral original Superpixels original Spectral PCA Superpixels PCA

Pavia Center 102 104 15 7
Pavia University 103 105 16 8

Salinas 204 206 13 9
SalinasA 204 206 17 10

Table 4.3: The table shows the performance on the Pavia Center dataset using different combinations of
methods and inputs. In the mean-shift methods, the table reports the results on each metric with a fixed
bandwidth, that has been selected considering the best results achieved on NMI.

Clustering method Input Information PCA ARI NMI F1

K-means Spectral No 0.78 0.76 0.82
K-means Spectral Yes 0.78 0.76 0.82
K-means Superpixels No 0.78 0.70 0.80
K-means Superpixels Yes 0.77 0.69 0.81
K-means Spectral + Superpixels No 0.78 0.74 0.81
K-means Spectral + Superpixels Yes 0.79 0.77 0.84

Mean-shift Spectral No 0.80 0.77 0.85
Mean-shift Spectral Yes 0.80 0.78 0.84
Mean-shift Superpixels No 0.82 0.75 0.88
Mean-shift Superpixels Yes 0.82 0.75 0.88
Mean-shift Spectral + Superpixels No 0.88 0.87 0.90
Mean-shift Spectral + Superpixels Yes 0.88 0.86 0.89

• reduced superpixels centers: the clustering algorithm applied to the superpixels

centers achieved on the reduced hyperspectral information;

• reduced hyperspectral and superpixels centers: the clustering algorithm applied

to the concatenation of superpixels Ck and the input hyperspectral image after a

feature reduction using PCA;

When using PCA, 99.9% of the total variance represented by each principal component

is considered. The table 4.2 shows the reduction of the number of bands after the

application of the PCA for each dataset.

In the tables 4.3, 4.4, 4.5, and 4.6, mean-shift methods with k-means applied with the

correct and previously known number of clusters are compared. All the experiments have

the same values fixed for the parameters m = 0.4 and mclust = 0.8 but a different number

of superpixels dependent on the dataset (2000 for Pavia center and Pavia University, 800

for Salinas, 300 for SalinasA). Empirically, the bandwidth parameter of mean-shift has

been selected based on the better NMI performance. The figures 4.8, 4.9, 4.10, 4.11 show

the results of the proposed algorithm, considering that the color map of the labels between

ground truth and segmentation is not the same.

The results show that for each of the datasets, better results are achieved when the

combination of mean-shift, spectral information, and superpixel centers is involved. PCA
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Figure 4.8: On the left there is the Pavia Center dataset, in the center it is shown the Pavia Center ground
truth, and on the right the unsupervised region segmentation results with the best NMI achieved. The
performance on the metrics are ARI = 0.88, NMI = 0.87 and F1 = 0.90.

Table 4.4: The table shows the performance on the Pavia University dataset using different combinations
of methods and inputs. In the mean-shift methods, the table reports the results on each metric with a
fixed bandwidth, that has been selected considering the best results achieved on NMI.

Clustering method Input Information PCA ARI NMI F1

K-means Spectral No 0.31 0.57 0.60
K-means Spectral Yes 0.32 0.58 0.65
K-means Superpixels No 0.32 0.54 0.63
K-means Superpixels Yes 0.32 0.52 0.63
K-means Spectral + Superpixels No 0.33 0.62 0.65
K-means Spectral + Superpixels Yes 0.33 0.56 0.62

Mean-shift Spectral No 0.47 0.58 0.74
Mean-shift Spectral Yes 0.47 0.58 0.74
Mean-shift Superpixels No 0.42 0.49 0.74
Mean-shift Superpixels Yes 0.38 0.44 0.71
Mean-shift Spectral + Superpixels No 0.59 0.72 0.84
Mean-shift Spectral + Superpixels Yes 0.57 0.69 0.82

Figure 4.9: On the left there is the Pavia University dataset, in the center it is shown the Pavia University
ground truth, and on the right the unsupervised region segmentation results with the best NMI achieved.
The performance on the metrics are ARI = 0.59, NMI = 0.72 and F1 = 0.84.
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Table 4.5: The table shows the performance on the Salinas dataset using different combinations of methods
and inputs. In the mean-shift methods, the table reports the results on each metric with a fixed bandwidth,
that has been selected considering the best results achieved on NMI.

Clustering method Input Information PCA ARI NMI F1

K-means Spectral No 0.56 0.80 0.74
K-means Spectral Yes 0.59 0.81 0.77
K-means Superpixels No 0.60 0.81 0.77
K-means Superpixels Yes 0.66 0.84 0.81
K-means Spectral + Superpixels No 0.62 0.82 0.79
K-means Spectral + Superpixels Yes 0.56 0.82 0.76

Mean-shift Spectral No 0.69 0.88 0.84
Mean-shift Spectral Yes 0.69 0.87 0.84
Mean-shift Superpixels No 0.70 0.86 0.84
Mean-shift Superpixels Yes 0.71 0.87 0.84
Mean-shift Spectral + Superpixels No 0.85 0.91 0.90
Mean-shift Spectral + Superpixels Yes 0.82 0.91 0.89

Figure 4.10: On the left there is the Salinas dataset, in the center it is shown the Salinas ground truth, and
on the right the unsupervised region segmentation results with the best NMI achieved. The performance
on the metrics are ARI = 0.85, NMI = 0.91 and F1 = 0.90.

allows the reduction in dimensionality of the feature vectors but has not shown coherent

improvements on all the datasets.

Results reported above have been obtained by heuristically tuning the following

parameters:

• the bandwidth of mean-shift

• the weight m of the spatial information

• the weight mclust of the spectral similarity information

The bandwidth of mean-shift controls the number of classes that are extracted by the

clustering algorithm. The higher is the bandwidth, the lower the number of clusters.
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Table 4.6: The table shows the performance on the SalinasA dataset using different combinations of
methods and inputs. In the mean-shift methods, the table reports the results on each metric with a fixed
bandwidth, that has been selected considering the best results achieved on NMI.

Clustering method Input Information PCA ARI NMI F1

K-means Spectral No 0.80 0.90 0.89
K-means Spectral Yes 0.80 0.90 0.89
K-means Superpixels No 0.82 0.90 0.90
K-means Superpixels Yes 0.58 0.79 0.77
K-means Spectral + Superpixels No 0.82 0.90 0.90
K-means Spectral + Superpixels Yes 0.82 0.90 0.90

Mean-shift Spectral No 0.73 0.84 0.83
Mean-shift Spectral Yes 0.73 0.84 0.83
Mean-shift Superpixels No 0.69 0.80 0.83
Mean-shift Superpixels Yes 0.72 0.83 0.85
Mean-shift Spectral + Superpixels No 0.90 0.95 0.95
Mean-shift Spectral + Superpixels Yes 0.90 0.95 0.95

Figure 4.11: On the left there is the SalinasA dataset, in the center it is shown the SalinasA ground
truth, and on the right the unsupervised region segmentation results with the best NMI achieved. The
performance on the metrics are ARI = 0.90, NMI = 0.95 and F1 = 0.95.

The parameter m modulates the compactness of superpixels, so lower values are more

suitable for high-resolution images, while mclust is related to smoothing and therefore to

noise reduction.

The number K of superpixels depends mostly on the dimensions of the hyperspectral

image, with K that increases in correspondence with larger and cluttered images. It has

been empirically found out that the optimal value for K is given by the approximation

to the nearest hundred of the ratio between the smallest image dimension and a scaling

parameter c1:

K = ⌈min(H,W )

α · 100
⌉ · 100 (4.12)

where H is the height, W is the width of the image and α is the scaling factor that

values 60. K ranges from a minimum of 300 and a maximum of 2000 superpixels.

A variant of the proposed method that exploits bandwidth values automatically

determined by following the procedure proposed by Pedregosa et al. [191] has been

experimented with. This version of the proposed method is referred to as OUR BW, while

the version of the proposed method with all the parameters heuristically set is referred to

as OUR.
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Table 4.7: Comparison of the proposed method with other methods in the state of the art using NMI and
ARI. The table shows the ARI and NMI values achieved by every method on the datasets of Pavia Center,
Pavia University, Salinas, and SalinasA.

Pavia Center Pavia Univ. Salinas SalinasA Average Require number
NMI - ARI NMI - ARI NMI - ARI NMI - ARI NMI - ARI of classes

K-means [80] 0.85 - 0.82 0.40 - 0.63 0.63 - 0.83 0.67 - 0.78 0.64 - 0.77 Yes
GMM [80] 0.77 - 0.74 0.29 - 0.53 0.53 - 0.79 0.78 - 0.87 0.59 - 0.73 Yes
HNMF [57] 0.85 - 0.77 0.38 - 0.57 0.53 - 0.79 0.78 - 0.87 0.64 - 0.75 Yes
SMCE [81] 0.80 - 0.77 0.31 - 0.56 0.57 - 0.78 0.76 - 0.81 0.61 - 0.73 Yes
DLSS [19] 0.52 - 0.42 0.49 - 0.57 0.37 - 0.39 0.63 - 0.81 0.55 - 0.50 Yes
3D-CAE [69] 0.96 - 0.86 0.36 - 0.59 0.67 - 0.85 0.77 - 0.87 0.69 - 0.79 Yes
DEC [79] 0.83 - 0.80 0.41 - 0.67 0.57 - 0.80 0.78 - 0.87 0.65 - 0.79 Yes
BDEC [80] 0.97 - 0.91 0.60 - 0.70 0.68 - 0.87 0.81 - 0.87 0.77 - 0.84 Yes
OUR BW 0.81 - 0.80 0.53 - 0.70 0.67 - 0.87 0.82 - 0.92 0.71 - 0.82 No
OUR 0.88 - 0.87 0.59 - 0.72 0.85 - 0.91 0.90 - 0.95 0.81 - 0.86 No

Finally, in table 4.7 the ARI and NMI performance of the two variants of the proposed

method are compared with other unsupervised segmentation methods in the state of the

art [80]. All the state-of-the-art methods, whose results are reported in table 4.7, require

the tuning of some parameters, some form of a-priori knowledge or a training process.

The proposed method does not need to know the exact number of classes to be identified

and does not use any external knowledge about the image content and, more importantly,

it is a handcrafted method that does not require the training of a specific model.

This proposal achieves, on average, the best results in terms of NMI and ARI on

the considered datasets. In particular, it outperforms all the other methods on Salinas,

SalinasA, and Pavia University, while it achieves lower performance on Pavia Center. The

algorithm version with automatic bandwidth achieves on average comparable results with

respect to other methods.

Figures 4.12, 4.13, 4.14, and 4.15 show a comparison between the segmentation results

achieved by our method and BDEC technique [80]. The results of BDEC have been

retrieved by using the code available from the respective article and by reconstructing the

segmented images.

4.5 Robustness to Noise

Taking inspiration from Nalepa et al. [194], the robustness of our method to several types

of noise has been assessed. For each dataset, a new hyperspectral image I
′

has been

defined. This image is the result of adding noise N to the hyperspectral images I as

follows: I
′

= I + N .

The considered types of noise are:

• Gaussian noise
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(a) Ground-truth (b) BDEC (c) Our

Figure 4.12: On the left there is the Pavia Center ground truth, in the center the results of the BDEC
method, and on the right the results achieved by our technique. The performance of BDEC are ARI = 0.97
and NMI = 0.91. The performance of Our method are ARI = 0.88 and NMI = 0.87.

(a) Ground-truth (b) BDEC (c) Our

Figure 4.13: On the left there is the Pavia University ground truth, in the center the results of the
BDEC method, and on the right the results achieved by our technique. The performance of BDEC are
ARI = 0.60 and NMI = 0.70. The performance of Our method are ARI = 0.59 and NMI = 0.72.

• Impulsive noise (salt & pepper)

• Poisson noise

4.5.1 Gaussian noise

The Gaussian noise simulates thermal and quantization disturbances [194]. The noise

signal is defined by a normal distribution probability density function. The probability p

for a variable x, with mean µ and the variance σ is defined as:

p(x) =
1

σ
√

2π
e

−(x−µ)2

2σ2 (4.13)

In the experiments, noise has been applied to the 10% of the pixels of the image and,

for each of the evaluations, the mean µ = 0 and different values of variance σ: 0, 0.01, 0.05,

0.1, 0.25, and 0.5 have been considered. Table 4.8 reports the results of this investigation.
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(a) Ground-truth (b) BDEC (c) Our

Figure 4.14: On the left there is the Salinas ground truth, in the center the results of the BDEC method,
and on the right the results achieved by our technique. The performance of BDEC are ARI = 0.68 and
NMI = 0.87. The performance of Our method are ARI = 0.85 and NMI = 0.91.

(a) Ground-truth (b) BDEC (c) Our

Figure 4.15: On the left there is the SalinasA ground truth, in the center the results of the BDEC method,
and on the right the results achieved by our technique. he performance of BDEC are ARI = 0.81 and
NMI = 0.87. The performance of Our method are ARI = 0.90 and NMI = 0.95.

As expected, the results show a reduction in performance when the noise is particularly

disturbing. This is particularly true in the case of Salinas and SalinasA datasets when a

high variance is considered. Overall, the results show that the proposed method is robust

to Gaussian noise signal when the original signal is not too deteriorated.

4.5.2 Impulsive noise

The impulsive noise represents an error in the acquisition of data, where a pixel remained

saturated (”white” pixel) or where the data for a certain pixel is lost (”black” pixels) [194].

In the experiments, salt & pepper noise has been applied with density on the image.

Specifically, 0, 0.01, 0.05, 0.1, 0.25, and 0.5 have been considered as the percentage of the

pixels affected by noise. The table 4.9 shows the results for every density and dataset.

Results show that this kind of noise does not impact significantly on the overall

performance. Oscillatory performance is justified by the stochasticity of the entire process.
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Table 4.8: The table shows the robustness of the proposed method to the addition of Gaussian Noise for
each of the datasets with different variances.

Variance Pavia Center Pavia Univ. Salinas SalinasA Average
ARI - NMI ARI - NMI ARI - NMI ARI - NMI ARI - NMI

0 0.81 - 0.80 0.53 - 0.70 0.67 - 0.87 0.82 - 0.92 0.71 - 0.82
0.01 0.81 - 0.78 0.53 - 0.69 0.54 - 0.79 0.90 - 0.95 0.70 - 0.80
0.05 0.81 - 0.78 0.56 - 0.68 0.48 - 0.74 0.82 - 0.90 0.67 - 0.78
0.1 0.84 - 0.81 0.56 - 0.65 0.46 - 0.71 0.73 - 0.84 0.65 - 0.75
0.25 0.84 - 0.81 0.55 - 0.65 0.45 - 0.71 0.34 - 0.56 0.55 - 0.68
0.5 0.83 - 0.80 0.54 - 0.64 0.38 - 0.62 0.24 - 0.51 0.50 - 0.64

Table 4.9: The table shows the robustness of our method to the addition of Impulsive Noise for each of
the datasets with different densities of pixels.

Pixel density Pavia Center Pavia Univ. Salinas SalinasA Average
ARI - NMI ARI - NMI ARI - NMI ARI - NMI ARI - NMI

0 0.81 - 0.80 0.53 - 0.70 0.67 - 0.87 0.82 - 0.92 0.71 - 0.82
0.01 0.81 - 0.79 0.53 - 0.70 0.66 - 0.87 0.75 - 0.90 0.69 - 0.82
0.05 0.81 - 0.80 0.52 - 0.68 0.66 - 0.86 0.82 - 0.92 0.70 - 0.82
0.1 0.80 - 0.78 0.52 - 0.68 0.66 - 0.86 0.90 - 0.95 0.72 - 0.82
0.25 0.81 - 0.78 0.50 - 0.67 0.58 - 0.82 0.90 - 0.95 0.70 - 0.81
0.5 0.80 - 0.78 0.57 - 0.69 0.52 - 0.77 0.83 - 0.90 0.66 - 0.79

4.5.3 Poisson noise

The Poisson noise models a signal-dependent photon noise [194]. The signal is defined as

the following probability density function p for a variable x:

p(x) =
eλλx

x!
(4.14)

where λ represents the expected average value, which we considered to be 5.5 for all the

experiments.

In the table 4.10, the results for every dataset with and without noise are shown.

The results show that our method is robust to the presence of Poisson noise on each

dataset.

4.6 Computational time and complexity

In this section, the real-time computation for all of the datasets, and the complexity of

the entire method are reported. The time complexity of the whole method is O(n2) where

n is the number of pixels of the image. Table 4.11 shows the time in seconds for each part

of our method: Augmented H-SLIC, Unsupervised Segmentation, and the total algorithm.

Note that, on average, the time required by the augmented H-SLIC is roughly 57% of the

total amount of time required for running the algorithm. Note also that the computational
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Table 4.10: The table shows the robustness of our method to the addition of Poisson Noise for each of the
datasets.

Poisson noise Pavia Center Pavia Univ. Salinas SalinasA Average
ARI - NMI ARI - NMI ARI - NMI ARI - NMI ARI - NMI

No 0.81 - 0.80 0.53 - 0.70 0.67 - 0.87 0.82 - 0.92 0.71 - 0.82
Yes 0.81 - 0.80 0.52 - 0.69 0.66 - 0.87 0.80 - 0.92 0.70 - 0.82

Table 4.11: The table shows the time computation in seconds for Pavia Center, Pavia University, Salinas,
and SalinasA datasets, for each step and the entire pipeline.

Pavia Center Pavia Univ. Salinas SalinasA Average

Augmented H-SLIC 1097.01s 343.16s 388.67s 43.44s 468.07s
Unsupervised Segmentation 835.57s 218.53s 303.06s 19.04s 344.05s

Total 1944.61s 564.87s 693.88s 62.94s 816.58s

time depends on the size of the image, for example, the execution of the algorithm on the

SalinasA dataset requires about 63s which is eleven times lower than the Salinas dataset.

4.7 Advatanges of the proposed method

With the increase of available data from earth observation drones and satellites, it is very

important to reduce the effort on segmenting/labeling remote sensing images. To this end,

techniques that, different from data-hungry methods such as deep learning, do not rely on

large training sets and do not require a-priori knowledge and/or the number of classes

to be segmented are necessary to increase the availability of labeled data. In this study,

a method based on hand-crafted features that satisfy the above requirements has been

presented. The method has been experimented on four different datasets thus proving its

effectiveness in comparison with methods in the state of the art that in contrast may not

satisfy all the above requirements.

A further feature of the proposed method is that it could be easily extended to deal

with additional information obtained by other types of sensors. It is also worth to be

investigated if a-priori knowledge about the image content can be exploited to improve

the results, in particular in urban scenes.
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Chapter 5

Multimodal Supervised Semantic

Segmentation

This chapter presents a combination of works relative to Ticino: A Multi-Modal Remote

Sensing Dataset for Semantic Segmentation [21], available at SSRN (Social Science

Research Network), and Multimodal Fusion Methods with Vision Transformers for Remote

Sensing Semantic Segmentation [22] that has been presented at the WHISPERS 2023

conference (13th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in

Remote Sensing) 1.

Land is the foundational element of human activities, on which all socio-economic

dynamics are developed. It represents the fundamental resource for the survival of urban

and rural residents [1]. In recent decades, population growth and the consequent increase

in human activities have resulted in intensive land use [195]. However, the distribution

of the population is affected by various human and time-varying factors that cause an

uncontrolled exploitation of land resources in densely populated areas [196].

Monitoring the land coverage is therefore a duty of primary importance. A rapid

evaluation of the soil’s condition enables prompt mitigation of these consequences through

the implementation of suitable strategies. Furthermore, the collection over time of land use

and land cover enables to capture, model and predict past, present, and future dynamics

of human activities [197]. For a precise land cover assessment, it is required to analyze

images of the territory, manually or with the help of computer vision techniques [198].

The predominant computer vision technique is semantic segmentation, which is an

effective technique used in many applications such as autonomous driving, robot nav-

igation, industrial inspection, saliency object detection, agriculture sciences, medical

imaging analysis, remote sensing, etc [199]. This technique classifies each individual

pixel in the image. The output is then a map having the same spatial extent as the

input image, where pixels are grouped into areas belonging to the same semantic class

1WHISPERS conference: https://www.ieee-whispers.com/
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Table 5.1: Comparison between state-of-the-art datasets for RS semantic segmentation and the Ticino
dataset. Note that two versions of the dataset are presented. One in the original scale and one at
higher resolution obtained through the cleaning procedure and the pansharpening processing described in
section 5.2. (*computed using the other information in the table)

Dataset Sensor Modalities Area [km2] # images Image size Res. [m/pixel] # bands # classes

Deepglobe [83] airborne RGB 1716.9 1156 2448x2448 0.50 3 7
TorontoCity [84] airborne RGB/LIDAR 712.5 - - 0.10 3/1 3
SpaceNet variant [85] satellite RGB 3254* 401755 300x300 0.3 3 2
INRIA [86] airborne RGB 810 360 1500x1550 0.30 3 2
Urban dataset [88] airborne RGB 3.46* 9 1000x1000 0.62 3 3
Coffee dataset [88] airborne NIR-RG 56.25* 9 1000x1000 2.50 3 3
Zurich Summer [89] satellite MS NIR-RGB 8.56 20 1000x1150 0.61 4 8
Indian Pines [25] airborne HS VNIR-SWIR 0.29* 1 145x145 3.70 200 16
Salinas [25] airborne HS VNIR-SWIR 1.52* 1 512x217 3.70 204 16
SalinasA [25] airborne HS VNIR-SWIR 0.10* 1 86x83 3.70 204 6
Pavia Center [25] airborne HS Visible 2.03* 1 1096x1096 1.30 102 9
Pavia University [25] airborne HS Visible 0.63* 1 610x610 1.30 103 9
SpaceNet [87, 90, 91] satellite PAN 3011 24586 650x650 0.31 1 2

MS VNIR 1.24 (orig.) 8
MS SWIR 1.24 (orig.) 8

ISPRS Potsdam [92, 90] airborne MS IR-RGB 3.42* 38 6000x6000 0.05 4 6
PAN 0.05 1
DSM 0.05 1

ISPRS Vaihingen [92, 90] airborne MS IR-RGB 1.34* 33 2500x2000 0.09 4 6
PAN 0.09 1
DSM 0.09 1

DSTL [93] airborne RGB 1 57 - 0.50 3 10
PAN 0.31 1

MS VNIR 1.24 8
MS SWIR 7.50 8

Ticino/Our satellite RGB 1331.721 1502 256x362 1.86-2.64 3 8/10
PAN 96x192 5 1

HS VNIR 16x32 (96x192) 30 (5) 63 (60)
HS SWIR 16x32 (96x192) 30 (5) 171 (122)

DTM 101x203 5 1

[90]. In remote sensing, semantic segmentation is incorporated in multiple fields such as

precision farming, environmental monitoring, spatial planning enforcement, management

of ecosystem-oriented natural resources such as food management, nature conservation,

and many other important applications [2, 200, 201, 202, 203].

In line with other computer vision tasks, also semantic segmentation faced a step forward

with the advent of deep learning techniques. In particular, two neural architectures are used:

Convolutional Neural Networks [204, 100, 101, 102, 103] and Visual Transformers [121,

122, 120, 123, 124], which are more effective and efficient than traditional computer vision

methods [90]. In remote sensing, some hybrid versions have also been used to achieve

good performance in semantic segmentation [125, 126, 127, 128, 129, 130]. However, these

methods are data-hungry and necessitate large datasets for training.

In the context of remote sensing, the fusion of different modalities can provide comple-

mentary information and improve the accuracy of image segmentation [205]. Apart from

RGB [88, 83, 85, 86] and panchromatic images, which are readily available at a high-spatial

resolution, the hyperspectral signal has shown great discriminative power than any other

type of signals for identifying different materials [10]. However, hyperspectral devices have

less spatial resolution in favor of a major number of acquired bands. The trade-off between

resolution and the number of bands is due to higher production, computational, and
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management costs of hyperspectral devices with respect to RGB ones [10]. Due to these

problems, the majority of single- [89] and multimodal datasets [93, 87, 91, 92] in the state

of the art present only multispectral information, which is more discriminative than RGB

but not as powerful as the hyperspectral one. The few datasets including hyperspectral

information are generally composed of small single images that do not contain enough

environmental variety and data to train deep-learning-based methods [25], leading to poor

generalization capabilities. Nonetheless, in the literature, remote sensing fusion works have

seen an exponential increase in recent years, focusing on the homogenous and heterogeneous

fusion of complementary information such as spatio-temporal fusion and pansharpening,

demonstrating the importance of pushing the research in this direction [94, 29, 133].

For these reasons, this research presents the Ticino dataset, a novel multimodal remote

sensing dataset specifically tailored for semantic segmentation tasks. It covers an area of

about 1332 km2 and it incorporates five distinct modalities: RGB, Digital Terrain Model,

Panchromatic, and Hyperspectral images, encompassing the visual-near infrared and short

wavelength infrared portions of the electromagnetic spectrum. The RGB modality offers

valuable spatial information, the Hyperspectral components contribute to effective material

discrimination and finally, the Digital Terrain Model enhances our understanding of the

soil morphology. Notably, the dataset includes labeled data for Land Cover and Soil

Agricultural Use. To the best of the author’s knowledge, the Ticino dataset is the largest,

the most various (including over 230 spectral bands), multimodal dataset in the state

of the art for RS semantic segmentation. Table 5.1 highlights the main characteristics

of the Ticino dataset in comparison with semantic segmentation datasets in the state of

the art. Among multimodal datasets, the Ticino dataset is the only one including the

hyperspectral signal. Furthermore, the proposed dataset covers the largest area, thus

including much more heterogeneity of the land in comparison with the other hyperspectral

datasets. Finally, the Ticino dataset is the one with the highest number of modalities.

To facilitate future investigations, two comparative analyses were conducted, evaluating

single modality and multimodality deep learning techniques. The first of these investigations

is based on CNN models. The purposes of this analysis are, firstly, to provide a benchmark

for future research with this dataset and, secondly, to compare single and multimodality

approaches, as well as early and middle fusion strategies. The empirical findings of this

analysis clearly demonstrate the superiority of multimodality over single modality methods,

with middle fusion exhibiting the most substantial performance improvement. The second

investigation, instead, is based on Transformers and focuses more on better understanding

which fusion techniques are better to exploit the advantages of multimodality and yield

better performance. For this purpose, six different fusion techniques were tested, dividing

them into early, middle, and late fusion methodologies. This analysis remarks on the

better achievements of multimodality and, at the same time, demonstrates the importance
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of using the correct techniques when the fusion is applied.

The main contributions of this research are:

• a multimodal Remote Sensing dataset that combines RGB, Hyperspectral, and

Digital Terrain Model, having both high spatial and high spectral resolutions;

• a baseline that compares single- vs. multimodality deep learning techniques as well

as early and middle data fusion techniques;

• a comprehensive analysis of a variety of multimodal fusion techniques based on

Transformers.

5.1 Ticino Dataset

The Ticino multimodal satellite dataset has been collected from different sources of

information. Specifically:

1. RGB data from Microsoft Bing Maps [206] (see Figure 5.1(a));

2. panchromatic and hyperspectral data from ASI PRISMA [6] (see Figure 5.1(b), 5.1(c)

and 5.1(d));

3. digital terrain model of the area considered from Geoportal of Lombardia Region [207]

(see Figure 5.1(e)).

The dataset also includes two different pixel-level labelings for semantic segmentation:

1. Land Cover collected from OpenStreetMaps [208] and Italian Agenzie delle En-

trate [209] (see Figure 5.1(f));

2. Soil Agricultural Use collected from the Geoportal of Lombardia Region [207] (see

Figure 5.1(g)).

The proposed dataset considers a territory around the Ticino river in the south of Milan

and has an extension of 1332 km2. This area has been chosen for its heterogeneity in terms

of terrain composition and geomorphological variety. To support data-driven methods

such as deep learning, the original dataset has been divided into 1808 smaller tiles. Among

them, 306 have been discarded as they presented a number of labeled pixels inferior to 1%.

The final dataset is therefore composed of 1502 georeferenced tiles. Each tile consists of

five data sources and two pixel-level labelings. Figures 5.1(a-g) show the original images.

Figures 5.1(h-n) show two examples of tiles extracted from the dataset. Figures 5.1(o-u)

show the same tiles after a post-processing operation that involved pansharpening [20]
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(a) RGB (b) PAN (c) VNIR (d) SWIR (e) DTM (f) Land Cover (g) SAU

(h) RGB tile (i) PAN tile (j) VNIR tile (k) SWIR tile (l) DTM tile (m) Land Cover tile (n) SAU tile

(o) RGB tile (p) PAN tile (q) VNIR tile (r) SWIR tile (s) DTM tile (t) Land Cover tile (u) SAU tile

Figure 5.1: Visual representations of each modality and labeling of the entire Ticino dataset (from (a) to
(g)) and two examples of tiles (one tile for each row) with the corresponding multimodalities (from (h) to
(l)) and labelings ((m) and (n)).

and increased the spatial resolution of the hyperspectral data with the auxilium of the

panchromatic information. The dataset has been split into training, validation, and

test in percentages of 70%, 15%, and 15%, resulting in 1051 images for training, 225 for

validation, and 226 for testing.

RGB data Figure 5.1(a) shows the RGB data included in the dataset. It has been

collected from the Microsoft Bing Map service [206] through an open-source tool2. These

images present a different horizontal and vertical resolution. Specifically, they have a

spatial resolution of 1.86 m/px for the vertical dimension and 2.64 m/px for the horizontal

one. The RGB source is the data with the highest spatial resolution in the dataset. Each

RGB image tile has a dimension of about 256x362 pixels.

Panchromatic data Figure 5.1(b) shows the panchromatic (PAN) data collected from

the ASI PRISMA satellite [6]. PAN is a grey-level image in the visible part of the spectrum

(400-700 nm). It has the highest spatial resolution of the dataset, namely 5m/px. The

original PRISMA and RGB data from Microsoft Bing presented a problem of georeference

disalignment. The alignment of the two sources has been done with an interactive approach

that involved the selection of more than 700 correspondent pairs of Ground Control Points

between the RGB and PAN images, and the following estimation of a Thin Plate Spline

Transformation for the geometric correction. The selection and the transformation were

applied using QGIS Desktop software [4]. Figures 5.2(a) and (b) show the result of

the alignment procedure. In the figures, two crops, considering RGB and panchromatic

2https://github.com/dakshaau/map_tile_download
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(a) Disaligned (b) Aligned

Figure 5.2: Disalignment of RGB, Panchromatic, and hyperspectral data. The figure shows two RGB and
panchromatic crops overlapped before (left) and after (right) the alignment operations.

modalities, are overlapped to show the difference between before (5.2(a)) and after (5.2(b))

the alignment. The final PAN tiles have a resolution of about 96x192 pixels.

Hyperspectral data Visual and Near-Infrared (VNIR) and Short-Wave Infrared (SWIR)

cubes (figures 5.1(c) and (d)) present a resolution of 30m/px (the lowest spatial resolution

of the dataset) and a spectral resolution of less than 12 nm. This data has been collected

from ASI PRISMA satellite [6] with the level-2D pre-processing, which is the highest

level distributed and solves most of the acquisition problems related to the atmosphere,

co-registration, etc. The VNIR data includes the spectral information of the visible and

near-infrared parts of the spectrum, from 400 to 1010 nm. The VNIR cubes present

63 bands out of the original 66, as three bands did not contain valuable information.

The SWIR component of the dataset represents the information in the short wavelength

infrared part of the spectrum, from 920 to 2500 nm, with a portion of the spectrum that

overlaps the VNIR information. The SWIR cubes contain 173 bands, but even in this case,

the last two have been discarded due to the absence of valuable information. For each

sample in the dataset, the hyperspectral cubes are image tiles of around 16x32 pixels. The

same alignment transformation applied on the PAN image has been applied to align the

VNIR and SWIR data. Moreover, a second version is presented of the dataset where the

hyperspectral cubes have been enhanced to reach the same spatial resolution of the PAN

image using a pansharpening algorithm detailed in section 5.2. The resulting hyperspectral

images are at a spatial resolution of about 96x192 pixels.

Digital Terrain Model data The last source included in the dataset is the Digital

Terrain Model (DTM). As visible in Figure 5.1(e), the DTM represents a topographic
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Table 5.2: Land Cover classes of the presented Ticino dataset and image cardinality per class.

Classes Id # images

Background 0 1497
Building 1 1242
Road 2 1326
Residential 3 555
Industrial 4 216
Forest 5 675
Farmland 6 443
Water 7 169

model of the bare Earth. It contains the elevation data of the terrain in a rectangular grid.

It has been collected from the geoportal of the Lombardia region [207]. The DTM includes

the urban and extra-urban areas. The model has been obtained from the geoportal by

combining and harmonizing different sources of the data, removing possible anomalies,

and finally extracting a Triangular Irregular Network model, achieving the final DTM

model of the Lombardia region with a resolution of 5m/px [207]. The DTM used in this

dataset presents image tiles of about 101x203 pixels and an elevation that ranges from

51.86 to 124.75 meters.

Land Cover Labeling Figure 5.1(f) shows the Land Cover segmentation. In the same

way as the RGB data, the segmentation has different vertical and horizontal spatial

resolutions, respectively equal to 0.68 and 0.96m/px. The final labeling, obtained after a

refining and merging process described in section 5.2, consists of information from Open

Street Map (OSM) [208], the Italian Agenzia delle Entrate [209], and manually added

labeling. The final version includes 8 classes: Background, Building, Road, Residential,

Industrial, Forest, Farmland, and Water. The Background class represents unlabeled

pixels. Table 5.2 shows the image per-class cardinality along with the class name and

identification number. The class distribution is slightly unbalanced, ranging from 169

images for the class Water to 1242 for the class Building. Moreover, Figure 5.3 offers a

deeper analysis of the Land Cover labeling. The first row shows the number of pixels

belonging to each class, while the second row the number of pixels per label for all the

three sets in which the dataset has been divided dataset, namely the training (a), the

validation (b), and the test (c) set.

Soil Agricultural Use Labeling (SAU) Figure 5.1(g) shows the SAU labeling. This

segmentation has a resolution of 20m/px [210] and it has been collected from the Geoportal

of Lombardia region [207]. The labeling, after the refinements described in section 5.2,

includes 10 classes: Background, Other agricultural crops, Forage crops, Corn, Industrial
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Table 5.3: Soil Agricultural Use classes of the presented Ticino dataset and image cardinality per class.

Classes Id # images

Background 0 1475
Other agricultural crops 1 380
Forage crops 2 918
Corn 3 1029
Industrial plants 4 669
Rice 5 1323
Seeds 6 177
Man-made areas 7 1175
Water bodies 8 337
Natural vegetation 9 1315

plants, Rice, Seeds, Man-made areas, Water bodies, and Natural vegetation. Other agri-

cultural crops class indicates the not labeled farmlands and provides discrimination from

the natural vegetation that instead describes forest, trees, and vegetation areas. Table 5.3

shows the image per-class cardinality of the Soil Agricultural Use, even in this case, along

with the class name and identification number. As for Land Cover, the class distribution is

slightly unbalanced ranging from 177 for the class Seed to 1323 for the class Rice. Finally,

as before, a deeper analysis of the SAU distribution is proposed in Figure 5.4. The first

row represents the number of pixels belonging to each class, while the second row the

number of pixels per label for all three sets: training (a), the validation (b), and the test

(c) set.

5.1.1 Refinement of the original labeling

This subsection will describe the refinement process of the original labelings to achieve the

two final ground truths for semantic segmentation.

The final dataset has been collected by merging information from Open Street Map [208]

and the Italian Agenzie delle Entrate [209], augmenting them with the creation of the

Water labeling. As described in section 5.1, the dataset consists of 8 classes: Background,

Building, Road, Residential, Industrial, Forest, Farmland, and Water.

Background, Residential, Park, Industrial, and Forest originally derived from the OSM

labeling [208]. The original OSM segmentation includes 22 classes: Background, Buildings,

Forest, Residential, Farmland, Parking, Industrial, Stadium, Meadow, Pond, Park, Square,

Harbour, Airport, Bridge, Beach, Industrial harbour, Baseball, Desert, Rock, Glacier, and

River. After having divided the area under investigation into 1808 tiles, the classes with

low representations in terms of the number of image samples have been discarded: Harbour,

Airport, Bridge, Beach, Industrial harbour, Baseball, Desert, Rock, Glacier, and River.

As a consequence, 306 samples have been discarded because they mainly included the

Background class.
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(a) train

(b) validation

(c) test

Figure 5.3: Distribution of the Land Cover split of the dataset in training (left), validation (center), and
test (right) sets. The first row represents the number of images per class (without Background). The
second row represents the number of pixels per class (without Background).

Building and Road labelings have been collected by the Italian Agenzie delle En-

trate [209]. The former has been inserted in the dataset as a substitute for the Building

labeling of OSM because it is more accurate and complete in the area considered, while

the latter was not present in the original OSM labeling.

Finally, Water is a combination of the Pond segmentation provided by OSM and a

manual labeling provided by the authors of the Ticino River.

The original Soil Agricultural Use labeling has been acquired from the Geoportal

of Lombardia region [207] and consisted of the following 22 classes: Background, Other

agricultural crops, Other cereals, Beet, Forests and tree crops, Nursery crops, Horticultural
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(a) train

(b) validation

(c) test

Figure 5.4: Distribution of the Soil Agricultural Use split of the dataset in training (left), validation (center),
and test (right) sets. The first row represents the number of images per class (without Background). The
second row represents the number of pixels per class (without Background).

crops, Forage crops, Fruit crops, Corn, Olive tree, Industrial plants, Rice, Seeds, Tainted

and uncultivated, Fallow land, Vine, Man-made areas, Natural barren areas, Water bodies,

Unclassifiable agricultural land, and Natural vegetation.

Other cereals, Floriculture crops, Horticultural crops, Fruit crops, Vine, Beet, and

Olive-tree labels have been removed due to the low representation in the area considered.

While Forest and tree crops and Natural barren areas have been respectively joined with
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(a) VNIR (b) SWIR

Figure 5.5: Visual representation of the cleaning of the corrupted bands (first step of the pre-processing).
The mean signature on each band with the removed bands from VNIR (left) and SWIR (right) pointed
out in red. The figures show that the removed bands correspond to the overlapping band between the two
modalities and the water absorption wavelengths (where the signal is almost zeroed out).

(a) Original image (b) Pansharpened image

Figure 5.6: Visual representation of the Pansharpening results (second step of the pre-processing).
Comparison between the original hyperspectral image (band 50) on the left, and the hyperspectral
pansharpened image (band 50) on the right after GSA algorithm.

the Natural vegetation and Water bodies as they have a similar semantic meaning. Finally,

Unclassifiable agricultural land, Tares and uncultivated, and Fallow land were merged

with the Background class because the semantic meaning was not clearly defined. The

final labeling resulting from the cleaning process includes 10 classes as follows (see also

section 5.1): Background, Other agricultural crops, Forage crops, Corn, Industrial plants,

Rice, Seeds, Man-made areas, Water bodies, and Natural vegetation.

5.1.2 Data Pre-processing

As described in section 5.1, a pre-processing has been applied in order to remove corrupted

bands from the HS component and to enhance its spatial resolution from 30m/px to 5m/px.
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Before applying the pre-processing procedure, the HS bands with zero information have

been eliminated, thus obtaining 63 bands for the VNIR and 171 bands for SWIR.

As described in 3.1.1, following Zini et al. [20], as a first step of the cleaning procedure

of VNIR and SWIR sources, the corrupted bands have been identified using the information

about invalid pixels from the PRISMA documentation [6, 205]. Each PRISMA image

comes with correspondent information regarding the validity of each pixel in each band.

A pixel is not valid if a problem occurs during the acquisition phase or the PRISMA

pre-processing. For each band, the number of invalid pixels has been computed. Then,

bands presenting a number of invalid pixels above a threshold, empirically fixed to 0.001%,

are removed. The final part of VNIR is discarded. The removed bands from SWIR mainly

correspond to the water absorption part of the spectrum where the information is almost

zeroed out. As a second step, a visual inspection of each band led to the removal of the

39th band of the SWIR component due to the presence of visual artifacts. To better

visualize the effect of the cleaning procedure, Figure 5.5 highlights in red the corrupted

bands that were removed from the VNIR (Figure 5.5(a)) and SWIR (Figure 5.5(b)) signals.

The resulting dataset used in the experiments for all the settings and configurations is:

• RGB: 3 channels;

• PAN: 1 channel;

• VNIR: 60 channels (cleaned from corrupted bands);

• SWIR: 122 channels (cleaned from corrupted bands and visual artifacts);

• DTM: 1 channel.

To take advantage of PRISMA data, a pansharpening operation has been used to im-

prove the spatial resolution of VNIR and SWIR. PRISMA satellite provides a panchromatic

image (PAN) and two hyperspectral cubes for VNIR and SWIR information captured

at the same time. Following the results of Loncan at el. in 2015 [29] and Vivone et

al. in 2022 on hyperspectral and PRISMA data pansharpening [133], the Gram-Schmidt

Adaptive (GSA) [211] algorithm has been selected. The pansharpening has been applied

on VNIR and SWIR concatenated in a single hyperspectral data. The final result (HS↑) is

a hyperspectral cube corresponding to the fusion of the spectral information (VNIR and

SWIR) and the spatial information from the PAN data. Figure 5.6 shows the 50th band

of the hyperspectral signal in its original form (Figure 5.6(a)) and the same band after the

pansharpening operation through the GSA algorithm (Figure 5.6(b)). The output has a

spatial resolution of 5m/px (same as PAN) and a total of 182 bands that correspond to

the VNIR and SWIR channels concatenated after the cleaning phase.

The final version of the dataset used in the experiments consisted of these modalities

obtained by fusing PAN with VNIR and SWIR:
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• RGB with 3 bands and a resolution of 1.86/2.64 meters per pixel;

• Hyperspectral with 182 bands and a resolution of 5 meters per pixel (HS↑);

• Digital Terrain Model (DTM) with 1 band and a resolution of 5 meters per pixel.

5.2 Methods

As mentioned above, two comparative analyses have been conducted. One, concerning

CNN models focuses on providing a benchmark for future research and to demonstrate the

superiority of multimodality. One, considering Transformer and different fusion methods

to better understand which one is the best fusion strategy for the data considered. This

section is divided into subsections that describe each analysis.

5.2.1 CNNs

In these experiments, different combinations and techniques of fusion have been considered

for the modalities.

For each configuration, the same neural network model has been tested, consisting of a

U-shaped architecture with a Residual Network of size 18 (Resnet18) backbone, using the

Segmentation Models Pytorch framework 3.

For every test, the same settings of the learning rate, data augmentation, and nor-

malization have been considered using the Albumentations library [212]. To train the

models, a setup with 400 epochs, Adam optimizer with learning rate 1e−04, and a StepLR

scheduler with step size of 30 and gamma of 0.85 has been used. The data augmentation

for the training consisted of RGB normalization, HS↑ normalization, DTM normalization,

Resize to 256 × 352, Random Crop of 256 × 256, Random Rotation between -180 and 180,

Horizontal and Vertical Flip, and Transpose transformations. The validation and test data

augmentation consider only RGB normalization, HS↑ normalization, DTM normalization,

and image resize to 256 × 352.

Every modality has been normalized between 0 and 1 considering the max and min

values of all the training dataset for each source independently. They have been also

standardized with mean 0 and standard deviation 1, using the equation (5.1) [212] and

always considering the mean and std of each modality and each channel of all the training

set independently:

norm img =
img − (mean ·max pixel value)

std ·max pixel value
(5.1)

3https://github.com/qubvel/segmentation_models.pytorch
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(a) Early Fusion

(b) Middle Fusion

Figure 5.7: CNN experiments pipelines that represent the pre-processing, the fusion, and the segmentation.
The two images show (a) the early and (b) the middle fusion techniques.

Figure 5.7 shows the complete procedures for both early and middle fusion. Both start

with a pre-process to clean hyperspectral data from corrupted bands and improve their

spatial resolution using the Gram-Schmidt Adaptive (GSA) pansharpening technique that

fuses hyperspectral and panchromatic data.

Early fusion As shown in Figure 5.7(a), the pipeline for data-level fusion experiments

consists of naively concatenating all the modalities together before using them as input of

the U-shaped model.

The different combinations of modalities described above have 3 bands for RGB, 182

for HS↑, 185 for (RGB + HS↑), and 186 for (RGB + HS↑ + DTM). The definition of

the U-shaped architecture and the layers of ResNet18 remained the same for all the

experiments apart from the input layer which is changed according to the dimension of

the input.

Middle fusion In the middle fusion approach, as shown in Figure 5.7(b), the different

modalities are firstly processed independently to extract high-level features from each of

them and later concatenated the features in order to create the input for the U-shaped

architecture.
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Table 5.4: Middle fusion Module for the extraction of features from each modality.

Modality Layer Description Padding

RGB Conv2d 3 × 3 × 16 2 × 2
ReLU

Conv2d 3 × 3 × 32 2 × 2
ReLU

Conv2d 3 × 3 × 64 2 × 2
ReLU

Hyperspectral (HS↑) Conv2d 3 × 3 × 128 2 × 2
ReLU

Conv2d 3 × 3 × 64 2 × 2
ReLU

DTM Conv2d 3 × 3 × 16 2 × 2
ReLU

Conv2d 3 × 3 × 32 2 × 2
ReLU

Conv2d 3 × 3 × 64 2 × 2
ReLU

For each modality, the feature extraction module consists of convolutional and ReLU

layers that use padding to maintain the same width and height of the U-shaped architecture.

In the RGB and DTM cases, 3 convolutional layers increase the number of channels and

extract the features. In the hyperspectral case, 2 convolutional layers are not only used

to extract features but also to optimally reduce the number of channels of the starting

hyperspectral inputs, thus overcoming the problem of the curse of dimensionality [10].

Table 5.4 summarizes the middle fusion module used for the extraction of the features in

all modalities. After the application of the convolutional layers, all of the modalities share

the same amount of feature maps to balance their importance during the training and are

concatenated to become the input for the U-shaped architecture.

5.2.2 Transformers

Transformers present two critical challenges: 1) as CNNs they need large amounts of data,

and 2) they are characterized by high computational complexity due to the quadratic

nature of the self-attention mechanism that characterizes them. To address these concerns,

the Shifted-Window Transformer (Swin) was introduced to specifically resolve issues related

to computational complexity [120], while data-efficient transformers were proposed to

mitigate the demands for extensive training data [213].

A comprehensive analysis of multimodal fusion methods for semantic segmentation

of RS images based on the use of Swin-UperNet transformers [120] is presented with

different fusion techniques that have been studied and adapted to the characteristics of

the pansharpened version of Ticino. Therefore, all the methods were adapted to three

modalities.

All the experimented fusion techniques are based on a U-shaped neural architecture
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Fusion methods schemes considered in this work: (a) Early concatenation; (b) Token Patch
Embedding; (c) Channel Patch Embedding; (d) Token Fusion at Attention Level; (e) Cross-Attention;
and (f) Late Concatenation.

composed of an encoder and a decoder module. The encoder is a hierarchical shifted

window-based vision transformer (Swin) [120], while the decoder is a UperNet with

skip connections [214], which is a powerful semantic segmentation model known for

its effectiveness in capturing intricate spatial relationships and high-level context. Six

multimodal fusion techniques have been deployed and compared:

1. Early Concatenation (EC);

2. Token Patch Embedding (TPE);

3. Channel Patch Embedding (CPE);
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4. Token Fusion at Attention Level (TFA);

5. Cross-Attention (CA);

6. Late Concatenation (LC).

A generalized schematic representation of these fusion methods can be seen in Fig-

ure 5.8. They are categorized into three classes based on where the fusion occurs: early

fusion at the input level Figure 5.8(a), middle fusion at an intermediate point within

the encoder Figure 5.8(b)-(e) and late fusion after the encoder’s processing Figure 5.8(f).

The investigated methodologies can vary considerably in terms of complexity, perfor-

mance capabilities and computation requirements. For both Early Concatenation and

Late Concatenation methods, modifications to the Swin-UperNet have been required to

accommodate all three modalities presented in the dataset used in the experiments. In the

case of the middle fusion methods, suitable strategies for integrating these three modalities

had to be devised, drawing inspiration from prior research in multimodal fusion. The

investigated methodologies have different benefits and can vary considerably in terms of

complexity, performance capabilities and computation requirements.

Swin-based encoder The encoder is based on the canonical Swin transfomer archi-

tecture [120], consisting of 4 stages {Si}4i=1. Each Stage, apart from the first one, is

characterized by a Patch Merging module and a Swin Transformer Block (STB). Each

Block includes at least a pair of consecutive Window Multi-head Self Attention (W-MSA)

and Shifted Window Multi-head Self Attention (SW-MSA) modules. The first stage S1

consists of a Linear Embedding layer and an STB. At the beginning, the image is divided

into N patches {pi}Ni=1 that are then introduced into the first Stage S1. Here, each patch

pi is projected by the Linear Embedding (embedding()) layer into a token zi. All tokens

Z = {zi}Ni=1 enter into the STB and consequently in the self-attention modules that extract

the new tokens and give them to the stage S2. Each stage, from the second to the last,

starts with the Patch Merging module that reduces the number of patches grouping them

2 by 2 and then giving them to the STB. Given the U-shape of the encoder-decoder

model, intermediate representations produced after each stage of the Swin encoder are

subsequently fed into the symmetric UperNet decoder using skip connections.

Fusion techniques Let’s consider the case of fusing three modalities {Xi}i=1,2,3 (RGB,

HS and DTM in this analysis). Zi denotes the respective set of token embeddings of the

modality Xi and Z the input of the STB derived by the previous operations.

Early fusion . The simplest fusion strategy is the Early Concatenation (EC), where

the images from multiple modalities are concatenated (concat()) at input level on channel
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dimension and then processed by one Swin-based Encoder:

X(1,2,3) = concat(X1, X2, X3)

Z = embedding(X(1,2,3)).

Middle fusion . A middle fusion solution is the Token Patch Embedding (TPE)

concatenation in which the token embedding sequences from multiple modalities are

concatenated and fed into the Swin Transformer layers of the first STB [136]:

Zi = embedding(Xi) with i = 1, 2, 3

Z = concat(Z1, Z2, Z3).

The idea here is that with multimodal data, all the positions of tokens from different

modalities can be treated as a single sequence. By doing so, the context of one modality

can be effectively used to encode the positions of tokens from other modalities. However,

it’s important to note that this approach can lead to longer sequences after concatenation,

which in turn increases the computational complexity.

Another middle fusion method is the Channel Patch Embedding (CPE) [215], which

involves generating individual token embeddings for each channel within every modality.

These embeddings are then concatenated and fed as input to the first STB. For example

for hyperspectral data, this would correspond to the individual spectral bands, while for

RGB data, to the different color channels. Formally:

Zi,j = embedding(Xi,j)

where i is for the modality and j for the channel of the modality. Then, for i = 1, 2, 3 and

each channel j:

Z = concat(Zi,j).

The Token Fusion at Attention Level (TFA) method involves processing the three

modalities separately within three distinct Swin Transformer encoders, alternating one

and three streams throughout the process. It has been designed by us as a variant of the

Token Patch Embedding where the concatenation is done at the token level at each stage.

Before computing W-MSA and before SW-MSA in each transformer block, the tokens

generated by the three modalities up to that point are concatenated, allowing for joint

attention computation. After attention computation, the outputs are divided (split())

and processed individually by the three encoders until the next attention module. In this

particular case, let’s also consider Y l
i as the tokens of the i-th modality at stage l (in the

first stage it will be equal to Zi) and Y l as the input of the Transformer Block in Sl. For
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each stage l the operations are as follows:

Y l = concat(Y l
1 , Y

l
2 , Y

l
3 )

Y l
1,w, Y

l
2,w, Y

l
3,w = split(WMSA(Y l))

Y l
w = concat(Y l

1,w, Y
l
2,w, Y

l
3,w)

Y l+1
1 , Y l+1

2 , Y l+1
3 = split(SWMSA(Y l

w)).

These operations are computed for every self-attention operation in every STB. Every Y l

is fed into the decoder through skip connections.

Cross Attention (CA) is a method used in two-stream Transformers [140], to facilitate

cross-modal interactions by exchanging query embeddings between modalities. In this case,

the third modality has been leveraged following the idea outlined by Dufter et al. [216],

and utilizing it as positional embedding. Considering Qi, Ki, Vi, the query, key and value

of the canonical self-attention technique for the i-th modality and MSA as self-attention

operator valid for both W-MSA and SW-MSA, the cross attention between only X1 and

X2 is computed as: M1 = MSA(Q2,K1,V1)

M2 = MSA(Q1,K2,V2)

where M1 and M2 are the token outputs for the first stream of modality 1 and the second

stream of modality 2. Cross-attention allows for cross-modal interactions, highlighting the

importance of considering self-attention within each modality for a more comprehensive

understanding.

Late fusion . Late Concatenation (LC) works in a multi-stream mode. It involves

processing the three modalities separately in three distinct Swin Transformer encoders.

The output of each stage is then concatenated on the channel dimension and into the

UperNet decoder. Formally, let’s consider the output at each stage l for each i-th modality

as Ol
i:

Oj = concat(Ol
1, O

l
2, O

l
3).

Each Oj is then used in the skip connection with the correspondent layer of the UperNet

decoder.

All fusion methods were implemented using three modalities: RGB, HS↑, and DTM

except for Cross-Attention in which RGB and HS↑ were employed as main modalities and

DTM as positional embedding.

Due to the high computational requirements of Swin-UperNet models and to adapt

HS information to some of the fusion methodologies, for these experiments, a Principal

Component Analysis (PCA) has been applied to the pansharpened image. The PCA also
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helped to address the curse of dimensionality problem, typical of HS data, extracting

spectrally homogeneous regions. The first four principal components were retained,

accounting for 99% of the variation and resulting in a revised HS* with four spectral

bands.

Before training, a data augmentation strategy based on the Albumentations library [212]

was also applied, similarly to the CNNs experiments. It includes random cropping, rotation,

and horizontal and vertical flipping to images resized to 256x256 pixels and normalized.

All models employed a Swin encoder configuration with a patch size of 4, a window size of

7, and a depth specified as 2, 2, 6, 2 along with attention heads set to 3, 6, 12, 24 and

expansion layer. Due to limitations in computational resources, the embedding dimension

for each Swin Transformer was adjusted accordingly: 96 for Early Concatenation, Token

Patch Embedding and Cross-Attention, 48 for Token Fusion at the Attention Level and

Late Concatenation, and 24 for the Channel Patch Embedding method. All models were

subject to a stochastic depth regularization of 0.3. For training, Adam optimizer was

employed and trained for 250 epochs with an initial learning rate of 10−3 and weight decay

10−4. A learning rate scheduler was also applied to reduce it. The cross-entropy loss was

used for training. All experiments were run on NVIDIA GTX 1070 GPU with 8GB of

RAM.

5.3 Experiments and results

This section will be divided into two parts, the first dedicated to the CNNs experiments

and second one to the Transformers.

5.3.1 CNN results

The compared configurations are:

• single modality: RGB or HS↑;

• multimodalities: (RGB + HS↑) or (RGB + HS↑ + DTM).

The two fusion techniques that have been tested for each of the possible combinations

are:

• early fusion;

• middle fusion.
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Samples

RGB

EF RH

EF RHD

GT

HS↑

MF RH

MF RHD

Figure 5.9: Visual prediction of Land Cover segmentation for all the approaches. EF and MF are
respectively for Early and Middle Fusion, while RH and RHD are respectively for the combinations (RGB
+ HS↑) and (RGB + HS↑ + DTM).

The evaluation and comparison of the experiments are based on Accuracy (Acc), mean

Intersection over Union (mIoU), and Precision. All of them have been computed by

considering the average performance on single classes. For the evaluation, the torchmetrics

library has been used, setting the operation to purposely ignore the background. The

algorithms have been modified from the original procedure due to an error that has been

found during the work on this thesis. In particular, when the parameter ignore index

was used in a multiclass metric, it zeros out the metric on the class to ignore but it still

included the value in the average computation, counting the ignore index in the mean

computation and leading to wrong results4. A comprehensive evaluation of single classes

is also reported, always based on the same metrics.

Land Cover Evaluation Table 5.5 displays the overall and class-specific results for

Land Cover achieved across different configurations. Combining all modalities using middle

fusion yields the best performance across evaluation metrics. The results highlight how

performance depends on both the modalities involved and the chosen fusion method.

An in-depth analysis shows that HS-only is worse than RGB-only modality. This

behavior is probably due to the fact that the HS cube is at a lower resolution than RGB

images, thus causing a loss of finer details in the segmentation process.

Early fusion approaches achieve comparable results to RGB alone but fail to outperform

it. Conversely, middle fusion outperforms the RGB-only architecture in both experiments,

demonstrating the usefulness of HS and DTM information in the Land Cover scenario

and the importance of datasets that allow multimodal approaches. In particular, both

middle fusion setups (RGB+HS) and (RGB+HS↑+DTM), which are very similar in terms

4https://github.com/Lightning-AI/torchmetrics/issues/1692
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Table 5.5: Land Cover overall and single classes results of every experiment configuration with CNNs,
divided by modalities combination and fusion techniques. Bold values represent the best performance
obtained on the rows.

Land Cover

No fusion Early fusion Middle fusion
Class Metric RGB HS↑ (RGB + HS↑) (RGB + HS↑ + DTM) (RGB + HS↑) (RGB + HS↑ + DTM)

Acc 0.62 0.39 0.64 0.63 0.75 0.69
Building IoU 0.50 0.31 0.49 0.48 0.54 0.53

Precision 0.71 0.60 0.68 0.67 0.66 0.69

Acc 0.52 0.29 0.45 0.41 0.57 0.55
Road IoU 0.42 0.23 0.34 0.33 0.41 0.41

Precision 0.69 0.52 0.58 0.62 0.59 0.61

Acc 0.85 0.87 0.82 0.85 0.75 0.80
Residential IoU 0.64 0.57 0.62 0.58 0.63 0.64

Precision 0.72 0.62 0.72 0.64 0.79 0.76

Acc 0.64 0.52 0.62 0.47 0.72 0.67
Industrial IoU 0.50 0.40 0.47 0.41 0.55 0.54

Precision 0.70 0.64 0.65 0.75 0.70 0.74

Acc 0.92 0.90 0.92 0.89 0.95 0.96
Forest IoU 0.87 0.85 0.88 0.86 0.90 0.92

Precision 0.94 0.93 0.95 0.96 0.95 0.96

Acc 0.93 0.91 0.93 0.95 0.93 0.95
Farmland IoU 0.85 0.82 0.86 0.88 0.87 0.90

Precision 0.91 0.89 0.91 0.92 0.94 0.95

Acc 0.79 0.86 0.87 0.85 0.89 0.88
Water IoU 0.65 0.72 0.74 0.73 0.74 0.73

Precision 0.79 0.82 0.83 0.85 0.81 0.81

Acc 0.75 0.68 0.75 0.72 0.79 0.78
Overall IoU 0.63 0.56 0.63 0.61 0.66 0.67

Precision 0.78 0.72 0.76 0.77 0.78 0.79

of performance, outperform RGB-only by about 4%, 4%, 1% in terms of Accuracy, mIoU,

and Precision respectively. Middle fusion setups outperform also HS-only by about 11%,

11%, and 5% in terms of Accuracy, mIoU, and Precision respectively.

The performance of each class is also analyzed. Focusing on mIoU metrics, only

Residential and Road classes perform better using only RGB. These classes, especially

Road, benefit from high spatial resolution information. For the Road class, spatial

resolution degrades with HS-only and early fusion approaches. In HS-only, RGB cannot

compensate for the loss of spatial information, yielding the worst results. In early fusion

methods, RGB partially compensates for the missing information, but the shallow fusion

methodology prevents exploiting the best characteristics of each source. The mIoU

performance in middle fusion approaches is perfectly comparable to the RGB-only setting,

supporting the hypothesis. Moreover, middle fusion achieves the best accuracy for the

Road class, as the mixed features aid in discrimination. For Residential labeling, spatial

resolution is less fundamental than for Road due to less fine-grained labeling, resulting

in comparable performances across all configurations. Middle fusion of all modalities

achieves the same mIoU evaluation as RGB-only. Other labelings benefit from involving
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Figure 5.10: Visual prediction of Soil Agricultural Use segmentation for all the approaches. EF and MF
are respectively for Early and Middle Fusion, while RH and RHD are respectively for the combinations
(RGB + HS↑) and (RGB + HS↑ + DTM).

HS and DTM data. The improvement is evident in middle fusion, where the best mIoU

scores are obtained. Comparing middle fusion configurations with and without DTM,

results are comparable. However, it is notable that Forest and Farmland perform better

for all metrics when DTM is involved, indicating the usefulness of terrain elevation in

discriminating between these classes.

Finally, visual results for all of the approaches are shown in figure 5.9. Focusing

on the best overall model (middle fusion with all modalities), it accurately classifies all

labels, from fine-grained Road and Building to coarse-grained Residential, Farmland, and

Industrial. Notably, the model recognizes a forest area located in the RGB image but not

in the labeling, demonstrating good performance even with noisy labels.

To summarize, shallowly combining RGB, HS, and DTM data for Land Cover semantic

segmentation is insufficient to surpass the usage of RGB images alone. However, as

demonstrated in middle fusion, a proper combination of multimodalities yields better

performance than all other configurations, emphasizing once again the importance of

selecting the correct fusion methodology. Furthermore, specific classes benefit more from

specific modalities in combination with others. Therefore, to further improve performance

in semantic segmentation, modalities, and their combinations should be selected based on

fusion methods and the class being discriminated.

Soil Agricultural Use Evaluation Table 5.6 presents the overall results for Soil

Agricultural Use, highlighting the poor performance of the RGB-only approach and the

beneficial impact of HS modality in class discrimination. Due to the lower resolution

of SAU labeling, more focus is dedicated to the Accuracy rather than the mIoU. Early
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Table 5.6: Soil Agricultural Use overall and single classes results of every experiment configuration
with CNNs, divided by modalities combination and fusion techniques. Bold values represent the best
performance obtained on the rows.

Soil Agricultural Use

No fusion Early fusion Middle fusion
Class Metric RGB HS↑ (RGB + HS↑) (RGB + HS↑ + DTM) (RGB + HS↑) (RGB + HS↑ + DTM)

Other agricultural crops Acc 0.26 0.31 0.34 0.36 0.42 0.46
IoU 0.17 0.26 0.27 0.26 0.29 0.32
Precision 0.34 0.63 0.55 0.48 0.50 0.52

Forage crops Acc 0.14 0.32 0.32 0.40 0.35 0.37
IoU 0.11 0.24 0.23 0.26 0.24 0.27
Precision 0.34 0.52 0.45 0.42 0.44 0.48

Corn Acc 0.51 0.45 0.48 0.47 0.49 0.51
IoU 0.31 0.31 0.32 0.33 0.34 0.36
Precision 0.45 0.50 0.49 0.54 0.52 0.54

Industrial plants Acc 0.17 0.31 0.34 0.31 0.46 0.38
IoU 0.09 0.18 0.19 0.19 0.27 0.21
Precision 0.16 0.29 0.30 0.33 0.39 0.33

Rice Acc 0.74 0.81 0.78 0.80 0.81 0.80
IoU 0.57 0.64 0.63 0.65 0.68 0.68
Precision 0.72 0.75 0.77 0.77 0.81 0.81

Seeds Acc 0.01 0.06 0.12 0.17 0.21 0.25
IoU 0.00 0.04 0.07 0.10 0.16 0.20
Precision 0.02 0.14 0.12 0.20 0.39 0.53

Man-made areas Acc 0.89 0.89 0.89 0.89 0.90 0.90
IoU 0.77 0.76 0.78 0.76 0.77 0.77
Precision 0.85 0.83 0.86 0.83 0.84 0.84

Water bodies Acc 0.56 0.72 0.70 0.75 0.66 0.69
IoU 0.46 0.55 0.56 0.57 0.55 0.56
Precision 0.72 0.69 0.74 0.70 0.77 0.75

Natural vegetation Acc 0.82 0.83 0.83 0.80 0.84 0.85
IoU 0.64 0.67 0.67 0.65 0.67 0.67
Precision 0.75 0.78 0.77 0.78 0.77 0.76

Acc 0.47 0.54 0.55 0.57 0.59 0.60
Overall IoU 0.35 0.41 0.41 0.42 0.44 0.45

Precision 0.50 0.59 0.58 0.58 0.62 0.63

fusion approaches achieve comparable results to the HS-only experiment. The early fusion

approach already demonstrated the advantages of using multimodality w.r.t. RGB-only

(with an increment of 10%) and HS-only (3%). DTM also contributes to segmentation,

yielding improvements in accuracy and mIoU. As observed for Land Cover, the choice of

fusion methodology is crucial. Middle fusion approaches showcase the true advantages

of a multimodal approach, outperforming RGB-only and HS-only experiments, with the

best results obtained by combining all modalities. The difference in performance between

RGB-only and middle fusion using HS and DTM is significant, with an increment of about

13%, 10%, and 13% for Accuracy, mIoU, and Precision, respectively. The improvement

gained by using middle fusion with HS and DTM w.r.t. HS-only modality is about of 6%,

4%, and 5% for Accuracy, mIoU, and Precision, respectively.

Table 5.6 also reports the segmentation results for each class. All methods outperform

the RGB-only approach in class discrimination. Man-made areas, Natural vegetation, and

Corn show comparable performance with RGB-only, but slight improvements are observed

with the involvement of other modalities. The Seeds class, in particular, demonstrates
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Table 5.7: Land Cover overall results for each method, dividing single modality and multimodality fusion
methods using Transformers. The bold and underlined values represent the best and the second-best
performance achieved for each metric, respectively.

Method Acc Pr mIoU Macs Pars

S
in

gl
e RGB 67.22 72.75 55.71 9.65 39.28

HS* 58.10 62.71 45.51 9.65 39.28

M
u

lt
i

Early Conc. (EC) 67.57 73.15 56.06 9.68 39.29
Tok. Pat. Emb. (TPE) 68.89 64.71 73.95 16.40 60.60
Cha. Pat. Emb. (CPE) 65.01 71.18 53.85 65.43 241.96
Tok. Fus. Att. (TFA) 69.13 74.27 57.51 16.14 38.74
Cross-Att. (CA) 71.85 74.72 59.42 37.86 111.61
Late Conc. (LC) 71.84 75.31 59.69 16.14 63.29

significant improvements when other modalities are utilized, going from 1% accuracy

with RGB-only to 25% accuracy with all modalities and the middle fusion approach.

Fusion methodology also plays a crucial role, with middle fusion generally yielding better

improvements over early fusion.

Visual results for each combination and fusion technique are reported in figure 5.10.

The segmentations achieved by the best approach, with middle fusion and all the modalities

involved, accurately identify all classes despite the low resolution of SAU labeling.

This investigation demonstrates the usefulness of a multimodal approach, especially

for Soil Agricultural Use segmentation. Hyperspectral data and the Digital Terrain Model

prove to be even more beneficial in this context than in Land Cover labeling, where RGB

alone fails in achieving satisfactory results. Consequently, the availability of comprehensive

multimodal datasets is crucial for future research.

5.3.2 Transformer results

This section presents the outcomes of the experiments, which have been assessed and

examined using three evaluation metrics averaged on classes: Accuracy (Acc), Precision (Pr)

and mean Intersection over Union (mIoU). The computational complexity of each method

using the number (Million) of parameters of the neural model (Pars) and the number

(Giga) of multiply–accumulate operations (Macs) have also been measured. Table 5.7

reports the results achieved by every tested method, comparing both single modality and

multimodality approaches5. Figure 5.11 shows examples of visual results from each method.

As expected, due to the higher spatial resolution and as demonstrated by the previous

experiments, RGB mode performs better among single-mode approaches, achieving superior

performance to HS*.

Comparing multimodal and single modality approaches, it is possible to note that,

5The results in the table differs from the one in the original paper [22] because the adjustment of the
metrics from torchmetrics (described in section 5.3.1) was not applied in the article.
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apart from Channel Patch Embedding, all the multimodal methods outperform RGB alone.

Among these methods, Cross-Attention and Late Concatenation achieve the best results.

They are both comparable, nonetheless, the former is the best on Acc, while the latter

reaches better results on Pr and mIoU. Nevertheless, when taking into account Pars and

Macs in the analysis, it becomes evident that the Late Concatenation method exhibits a

significantly lower number of Pars compared to the Cross-Attention approach. In contrast,

the Cross-Attention method substantially increases the complexity of the RGB network by

about twice. The same argument is valid for the Macs where the late Concatenation has

less than half Macs than Cross-Attention. Therefore, Late Concatenation is considered

the best method, outperforming RGB of 4.04%, 2.24% and 3.47% on Acc, Pr and mIoU,

respectively. Figure 5.12 shows a comparison of all methods (excluding HS*). Ideally,

the best method is the one in the upper right part of the plot with a small circle that

indicates the number of Pars, confirming the conclusion that Late Concatenation is the

method that overall performs better. It is worth noting that Token Fusion at Attention

Level represents an excellent trade-off between performance and resources used, since it is

superior to RGB and, at the same time, has fewer Pars with comparable complexity in

terms of Mac (equal to Late Concatenation).

To summarize, excluding Channel Patch Embedding, five of six multimodal approaches

outperformed RGB and consequently any other single modality approach. In particular,

compared with RGB, two methods distinguished themselves. The Token Fusion at

Attention Level revealed to be the best compromise in terms of performance (outperforming

RGB) and memory (parameters). The Late Concatenation method proved to be the best

multimodal method. Even with Transformers, the results demonstrate that a multimodal

approach is more efficient in terms of performance while keeping the consumption of

resources comparable with single modality methods.

5.4 Usefulness of multimodality in remote sensing

semantic segmentation

In this work, the Ticino dataset has been presented, a novel multimodal dataset for

RS semantic segmentation, that is crucial in various applications, including environment

management and precision farming. The use of multimodal sources of information enhances

the segmentation performance and class discrimination, thus the scarcity of existing

multimodal datasets poses challenges in RS semantic segmentation. Existing datasets

have low cardinality or lack spectral information, limiting the effectiveness of data-hungry

deep-learning techniques that require diverse samples for training.

The proposed dataset presents five modalities: RGB, panchromatic, VNIR, SWIR,

and DTM and two labelings: the Land Cover with eight classes and the Soil Agricultural
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Figure 5.11: RGB samples at top-left row; Ground truth (GT) at top-right row; single modality results:
RGB, HS*; multimodality results: EC, TPE, CPE, TFA, CA and LC.

Use with 10 classes. This dataset is the biggest and most diverse dataset for RS semantic

segmentation as it includes a high cardinality of images for all the modalities. Specifically,

the Ticino dataset provides 1502 tiles and an extension of around 1332 km2.

Furthermore, the advantages of these modalities have been investigated in two sets of

experiments. The first set of experiments was based on CNN models. On the first hand, the

scope of this analysis was to understand if the combination of complementary modalities

can outperform the use of single RGB modality, and, on the second hand, to provide a

baseline for multimodal RS semantic segmentation on the proposed dataset. The results,

based on early and middle fusion approaches, show that both Land Cover and especially

SAU labelings can benefit from the multimodal approach, with the best setting represented

by the combination of all the modalities and middle fusion. The second set of experiments,

instead, was based on Transformers, with the aim of properly studying the effect and

improvements achieved using different fusion methods. In this case, six fusion methods

were tested: Early Concatenation (EC), Token Patch Embedding (TPE), Channel Patch

Embedding (CPE), Token Fusion at Attention Level (TFA), Cross-Attention (CA), and Late

Concatenation (LC). The results showed once again that multimodality outperforms the

use of single modality approaches in terms of performance, without overcomplicating the
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Figure 5.12: Comparison of the performance of the fusion methods based on Acc (x), mIoU (y) and
Parameters (area of the circles).

resources needed. Among the tested methods, the Late Concatenation demonstrated better

performance thanks to the ability to extract high-level features from each heterogenous

source independently, and then combine them. The Token Fusion at Attention Level

showed the best compromise between performance and complexity.

Plenty of challenges connected to semantic segmentation are still open, and this dataset

can become the first step in the right direction. This dataset can also help investigate open

issues such as hyperspectral pansharpening, dimensionality reduction of high cardinality

data, and spatio-temporal fusion of modalities.

As a future work, a further refinement of the labeling has been planned, reducing the

noisy labels and balancing the low-represented classes by using the dataset itself for a

semi-supervised labelization of the background. The extension of the dataset and the

increment of its variability have also been planned. Moreover, this data allows to continue

investigating the field of RS semantic segmentation to further exploit the usefulness of

the HS and the DTM. This can be achieved by studying specific techniques of fusion that

take into consideration the difference between each modality (e.g. time stamp, resolution,

etc.) and their relation with the semantic classes.
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Chapter 6

Digital Soil Mapping

The investigation described in this chapter has been published in MDPI Sensors journal

and it refers to the paper Estimation of Soil Characteristics from Multispectral Sentinel-3

Imagery and DEM Derivatives Using Machine Learning [23].

Monitoring soil properties is a fundamental aspect of precision agriculture, offering

improved resource management [217], enhanced risk assessment and effective land erosion

monitoring [218]. Furthermore, soil has the potential for carbon sequestration, which could

prove to be a formidable tool in combating climate change in the years ahead [219].

The primary method for the characterization of soil involves manually collecting soil

samples, drying them and subsequently performing chemical analyses in a laboratory

setting [155]. However, the manual collection of soil samples, along with their correspond-

ing physicochemical characterization, is a time-consuming process that lacks scalability

for extensive areas [220]. Different soil properties interact with electromagnetic radia-

tion in diverse ways. As electromagnetic waves strike the Earth’s surface, they can be

absorbed, transmitted or reflected. The reflection and absorption patterns at different

wavelengths provide insights into the composition, structure and properties of the observed

materials [221]. More recently, hyperspectral and multispectral soil characterization has

emerged as a highly valuable tool for the estimation of soil properties without the need for

chemical analyses of the soil samples [222, 223]. Multispectral and hyperspectral remote

sensing harness data from multiple narrow and contiguous bands across the electromagnetic

spectrum, with each band corresponding to a specific wavelength range. This technology

has proven to be immensely valuable for soil characterization due to its ability to detect

and analyze various soil properties [224, 221].

Among the aforementioned research papers cited in section 2.4, the work authored by

Zhou et al. [146] stands out as one of the most pertinent contributions. This study presents

a comprehensive comparison of diverse satellite sensors (including Landsat-8, Sentinel-2

and Sentinel-3), each coupled with varying spatial and temporal resolutions, in an effort

to predict the organic carbon content and C:N ratio in Switzerland. The outcomes of this
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analysis show that the prediction models based on Landsat-8 and Sentinel-2 yielded the

most favorable and least favorable results, respectively, in terms of error in the organic

carbon estimations. It is worth noting, however, that this investigation also highlighted

the potential inherent in models based on Sentinel-3 data. Despite its coarser resolution in

comparison to Landsat-8 and Sentinel-2 (300 m versus 30 m and 10–60 m), models utilizing

Sentinel-3 exhibited competitive or even superior accuracy. Remarkably, Sentinel-3’s

advantage lies in its broader spectral coverage, offering 21 bands as opposed to the 7 of

Landsat-8 and the 13 of Sentinel-2. This expanded spectral range holds the promise of

enhancing the estimations of soil parameters. Moreover, it is important to emphasize

that Sentinel-3, while characterized by reduced spatial resolution, represents a relatively

novel sensor that remains largely unexplored for machine learning-based soil parameter

estimation, as highlighted by Odebiri et al. [225]. One limitation of this study [146] is the

extent of the area under investigation, which is limited to the Swiss territory. In fact, the

amount of data used in the experiments is limited, making it difficult to use data-hungry

methodologies such as machine learning. The size of the area under investigation is very

important in terms of demonstrating the generalization capabilities of soil estimation

methods on regions not considered during the training phase. In fact, soil properties

vary significantly across different regions due to their unique physicochemical properties,

resulting from factors such as climate, topography and time [226]. Moreover, terrain

features, including slope, aspect and elevation, along with environmental elements like

water availability and vegetation, play a crucial role in influencing spectral transmission,

which is essential in this application [227].

Starting from these aspects, this study aims to show the effectiveness of soil parameter

estimation models over a larger geographical area than Switzerland.

In more detail, in this chapter, different machine learning methodologies are evaluated

for the estimation of the multiple soil characteristics of a continent-wide area corresponding

to the European region using multispectral Sentinel-3 satellite imagery [5] and DEM [228]

derivatives. The soil characteristics’ ground truth is obtained from the LUCAS library,

which is the largest collection of physicochemical soil properties and corresponding spec-

tral reflections acquired in the laboratory. The LUCAS library includes about 20,000

samples taken from specific geographical locations across the entire European region [155].

With each geographical location of the LUCAS dataset, the corresponding Sentinel-3

multispectral signature and DEM derivative are associated, thus obtaining a large remote

sensing dataset to be used for the estimation of multiple soil characteristics. The study

area includes the entire European region, comprising an extensive collection of soil sam-

ples with remarkable diversity and heterogeneity. The analysis presented in this work

provides insights into the potential of machine learning techniques to generalize over a

vast geographical area. Nevertheless, given the substantial variations in soil properties
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across different regions, as mentioned earlier, the validity of these findings for areas beyond

Europe should be empirically verified.

The main contributions of this study are the following:

• a multisource remote sensing dataset of the European region by merging multispectral

images from Sentinel-3 and DEM derivatives from the European Copernicus mission

and the corresponding LUCAS samples;

• a benchmark of several machine learning methods for the estimation of the soil

characteristics using multispectral signals, DEM derivatives and a combination of

them;

• methods based on an artificial neural network (ANN) capable of predicting all the

soil characteristics at the same time;

• an analysis of the importance of each input source (multispectral and DEM) in

predicting the soil properties.

6.1 AI Methods for Digital Soil Mapping

Machine learning has revolutionized various scientific disciplines by enabling computers

to learn patterns from data and make precise predictions. Several methodologies have

been presented in the state of the art, such as ANNs, gradient boosting (GB), random

forest (RF), support vector regressor (SVR), etc. Among these methods, ANNs have

emerged as a powerful class of data-driven algorithms inspired by the biological neural

networks of the human brain. These methods have gained significant popularity due to

their ability to deal with complex and high-dimensional data, making them well-suited for

a wide range of applications, such as classification and semantic segmentation. This study

leverages the potential of ANNs in combination with multispectral Sentinel-3 satellite

imagery and DEM derivatives to estimate multiple soil characteristics over a continent-wide

area corresponding to the European region. ANNs optimize their performance through a

data-driven training procedure that minimizes a loss function by employing interconnected

nodes and weighted connections to learn from the data. The use of data-driven ANNs

in this research provides an efficient method for the improvement of the precision of soil

property estimation, and their application in conjunction with multispectral features and

DEM derivatives demonstrates their crucial role in advancing soil characterization using

machine learning techniques.

A machine learning method for the estimation of a soil parameter s learns a mapping

function f(u; Θ), with parameters Θ, between a given input u and a target soil parameter s.

The input can be either a multispectral signature m alone or a combination of multispectral
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and DEM features d. This method can be extended for the estimation of multiple soil

parameters s = {s1, . . . , sP}, with P being the number of parameters to be estimated.

At the inference time, given the input u, the mapping function f(u; Θ) outputs the

estimation ŝ of a given soil property. In the case of multi-variable estimation, the mapping

function outputs the estimation of all the variables at the same time ŝ = {ŝ1, · · · , ŝP}.

The goodness of the predictions can be evaluated by comparing s with ŝ in the case of

single-variable estimation, and by comparing s with ŝ in the case of multiple-variable

estimation. The metrics used for the evaluation are the coefficient of determination R2,

root mean square error (RMSE) and mean absolute error (MAE).

This study considers the following four state-of-the-art methods [146]: ANNs, GB,

RF and support vector regressor (SVR). For all these methods, we evaluated the use of

two different inputs, namely (i) multispectral information (m); and (ii) a combination of

multispectral information (m) and features extracted from the DEM, which we refer to as

DEM derivatives (m,d). While for the GB, RF, and SVR, the canonical implementations

available from the Python Scikit-Learn library (https://scikit-learn.org/stable/,

accessed on 12 September 2023) are adopted, in the case of the ANNs, a network architecture

for the soil parameter estimation task has been specially engineered. GB, SVR, and RF

follow the same configuration used by Zhou et al. [146]. For all of them, the parameters

were optimized using the grid search algorithm.

The GB algorithm uses regression trees and gradient optimization as a procedure for

the minimization of the loss function. The algorithm consists of training a set of regression

trees in sequence. At each step, the residual error of the previous tree is used as a label

for the current tree. After the prediction of all the trees, gradient optimization is used to

change the weights of each tree, minimizing the loss function. The loss function considered

in the experiments is the mean squared error (MSE) (Equation (6.1)).

MSE =
1

N

N∑
i=1

(xi − yi)
2 (6.1)

where xi and yi are the corresponding pair of the input and output, and N is the number

of samples.

SVR, instead, is a machine-learning algorithm that allows for a definition of a tolerance

on the accepted error of the model. Based on a kernel function, it allows for the identification

of the best hyperplane to fit the data. The kernel function used in the experiments is the

radial basis function (RBF) (Equation (6.2)), due to its performance in soil mapping [229].

k(xi, xj) = exp
(
−σ∥xi + xj∥2

)
(6.2)

where k is the kernel function, xi and xj are the input vectors, and σ represents the width
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Table 6.1: Structure of the neural network used for the soil variable estimation. N represents 21 if only
multispectral features are used and 29 if geomorphological features are added. M is the number of outputs
of the neural network, which can be 1 for the single-variable estimation or 12 for the multi-variable
estimation.

Stage Operation Output size

Pre-processing Input N

Encoding Linear + Hardswish 32
Linear + Tanhshrink 128
Linear + Hardswish 32
Linear M

Total parameters 32N + 8, 192 + 32M

of the RBF, thus regulating the relationship between input and output.

RF uses multiple decision trees to predict the output. Each tree makes its own

prediction, and the final values are obtained by merging them together. RF also uses a

bootstrap technique to generalize the training and avoid overfitting [230]. Basically, every

time a prediction is made during the training, a set of N samples from the dataset is

chosen and used for the training step. The remaining samples are used to evaluate the

value of the loss function, which is then used during the optimization of the model. In this

case also, the loss function chosen is the MSE (Equation (6.1)). The number of trees and

the number of samples for the bootstrap procedure were optimized with a grid search

algorithm, as was the case for the other tested methods.

The ANNs were implemented using the PyTorch Library (https://pytorch.org/,

accessed on 12 September 2023). The architecture and hyperparameters of the model

were optimized using a grid search method. The optimized architecture of the ANNs is

described in Table 6.1. It is composed of five linear layers, including input and output

layers. The three hidden layers are separated in turn by Tahnhshrink and Hardswish

(h-swish) activation functions [231], which were selected during the optimization of the

architecture. The input and output layers of the ANNs were parameterized so that they

can be adapted to different types of inputs ((m) and (m,d)) and outputs. In fact, the

ability of the ANN to predict multiple soil properties at the same time is also investigated,

thus having two kinds of outputs: single and multi. To distinguish between the ANN for

single-variable estimation and the ANN for multiple-variable estimation, ANN Single and

ANN Multi are used as labels. The loss function used to train the ANN models is the

MSE (Equation (6.1)). Furthermore, the hyperparameter optimization selected the Adam

optimizer with a learning rate of 10−2 as the best-performing configuration.

6.1.1 Explainability Investigation

Data-driven methods automatically learn the importance of an input feature in predicting

a given output. The more closely correlated the input feature is with the output, the more
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frequently it will be considered during the learning process. However, this correlation

cannot be observed directly and requires an appropriate strategy that depends on the

machine learning method adopted for the prediction [232].

The analysis of the feature importance is focused on the RF method, with the aim

of understanding which bands of the multispectral signal and which DEM derivatives

contribute most significantly to a given soil variable estimation. Due to their remarkable

effectiveness and interpretability, RFs have acquired great popularity in the literature.

This unique combination establishes them as a potent tool not only for accurate forecasting

but also for the facilitation of a comprehensive explanation of outcomes.

Two strategies exist in the state of the art: the mean decrease in impurity (MDI) and

the feature permutation (FP) [233, 151]. The former counts the number of times a feature

is used to split a tree node, weighted by the number of samples it splits. In the version

used in this investigation, the decrease in node impurity is also weighted by the probability

of reaching that node. The latter, instead, measures the increase in the prediction error of

the model after the values of the features are permuted, breaking the relationship between

the features and the true outcome. The impurity-based feature importance cannot scale

up well on high-cardinality input features. Therefore, the FP technique has been adopted.

6.2 Multimodal dataset for the estimation of soil pa-

rameters

One of the contributions of this work is the creation of a large library of soil proper-

ties, spaceborne multispectral data and digital elevation data corresponding to N geo-

referenced land points. The entire library is defined as L = (S,M,D), with S = {si}Nn=1,

M = {m}Nn=1 and D = {d}Nn=1 being the soil properties, multispectral and digital elevation

model information, respectively.

For each land point n, sn, mn and dn are defined as follows:

• sn = {sn1 , · · · , snP} are the P = 12 soil properties;

• mn = {bn1 , · · · , bnL} are the L = 21 bands of the spaceborne multispectral data;

• dn = {dn1 , · · · , dnK} are the K = 8 features extracted from the digital elevation

model information.

The following section will present, first, how the multispectral data are collected and

processed, and secondly, how the soil properties have been selected and how the association

between the properties and the spectra is created. Finally, how the digital elevation data

have been collected and how the features to be associated with the soil properties have

been extracted will be described.

114



6.2.1 Sentinel-3 - Multispectral Data

The data has been gathered from the Sentinel-3 satellite mission in order to cover the

entire European continent. Sentinel-3 is a multi-instrument mission to measure the sea

surface topography, sea and land surface temperature and ocean and land color with a

high level of accuracy and reliability. The mission is composed of two satellite platforms:

Sentinel-3A, launched on 16 February 2016, and Sentinel-3B, launched on 25 April 2018.

Both satellites are equipped with several different sensing instruments and are collocated

in the low Earth orbit. Among all the instruments, the Ocean and Land Colour Instrument

(OLCI) is the most interesting for the purpose of this work. OLCI has a spatial resolution

of 300 m and is capable of measuring 21 spectral bands, from 400 nm to 1020 nm. It is

capable of producing images with a swathe of 1270 km, and is not centered at the nadir, but

is tilted 12.6° westwards to mitigate the negative impact of sun glint contamination. OLCI

images are processed and distributed through the Copernicus Open Access Hub [234].

For this work, images preprocessed with level 1 were used, which includes top-of-

atmosphere (TOA) radiometric measurements, radiometrically corrected, calibrated and

spectrally characterized. These images are also quality-controlled and georeferenced

(latitude, longitude and altitude). The images cover an area of 1200 km2 and have a

resolution of 300 m. All the images are encapsulated in a Network Common Data Form 4

(NetCDF 4) format [235] and processed through QGIS Desktop (version 3.20.2) software [4].

Images of level 1 were downloaded from the Copernicus Open Access Hub, using the

Semi-Automatic Classification Plugin for QGIS (version 7.8.35) [236]. This tool allowed

the downloading of images from the hub and computing preprocessing operations specific

for Sentinel-3, creating 21 images corresponding to the 21 spectral bands. Atmospheric

correction DOS1 (dark object subtraction) was applied [237]. This methodology is one of

the most common techniques adopted for such purposes: water, forests and shadows are

considered dark objects when their values of reflectance are close to zero. Dark objects

are detected automatically when the pixel reflectance value is less than or equal to 1.0%.

The assumption is that some pixels within the image receive 0% of solar radiation and the

values of radiance corresponding to these pixels registered by the satellite correspond to

atmospheric dispersion.

A total of 14 images were downloaded, spanning five years, from 2016 to 2021, with an

acquisition time between the summer period, from May to September. Similarly to the

practice adopted by Zhou et al. [146], all images were chosen with a cloud coverage inferior

to 10% of the acquisition. The images were loaded into the QGIS software as single raster

layers, with the same datum, EPSG:4326 World Geodetic System 1984, considered for

each. Figure 6.1a shows all the multispectral images collected by Sentinel-3 and properly

merged to cover the entire European continent. It should be noted that, for the sake of

visualization, all the downloaded images are visualized by showing their spectral average,
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(a) (b)

Figure 6.1: Representation of the data used in these experiments. (a) shows multispectral images collected
by Sentinel-3 and properly merged to cover the entire European continent. For the sake of visualization, (a)
represents the average over all the bands, normalized between 0 and 1. (b) represents the digital elevation
model acquired from the Copernicus Land Monitoring Service. Greenish colours represent low-elevation
values (approx. −214 m), while reddish colours represent high-elevation values (approx. 5105 m).

and thus, the resulting patchwork effect is only a visual artifact.

6.2.2 LUCAS - Soil Data

To connect soil properties with each multispectral signature, the target variables considered

in the LUCAS library are included. LUCAS is a programme carried out by EUROSTAT

(the European Statistical Office) that aims to organize harmonized surveys across all the

states of the European Union over time [155]. The LUCAS library includes a total of

approximately 20,000 samples, each of 0.5 kg of topsoil material. The topsoil sampling

locations were selected to be representative of the European landscape features. The

selection was based on a stratified random sampling that took into consideration the

CORINE land cover 2000, the the Shuttle Radar Topography Mission (SRTM) DEM and

derived slope, aspect and curvature [238]. The authors of the dataset decided to exclude

areas above 1000 m from the survey due to the challenges associated with accessing and

sampling these high-altitude locations. Finally, the LUCAS topsoil sample points exhibit

a density of approximately 1 per 199 km2, which theoretically permits a grid cell size

of approximately 14 km [238]. All the dried samples were analyzed for the percentage

of coarse fragments, particle size distribution (% clay, silt, and sand content), pH (in

CaCl2 and H2O), organic carbon (g/kg), carbonate content-CaCO3 (g/kg), phosphorous

content (mg/kg), total nitrogen content (g/kg), extractable potassium content (mg/kg),

CEC (cmol(+)/kg) and hyperspectral reflections, measured in a laboratory environment.

A great portion of the data, namely 43% of all samples, was collected from croplands.

Figure 6.2 shows violin plot distributions of all the 12 soil properties. Figure 6.2 (d), (e)

are in the logarithmic scale. The association of each LUCAS sample to the spaceborne
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(a) (b) (c)

(d) (e) (f)

Figure 6.2: Violin plots of the soil properties considered in this work. (a) Coarse; (b) Clay, Silt and Sand;
(c) pH in CaCl2 and H2O; (d) Organic Carbon (OC), Calcium Carbonate (CaCO3) and Nitrogen (N); (e)
Phosphorous (P) and Potassium (K); (f) Cation exchange capacity (CEC). For the sake of visualization,
the variables P, K and CEC are shown in a logarithmic scale.

multispectral signatures of Sentinel-3 has been achieved through the GPS coordinates

associated with each sample.

6.2.3 Copernicus - Digital Elevation Model Data

To take into account the geometrical distortions of the land in the estimation of the

soil properties, the DEM has been included, which is a representation of the terrain

elevation [239]. The DEM was acquired from the Copernicus Land Monitoring Service,

resampled to a resolution of 8 m, and then saved as a raster layer on QGIS. Moreover,

the DEM was reprojected from the EPSG:4326-WGS 84 datum, in degrees, to another da-

tum (EPSG:3035 ETRS89-extended/LAEA Europe), which is in meters. Figure 6.1b shows

the maps obtained, which were later sampled with the points from the LUCAS dataset.

Afterward, the raster layers corresponding to the DEM information were processed

using the SAGA GIS software (version 7.8.2) [240] to extract the following features:

altitude, valley depth, slope, topographic wetness index (TWI), channel network base level

(CNBL), vertical distance to channel network (VDCN), catchment slope and slope length.

The TWI is used to estimate where water is accumulated, the CNBL is the base level of

groundwater and the VDCN is the vertical distance. The exact procedure for the feature

extraction is described as follows. The valley depth function is called with the following

parameters: Tension Threshold 1, Maximum Iterations 0, Keep Ridge Level Above Surface

checked, Ridge Detection Threshold 4. The functions slope [241] (Unit radians) and slope

length are. Then, the functions to calculate the SAGA Wetness Index, catchment area and

catchment slope [242] are called with the following parameters: Suction 10, Type of Area

square root of the catchment area, Type of Slope catchment slope, Minimum slope 0, Offset
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Table 6.2: Variables considered by the state-of-the-art methods related to the estimation of soil parameters
from multispectral signals. Most of these methods consider the SOC as the most important variable.
This work goes further and provides all the necessary tools to estimate almost all soil characteristics
simultaneously.

method coarse clay silt sand pHCaCl2 pHH2O SOC CaCO3 N P K CEC Area

Meng et al. [150] X North east China (315 samples)
Forkuor et al. [144] X X X X X X Rural watershed (580 km2)
Safanelli et al. [145] X X X X X X European Croplands (7142 samples)
Trontelj et al. [153] X X X Slovenia (350 samples)
Li et al. [154] X X X 19 sampling sites (180 samples)
Zhou et al. [146] X X Switzerland (150 samples)
Our Proposal X X X X X X X X X X X X Europe (20,000 samples)

Slope 0.1, Slope Weighting 1. The channel network was created through the catchment

area as an initiation grid, setting the initiation type as “Greater than” and the “threshold”

as 10 million, using the channel network function with the following parameters: Min.

Segment Length 10. Finally, the function vertical distance to channel network was used

to extract the VDCN and CNBL with the following parameters: Tension Threshold 1,

Maximum Iterations 0, Keep Base Level below Surface checked.

6.2.4 Comparison with Existing Datasets

Table 6.2 recapitulates the main characteristics of the state-of-the-art soil parameter

estimation experiments in comparison with the ANN methods proposed. All of these

estimate a single or small subset of soil characteristics. Of great importance is the constraint

on the volume of data employed in the experiments, posing challenges for the utilization

of data-hungry approaches like machine learning. Lastly, the geographical area under test

is usually region- or state-wide, with none of the previous works evaluating larger areas,

such as continent-wide areas. The proposal of this study is the only one that considers a

large set of multiple variables at the same time. Most importantly, it includes the largest

area, covering a continent-wide area corresponding to the European region.

6.2.5 Data Split

All the experiments were carried out on the proposed dataset, which was divided into

training, validation and test sets, using the rule 80%- 10%-10%. The quantiles for each

variable are endured to be the same in all the sets in order to have the same data

distribution in all the sets.

Each soil property sni was normalized using a robust scaler [243]. The use of this

preprocessing allows for a mitigation of the scale effect and the effects of outliers. The

robust scaler subtracts the mean and scale on the base of the interquartile range, leading
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to a more robust rule. Formally, it is defined as:

xn
i =

sni −median(si)

IQR0.25−0.75

(6.3)

where sni is the i-th soil property at the original scale while xn
i is the same property

preprocessed with the robust scaler. IQR0.25−0.75 is the interquartile range starting from

the 25% quartile to the 75% quartile. Furthermore, the input features (m and d) were

normalized to the zero mean and unit standard deviation.

6.3 Results of the proposed Digital Soil Mapping

algorithms

In this section, the performance of all the considered methods is assessed. An analysis

of the feature importance is also presented in order to highlight the role of each single

feature in the soil parameter prediction.

6.3.1 Experiments

Table 6.3(a-c) show the results achieved by all the methods considered and measured with

R2, RMSE and MAE, respectively. Two groups of experiments are shown, depending on

the input features: multispectral input (m) and multispectral input with DEM derivatives

(m,d). For each group of experiments, the performance of the state-of-the-art and ANN

methods is shown. For each input, the underlined values highlight the best methods for

each soil variable, while the bold values highlight the best methods on average.

ANN Single and ANN Multi are the best-performing methods in terms of R2, whatever

the input features are. ANN Single and ANN Multi, with the multispectral input (m),

are the best-performing methods in terms of RMSE and MAE. In terms of RMSE, the

best-performing methods when the inputs are the multispectral data and DEM derivatives

(m,d) are ANN Single and RF. In terms of MAE, the best-performing method when the

inputs are the multispectral data and DEM derivatives (m,d) is the SVR. To enable a

visual comparison of the results, in Figure 6.3, the maps have been rendered through

inverse distance weighting (IDW) interpolation of the ground truth, predictions and errors

in terms of RMSE for each soil variable. As it is possible to observe, in most cases,

the maps corresponding to the ground truth and the prediction of each soil variable are

visually similar, indicating an accurate estimation. In agreement with the numerical

results presented in Table 6.3, CaCO3, pHH2O and pHCaCl2 are the ones that appear most

similar. Interestingly, it is worth noting that the spatial distribution of the error is not

homogeneous. In fact, an observation of the error maps of each triplet (last map) makes it
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Table 6.3: Performance of the considered methods measured in terms of R2, RMSE and MAE. For each
table, the first group of rows refers to the use of multispectral input (m), while the second group refers
to the use of multispectral input and DEM derivatives (m,d). For each input, the underlined values
highlight the best methods for each soil variable, while the bold values highlight the best methods on
average. For R2 the higher is the value, the better is the method, while for RMSE and MAE the lower is
the value, the better is the method.

(a) R2

Type Model silt sand pHH2O pHCaCl2 coarse clay P OC N K CaCO3 CEC avg

(m)

GB 0.13 0.18 0.42 0.41 0.05 0.18 0.08 0.16 0.11 0.08 0.25 0.08 0.18
RF 0.19 0.25 0.48 0.47 0.06 0.26 0.07 0.13 0.12 0.10 0.33 0.11 0.21
SVM 0.13 0.19 0.44 0.44 0.04 0.14 0.07 0.11 0.07 0.04 0.14 0.02 0.15
ANN Single 0.23 0.28 0.54 0.53 0.11 0.26 0.13 0.20 0.17 0.13 0.37 0.12 0.26
ANN Multi 0.25 0.30 0.51 0.50 0.13 0.26 0.12 0.21 0.15 0.18 0.43 0.14 0.27

(m,d)

GB 0.22 0.27 0.47 0.47 0.14 0.28 0.13 0.19 0.13 0.10 0.33 0.14 0.24
RF 0.36 0.41 0.54 0.54 0.16 0.39 0.12 0.20 0.17 0.12 0.41 0.22 0.30
SVR 0.27 0.32 0.55 0.54 0.12 0.31 0.14 0.19 0.17 0.10 0.34 0.17 0.27
ANN Single 0.33 0.39 0.57 0.57 0.17 0.35 0.12 0.25 0.20 0.12 0.46 0.20 0.31
ANN Multi 0.34 0.39 0.56 0.56 0.14 0.38 0.12 0.25 0.21 0.15 0.44 0.23 0.31

(b) RMSE

Type Model silt sand pHH2O pHCaCl2 coarse clay P OC N K CaCO3 CEC avg

(m)

GB 0.96 0.92 0.76 0.77 0.96 0.89 0.87 0.90 0.95 1.04 0.88 0.99 0.91
RF 0.92 0.88 0.72 0.73 0.95 0.84 0.87 0.91 0.95 1.03 0.83 0.97 0.88
SVR 0.95 0.91 0.75 0.75 0.96 0.91 0.88 0.93 0.97 1.07 0.94 1.02 0.92
ANN Single 0.90 0.86 0.67 0.69 0.91 0.85 0.85 0.88 0.92 1.02 0.80 0.97 0.86
ANN Multi 0.88 0.85 0.70 0.71 0.91 0.84 0.86 0.87 0.93 1.00 0.75 0.97 0.86

(m,d)

GB 0.90 0.86 0.73 0.73 0.91 0.83 0.85 0.88 0.94 1.03 0.83 0.96 0.87
RF 0.82 0.78 0.68 0.68 0.90 0.77 0.85 0.88 0.92 1.02 0.78 0.91 0.83
SVR 0.87 0.84 0.67 0.68 0.92 0.82 0.84 0.88 0.92 1.04 0.83 0.94 0.85
ANN Single 0.84 0.79 0.66 0.66 0.90 0.79 0.86 0.86 0.91 1.02 0.75 0.92 0.83
ANN Multi 0.85 0.80 0.67 0.67 0.90 0.79 0.86 0.85 0.90 1.03 0.79 0.92 0.84

(c) MAE

Type Model silt sand pHH2O pHCaCl2 coarse clay P OC N K CaCO3 CEC avg

(m)

GB 0.77 0.76 0.63 0.64 0.72 0.69 0.61 0.58 0.63 0.53 0.50 0.69 0.65
RF 0.73 0.72 0.57 0.58 0.71 0.64 0.61 0.58 0.63 0.52 0.45 0.67 0.62
SVR 0.77 0.75 0.59 0.60 0.67 0.66 0.57 0.52 0.59 0.48 0.42 0.66 0.61
ANN Single 0.70 0.68 0.54 0.54 0.68 0.64 0.57 0.57 0.62 0.51 0.43 0.67 0.60
ANN Multi 0.70 0.68 0.56 0.57 0.69 0.65 0.59 0.54 0.61 0.52 0.42 0.66 0.60

(m,d)

GB 0.73 0.72 0.61 0.61 0.67 0.65 0.59 0.56 0.62 0.52 0.47 0.66 0.62
RF 0.65 0.63 0.54 0.53 0.67 0.58 0.59 0.55 0.60 0.51 0.42 0.61 0.57
SVR 0.69 0.66 0.53 0.53 0.64 0.58 0.53 0.48 0.54 0.46 0.38 0.60 0.55
ANN Single 0.66 0.63 0.52 0.52 0.66 0.58 0.59 0.53 0.57 0.52 0.39 0.60 0.56
ANN Multi 0.68 0.65 0.53 0.53 0.67 0.59 0.59 0.53 0.59 0.52 0.44 0.61 0.58

clear that for each variable, there are zones where the estimation is less accurate. This

could be due to several factors. First, although the sample collection is standardized, it is

subject to human factors and errors. Secondly, there may be environmental factors that

mitigate the observability of the phenomenon.

Instead, focusing on the R2, (see Table 6.3(a)), it is possible to observe that some

variables can be estimated more accurately than others. For instance, the methods for the

estimation of pHH20 and pHCaCl2 achieved an R2 value higher than 0.5. On the contrary,

the methods for the estimation of the variables coarse, P and N achieved an R2 value lower

than 0.20. Overall, the use of DEM derivatives permits the achievement of an increment
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Table 6.4: The best methods for the estimation of each soil parameter, considering both types (m) and
(m,d). The methods in bold represent the best type with respect to (m) and (m,d) for each metric and
each soil parameter.

Soil (m) (m,d)
Parameter R2 RMSE MAE R2 RMSE MAE

silt ANN Multi ANN Single ANN Multi RF RF RF
sand ANN Multi ANN Multi ANN Multi RF RF RF/ANN Single
pHH2O ANN Single ANN Single ANN Single ANN Single ANN Single ANN Single
pHCaCl2 ANN Single ANN Single ANN Single ANN Single ANN Single ANN Single
coarse ANN Multi ANN Single/ANN Multi ANN Multi ANN Single RF/ANN Single/ANN Multi SVR
clay RF/ANN Single/ANN Multi RF/ANN Multi RF/ANN Single/ANN Multi RF RF RF/SVR/ANN Single
P ANN Single ANN Single ANN Single SVR SVR SVR
OC ANN Multi ANN Multi ANN Multi ANN Single/ANN Multi ANN Multi SVR
N ANN Single ANN Single ANN Single ANN Multi ANN Multi SVR
K ANN Multi ANN Multi ANN Multi ANN Multi RF/ANN Single SVR
CaCO3 ANN Multi ANN Multi ANN Multi ANN Single ANN Single SVR
CEC ANN Multi RF/ANN Single/ANN multi ANN Multi ANN Multi RF SVR/ANN Single
avg ANN Multi ANN Single/ANN Multi ANN Multi ANN Single/ANN Multi RF/ANN Single SVR

of 19% and 15% in the case of ANN Single and Multi, respectively. In particular, the use

of DEM derivatives improved the performance in the estimation of soil textures (silt, sand,

coarse, and clay), in terms of R2, on average by 43% and 30% in the case of ANN Single

and ANN Multi, respectively. In the case of ANN Multi, the improvement is mitigated by

the fact that this method predicts multiple variables at the same time. This result was

expected since the soil properties are closely related to geological formations and landscape

positions and, in particular, the soil textures are highly correlated to the parameters

derived from the DEM [244]. Furthermore, the use of DEM significantly improved the

estimation of the parameter CEC by about 65%, whichever method is employed. This

behavior is due to the fact that the CEC is often correlated with the DEM because

exchangeable cations can be mobilized and leached to lower landscape positions [245].

Figure 6.4 shows, for each soil variable, the scatter plots gathered by the best overall

model (ANN Multi). Each plot shows the prediction vs. the ground truth values, and

ideally, each point should lie on the bisect of the graph. The trend line (in orange) is also

shown and its coefficients are provided. Finally, to summarize the results achieved by each

method and to show which combination of types is best, Table 6.4 reports, for each soil

parameter and each metric (considering both (m) and (m,d)), the best technique for the

estimation. For all the soil parameters, apart from K, the use of DEM in combination

with multispectral imagery improves the estimation accuracy, whichever evaluation metric

is used. It is worth noting that in some cases, ANNs struggle to exploit the multimodality

(m,d) with respect to other machine learning methods, which in turn adapt better to a

diverse input. Nevertheless, ANNs on average outperform all the other methods evaluated,

as confirmed in Table 6.3(a) and (b).

6.3.2 Explainability Discussion

As described in Section 6.1.1, it was also investigated the importance of an input feature

in predicting a given output using a feature permutation approach. This investigation is

fundamental to an understanding of the actual advantages of using the combination of
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Figure 6.3: Visual comparisons of the results have been rendered through inverse distance weighting
(IDW) interpolation of the ground points relative to the ground truth, the predictions, and the errors in
terms of RMSE of each soil variable. The blue and yellow colors represent the minimum and maximum
values of each soil property, respectively. Colors relative to intermediate values are obtained through
quantile color coding. It is worth noting that in most cases the ground truth (the first image of each
triplet) and the prediction (the second image) are visually similar, indicating an accurate estimation of
the soil properties.

spectral and DEM information to describe the properties of the soil.

Figures 6.5 and 6.6 show the feature importance in the estimation of each soil variable.

The blue bars represent the bands of the multispectral signal, while the orange bars

represent the DEM derivatives. It is possible to observe that for some variables, such as

coarse and P, all the bands have more or less the same significance, while with respect to

other variables, there are spiking bands that heavily impact on the results, such as bands

8 and 9 in the estimation of pH in H2O.

In the case of the geomorphological features, the band that most significantly impacted
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.4: Scatter plots corresponding to the predictions of ANN Multi in relation to the soil parameters.
The x axis refers to the predictions, while the y axis refers to the ground truth values. For reference, each
plot includes the perfect prediction line y = x (dashed red) and the trend line relative to the estimations
(solid orange). Each subfigure represents the scatter plot of a given soil variable.

on the predictions is the valley depth. This is because the valley depth is a vital indicator

of a depositional (sedimentary) environment [246]. On the contrary, the slope length does

not provide a significant contribution to the prediction of the soil properties.

Figure 6.7 shows the comparison between the two groups of considered features

(multispectral and DEM) in terms of their importance in the estimation of the soil variables.

For a given variable, blue and orange bars represent the percentage of multispectral bands

and DEM, respectively. Overall, the use of multispectral features is more important than

the use of DEM derivatives with a ratio on average of 60% vs. 40%. In some cases, such

as the estimation of pHCaCl and pHH2O, the use of DEM derivatives counts for about 30%,

thus confirming that geomorphological features are less important in the estimation of pH

levels.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Feature importance of each soil property obtained using random forests. The blue bars represent
the importance of the multispectral bands, while the orange bars are relative to the DEM-derivatives. (a)
Coarse; (b) Sand; (c) Silt; (d) Clay; (e) pH in CaCl2; (f) pH in H2O.

6.4 Usefulness of spectral and Digital Terrain Model

information for Digital Soil Mapping

This work has evaluated different machine learning-based methods for the estimation of the

multiple soil characteristics of a continent-wide area corresponding to the European region

from multispectral signal and DEM derivatives. The multispectral signals, DEM derivatives,

and soil characteristics have been gathered respectively from the Sentinel-3 satellite, the

European Copernicus mission and the LUCAS library, respectively. All the data collected

were then geographically matched to create a uniform and multisource benchmark of

20,000 samples. On this dataset, several machine learning methods, representing the state

of the art for the estimation of soil characteristics, have been benchmarked. These methods

were adapted to use multispectral signals, DEM derivatives and a combination of each of
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Feature importance of each soil property obtained using random forests. Blue bars represent
the importance of the multispectral bands, while orange bars are relative to the DEM-derivatives. (a)
Organic Carbon (OC); (b) Phosphorous (P); (c) Potassium (K); (d) Nitrogen (N); (e) Calcium Carbonate
(CaCO3); (f) Cation exchange capacity (CEC).

Figure 6.7: Aggregated feature importance of each soil variable. The contributions of the multispectral
and geomorphological DEM derivatives are shown in blue and orange, respectively. It is worth noting that
the importance of the multispectral variables is greater than that of the DEM derivatives.
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them. An ANN-based method capable of predicting all the soil properties at the same

time has also been proposed and included in the investigation. Three metrics were used for

the performance assessment: MAE, RMSE and R2. Overall, neural networks showed the

best performance in describing the data. The experiments of this work also demonstrated

how the use of DEM derivatives improves the quality of the predictions in contrast with

the use of the multispectral signal alone. The improvement in terms of R2 increment is

19% on average, this being greatly appreciated in the prediction of soil textures where

it reaches the 43%. Moreover, the correlation between DEM and CEC has allowed for a

significant improvement of about 65%. Further analysis of the feature importance revealed

a high impact of the multispectral bands 8 and 9 in the estimation of the pH in H2O. In

the case of the geomorphological features, the DEM derivative valley depth is the variable

that most significantly impacted on all the predictions. Overall, the use of multispectral

bands is more important than the use of DEM derivatives by a ratio of 60–40%. The

study area includes the entire European region, comprising an extensive collection of soil

samples with a remarkable diversity and heterogeneity. The analysis presented in this

thesis provides insights into the potential of machine learning techniques to generalize over

a vast geographical area. Nevertheless, given the substantial variations in soil properties

across different regions, the validity of these findings for areas beyond Europe should be

empirically verified.

The outcomes achieved for some soil variables display more promising results with

respect to others; for instance, pH and soil textures (clay, sand, and silt) exhibit superior

predictability compared to potassium and nitrogen. Nevertheless, the numerical out-

comes, measured in terms of R2, closely align with the findings from analogous scientific

papers [146], even if on a significantly larger dataset. This study validates the efficacy

of remote sensing methodologies for soil parameter estimation. Despite the presence of

estimation errors, these methods offer numerous advantages over conventional approaches.

Remote sensing offers significant advantages in terms of spatial coverage, real-time mon-

itoring, non-invasiveness and the ability to capture multispectral information. These

advantages make it a powerful tool for soil parameter estimation that complements or

even surpasses traditional methodologies in terms of efficiency, accuracy and practicality.

In future works, it would be interesting to include hyperspectral signals in the assessment

of the machine learning methods and to compare the quality of the predictions with that

of the multispectral signals.
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Chapter 7

Multimodality in a Real Scenario -

Estimation of Soil Parameters for

Agricultural Areas Management

This chapter refers to the paper Multimodal Earth Observation Modeling using AI [24]

presented at the MESAS 2023 conference (International Conference on Modelling and

Simulation for Autonomous Systems) organized by NATO Modelling and Simulation

Centre of Excellence 1.

In this chapter, a real use case strategy for the management of agricultural resources

which is of uttermost importance among the many tasks related to Earth Observation (EO).

The methods analyzed in the previous chapter are combined to propose a single pipeline

that takes advantage of multimodal approaches to investigate the needs of agricultural

areas, by estimating their properties.

In particular, the pipeline, shown in Figure 7.1, aimed at automatically identifying

agricultural soils and estimating their chemical and physical properties. Thanks to this

automatic estimation, it is possible to implement agricultural policies aimed, on the one

hand at finding the most compatible soils for a given crop, and on the other hand, at

implementing timely interventions on existing crops. The designed pipeline consists of

1) segmenting the soil to understand if a terrain is used for agriculture or not, and 2)

estimating the properties of the soil in agriculture areas. As shown in chapter 6 and 5, the

use of AI techniques allows for powerful, data-hungry tools that in many tasks have proven

to be fast and accurate in both segmentation and parameter estimation, being able to

generalize the problem to different contexts when modeled with sufficient data. Moreover,

as previously demonstrated, multimodal approaches also combine different types of sources

(or modalities) to exploit their inherent advantages and improve performance.

Regarding the multimodal semantic segmentation, the Ticino dataset [21] proposed

1MESAS conference: https://www.mscoe.org/event/mesas-2023/
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Figure 7.1: The analysis of the chemical and physical properties of agricultural soils is carried out in two
stages: in the first, such soils are automatically located by semantic segmentation, while in the second,
soil properties are predicted from the combination of different signals. Both stages require the use of
multimodal sources that include spectral information.

and described in chapter 5 has been used. For the estimation, the multimodal dataset used

in chapter 6 has been used to combine spectral and elevation information. The datasets

differ from each other because there is currently no HS dataset that covers an area with a

truly large set of parameters estimated by combining spectral information and labeling;

therefore, in order to have a reasonable dataset that can take advantage of the real benefits

of AI, the choice was to rely on multispectral information. To demonstrate the advantages

of multimodal approaches in a possible real scenario, neural networks have been used,

experimenting with different combinations of inputs and including single vs multimodal

comparisons to show how much the second approaches can improve on a more practical

task.

This work focuses on the prediction of textural features (which include silt, sand and

clay), pHH2O and pHCaCl2 . The soil textures play a determining role when it comes to

behaviors such as water-holding capacity, drainage characteristics, nutrient retention,

and susceptibility to erosion, influencing plant growth and agricultural productivity and,

thus, being fundamental to agricultural decisions. In fact, different plants have specific

pH requirements for optimal growth. The pHs affect nutrient availability and microbial

activity in the soil, giving important information on the soil health.

7.1 Segmentation and Estimation

This section will provide a comprehensive description of the pipeline. Firstly, this discussion

will focus on Semantic Segmentation as a tool used to identify agricultural areas and

the methods used to demonstrate the improvement achieved by a multimodal approach.

Secondly, it will describe the process of estimating soil parameters, while consistently

examining the differences between single- and multimodal approaches.
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Figure 7.2: Regrouped SAU labeling.

7.1.1 Semantic Segmentation module

As mentioned above, the Ticino dataset [21] has been used. In particular, the pansharpened

version has been considered where PAN and the two spectral cubes have been fused together

to obtain a final all-comprehensive HS image of 182 bands and 5 m/px (HS↑). For the

experiments, the SAU labeling was considered to identify the agricultural areas. It is

originally characterized by 10 classes that, for the purpose of this work, were regrouped

into 5 specific classes: Background, Agriculture, Man-made areas, Water bodies, Natural

Vegetation, where Agriculture is the union of Other agricultural crops, Forage crops, Corn,

Industrial plants, Rice, and Seeds. A sample result of the regrouping can be seen in

Figure 7.2. The goal of this regrouping is to facilitate the fast identification of agricultural

areas and non-agricultural areas. All the dataset was used with the same splitting in

training, validation and test. In particular, the 1502 samples with all available modalities

were respectively split into 1051, 225, and 226 images.

To achieve the segmentation and the comparisons, the same architecture and setup as

the best CNN method tested in 5.3.1 have been used. Single modalities with RGB and

HS↑ and the two combinations (RGB + HS↑) and (RGB + HS↑ + DTM) were tested

with the Middle fusion technique and the ResNet18 encoder that demonstrated to be the

best method in the analysis of the previous chapter.

7.1.2 Digital Soil Mapping Module

Symmetrically, the dataset used for Digital Soil Mapping experiments is the same dataset

used in chapter 6. It includes Sentinel-3 multispectral, DEM information from the

Copernicus project and parts of the LUCAS [155] dataset [23]. The estimation focused on

the prediction of textural features (which include silt, sand and clay), pHH2O and pHCaCl2 .

To estimate the soil properties, the ANN multi-model described in chapter 6 for

estimating the parameters at the same time has been used with the same setup. Even in

this case, a comparison between single- and multimodal approaches with (MS) and (MS +

DEM).
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Table 7.1: Segmentation results of Soil Agricultural Use divided by modalities combination. Bold values
represent the best performance obtained on the rows. For all the metrics, the higher is the better.

Single modality Multimodality
Class Metric RGB HS↑ (RGB + HS↑) (RGB + HS↑ + DTM)

Agriculture Acc 0.31 0.38 0.46 0.46
IoU 0.21 0.28 0.33 0.34
Precision 0.34 0.47 0.51 0.54

Man-made areas Acc 0.89 0.89 0.90 0.90
IoU 0.77 0.76 0.77 0.77
Precision 0.85 0.83 0.84 0.84

Water bodies Acc 0.56 0.72 0.66 0.69
IoU 0.46 0.55 0.55 0.56
Precision 0.72 0.69 0.77 0.75

Natural Vegetation Acc 0.82 0.83 0.84 0.85
IoU 0.64 0.67 0.67 0.67
Precision 0.75 0.78 0.77 0.76

Acc 0.65 0.71 0.72 0.73
Overall IoU 0.52 0.57 0.58 0.59

Precision 0.67 0.69 0.72 0.72

7.2 Results and Discussion

In this section, the results achieved on both tasks are discussed, focusing on the advantages

of multimodal approaches and showing the importance of pursuing these kinds of strategies.

7.2.1 Soil Agricultural Use Semantic Segmentation

Table 7.1 shows the results obtained for each class and the overall mean on the four classes,

comparing the different combinations of input used in the experiments. The performance

is again evaluated in terms of Accuracy (Acc), Intersection over Union (IoU) and Precision

and the bold value represents the best performance on each row of the table.

As demonstrated before, it is immediately observable that, Overall, the multimodal

approaches take the lead in terms of performance for every metric. In particular, using

three modalities (RGB + HS↑ + DTM) always achieved the best average performance.

By comparing these approaches with the RGB-only technique, an important increment is

visible on each metric. In detail, Acc improves by about 8%, IoU by 7% and Precision by

5%. If multimodal approaches are compared with the HS↑-only method, the increment is

inferior, showing the importance of HS data, but respectively, each metric improves by

2%, 2% and 3%.

The primary subject of this research is the Agriculture class. In this case, it is worth

mentioning that the (RGB + HS↑ + DTM) combination reaches the best performance with

a significant increment with respect to RGB-only and HS↑-only. This result remarks the
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Figure 7.3: Visual prediction of Soil Agricultural Use segmentations with middle fusion approach using all
the modalities (RGB+HS↑+DTM).

importance of combining more modalities because each of them brings different advantages

and being able to exploit all of them together improves the power of an AI model. The

RGB-only modality exhibited the worst performance across all metrics, indicating that it

is not the optimal modality for this kind of class.

The difference between using three modalities and RGB-only is 15% for Acc, 13%

for IoU and 20% for Precision. HS↑-only achieved better performances in identifying

Agriculture pixels than RGB-only with a difference from multimodal of 8%, 8% and 7%

for Acc, IoU and Precision, respectively.

Figure 7.3 shows the visual results of the segmentation model with (RGB + HS↑ +

DTM) with the RGB image in the left column, the ground truth in the center and the

prediction in the right column. It is possible to note that the segmentation recognizes the

different elements that compose the scene, both in their location and semantics.

From the Overall and more specific results, it is possible to conclude that generally, a

multimodal approach is preferable because the complementarity of the modalities allows

for a better description and understanding of the soil. HS↑ alone is already a great

improvement compared with the standard RGB, but using it in combination with better

spatial resolution and morphological information, utterly improves overall results and

especially improves the identification capabilities of Agriculture areas.
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Table 7.2: Performance of the considered methods measured in terms of R2, RMSE and MAE. For each
table, the first group of rows refers to the use of multispectral input (MS), while the second group refers
to the use of multispectral input and DEM derivatives (MS + DEM). For each input, the bold values
highlight the best methods on average. For R2 the higher is the better, while for RMSE and MAE the
lower is the better.

Single modality Multimodality
Parameter Metric (MS) (MS+DEM)

Textures R2 (↑) 0.27 0.37
RMSE (↓) 0.86 0.81
MAE (↓) 0.68 0.64

pHH2O R2 (↑) 0.51 0.56
RMSE (↓) 0.70 0.67
MAE (↓) 0.56 0.53

pHCaCl2 R2 (↑) 0.50 0.56
RMSE (↓) 0.71 0.67
MAE (↓) 0.57 0.53

R2 (↑) 0.43 0.50
Overall RMSE (↓) 0.76 0.72

MAE (↓) 0.60 0.57

7.2.2 Digital Soil Mapping

Table 7.2 reports the results achieved estimating the Texture and pHs of the soil, comparing

an ANN single modality approach based on multispectral input with an ANN multimodality

approach using multispectral and DEM derivatives as input. The evaluation metrics used

to measure the performance are still R2 (coefficient of determination), RMSE (Root Mean

Square Error) and MAE (Mean Absolute Error). R2 is the only one where the higher

values indicate better performance, while the others work in the opposite way.

Considering these three parameters and looking at Table 7.2, it is unequivocal that

every time the DEM is involved the performance is better. Each of the metric, for

Textures, pHCaCl2 and pHH2O is increased with the multimodal approach. Overall the

improvements are of 0.07, 0.04 and 0.03 for R2, RMSE and MAE, respectively. The pHs, in

particular, have a R2 of 0.56 with multimodal methods, proving to be estimable with this

kind of approach. On the other hand, Textures achieved a generally lower performance,

but the use of DEM has guaranteed an improvement of 0.10 on R2, showing room for

improvements in this line of study. Nonetheless, the usefulness of RS technology in their

ability to perform accurate acquisition in real-time is strong enough to pursue this strategy

and continue to investigate multimodal RS approaches. The results clearly show that

introducing multimodality for the estimation of parameters, combining multispectral and

DEM information, improves our ability to estimate the parameters of the soil. Figure 7.4

shows the visual results of the estimation of pHH2O. These results have been generated

through inverse distance weighting (IDW) interpolation: left is the ground truth, center is
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(a) Ground Truth (b) Prediction (C) Error Map

Figure 7.4: Digital soil mapping of pHH2O rendered through inverse distance weighting (IDW) interpolation:
(a) is the ground truth, (b) is the predictions, and (c) is the error map in terms of RMSE.

the predictions and right is the error map in terms of RMSE.

7.3 Final remarks on the Estimation of soil parame-

ters for Agricultural areas management

The presented pipeline is able to automatically find agricultural areas and consequently

estimate their soil properties. This methodology can support the management of the

resources, making it easier to maintain high standards in soil health. The pipeline makes use

of multimodal RS images with different characteristics, and it creates maps of parameters

for each segmented area of interest. It consists of two modules: 1) Semantic Segmentation;

and 2) Digital Soil Mapping. The first uses RGB, HS and DTM information to provide an

accurate segmentation of the areas and in particular of the terrain dedicated to agriculture.

The second makes use of multispectral and DEM images to extract Textures, pHH2O and

pHCaCl2 , creating new maps that convey information for the handling of the territory. The

scope of this work is to demonstrate how multimodal approaches can impact performance

in a real use case, thus improving their efficiency and accuracy.

The results, both on Semantic Segmentation and Digital Soil Mapping, remark again

that combining complementary information from different modalities improves the overall

performance. In the case of semantic segmentation, exploiting the advantages of HS

already proves to be a better choice than typical RGB information. Combining HS with

RGB and DTM utterly improves this performance. In the same way, the use of MS-only

information in Digital Soil Mapping was overcome by combining MS and DEM. To further

note is the advantages of using RS images that nowadays are easy to acquire, giving us a

real-time technology and thus having a great advantage over collecting data on the field.

In conclusion, this procedure demonstrates that multimodal approaches in tasks such

as semantic segmentation and regression of parameters with RS technology are viable and

133



more efficient than the standard single modality approach for EO. In the future, with the

increment of HS data, this modality could also be integrated into the Digital Soil Mapping

module, further improving our ability to describe the soil. The same procedure could be

divided, and the estimation could be used to find feasible terrains for agricultural areas,

finding a balance between our necessities and the use of Earth’s resources.
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Chapter 8

Conclusions

In this thesis, the usefulness of multimodal approaches in the remote sensing (RS) field

of study has been comprehensively investigated. Earth Observation (EO) is a field of

study of great importance, involved in many tasks. Therefore, being able to use the

most efficient and effective techniques is necessary. Among the most powerful techniques

that allow the extraction of the best information from images, AI and multimodality

have represented a really big advancement in different fields of study. These approaches

create a great opportunity to better understand and describe the terrain, bringing huge

advantages in many applications. This work investigated these approaches through the

different steps that characterize the use of RS for EO and real applications. The analysis

focuses on different tasks that are proven to be of great importance in this scope. Starting

from the acquisition of data to a real use case and possible applications of AI technology,

in this thesis, the use of information diverse from the typical RGB images has been

investigated, creating a compendium on multimodal AI-based RS methods for EO. In

particular, this work focused on the following tasks: Hyperspectral Pansharpening [20],

Unsupervised Segmentation of hyperspectral images [10], Multimodal Supervised Semantic

Segmentation [21, 22], Digital Soil Mapping [23], and Multimodality in a Real Scenario

through the Estimation of Soil Parameters for Agricultural Areas Management [24].

As defined above, when it comes to RS and multimodal approaches, the first funda-

mental step to address is the acquisition and in particular the analysis of data with their

complementarity information and characteristics. The data used in this work compre-

hend spatial, spectral and morphological information, spanning RGB, multispectral (MS),

hyperspectral (HS), panchromatic (PAN), and digital elevation model (DEM) that have

been combined to improve performance in many areas of the EO. These areas include HS

pansharpening, HS unsupervised segmentation, supervised semantic multimodal segmenta-

tion of RS images, and digital soil mapping. For all of them a dataset including different

sources has been built, investigating the modalities and their advantages.

One of the first and most important elements of an RS pipeline is the enhancement of
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the original data. In this matter, hyperspectral pansharpening is a fundamental strategy

that combines high-spatial-resolution panchromatic images and hyperspectral data to

achieve high spatial and spectral resolution new data that share the best characteristics of

both information. The analysis elaborated in this work investigated the current state of

the art, illustrating its strengths and weaknesses. A novel dataset has been built, with the

highest number of images compared with any other datasets used in this field. The most

popular and effective hyperspectral pansharpening techniques have been adapted to this

new dataset in the first comprehensive analysis of a statistically relevant dataset.

The unsupervised segmentation analyzed the intrinsic capacity of HS information in

identifying different materials and thus its usefulness for RS images. The advantages

of an unsupervised segmentation concern in particular the creation of ground truth,

making the process faster and less subjected to errors. The proposed method based on

superpixels outperformed other techniques being at the same time more flexible, robust to

different kinds of noises and not needing training, thus being helpful in the creation of

new multimodal datasets.

The analysis and investigation of different modalities and techniques helped to create

the Ticino dataset. This dataset presents the highest number of modalities than any other

multimodal dataset and a high cardinality suitable for deep learning methods. In the

supervised semantic multimodal segmentation investigation, the usefulness of multimodal

approaches has been proved with two sets of experiments and by comparing different

deep learning techniques and combinations of modalities. The first set of experiments

consisted of comparing different combinations of modalities with early and middle fusion

techniques based on CNNs. The model used for the experiments was a U-shaped net-

work with a Resnet18 backbone. The results demonstrate that overall single modality

approaches with only RGB or HS data were outperformed by multimodality approaches.

In particular, the middle fusion technique achieved the best results, demonstrating that,

even if, multimodality alone improves our ability to describe the terrain, choosing the

right method of fusion is of utter importance for the final results. To further analyze this

conclusion, the second set of experiments investigates different techniques of fusion based

on Transformer models and in particular the Swin-Upernet model. This second set of

experiments demonstrates that fusion methods that tend to extract high-level features

from each modality are more capable of exploiting the advantages of heterogeneous and

complementary modalities. In particular, a late concatenation method performed better

than any other approach. Moreover, the test demonstrated that better performance can be

achieved without increasing the complexity and resources used. In fact, the two methods

Late concatenation and Token Fusion at Attention Level, used a comparable number of

parameters with RGB only technique.

Finally, the Digital Soil Mapping investigation demonstrates that combining spectral
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and morphological information, respectively with MS images and DEM, improves the

possibility of estimating the textures and chemical parameters of the soil. The experiments

reported compared MS single modality with MS and DEM multimodality using various

machine learning techniques. The results, based on 3 evaluation metrics, demonstrated the

advantages of combining different information. Moreover, an analysis of the importance of

the variable in this task, showed how much DEM can be relevant for the estimation. The

results demonstrate a ratio of 60-40% between MS and DEM.

All the presented works demonstrated how multimodality can impact RS applications

and all the steps that characterize them. Starting from the acquisition of new data, to

their enhancement and finally to their use for EO, in this thesis, new datasets, analysis,

and methods are presented to make full use of multimodality in this field. One of the most

important results is represented by the possibility of using each of these steps in a real

use case that can actually show the potential of multimodality and why it is necessary to

perpetrate the research. To corroborate this possibility, this thesis also presented a real

use case where the estimation of the parameters of agricultural areas for the evaluation of

soil health takes advantage of multimodality to achieve better results than single modality.

The strategy combined different steps of the multimodal pipeline considered in this thesis,

using the Ticino dataset, the enhancement of HS images, the multimodal supervised

semantic segmentation and the Digital Soil Mapping to improve the estimation of textures

and pH parameters. Even in this case, the usefulness of multimodality is demonstrated.

To summarize, a pipeline for EO analysis and application has been presented in this

thesis. This pipeline exploited the potential of multimodal approaches, covering all the

steps that go from the acquisition of data to real applications and descriptions of the

soil. In particular, the thesis addressed a specific task typical of EO, involving the use

of data that diverge from the typical RGB images. The scope was to demonstrate that

multimodality is one of the most promising routes to investigate in the RS field of study.

To this purpose, different kinds of data, including HS images, were studied and analyzed,

building new datasets, investigating the state of the art and creating new techniques

for EO. In each of these tasks, this thesis shows how multimodality can improve and

outperform single modality approaches, building, at the same time, techniques and tools

that can further help future investigations. In fact, many tasks can be addressed starting

from this work. Future works can involve the tools introduced and provided in this

work and also different tasks. The refinement of the labeling for the Ticino dataset with

the help of unsupervised techniques, a completely new HS pansharpening method, and

the use of HS data for the estimation of parameters are all possible improvements and

advancements of the works proposed in this thesis. Instead, other tasks that can benefit

from the use of multimodality, even using the proposed investigations as a base, include

spatio-temporal fusion heterogeneous data, new techniques for improving pansharpening,
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weather prediction, climate change management, refugees, and emergency identification

and handling. All these tasks are of crucial importance for our life on Earth and how we

build our future, and all these tasks would benefit from more data and different information

that can be combined to improve our understanding of EO.
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Chanussot, Nicolas Dobigeon, Sophie Fabre, Wenzhi Liao, Giorgio A Licciardi,

Miguel Simoes, et al. Hyperspectral pansharpening: A review. IEEE Geoscience

and remote sensing magazine, 3(3):27–46, 2015.

[30] Marion F Baumgardner, Larry L Biehl, and David A Landgrebe. 220 band aviris

hyperspectral image data set: June 12, 1992 indian pine test site 3. Purdue University

Research Repository, 10(7):991, 2015.

[31] Lin He, Jiawei Zhu, Jun Li, Antonio Plaza, Jocelyn Chanussot, and Bo Li. Hyperpnn:

Hyperspectral pansharpening via spectrally predictive convolutional neural networks.

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,

12(8):3092–3100, 2019.

[32] Lin He, Jiawei Zhu, Jun Li, Deyu Meng, Jocelyn Chanussot, and Antonio Plaza.

Spectral-fidelity convolutional neural networks for hyperspectral pansharpening.

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,

13:5898–5914, 2020.

141

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes


[33] Pats Chavez, Stuart C Sides, Jeffrey A Anderson, et al. Comparison of three

different methods to merge multiresolution and multispectral data- landsat tm and

spot panchromatic. Photogrammetric Engineering and remote sensing, 57(3):295–303,

1991.

[34] Te-Ming Tu, Ping Sheng Huang, Chung-Ling Hung, and Chien-Ping Chang. A

fast intensity-hue-saturation fusion technique with spectral adjustment for ikonos

imagery. IEEE Geoscience and Remote sensing letters, 1(4):309–312, 2004.

[35] Craig A Laben and Bernard V Brower. Process for enhancing the spatial resolution

of multispectral imagery using pan-sharpening, January 4 2000. US Patent 6,011,875.

[36] Bruno Aiazzi, Stefano Baronti, and Massimo Selva. Improving component sub-

stitution pansharpening through multivariate regression of ms +pan data. IEEE

Transactions on Geoscience and Remote Sensing, 45(10):3230–3239, 2007.

[37] Stephane G Mallat. A theory for multiresolution signal decomposition: the wavelet

representation. IEEE transactions on pattern analysis and machine intelligence,

11(7):674–693, 1989.

[38] Guy P Nason and Bernard W Silverman. The stationary wavelet transform and

some statistical applications. Wavelets and statistics, pages 281–299, 1995.

[39] Mark J Shensa et al. The discrete wavelet transform: wedding the a trous and mallat

algorithms. IEEE Transactions on signal processing, 40(10):2464–2482, 1992.

[40] Peter J Burt and Edward H Adelson. The laplacian pyramid as a compact image

code. In Readings in computer vision, pages 671–679. Elsevier, 1987.

[41] Wenzhi Liao, Xin Huang, Frieke Van Coillie, Sidharta Gautama, Aleksandra Pižurica,
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models from bare soil composites for mapping topsoil properties over europe. Remote

Sensing, 12:1369, 04 2020.

[146] Tao Zhou, Yajun Geng, Cheng Ji, Xiangrui Xu, Hong Wang, Jianjun Pan, Jan

Bumberger, Dagmar Haase, and Angela Lausch. Prediction of soil organic carbon

and the c:n ratio on a national scale using machine learning and satellite data: A

comparison between sentinel-2, sentinel-3 and landsat-8 images. Science of The

Total Environment, page 142661, 01 2021.

[147] Panos Panagos, Marc Van Liedekerke, Arwyn Jones, and Luca Montanarella. Eu-

ropean soil data centre: Response to european policy support and public data

requirements. Land use policy, 29(2):329–338, 2012.

[148] Jie Hu, Jie Peng, Yin Zhou, Dongyun Xu, Ruiying Zhao, Qingsong Jiang, Tingting

Fu, Fei Wang, and Zhou Shi. Quantitative estimation of soil salinity using uav-borne

hyperspectral and satellite multispectral images. Remote Sensing, 11(7):736, 2019.

[149] Long Guo, Haitao Zhang, Tiezhu Shi, Yiyun Chen, Qinghu Jiang, and M Linderman.

Prediction of soil organic carbon stock by laboratory spectral data and airborne

hyperspectral images. Geoderma, 337:32–41, 2019.

[150] Xiangtian Meng, Yilin Bao, Jiangui Liu, Huanjun Liu, Xinle Zhang, Yu Zhang,

Peng Wang, Haitao Tang, and Fanchang Kong. Regional soil organic carbon

prediction model based on a discrete wavelet analysis of hyperspectral satellite data.

International Journal of Applied Earth Observation and Geoinformation, 89:102111,

07 2020.

[151] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[152] Vladimir Vapnik. The nature of statistical learning theory. Springer science &

business media, 2013.

[153] Olga Chambers et al. Machine learning strategy for soil nutrients prediction using

spectroscopic method. Sensors, 21(12):4208, 2021.

[154] Ruixue Li, Bo Yin, Yanping Cong, and Zehua Du. Simultaneous prediction of soil

properties using multi cnn model. Sensors, 20(21):6271, 2020.
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