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Gravitational-wave measurements of the tidal deformability in neutron-star binary coalescences
can be used to infer the still unknown equation of state (EoS) of dense matter above the nuclear sat-
uration density. By employing a Bayesian-ranking test we quantify the ability of current and future
gravitational-wave observations to discriminate among families of nuclear-physics based EoS which
differ in particle content and ab-initio microscopic calculations. While the constraining power of
GW170817 is limited, we show that even twenty coalescences detected by LIGO-Virgo at design sen-
sitivity are not enough to discriminate between EoS with similar softness but distinct microphysics.
However, just a single detection with a third-generation detector such as the Einstein Telescope or
Cosmic Explorer will rule out several families of EoS with very strong statistical significance, and
can discriminate among models which feature similar softness, hence constraining the properties of
nuclear matter to unprecedented levels.

Introduction. The equation of state (EoS) of dense
matter plays a crucial role in many astrophysical phe-
nomena associated with neutron stars (NSs) in differ-
ent environments and dynamical regimes [1]. The elec-
tromagnetic (EM) and gravitational-wave (GW) signals
emitted by isolated and (coalescing) binary NSs depend
on the properties of the stellar structure and carry pre-
cious information on the nature of stellar cores where
the density is much larger than the nuclear saturation
point, ρ0 ≈ 2.7 × 1014g/cm3 [2, 3]. In this regime EoS
models feature large uncertainties due to the complex-
ity in describing strong interactions at densities where
constituents other than nucleons may appear. This un-
certainty reflects into a plethora of models with different
particle content, featuring for example plain npeµ mat-
ter, hyperons, pion condensates, quarks, etc [2], and also
predicting different macroscopic stellar properties, such
as maximum mass, compactness, and tidal deformabil-
ity [3–5]. This variety hampers our ability to uniquely
characterise the behavior of nuclear matter in extreme
conditions, and hence the NS structure.

Constraints on the EoS in the laboratory are limited
by the density regime achievable by terrestrial experi-
ments [6–14]. Major advances are expected to come from
astrophysical observations, either from mass-radius mea-
surements in the EM band [1, 15–22] or, more recently,
from GW observations of binary NS mergers [23–26],
where the EoS leaves an imprint in the latest stages of
the inspiral and in the post-merger signal. GW measure-
ments of the tidal deformability of coalescing NS bina-
ries [27, 28] provide a new tool to probe the behavior of
matter at densities above ρ0 [23, 29–40] (see [5, 41] for
recent reviews). The landmark detection of GW170817
has already ruled out very stiff EoS which predict large
tidal deformabilities [23, 24]. Moreover, the detection of

an EM counterpart to GW170817 has motivated several
multimessenger analyses aimed at providing joint GW-
EM constraints [42–64] (see [3, 5, 65] for some reviews).

The majority of these approaches interpreted con-
straints on the tidal deformability using phenomenolog-
ical EoS, which map wide samples of models in terms
of a relatively small set of parameters [66–72], or syn-
thetic EoS [73]. While flexible, these models lack the
description of the microphysical content which otherwise
characterises ab-initio, nuclear-physics based EoS. In this
work we pursue a complementary approach and try to an-
swer the following question: given a set of nuclear-physics
based cold EoS – which differ in the particle content and
in the ab-initio microscopic calculations – what is the one
that is mostly favored (in a rigorous statistical sense) by
current and future observations?

In order to address this problem, we perform a hier-
archical Bayesian test that – given a set of GW data on
the binary masses and tidal deformability – ranks differ-
ent models of dense matter according to their statistical
evidence. We first apply this method to the real data
of GW170817, confirming that the constraining power of
this event is limited to excluding only very stiff EoS [75].
We then extend this approach to a near-future scenario,
using current interferometers at design sensitivity and
stacking multiple binary NS observations characterised
by different masses and distances [39, 40]. Our results
show that the sensitivity of the advanced LIGO/Virgo
interferometers is not sufficient to resolve the degener-
acy between EoS featuring similar softness. We there-
fore apply, for the first time, this Bayesian analysis to
the Einstein Telescope (ET), a proposed third-generation
ground-based GW observatory [76–82]. In this case, we
found that even a single ordinary detection would rule
out several classes of EoS and is sufficient to discrimi-
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FIG. 1. Mass-radius and mass-tidal deformability diagrams
for the EoS considered in the Bayesian analysis. The blue
band on the left panel corresponds to the most massive pul-
sar observed in the EM band (M = 2.08+0.07

−0.07M� [74]), while
dashed lines identify configurations with fixed compactness
C = M/R. Solid (dashed) curves correspond to stellar config-
urations with the speed of sound at the center smaller (larger)
than the speed of light.

nate among nuclear-matter models with similar softness.
Furthermore, just stacking few detections would be suf-
ficient to pinpoint a single EoS with decisive statistical
evidence.

EoS catalog and dataset simulations. We con-
sider 12 state-of-the-art EoS which can be classified into
three broad families depending on their matter content:
(i) plain npeµ nuclear matter — APR3, APR4, SLY,
MPA1, MS1, MS1b, WFF1, WFF2 [83–87]; (ii) models
with hyperons — GNH3, H4 [88, 89]; and (iii) hybrid EoS
with mixtures of nucleonic and quark matter — ALF2,
SQM3 [90, 91]. Naming conventions follow [3, 92]. This
ensemble of EoS encompasses a wide range of stiffness.
For a reference mass M = 1.4M�, they predict compact-
ness in the range C = M/R ∈ (0.14, 0.20) and dimension-
less tidal deformabilities in the range Λ ∈ (151, 1377), see
Fig. 1 and Table I.

The EoS have been selected to be compatible with
J0740+6620 [74], the most massive pulsar observed to
date (M = 2.08+0.07

−0.07M� at 68.3% confidence level).
In particular, all the considered EoS have a maximum
mass above the (2σ) lower bound 1.94M� and subluminal
sound speed in the relevant mass range. For some EoS,
this restricts the range of allowed configurations (e.g.,
WFF1 marginally satisfies the causality condition).

Besides analyzing the single GW170817 binary NS
event, we simulate two selected catalogs of binary NS
events consisting of 20 GW sources (see Appendix). The
selected masses are drawn uniformly within (1.2, 1.6)M�,

EoS family particles Λ1.4

ALF2 nmbt+bag npeµ+Q 754

APR3 nmbt npeµ 390

APR4 nmbt npeµ 261

GNH3 mft npeµ+H 866

H4 mft npeµ+H 897

MPA1 mft npeµ 487

MS1 mft npeµ 1377

MS1b mft npeµ 1250

SLY mft npeµ 297

SQM3 mft+bag npeµ+H +Q 432

WFF1 nmbt npeµ 151

WFF2 nmbt npeµ 229

TABLE I. List of the selected EoS with the corresponding cal-
culation methods (family), particle content, and dimension-
less tidal deformability at the reference mass M = 1.4M�.
The families are distinguished in: nuclear many body (nmbt)
calculations and mean-field theory (mft) (see [93] for a re-
view on EoS calculations). In the ALF2 and SQM3 EoS
the quark (Q) content is modelled according to the MIT bag
model, while the GNH3, H4 and SQM3 EoS include hyper-
ons (H).

which is compatible with the mass range inferred for
GW170817, and luminosity distance dL drawn uniformly
in comoving volume with 60 ≤ dL/Mpc ≤ 210. We
emphasize that, given the large number of binary-NS
events expected in the third-generation era [94] one can
restrict to a subset of optimal observations, e.g. including
only the loudest events with relatively small component
masses, which provide the best constraints on the EoS.
The injected signals in the two catalogs assume the EoS
APR4 and ALF2, respectively, as prototypes of soft and
stiff nuclear matter.

We use the IMRPhenomPv2 NRTidal model [95, 96] GW
waveform template. We inject nonspinning binaries, and
we recover the component spins imposing a low-spin
prior χ1,2 ∈ [−0.05, 0.05] and assuming spins are (anti-
)aligned. To help comparison between the events, we
fix the same sky location and inclination for all sources,
avoiding particularly optimistic or pessimistic choices.
We inject 64-second long waveforms into a zero-noise
configuration as described in [97], either for a network
composed by the LIGO Hanford, LIGO Livingston, and
Virgo detectors at design sensitivity [98], or for the future
third-generation interferometer Einstein Telescope in its
ET-D configuration [80]. We checked that our results re-
main valid also when using a random realization of the
detector noise.

For a given simulated observation we reconstruct the
posterior probability distribution of the waveform param-
eters using the publicly available BILBY code, a Bayesian
inference library for GW astronomy [99, 100]. We use an-



3

alytic marginalization procedures for the binary orbital
phase, luminosity distance, and time of coalescence, as
described in [100]. We marginalize on the inferred pos-
terior probability distribution to extract the joint proba-
bility function P(M, η, Λ̃) for the binary chirp mass M,
symmetric mass ratio η, and effective tidal deformabil-
ity [27]

Λ̃ =
16

13

[
(m1 + 12m2)m4

1Λ1

(m1 +m2)5
+ 1↔ 2

]
. (1)

For a given EoS, Λ̃ depends only on the two source-frame
masses m1 and m2 or, equivalently, on M and η.
Bayesian methods. Given the data D from a GW
event compatible with a coalescing NS binary, the de-
gree of belief that the two NSs obey a given EoS can be
quantified by the evidence [51]

Z(D|EoS) =

∫ b

a

dp(1)
∫ b

a

dp(2) P(M, η, Λ̃|D)

× P(p(1)|EoS)P(p(2)|EoS) ,

(2)

where p(1) and p(2) are the central pressures of the two
NSs. For any given EoS, there is a deterministic mapping
between the central pressures and the waveform parame-
ters, {p(1), p(2)} → {M, η, Λ̃}, and in the above equation
{M, η, Λ̃} are evaluated as functions of {p(1), p(2)}.

The priors on the central pressures are uniform dis-
tributions within p(i) ∈ [a, b], where a = pmin ' 1.21 ×
1034dyne/cm

2
and b = pmax corresponds, for a given EoS,

to the value of the pressure which yields the maximum
mass configuration compatible with causality.

The calculation of the evidence in Eq. (2) can be largely
simplified using the fact that the chirp mass of NS bi-
naries is measured with exquisite precision [97], since
these sources perform several cycles in band. (For ex-
ample, the chirp mass of GW170817 was measured with
≈ 0.1% precision, much better than any other intrin-
sic parameter [23].) Therefore, in Eq. (2), we can fix
M to its median inferred value M?. Note that an ac-
curate measurement of the source-frame masses solely
from GWs can be hindered by the well-known degen-
eracy between the inclination angle and the luminosity
distance [101, 102], which may induce potential biases in
the redshift measurement. To resolve this degeneracy we
assume that the redshift of the selected events is known
(e.g. if independently measured by an EM counterpart
as in GW170817 [24]). Thus, we fixM? =Mdet

? /(1+z),
where Mdet

? is the median of the inferred distribution
of the detector-frame chirp mass, and z is the injected
value of the redshift. We also verified that our analysis
is not significantly affected by shifting z away from its
injected value by ±10%, which is very conservative since
it corresponds to the accuracy in z as measured from the
GW170817 EM counterpart [24].

Following [51], the conditional probability
P(η, Λ̃|M?,D) can be replaced by the marginalized
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FIG. 2. Bayes factors for different EoS models computed
for GW170817 and normalized with respect to the EoS with
maximum evidence in the catalogue (WFF2). Vertical dashed
lines identify the threshold above which the Bayes factor pro-
vide a strong and decisive evidence in favor of WFF2.

probability P(η, Λ̃|D) to a very good approximation,
and the evidence reduces to

Z(D|EoS) =

∫ b

a

dp(1) P(η(p(1), p
(2)
? ), Λ̃(p(1), p

(2)
? )|D)

× P(p(1)|EoS)P(p
(2)
? |EoS) , (3)

where p
(2)
? is the solution (if it exists) of M(p(1), p

(2)
? ) =

M?. The above equations assume that the EoS config-
urations are sampled uniformly with respect to the cen-
tral pressures. However, one could have equally used
any monotonic function of the pressure. In particular,
we opt for sampling the EoS uniformly with respect to
log10(p(1)) and change the integral in Eq. (3) accordingly.

We can use the Bayes factor,

B12 =
Z(D|EoS1)

Z(D|EoS2)
, (4)

to express the relative odds of two EoS given the data D,
assuming equal priors on the EoS, P(EoS1) = P(EoS2).

The previous discussion can be easily extended to the
case of stacked observations ~D = {D1 . . .Dn}. After n
observations the relative odds will be updated by the
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cumulative Bayes factor,

B12 =

n∏
k=1

Z(Dk|EoS1)

Z(Dk|EoS2)
. (5)

The main quantity of interest is the cumulative logarith-
mic Bayes factor, log10 BiT , between a candidate EoSi and
a benchmark EoST after n GW detections. We adopt the
Kass-Raftery criterion [103] and decisively exclude EoSi

with respect to EoST when log10 BiT < −2.
Results. We start by applying this method to real data,
using GW170817 [23, 24], the only binary NS GW event
– among those detected so far by LIGO and Virgo [104,
105] – that provided an accurate measurement of the tidal
deformability [24, 106]. Figure 2 shows the Bayes factors
of different EoS in the catalog normalized with respect to
the EoS with maximum evidence, which turns out to be
WFF2. The evidence against other EoS is weak in most
cases, except for GNH3 and H4, and especially for MS1
and MS1b which are decisively excluded according to the
Kass-Raftery scale. This is in agreement with the fact
that MS1 and MS1b are the stiffest EoS in our catalog
and therefore the easiest to rule out with GW170817 [24,
42, 45, 47, 49, 75, 106, 107]. Likewise, EoS stiffer than
MS1 and MS1b are even more disfavored by GW170817.

Stronger constraints and statistical evidence can be ob-
tained from accumulating more detections [39, 40]. In
Fig. 3 we show the Bayes factor as a function of the num-
ber of randomly chosen events detected by the advanced
LIGO-Virgo network at design sensitivity and assuming
the real EoS is either: i) relatively stiff (ALF2, top panel)
or ii) relatively soft (APR4, bottom panel). In each panel
we show only the subset of EoS with the highest Bayes
factors, whereas the other EoS are easier to rule out. In
both cases it is challenging to rule out EoS with stiffness
similar to the reference one even after 20 detections (this
is more evident for a soft model such as APR4, shown in
the bottom panel). This analysis shows, in a clear and
statistically robust way, that while several LIGO-Virgo
detections at design sensitivity could discriminate among
some stiff EoS (e.g. ALF2 versus MPA1 and SQM3) and
between some soft and stiff models [39], they remain in-
conclusive, since the sensitivity is not enough to discrim-
inate among wide classes of EoS with similar stiffness.

The latter conclusion motivates to forecast a similar
analysis in the era of third-generation GW detectors [76–
82]. The situation here drastically changes, as shown in
Fig. 4. We simulated the same 20 detections with ET,
by assuming the conservative case of an underlying APR4
EoS, as in the bottom panel of Fig. 3. For each event,
we plot the Bayes factors normalized by the injected EoS
and we only show those EoS which have nonvanishing ev-
idence (log10 BiAPR4 > −10) for at least one event. The
fact that most EoS have negligible evidence is a conse-
quence of the much higher sensitivity of the ET detector,
and it allows us to exclude all but a couple of EoS of our
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FIG. 3. Evolution of the EoS Bayes factor with the number
of events for the LIGO-Virgo network at design sensitivity.
Top and bottom panels refer to the ALF2 (stiff EoS) and
AP4 (soft EoS) injections, respectively. In each panel, the
quantity log10 Bi

T is normalized with respect to the injected
EoS. Shaded bands mark the boundaries of the evidence cri-
teria according to the Kass-Raftery scale [103]. In particular,
log10 Bi

T < −2 indicates decisive unfavorable evidence.

dataset (namely WFF2 and SLy, which feature a tidal
deformability similar to APR4) with only a single obser-
vation.

Even in the most pessimistic case, in which a single ob-
servation is not enough to exclude a given EoS, stacking
two/three detections would allow us to decisively exclude
all EoS in the catalog other than the reference one. Even
stronger conclusions apply to the case in which the ref-
erence EoS are stiff (as for ALF2): in this case all the
other EoS in our catalog are decisively excluded for any
single event.

Thus, at variance with advanced LIGO/Virgo, ET will
be able to distinguish among EoS with similar softness,
and also among EoS families featuring different micro-
physical properties (see Table I). For example, a single
ET detection of any of the 20 events considered in our
catalog would be sufficient to exclude APR3 relative to
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APR4 (log10 BAPR3
APR4 < −10). These two EoS feature the

same particle content but differ in the description of the
nucleon interaction.
Conclusions. We proposed a robust Bayesian-ranking
test to discriminate among families of ab-initio nuclear
EoS using GW observations. We applied this test to
GW170817, which very mildly favors a relatively soft,
standard npeµ EoS (WFF2), although its power in ruling
out EoS with similar stiffness is limited. Furthermore, we
showed that near-future observations will not be conclu-
sive: even 20 NS binary detections with LIGO-Virgo at
design sensitivity will not be able to distinguish among
well-motivated nuclear models.

On the other hand, a single detection by ET will rule
out with decisive statistical evidence most of the EoS, in-
cluding those with comparable softness. In addition, just
a few combined detections can be sufficient to robustly
identify the best-fit EoS within a catalogue, hence con-
straining the particle content of nuclear matter at ultra-
high density. The same conclusion would apply assum-
ing that binaries are observed by the proposed Cosmic
Explorer [78, 79], which features a noise curve similar
to that of ET-D at high frequencies, where tidal effects
contribute more to the GW signal. Joint detections by
ET and Cosmic Explorer would further strengthen our
results.

Measuring the masses and tidal deformabilities from
multiple events would allow us to quantify the faithful-
ness of the best-fit EoS, e.g. by looking for inconsisten-
cies between the best-fit predictions and the data in the
Λ −M plane (see Fig. 1), in case the “true” EoS is not
in the dataset.

A further advantage of our approach based on a rank-
ing test among nuclear-physics based EoS is that it can be
straightforwardly extended to accommodate other mea-
surements by combining the likelihoods of different mod-
els. It would be interesting to extend our analysis in this
direction by combining future GW observations with EM
ones [51, 60], or with post-merger signals [26].
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Appendix. In Table II we list the masses and dis-
tances of the 20 binary NS sources considered in the
main text. The masses were drawn uniformly in the
range (1.2, 1.6)M�, whereas the luminosity distance dL
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FIG. 4. Bayes factors for simulated observations with ET,
relative to the injected EoS APR4, for WFF2 and SLY. The
remaining set of ten EoS yield log10 Bi

APR4 < −10 for all
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was drawn uniformly in comoving volume with 60 ≤
dL/Mpc ≤ 210. For each event, we also show the 68%
confidence intervals around the median for the tidal de-
formability inferred by projected LIGO-Virgo network
and ET observations.
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