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Abstract: Recent technological advancements such as the Internet of Things (IoT) and machine
learning (ML) can lead to a massive data generation in smart environments, where multiple sensors
can be used to monitor a large number of processes through a wireless sensor network (WSN). This
poses new challenges for the extraction and interpretation of meaningful data. In this spirit, age of
information (Aol) represents an important metric to quantify the freshness of the data monitored
to check for anomalies and operate adaptive control. However, Aol typically assumes a binary
representation of the information, which is actually multi-structured. Thus, deep semantic aspects
may be lost. In addition, the ambient correlation of multiple sensors may not be taken into account
and exploited. To analyze these issues, we study how correlation affects Aol for multiple sensors
under two scenarios of (i) concurrent and (ii) time-division multiple access. We show that correlation
among sensors improves Aol if concurrent transmissions are allowed, whereas the benefits are much
more limited in a time-division scenario. Furthermore, we discuss how ML can be applied to extract
relevant information from data and show how it can further optimize the transmission policy with
savings of resources. Specifically, we demonstrate, through simulations, that ML techniques can be
used to reduce the number of transmissions and that classification errors have no influence on the
Aol of the system.

Keywords: age of information; Internet of Things; data acquisition; networks; machine learning

1. Introduction

The last decade has seen unprecedented development in smart environments due to
the technological advancements in the IoT, sensors, and artificial intelligence. There is a
wide gamma of applications for these innovations in smart living environments, from smart
houses to assisted living, especially for elderly people [1,2]. In addition, IoT techniques
contribute to achieving better sustainable energy consumption [3], and the introduction of
these solutions for sensing, data analysis, and active system control enables the creation of
smart cyber-physical ecosystems, where machine and people are interconnected [4]. Such
new technologies also lead to a tremendous increase in the amount of data produced and
consequently hinder their management [5]. Specifically, one of the most used technologies
are the WSN. WSN are widely exploited to monitor smart living environments (e.g., houses,
airports, industries, hospitals where they are used for constant monitoring, continuously
collect data and transmit information of the current status of the environment.

In this scenario, Aol represents an important metric to quantify the freshness of data
coming from real-time monitoring of status updates or control [6,7]. This implies that
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it is possible to improve the sensor’s battery consumption and the use of the network
communication bandwidth according to the freshness of data and the degree of innovation
they bring to the historical description of the cyber—physical ecosystem.

Opver the years, different approaches have been proposed to optimize various network
features with an eye to Aol as a key performance indicator. For example, ref. [8] optimizes
transmission and sampling cost in a wireless network under Aol constraints through
Lyapunov optimization theory. In [9], game theory is used to minimize the Aol from two
different competing sources. Another area where Aol is becoming increasingly important
is energy optimization, such as in [10-12], where the problem of assessing the impact of
energy harvesting on Aol is analyzed.

A factor that limits the use of the Aol is the simplicity of the metric, which encodes
only the freshness of the information, but not the semantic value it can have within complex
scenarios. From the point of view of the Aol an update due to an anomaly or a routine
update have the same importance, which is undesirable whenever the scenario is sup-
posed to provide some application in a smart living context. Correlation among multiple
neighboring sources [13-16] is another important factor to consider when taking Aol into
account since an update could also deliver extra information related to other data sources.
This occurs especially in the case of uncoordinated sensors monitoring the same process (or
correlated metrics of the same process) or in the simplest case of redundancy. The type and
nature of the neighborhood can be described in two ways: logical, which happens if the
nodes in the neighborhood are those measuring metrics with strong correlations [17,18], or
physical, when it is present a spatial redundancy of the metrics tracked (e.g., temperature
or humidity in various points of a room). Regardless of the nature of the neighborhood
and the reason for the correlation, it is clear that when a sensor collects and transmits data,
these updates can also be useful to its neighbors. Finally, Aol assumes underlying binary
information. In reality, information coming from sensors, especially tracking smart living
applications, can be multi-structured [19,20], and an interpretation is often required.

In light of the aforementioned points, in this paper, we investigate how during the
acquisition of information by a WSN the correlation inside the data can improve the
Aol. More precisely, we studied a scenario where every sensor can send an update with
probability p (and thus reset its Aol); furthermore each one of this update has a probability
g to be useful to the neighbors as well (i.e., reset their Aol). We investigate how this
is impacted by the numerical values of p, g, the size of the neighborhood N, and the
transmission scheme (i.e., concurrent or time-division multiple access). We show both
theoretical and numerical results, proving the potential advantages of including Aol in the
scheduling policies for WSN, especially for resource-constrained applications.

Furthermore, we study how ML algorithms can influence these scenarios. As men-
tioned above the Aol not consider the intrinsic value of the update. However, the data
collected from multiple sensors can be multi-structured, i.e. multidimensional and hetero-
geneous, and ML can help us to extract meaningful information that can be handled in
the updates [21-24]. Using these techniques can bring both benefits and disadvantages
for smart living ecosystems. A strength it is the ability of the these algorithms to combine
information from multiple sources that perform different measurements and exploit the cor-
relation among the data. This could lead to a decrease of the number of updates, decrease
the redundancy of the system and eventually limit energy consumption and the battery
drain of the remote sensors. The other side of the coin is the risk of error propagation
within the whole system due to mis-classification in the learning procedure [25].

To better highlight the novelties introduced by our work, in Table 1 it is possible to find
a comparison of the topics covered in this paper versus the topics covered in other similar
studies. It is possible to observe from the table these topics have already been covered
before, but, to the best of our knowledge, this is the first work that tries to integrate them
into a single work.



Sensors 2023, 23, 3456

3of 14

Table 1. Coverage of the topics of our paper from various studies.

Aol Energy Correlation Machine Learning Transmission Policies

Bacinoglu et al. [10] X X X
Wu et al. [12] X X X X
Kalor and Popovski [15] X X X
Safdar and Do-Hyun. [3] X X

Zhou and Saad [14] X X X
Samir et al. [22] X X X

Jin et al. [26] X X X

Fountoulaki et al. [8] X X

Badia [9] X X X
Crosara and Badia [11] X X X
Zancanaro et al. [16] X X

Elgabli et al. [21] X X

Crosara et al. [27] X X

Bellavista et al. [28] X X

Ceran et al. [29] X X X
Wang et al. [30] X X X

Fang et al [31] X X X

Tong et al. [32] X X

Shiraishi et al. [19] X X X X
Zancanaro et al. [33] X X X X

Our work X X X X X

The rest of the paper is divided as follows. Section 2 presents the scenario we want to
investigate. Section 3 presents the analysis and the results regarding the evolution of the
Aol from correlated sources for two different scenarios. Section 4 analyzes how ML can
interact with an Aol-based system. Finally, Section 5 drives the conclusions and suggests
some interesting future work.

2. Scenario and Methodology

Consider a smart living environment monitored by a WSN of N sensors, i.e., belonging
toset N = {1,2,..., N}, that samples information and sends it to a central server S, where
it is processed and analyzed. Time is discrete, i.e., t € Z*, and in each time slot a sensor can
decide to sense new information from the environment and send an update to the central
server. The sensed information may be correlated at different locations. We aim to take
advantage of this correlation to decrease the number of useless transmissions but keep
the average Aol as low as possible [15,16,27]. Particularly, in each time slot, we consider
either of the following two possibilities: a sensor, e.g., sensor 1, senses a new sample of
information and transmits the fresh sample to the central server, and this event is assumed
to happen with a probability equal to p. Or, any other sensor acquires a new sample and
sends an update. This update can be useful for sensor 1, too, and this event is assumed to
happen with a probability equal to 4. The sensor’s Aol is reset either when it transmits, or
when the transmission of one of its neighbors is useful to it. In addition, we assume that
all sensors are characterized by the same values for p and 4. In the following, we consider
two different medium access strategies, i.e., concurrent and time-division multiple access
(TDMA [34]) and we study the behavior of the average Aol in time as the parameters p, g
and N vary.

Later, we introduce the use of ML to optimize the policy of updating the Aol of each
individual sensor, provided that it is used to possibly identify anomalies in the environment.
We study how the misclassification probability (perr) of the ML algorithm and the other
parameters of the model, i.e., p, 4 and N, influence the average Aol and the number of
transmission (Ntx).

For convenience, the list of the notation used in this article is available in Table 2.
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Table 2. List of symbols used in the article (in order of appearance in the following).

Notation

Definition

Multiple Access (Section 3)
t

time slot index

N no. sensor nodes

p transmission probability of every sensor

q probability of useful transmission from a neighbor node
T duration of a time slot

o(i) probability that the Aol has value i

ML-based Aol optimization (Section 4)

Nrx no. transmissions

Ty initial Aol threshold for the ML simulation

T Aol threshold during the ML simulation

Perr probability of mis-classification for the ML algorithm

3. Multiple Access
3.1. Concurrent Multiple Access

In this scenario, the sensor nodes are allowed to transmit data in any possible time
slot, without prior coordination with the other nodes. Particularly, at each time slot, the
probability that a sensor transmits is p. We investigate the behavior of the system in this
setting using a Markov chain to model the average Aol of a sensor with a variable number
of neighbors N [16], especially in case of poorly or strongly correlated information coming
from different locations, i.e., sensors. The states of the Markov chain are used to model
the Aol of a sensor and the transition represents its increase or decrease. In each state
two possible outcomes are possible: the sensor does not transmit and the Aol increases,
so the model goes the the next state. Alternatively, the sensor transmits, or a neighbour
transmits useful data, and the model returns to the initial status with value 0. Computing
the steady-state probability of the Markov chain enable us to evaluate the average Aol of
the system.

We report our main findings in Figures 1 and 2. They show the relationship between
the average Aol and a variable number of neighbors (N) in a loosely correlated scenario
(with g = 0.01), or in a strongly correlated scenario (with g = 0.1).

Aol from correlated sources (q = 0.01)

—— p=0.005

1751 p=0.01
---- p=0.02
-— p=0.05

150 P

1251

Average Aol
=
o
1S3

~
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Number of neighbors
Figure 1. Behavior of the average Aol with a variable number of neighbors (N) in a loosely correlated
scenario (g = 0.01) with the concurrent access scheme.
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Aol from correlated sources (q = 0.1)
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Figure 2. Behavior of the average Aol with a variable number of neighbors (N) in a strongly correlated
scenario (g = 0.1) with the concurrent access scheme.

As one might intuitively expect, the average Aol drops as the number of neighbors
increases. Noteworthy is the fact that the decrease is much more evident for low proba-
bilities of transmission (blue continuous line). This is due to the fact that when a node
updates more frequently, any contributions from its neighbors become marginal. Instead,
for lower values of p, the gain from neighbors” updates is larger. It is worth noting that
this behavior implies that increasing the number of neighbors is beneficial up to a certain
value, depending on p, and after which each additional neighbor no longer contributes to
decreasing the system’s Aol (e.g., in Figure 2 the Aol remain practically flat for any number
of neighbors N > 20). Furthermore, as might be expected, the decrease is much more
visible in the scenario with a strong correlation.

This can be leveraged whenever we want to reduce the energy consumption of the
sensors without significantly affecting the Aol. In fact, based on this simulation, with a
high enough number of neighbors, we can keep p as low as possible (i.e., sparse updates,
low number of transmissions), while having a low Aol, too. Consequently, the battery
life of the sensors can be prolonged, since decreasing the number of updates means fewer
transmissions, thus lower energy consumption. At the same time, few transmissions mean
low network overload and this can additionally reduce the likelihood of collisions due to
wireless media and the consequent loss of data.

To note, in this scenario, we did not consider possible collisions from simultaneous
transmissions. The model can be promptly extended to take into account collisions and
re-transmissions, which is already investigated in the literature [6,35,36].

3.2. Time-Division Multiple Access

TDMA is an instance of deterministic multiple access that entirely avoids concurrent
transmissions [34], which is useful in case sensors are allowed to transmit only in their
assigned time slot. Each transmission cycle accounts for a certain number of time slots 7,
and different scheduling strategies can be realized for ordering the transmissions of the
sensors. In this work, we consider a simple round-robin scheduling where the sensors are
polled by the sink (i.e., the server) in sequential order: for example, sensor 1 is allowed
to transmit only in the time slots ¢t = 0, NT,2NT,..., while sensor 2 can transmit at
t=1,14+N7,1+42Nr,...,and so on. In general, sensor j can transmit in slot k if and only
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if (k mod N) = j — 1. In each of its allowed transmission opportunities, a sensor transmits
a new sample with a probability p. In addition, similarly to the scenario with concurrent
access (see Section 3.1), the probability that the new acquisition of a neighbor is helpful for
a sensor to reset its Aol is equal to 4.

In the following, we study this scenario through both a theoretical formulation and
numerical simulations.

Particularly, we study the problem of computing the average Aol of the time-division
system via theoretical formulation, i.e., obtaining a closed-form expression for the expected
value of Aol of a sensor in the network. Given the assumption that all sensor nodes share
the same p and g, thatis p; = p and g; = ¢, for all i € N (symmetry assumption), the
expected value of the Aol of the system (average Aol) is equal to the average Aol of any
individual sensor. We consider the initial condition f; = 0 and N sensors. Since each sensor
transmits only in its slot with a round-robin scheduling, the expected Aol can be written as

Mg

E[Aol] = Z]Np iN) + Z ko(k (1)

j=0
k;énN

Il
o

where i is the value that Aol takes at time f for a sensor, and p(i) is the probability that Aol
takes that specific value. Intuitively, the first term corresponds to the contributions given
by a sensor to the average Aol, i.e., accounting for its transmissions in its assigned slots,
while the second term represents the contributions of the other sensors during their turn
(corresponding to those t that are not integers multipliers of N).

Assuming that a certain sensor accumulates an Aol of jN in the case in which it has not
transmitted in any previous time slot, and no neighbor has helped with their transmissions
in any of the previous time slots (intermediate time slots between the slots assigned to the
sensor), we can write the first term of (1) making explicit use of the probabilities p and g,
as follows:

i) INp(N) = i(l ) (1= gp) N (Nj) =
= =

@

_ j. — Ji =
Zr - (Nj) = rJNZrJ q

where r = (1 — p) - (1 — gp)(N~1). Thus, we are able to obtain a power series that can be
solved in closed form.
Similarly, we further manipulate the second term of (1) to obtain the following:

) oo N-1
Z Z Z k+1 qp)kNJrnfl qp - (kN+ 71) —
k—
k;énN,nOeW 3)
Cs D
= B((l—s)z + 1—5)'
where
g aw(-p) _N(z-z")
z ! 1—z 7
b— (N—1)zN+1 - NzN 4z @)
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The second term accounts for the transmissions with index equal to k, with k not an
integer multiplier of N, i.e., the transmissions of the neighbors. For the Aol to reach the
value (kN + n), all previous transmissions by the sensor and all its neighbors have to be
either missed or not useful. Figure 3 shows the Aol behavior in terms of both p and 4.
As expected, the average Aol is maximum for low p values, i.e., rare transmissions of the
sensor, and poor correlation with the neighbors, i.e., low g values.

10°

700

107!
600

w

o

o
Average Aol

400

10*2 4

Probability g of a useful update from a neighbor

200

100

10—3 4
1072 107t
Transmission probability p

Figure 3. Average Aol obtained from the theoretical framework with N = 10.

To further validate our theoretical framework, we ran simulations of the same scenario
using Python version 3.8.15. Each simulation ran for 10° iterations, i.e., time slots, and
the Aol was computed for every sensor. The average Aol of every individual sensor
was obtained. Finally, the average Aol of the system was computed by taking the mean
value of the average Aol among all sensors. Figure 4 shows the Aol behavior in terms
of both p and 4. This figure corresponds to Figure 3, obtained through the theoretical
framework. As expected, the simulations confirm the theoretical analysis, with just minor
numerical discrepancies.

Through simulation, we also investigate the impact of the main parameters of the
model, i.e., p, g, and N. The results are shown in Figures 5-7. For all parameter combina-
tions we ran multiple simulations and reported the mean and standard deviation in the
various figures.

Figure 5 shows the average Aol with a variable g for two particular combinations
of p and N. First, the figure shows the full agreement between simulations and theory.
Second, as we might expect, Aol is significantly decreased by increasing the probability
of transmission of each sensor (p) and the number of neighbors (N). Third, the advantage
of having higher p and N is more evident when the correlation between nodes decreases.
For poorly correlated nodes (e.g., g < 0.01), the average Aol is high, while for strongly
correlated sensors (e.g., g > 0.1), choosing the setting with higher p and N might produce
a decrease of an order of magnitude in the Aol.
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Figure 4. Average Aol obtained from simulations with N = 10.
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<
)
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Probability g of a useful update from a neighbor

Figure 5. Average Aol with a variable probability of useful updates g from a neighbor. Simulation
and theoretical results are overlapped.

To better quantify the importance of p for Aol, in Figure 6 we show the Aol differences
when choosing different values of p, spanning over an order of magnitude (from 5 x 1073
to 5 x 1072) with a variable number of neighbors. We can observe that there is a significant
decrease in Aol when p consistently increases. In the case of strongly correlated sensors,
the difference is stable no matter the number of neighbors.

It is also worth noting that the higher N, the higher the average Aol, in contrast with
the case of concurrent access (see Figure 2). This is due to the access scheme to the medium
used. The correlation between the nodes undoubtedly allows the nodes to exploit the
transmissions of the neighbors to obtain fresh information samples without the need for
your own acquisitions but the sensors are still forced by the time-division scheme to wait
an entire cycle to transmit again. The duration of the cycle grew linearly with the number
of nodes in the network and therefore, despite the benefit given by the correlation, the
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increase in the number of nodes is actually counterproductive. For the same reason, this
finding remains true also in the case of sensor nodes within a WSN with a relatively high
correlation factor (i.e., g > 0.1). The increase in the time delay between the transmissions,
caused by the round-robin scheduling in the time-division scheme, cannot by compensated
by the high correlation and the only viable option to decrease the Aol remain the increase
of the transmission probability (p). To note that with p = 1, with this scenario the Aol will
be a function of g with value between N (g = 0) and 1 (in the case g = 1).

103
°
<
(]
[e)]
o
g
<102
/e —— p =0.005 (mean)  ---- p = 0.02 (mean)
/S p = 0.005 (std) p = 0.02 (std)
/'I p = 0.01 (mean) ——- p = 0.05 (mean)
/ p = 0.01 (std) p = 0.05 (std)
10 20 30 40 50 60

Number of neighbors

Figure 6. Average Aol with a variable number of neighbors in a strongly correlated scenario (7 = 0.1).

Finally, Figure 7 offers new insights into the impact of g on the time-division scheme.
It represents the trade-off between g (level of correlation among nodes) and N (number of
nodes in the network): when g is sufficiently large (g > 0.1), there is no gain in increasing
the number of neighbors. To decrease Aol, it is more convenient to decrease p. This can
be regarded as one of the most favorable conditions, i.e., the high correlation between a
sufficiently high number of neighbors leads to the possibility of reducing the number of
transmissions of every single node and does not necessarily imposes to increase the number
of nodes in the network. In addition, for a poorly correlated scenario (g < 0.01), the number
of neighbors N and the transmission probability p tend to dominate the behavior of Aol,
thus providing a flat Aol curve. As g increases (0.01 < g < 0.1), its impact on Aol becomes

larger, and for a highly correlated scenario (g > 0.1), the Aol tends to converge to 1/p,
independently of N.

103

Average Aol

—— p=0.01 N=10 (mean) p =0.01 n = 10 (std) T
p = 0.01 N = 30 (mean) p =0.01 n =30 (std) N
p =0.05 N =10 (mean) p =0.05 n =10 (std) N
—== p=0.05 N = 30 (mean) p = 0.05 n = 30 (std) h
1073 1072 1071 100

Probability g of a useful update from a neighbor

Figure 7. Average Aol with a variable probability g during the simulation of the time-division
multiple access for various values of p and N.
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4. ML-Based Sensor Transmission Optimization Using Aol

In real world scenarios, the information coming from sensors can be multi-structured
and data can have different importance levels for the end user [19,27]. The application of
ML offers a powerful tool to integrate this aspect and extend the concept of Aol in the more
general concept of “value of information” where the semantic aspects of the data become
important to decide whether to transmit them, or not.

In our considered scenario, the N sensors can adjust their update rates based on how
fresh is the information they deliver to the destination. Furthermore, ML algorithms can be
used to analyze the data and classify each update as normal status or anomaly. This adds
a further processing step to the system and might lead to different possible results. For
example, the update can carry no important information (normal status), so the Aol for that
process can be updated less frequently, to save power and keep bandwidth free for other
transmissions. Alternatively, an alarm needs to be raised (when an anomaly is detected),
and Aol must be kept very low, i.e., the update rate increase, at the cost of a temporary
higher energy consumption [37]. Finally, the update can be inconclusive. This happens
when the content of the update is not clear, so old data keeps being used, with an Aol value
that is increased by 1.

However, such an ML-based approach is sensitive to classification errors [38]. For
example, there can be an apparently valuable update (some anomaly status that requires
immediate action), which is actually a false positive, i.e., it is a normal status that the
algorithm that the ML-algorithm misclassified. This error has little impact on the system
as the only outcome is an extra transmission from a sensor that monitor a process where
there are no anomalies at that specific moment. Still, energy is wasted, which may lead to
inefficiency at the ecosystem level. On the other hand, if no valuable update (normal status)
is reported when an anomaly is actually occurring (false negative), the problem is more
relevant [25]. This condition should be carefully monitored with frequent updates, but the
sensor has no reason to maintain its Aol low, and thus, continues its routine (i.e., normal)
operation possibly leading to a damage for the entire system.

One possible solution to increase the robustness of this ML-based approach is to use
ML to aggregate different measures taken over time, instead of simply classifying each
update. Aggregating different measurements through some principles of participatory fed-
erated learning [28] can lead to a beneficial holistic view of the entire system. In particular,
system-wide anomalies can be identified and in the end a more accurate classification is
provided, also based on historical records [24].

In the following, we explore the adjustment of Aol operating policies according to
the actual content of the updates [23] using ML. We compare a baseline scheme, where an
update is sent whenever Aol is greater than a predefined threshold T, with a scheme where
ML is used to classify the updates into anomalies or normal data, so that the value of T is
updated accordingly, e.g., to give higher priority to signaling anomalies. A logical scheme
of this comparison is shown in Figure 8.

Results

As just mentioned, to assess the impact of ML, we simulated the behavior of a single
sensor tracking the average Aol and the total number of its transmissions. We simulated
two scenarios, one without ML (henceforth referred to as the baseline case) and one with a
ML for classifying the received updated. We did not actually consider a specific ML scheme,
but we accounted for the misclassification events and the possibility of aggregating and
leveraging information from neighbor nodes.

The simulation considers a discrete time axis with 10* time slots. The status of a
single sensor and its Aol are tracked at each time step, with 4 possible outcomes: (i) the
sensor sends an update with probability p. Therefore, Aol is reset to 0 and the number of
transmissions is increased by 1; (ii) at least one of the N neighbors sends a useful update
with probability g. Therefore the Aol of the sensor is reset but the number of transmissions
is not increased; (iii) the Aol exceeds the predefined value T (set at the beginning of the
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simulation to some quantity Tj) and the sensor is forced to send an update, so that once
again the Aol is reset to 0 and the number of transmissions is increased by 1; (iv) none of
the previous cases, so no update is performed. In this case the Aol is increased by 1, but
the number of transmissions from that sensor is kept the same.

No.
Wait No.

t+1 Wait

Normal status
(No anomaly)
Increase/Mantain T

Aol(t)> T

Anomaly detected.
Reduce T

Transmit data

Reset. Reset.

Aol(t) = 0 Aol(t) =0

(a) Baseline updating scheme (b) ML-empowered updating scheme

Figure 8. The role of ML in the sensor’s Aol optimization. A baseline scheme without ML (a) is
compared with an ecosystem with ML in the loop (b), with a dynamic adjustment of the Aol policy
(i.e., updating a threshold T).

Each update is supposed to be classified through a ML algorithm into a binary outcome
(normal status or anomaly), with a symmetric probability of misclassification being equal to
Perr- According to our previous description (see Figure 8), we modified the Aol threshold
according to how the ML procedure classifies the update. In particular, the initial threshold
is set to T := Tp; then, whenever an anomaly is detected, the threshold is set to max(1,T/2)
to force the system to sending more frequent updates (ideally, every slot if the anomaly
persists). Otherwise, the threshold is increased by 1, so T = min(T + 1, Tp).

We simulated this scenario for different values of p, perr, N, g and Tj. Figures 9 and 10
show two representative results in the case N = 30, g = 0.15 and Ty = 30. Incidentally, we
notice that the results do not significantly differ for different choices of those parameters. In
particular, Figure 9 shows the number of transmissions (N;y) with a variable transmission
probability p, while Figure 10 reports the Aol behavior when p ranges between 1074 to 1.

As can be observed from both figures, the effect of ML is more evident for lower values
of p. For lower transmission probabilities, the baseline scenario obtains an average Aol and
a number of transmissions that are only influenced by Tj, since the only way that the Aol is
reset to 0 is when the sensor is forced to update after hitting Tj. In this same situation, the
impact of an ML-empowered tracking is to decrease the number of transmissions, since it
allows to exploit the redundancy present from the network structure, but also consequently
implying a slight increase in the average Aol. This effect vanishes, as it might be expected,
with the increase of the transmission probability. No relevant differences can be noted
for the perr tested, thereby implying that a limited error rate can be recovered thanks to
subsequent correct updates. It is interesting to note that the number of transmissions
decreases for p < 1072, while rapidly increasing after this particular values. Further tests
(not reported due to space constraints) showed that a similar behavior occurs for different
values of g and N too; however, it becomes more evident for larger 4 and N, while it almost
vanishes when g and N are sufficiently small. Overall, we might explain this behavior with
the fact that the correlation between the sensor in this range of p (p < 1072) dominated
the system’s Aol and total number of transmission. With the increase of p, the correlation
between the sensors becomes a weaker contribution to the Aol, compared to the simple
increase of transmissions for each sensor.
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Figure 9. ML-based optimization of the sensor’s Aol: total number of transmissions after 10* time slots.
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Figure 10. ML-based optimization of the sensor’s Aol: average Aol after 10* time slots.

For a scenario with sparse update, it is possible to conclude that ML-empowered
algorithms can be exploited to reduce the number of transmission (#¢,) and consequently
energy consumption of the sensors and network congestion. The downside to applying
these techniques lies in the increase in Aol and makes the system more exposed to possible
failures if critical updates are misclassified. Yet, the possibility of collecting and combining
data from multiple sources and/or time instances may lead to richer description of the
system status and avoid this problem. Future tests in more extended setups, and possibly
in real world scenarios, will be needed to find the adequate trade-off between reducing the

number of transmissions and the choice of the specific ML scheme to adopt.
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5. Conclusions and Future Work

In resource-constrained environments, the availability of fresh information is an impor-
tant challenge that can be addressed through Aol. In this paper, we showed how exploiting
the correlation between multiple sources of information in the computation of Aol, be-
yond its standard definition, can be beneficial to lowering the Aol and keeping the system
up-to-date. At the same time, we showed how the transmission protocol can strongly
influence the Aol, which can even increase despite the exploitation of correlation among
multiple sources. Furthermore, we showed the importance of applying ML-empowered
classifications of the state of the ecosystem, thus using the semantic value of the complex
data collected by the sensors to adjust the Aol. In the future, the proposed approaches
aiming at enriching the representative value of Aol could be tested in different real-world
scenarios, in order to test it and adapt it to the specifics of different applications.
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