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We present analytical and numerical progress on black-hole binary spin precession at second post-
Newtonian order using multitimescale methods. In addition to the commonly used effective spin which acts
as a constant of motion, we exploit the weighted spin difference and show that such reparametrization cures
the coordinate singularity that affected the previous formulation for the case of equal-mass binaries.
The dynamics on the precession timescale is written down in closed form in both coprecessing and inertial
frames. Radiation reaction can then be introduced in a quasiadiabatic fashion such that, at least for binaries
on quasicircular orbits, gravitational inspirals reduce to solving a single ordinary differential equation.
We provide a broad review of the resulting phenomenology and rewrite the relevant physics in terms of the
newly adopted parametrization. This includes the spin-orbit resonances, the up-down instability, spin
propagation at past time infinity, and new precession estimators to be used in gravitational-wave astronomy.
Our findings are implemented in version 2 of the public PYTHON module PRECESSION. Performing a
precession-averaged post-Newtonian evolution from/to arbitrarily large separation takes ≲0.1 s on a single
off-the-shelf processor—a 50× speedup compared to our previous implementation. This allows for
a wide variety of applications including propagating gravitational-wave posterior samples as well as
population-synthesis predictions of astrophysical nature.
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I. INTRODUCTION

Black-hole (BH) binary spin precession is a distinctive
feature of the general relativistic two-body problem [1].
Two Kerr BHs in a bound system are subject to interactions
between their spins and the orbital angular momentum of
the binary. The motion resulting from such spin-orbit and
spin-spin couplings is a superposition of precession and
nutation. This is somewhat analogous to that of Earth’s
axis, though with a key difference. For Earth, precession
happens on a much longer timescale (∼2.5 × 104 yr) than
nutation (∼18 yr) and with a larger amplitude, such that
one can think of a toplike azimuthal motion perturbed by
small polar oscillations. In the BH case, precession and
nutation happen on comparable timescales and can have
comparable amplitudes, leading to a more complex

phenomenology. While the spins evolve, the system dis-
sipates energy via gravitational-wave (GW) emission,
ultimately leading to the merger of the two BHs.
Timescale considerations are crucial to shed light on the

dynamics of BH binaries, at least in the post-Newtonian
(PN) regime. The orbital motion takes place on a timescale1

torb ∝ ðr=MÞ3=2 (by Kepler’s law), the spins precess on
tpre ∝ ðr=MÞ5=2 [1], and radiation reaction takes place
on trad ∝ ðr=MÞ4 (by the quadruple formula). At suffi-
ciently large separations r ≫ M one has

torb ≪ tpre ≪ trad: ð1Þ

The first inequality torb ≪ tpre; trad has been used since the
early foundation of GW physics [2], resulting in the
popular orbit-averaged formulation of the BH dynamics:
sources evolve on quasi-Newtonian orbits and the orbit
itself evolves quasiadiabatically. More recently [3,4], some
of us started investigating the consequences of the second

*davide.gerosa@unimib.it

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

1Unless specified otherwise, we use natural units where
c ¼ G ¼ 1.

PHYSICAL REVIEW D 108, 024042 (2023)

2470-0010=2023=108(2)=024042(28) 024042-1 Published by the American Physical Society

https://orcid.org/0000-0002-0933-3579
https://orcid.org/0009-0004-2044-989X
https://orcid.org/0000-0001-5460-2910
https://orcid.org/0009-0001-5914-0361
https://orcid.org/0009-0006-7758-7980
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.024042&domain=pdf&date_stamp=2023-07-20
https://doi.org/10.1103/PhysRevD.108.024042
https://doi.org/10.1103/PhysRevD.108.024042
https://doi.org/10.1103/PhysRevD.108.024042
https://doi.org/10.1103/PhysRevD.108.024042
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


inequality tpre ≪ trad. The strategy is the same: we com-
pute the “shape” of the precession cones on the short
timescale (in this case tpre) and then implement radiation
reaction in a quasi-adiabatic fashion. This approach allows
for extremely efficient evolutions of BH binaries along their
long inspirals before merger, which we first implemented in
the numerical code PRECESSION [5]. When studying BH-
binary inspirals, one can now time step over the longer
timescale trad of the problem while the dynamics on both
torb and tpre is dealt with analytically. This is, at present, the
only feasible strategy to evolve BH binaries from the
(infinitely) large separations where they form down to
the smaller separations where they enter the sensitivity
windows of GW detectors.
Such a “multitimescale” approach to the binary dynam-

ics led to an explosion of new predictions and applications.
This includes investigations on the phenomenology of BH
binaries [6–15], waveform development [16–21], astro-
physical modeling [22–30], and interpretation of current
GW data [31–38]. The PRECESSION code itself [5] was used
in over 60 publications to date. Most notably, (i) the
analytic treatment of the binary dynamics on the precession
timescale is now part of the standard “twisting up” strategy
used in state-of-the-art phenomenological waveform mod-
els [18,19], and (ii) the latest GW catalogs and population
analyses developed by LIGO/Virgo now quote spin direc-
tions that are backpropagated to infinitely large separations
using precession-averaged equations [39,40].
In this paper, we present a full reinvestigation of

BH-binary spin precession using multitimescale methods.
We exploit and expand upon some recent analytical
advances [20] which allow us to write the entire dynamics
on the precession timescale tpre in closed form using
Legendre elliptic integrals and Jacobi elliptic functions
(Sec. II). This new formulation cures a coordinate sin-
gularity that impacted the previous parametrization for
equal-mass BHs [7,15]. While the dynamics on the
radiation-reaction timescale still needs to be integrated
numerically (Sec. III), this operation is ≳50 times faster
compared to our previous implementation [5]—BH bina-
ries can now be evolved all the way from and to past time
infinity in ≲0.1 s on a single processor. We then review the
broader phenomenology of spin precession in BH binaries
and rewrite the relevant equations in terms of the new
regularized quantities (Sec. IV). We provide some addi-
tional ingredients that are often necessary to interface the
precession-averaged formalism with other results in BH
physics (Sec. V). Our findings are implemented in v2 of the
PRECESSION code, which has been rewritten from scratch.
The code is publicly available at github.com/dgerosa/
precession [41], where we also provide documentation,
tutorials, and various PN coefficients in machine-readable
format. Here we briefly report on the performance of the
new code as well as some profiling results (Sec. VI). We
conclude with a road map for the future development of the

precession-averaged approach to the BH binary spin
precession problem (Sec. VII). Lengthy PN expression,
details on our algorithm, and some mathematical expres-
sions are postponed to the Appendices.

II. PRECESSION DYNAMICS

A. Looking for an optimal parametrization

Let us consider a BH binary with masses m1 ≥ m2,
orbital angular momentum L, and spins S1;2. These are
combined into the total spin S ¼ S1 þ S2 and the total
angular momentum J ¼ Lþ S1 þ S2. The total mass M ¼
m1 þm2 is a free scale of the problem and can thus be
treated as a unit (indeed, in our numerical implementation
we simply set M ¼ 1 and measure all other quantities
accordingly; cf. Sec. VI). We then define the mass ratio
q ¼ m2=m1 ∈ ð0; 1� and the Kerr parameters χ1;2 ¼
Si=m2

i ∈ ½0; 1� such that the spin magnitudes are given by

S1 ¼
χ1

ð1þ qÞ2M
2; ð2Þ

S2 ¼
q2χ2

ð1þ qÞ2M
2: ð3Þ

We restrict to sources on quasicircular orbits; a generali-
zation to eccentric orbits is under active development and
will be presented elsewhere. The magnitude of the
(Newtonian) orbital angular momentum can be expressed
in terms of either the orbital separation r, via

L ¼ M2
q

ð1þ qÞ2
ffiffiffiffiffi
r
M

r
; ð4Þ

or the compactified coordinate [4]

u ¼ 1

2L
¼ ð1þ qÞ2

2qM2

ffiffiffiffiffi
M
r

r
; ð5Þ

such that u → 0 as r → ∞.
In a frame that coprecesses with the binary [42–44], the

mutual orientations of L, S1 and S2 are fully described by
three angles [45]. These are often chosen to be the polar
angles θ1;2 ∈ ½0; π� between the spin and orbital angular
momentum:

cos θ1 ¼ Ŝ1 · L̂; ð6Þ

cos θ2 ¼ Ŝ2 · L̂; ð7Þ

(where a hat denotes a unit vector) and the azimuthal angle
ΔΦ ∈ ½−π; π� between the projections of the two spins onto
the orbital plane2:

2Other works in the literature use the symbol ϕ12 for ΔΦ.
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cosΔΦ ¼ Ŝ1 × L̂

jŜ1 × L̂j ·
Ŝ2 × L̂

jŜ2 × L̂j ; ð8Þ

sgnΔΦ ¼ sgnfL · ½ðS1 × LÞ × ðS2 × LÞ�g: ð9Þ

From these, one can obtain the angle θ12 between the two
spins within the plane they generate:

cos θ12 ¼ Ŝ1 · Ŝ2 ¼ cos θ1 cos θ2 þ cosΔΦ sin θ1 sin θ2:

ð10Þ

Following the notation first introduced in Ref. [6],
we refer to spinning but nonprecessing binaries as “up-
up” for θ1 ¼ θ2 ¼ 0, “up-down” for θ1 ¼ 0 and θ2 ¼ π,
“down-up” for θ1 ¼ π and θ2 ¼ 0, and “down-down”
for θ1 ¼ θ2 ¼ π.
While intuitive, parametrizing the spin evolution using

θ1, θ2, and ΔΦ significantly complicates the dynamics
because all three angles vary on the same timescale tpre.
Instead, the evolution of GW sources can be greatly
simplified by identifying quantities that respect the time-
scale hierarchy of Eq. (1). Racine [46] first realized that the
effective spin [47]

χeff ¼
χ1 cos θ1 þ qχ2 cos θ2

1þ q
ð11Þ

is a constant of motion at 2PN. This is also the spin quantity
that is commonly regarded as best measured from LIGO/
Virgo observations [39,48,49]. Both the separation r and
the magnitude of the total angular momentum

J ¼ ½L2 þ S21 þ S22 þ 2LS1 cos θ1 þ 2LS2 cos θ2

þ 2S1S2ðcos θ1 cos θ2 þ cosΔΦ sin θ1 sin θ2Þ�1=2
ð12Þ

change solely because of GW emission. These parameters
are therefore constant on the precession timescale and vary
only on the radiation-reaction timescale. The direction Ĵ is
approximately constant even on this longer timescale, with
the notable exception of cases where the magnitude J
approaches zero [1]; see also Ref. [8] for a quantitative
analysis on this point.
With these considerations, some of the authors [3,4]

realized that entire dynamics on the precession timescale
can be reduced to the evolution of a single quantity. This is
analogous to the effective potentials in Kepler’s two-body
problem, where energy and angular-momentum conserva-
tion reduce the motion to that of an equivalent particle in
one dimension. In particular, previous work parametrizes
BH-binary spin precession using the magnitude of the
total spin

S ¼ ½S21 þ S22 þ 2S1S2ðcos θ1 cos θ2
þ cosΔΦ sin θ1 sin θ2Þ�1=2: ð13Þ

Using ðχeff ; J; SÞ instead of ðθ1; θ2;ΔΦÞ reflects the natural
separation of timescale that governs the BH binary dynam-
ics in the PN regime.
However, this parametrization is still suboptimal for two

reasons. First, the magnitude of the total angular momen-
tum J diverges at large separations r → ∞, making a
numerical implementation impractical. This can be cured
by instead using

κ ¼ J2 − L2

2L
ð14Þ

which was proved to converge in the large-separation limit
[4]. We refer to κ as the “asymptotic angular momentum.”
The precise expression of Eq. (14) has been chosen such
that κ reduces to S · L̂ in the large-separation limit; see
Sec. IVA.
Second, the magnitude of the total spin S is a constant of

motion for equal-mass binaries [46], which implies one
cannot rely on S to parametrize the precession cycle when
q ¼ 1 [7]. This mathematical quirk is analogous to that of a
coordinate singularity in general relativity, which does not
affect the underlying physics but breaks the formalism. As
we explore at length in this paper, the quantity

δχ ¼ χ1 cos θ1 − qχ2 cos θ2
1þ q

ð15Þ

first identified by Klein [20] correctly regularizes the q → 1
limit. We refer to δχ as “weighted spin difference.” An
alternative, approximate regularization scheme was
recently proposed in Ref. [15]. While Eqs. (11) and (15)
are formally similar and only differ by a single sign, the
dynamical properties of χeff and δχ are crucially different.
The former is a constant of motion for the 2PN spin
problem while the latter varies on the smaller precession
timescale. The conversion between the S and δχ para-
metrizations is given by

S2

M4
¼ q

ð1þ qÞ2
ffiffiffiffiffi
r
M

r �
2

κ

M2
− χeff −

1 − q
1þ q

δχ

�
: ð16Þ

Indeed, the precession-timescale variation encoded by δχ
disappears for q → 1 such that S tends to a constant. This is
shown in Fig. 1 for a representative set of sources: for
q ¼ 1, the curve SðδχÞ becomes horizontal, signaling the
breakdown of the S parametrization.
We will now use Eq. (16) to rewrite and expand upon the

entire formalism of Refs. [3,4], thus regularizing the q ¼ 1
behavior. The explicit expressions for the spin angles in
terms of χeff , κ, and δχ are given by
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cos θ1 ¼
1þ q
2χ1

ðχeff þ δχÞ; ð17Þ

cos θ2 ¼
1þ q
2qχ2

ðχeff − δχÞ; ð18Þ

cosΔΦ ¼ 1

q
f2qð1þ qÞ

ffiffiffiffiffiffiffiffiffi
r=M

p
½2ð1þ qÞκM−2

− ð1þ qÞχeff − ð1 − qÞδχ� − 2ðχ21 þ χ22q
4Þ

− qð1þ qÞ2ðχ2eff − δχ2Þg
× ½4χ21 − ð1þ qÞ2ðχeff þ δχÞ2�−1=2
× ½4χ22q2 − ð1þ qÞ2ðχeff − δχÞ2�−1=2; ð19Þ

cos θ12 ¼
1

2χ1χ2q2
fqð1þ qÞ

ffiffiffiffiffiffiffiffiffi
r=M

p
½2ð1þ qÞκM−2

− ð1þ qÞχeff − ð1 − qÞδχ� − ðχ21 þ χ22q
4Þg: ð20Þ

Note that, unlike the analogous Eq. (20) in Ref. [4], these
equations are manifestly finite when q ¼ 1.
In summary, we parametrize BH binaries on quasicir-

cular orbits using q, χ1, χ2, χeff , u, κ, and δχ. In particular:
(i) The mass ratio q, the spin magnitudes χ1;2 [50], and

the effective spin χeff [46] are all constants of motion
at the PN order we consider.

(ii) The compactified orbital separation u and the
asymptotic angular momentum κ vary only on the

radiation-reaction timescale and are asymptotically
regular at large separations.

(iii) The weighted spin difference δχ varies on the preces-
sional timescale and is regular in the equal-mass limit.

B. Dynamics in a coprecessing frame

The evolution of the spins and the orbital angular
momentum is set by the coupled precession equations
[46,51–54]

dS1
dt

¼ ω1 × S1; ð21Þ

dS2

dt
¼ ω2 × S2; ð22Þ

dL
dt

¼ ωL × Lþ dL
dt

L̂; ð23Þ

where the frequencies at 2PN are given by

ω1 ¼
1

2r3

��
4þ 3q −

3ð1þ qÞχeffffiffiffiffiffiffiffiffiffi
r=M

p �
Lþ S2

�
; ð24Þ

ω2 ¼
1

2r3

��
4þ 3

q
−
3ð1þ qÞχeff
q
ffiffiffiffiffiffiffiffiffi
r=M

p �
Lþ S1

�
; ð25Þ

ωL ¼ 1

2r3

��
4þ 3q −

3ð1þ qÞχeffffiffiffiffiffiffiffiffiffi
r=M

p �
S1

þ
�
4þ 3

q
−
3ð1þ qÞχeff
q
ffiffiffiffiffiffiffiffiffi
r=M

p �
S2

�
: ð26Þ

The derivative dL=dt models radiation reaction and can be
neglected when studying the dynamics on the precession
timescale. In this approximation, the motion of a binary in a
noninertial, coprecessing frame is entirely encoded in the
evolutionary equation of δχ. From Eqs. (21)–(26) one gets

M
dδχ
dt

¼ 3q
ð1þ qÞ2 χ1χ2

�
r
M

�
−3
�
1 −

χeffffiffiffiffiffiffiffiffiffi
r=M

p �

× sin θ1 sin θ2 sinΔΦ; ð27Þ

where the prefactor on the first line of Eq. (27) is always
positive because jχeff j ≤ 1 and r > M. In particular, the
squared time derivative of δχ is given by

ΣðδχÞ≡
�
M

dδχ
dt

�
2

¼ σ̄ðσ3δχ3 þ σ2δχ
2 þ σ1δχ þ σ0Þ;

ð28Þ

which is a third-degree polynomial. Some represen-
tative examples are shown in the left panel of Fig. 2.
The coefficients σ̄ and σi are functions of q, χ1, χ2, χeff , κ,
and r, as reported in Appendix A. In particular, factorizing

FIG. 1. Magnitude of the total spin S as a function of the
weighted spin difference δχ. We consider a set of binaries with
χ1 ¼ χ2 ¼ 0.9, χeff ¼ 0.3, κ̃ ¼ 0.5, and a range of values of q ∈
ð0; 1� as indicated in the color bar. The dotted black curves mark
the locations of the two turning points δχ�. The solid black line
indicates the q ¼ 1 limiting case where the S parametrization
becomes degenerate. The δχ� configurations with q ¼ 0, 1 are
indicated with round markers.
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the equation in this form allows us to avoid divisions by
zero in both the equal-mass (q → 1) and large-separation
(u → 0) limits; cf. Sec. IVA.
The equation ΣðδχÞ ¼ 0 admits either one or three real

roots. Spin precession requires the existence of two turning
points in the evolution δχðtÞ; a formal proof using the
Jordan curve theorem is provided in Ref. [4]. This implies
that, for physical configurations to exist, the equation
ΣðδχÞ ¼ 0 must admit three roots, with two of them acting
as the turning points that define spin precession. The third
root is spurious and was introduced when squaring the
derivative dδχ=dt to obtain Eq. (28) from Eq. (27). In
particular, it is useful to write [20]�
M

dδχ
dt

�
2

¼ A2ðδχ − δχ−Þðδχþ − δχÞ½δχ3 − ð1 − qÞδχ�;

ð29Þ
where δχ−, δχþ, and δχ3=ð1 − qÞ are the roots of Σ2ðδχÞ.
The prefactor A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ̄σ3=ð1 − qÞp
is given by

A ¼ 3

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ qÞp �
r
M

�
−11=4

�
1 −

χeffffiffiffiffiffiffiffiffiffi
r=M

p �
≥ 0: ð30Þ

The conditions σ̄ ≥ 0 and σ3 ≥ 0 imply that the only
bounded region where Σ2ðδχÞ ≥ 0 lies between the two

smaller roots δχ− and δχþ while the spurious solution
δχ3=ð1 − qÞmust necessarily be the largest of the three (see
Fig. 2). Physical values of δχ describing spin precession
must satisfy

δχ− ≤ δχ ≤ δχþ ≤
δχ3
1 − q

: ð31Þ

Crucially, in this formulation the quantities δχ−;þ;3 do not
have hidden divergences and remain finite when q → 1 (see
Sec. IVA). For some of the following expressions, it is
useful to perform an affine transformation and identify a
binary with the parameter

δχ̃ ¼ δχ − δχ−
δχþ − δχ−

∈ ½0; 1�: ð32Þ

A fast and accurate determination of δχ−, δχþ, and δχ3
from the coefficients σi is crucial for a successful numerical
implementation. While the solution of a third-degree
polynomial is analytical, the resulting algebraic expressions
are convoluted and a standard numerical algorithm based
on the eigenvalues of the companion matrix [55,56] appears
to perform better (see Appendix B). This is a considerable
improvement compared to our previous implementation
[5], where the turning points were determined with a
custom root finder based on effective potentials [3]. The

FIG. 2. The left panel shows the normalized cubic equation Σ=σ̄ for the derivative ðdδχ=dtÞ2 as reported in Eq. (28). Spin precession
takes place in the bounded and positive intervals highlighted with the shaded areas. The left and right edges of these intervals correspond
to δχ− and δχþ, respectively. The spurious, largest root (which is absent for q ¼ 1) corresponds to δχ3=ð1 − qÞ. The right panel shows
the discriminant Δ of the Σ=σ̄ equation normalized to a positive coefficient δ̄; see Eq. (40). Spin precession can only take place in the
bounded, positive intervals highlighted with the shaded areas. The edges of these intervals are the spin-orbit resonances κ�. In both
panels, we consider binaries with χ1 ¼ 0.9, χ2 ¼ 0.9, χeff ¼ 0.5, r ¼ 15M, and three values of the mass ratio q ¼ 0.4 (blue), 0.7
(orange), and 1 (green). For the left panel, we further impose κ̃ ¼ 0.5. The corresponding values of κ are indicated with dashed lines in
the right panel.
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exploitation of the algebraic properties of dδχ=dt is a key
element of the computational speedup achieved with the
current version of our code (Sec. VI). More specifically, we
solve the cubic polynomial twice. We first solve Σ ¼ 0
in δχ and retain the two smaller roots. We then solve
ð1 − qÞ2Σ ¼ 0 in δχ0 ¼ ð1 − qÞδχ and retain the larger root.
Because σ3 ∝ ð1 − qÞ, this allows us to compute the three
quantities δχ−;þ;3 regularly for all values of q ≤ 1.
We can integrate Eq. (29) in time, setting δχðt ¼ 0Þ ¼

δχ− as the initial condition. The formal solution is
(cf. [16,17,20])

δχ ¼ δχ− þ ðδχþ − δχ−Þ

× sn2
�
A
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δχ3 − ð1− qÞδχ−

p t
M

;
ð1− qÞðδχþ − δχ−Þ
δχ3 − ð1− qÞδχ−

�
;

ð33Þ
where snðψ ; mÞ is the Jacobi elliptic sine [57]. In a nutshell,
snðψ ; mÞ ∈ ½−1; 1� is a periodic function with ψ-period
4KðmÞ, where KðmÞ is the complete elliptic integral of the
first kind. The elliptic sine is qualitatively similar to the
standard trigonometric sine and reduces exactly to it for
m ¼ 0. In our case, the elliptic parameter is

m ¼ ð1 − qÞðδχþ − δχ−Þ
δχ3 − ð1 − qÞδχ−

: ð34Þ

The period of sn2 is 2KðmÞ, which implies that the
weighted spin difference δχ oscillates from δχ− to δχþ
and back to δχ− in a time given by

τ

M
¼ 4KðmÞ

A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δχ3 − ð1 − qÞδχ−

p : ð35Þ

The variable τ in Eq. (35) is the spin nutational period as in
Refs. [3,4].
Using the rescaling put forward in Eq. (32), one can

rewrite Eq. (33) as

δχ̃ ¼ sn2
�
2KðmÞ t

τ
; m

�
: ð36Þ

This expression can then be inverted to obtain

t ¼ � τ

2

Fðarcsin ffiffiffiffiffi
δχ̃

p
; mÞ

KðmÞ ; ð37Þ

where Fðφ; mÞ is the incomplete elliptic integral of the first
kind [57], whose definition implies that Fðπ=2; mÞ ¼
KðmÞ. The � sign in front refers to the two halves of
the cycle, δχ− → δχþ and δχþ → δχ−. One has tðδχ−Þ ¼ 0
and tðδχþÞ ¼ �τ=2, such that a full oscillation takes a
time τ. Equation (37) can also be derived directly from
Eq. (29) using some of the standard integrals reported
in Appendix C. When tackled this way, the oscillation

period is most naturally given by the integral τ ¼
2
R δχþ
δχ−

ðdδχ=dtÞ−1dδχ, which is the calculation that was
performed numerically in our previous implementation [5].
Some of the resulting solutions are shown in Fig. 3 for a

set of three binaries that share the same values of the
constants of motion. In particular, we show the full solution
of Eqs. (33) and (36) together with two possible approx-
imations (see, e.g., Ref. [21]). Setting m ¼ 0 in both
Eqs. (35) and (36) results in very large deviations, with
the spin going several radians out of phase in just a few
cycles. One can instead set m ¼ 0 only in Eq. (36) and
not in Eq. (35), i.e., approximate snðψ ; mÞ ≃ sinðψÞ for
the shape of the function but ensure that the period τ is
the same. For the binaries considered in Fig. 3, we
find this procedure results in errors on δχ that are ≲0.2.
We anticipate this second approximation could be useful in
waveform construction, though one should first explore its
accuracy more extensively in the parameter space.
Precession-averaged evolutions require a final resampling

of the precessional phase (see Sec. III B). This task is now

FIG. 3. Evolution of the weighted spin difference δχ as a
function of time on the precession timescale (i.e., neglecting
radiation reaction). All three binaries have the same values of
q ¼ 0.8, χ1 ¼ 0.5, χ2 ¼ 0.9, χeff ¼ −0.1, and r ¼ 10M, but three
different values of κ̃ ¼ 0.3 (blue, top panel), 0.5 (orange, middle
panel), and 0.7 (green, bottom panel). Solid curves show the full
solution which is provided in terms of Jacobi elliptic functions.
Dotted curves show approximate solutions where we set m ¼ 0.
Dashed curves show approximate solutions where we use
standard trigonometric functions but keep the period of the
oscillation as derived from the full solution.
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straightforward: instead of relying on inverse-transform
sampling as in Ref. [5], one can simply generate a random
number t uniformly in ½0; τ� and evaluate Eq. (33) to
obtain δχ.

C. Parameter boundaries and spin-orbit resonances

The various parameters describing BH-binary spin pre-
cession are bounded by several constraints. We discuss their
limits starting from the constants of motion, then moving on
to quantities that vary on the long and short timescales of the
problem.

1. Mass ratio

We use a convention where labels “1” and “2” indicate
the heavier and lighter BHs, respectively. The mass ratio
q ¼ m2=m1 is defined in (0, 1].

2. Spin magnitudes

The Kerr geometry imposes χ1;2 ∈ ½0; 1�. More con-
servatively, the spins of astrophysical BHs are not expected
to exceed the Thorne limit χ1;2 ≲ 0.998 [58].

3. Effective spin

From Eq. (11), the effective spin χeff is strictly defined in
½−1; 1�. Fixing q, χ1, and χ2 further restricts the allowed
range of χeff to

−
χ1 þ qχ2
1þ q

≤ χeff ≤
χ1 þ qχ2
1þ q

: ð38Þ

4. Orbital separation

A conservative threshold for the PN approximation to be
valid is r > 10M, or equivalently u ≤ ð1þ qÞ2=ð2q ffiffiffiffiffi

10
p Þ

[59–61]. While astrophysical binaries form at some large
but finite separation [15], considering the asymptotic
behavior at r → ∞ has key applications in GW population
studies [34].

5. Asymptotic angular momentum

From Eq. (14), the geometrical constraint J ¼ Lþ S1 þ
S2 translates into

κ

M2
≥

q
ffiffiffiffiffiffiffiffiffi
r=M

p
2ð1þ qÞ2

�
max

�
0;

�
1 −

χ1 þ q2χ2
q
ffiffiffiffiffiffiffiffiffi
r=M

p �				1 − χ1 þ q2χ2
q
ffiffiffiffiffiffiffiffiffi
r=M

p 				;�jχ1 − q2χ2j
q
ffiffiffiffiffiffiffiffiffi
r=M

p − 1

�				 jχ1 − q2χ2j
q
ffiffiffiffiffiffiffiffiffi
r=M

p − 1

				
�
− 1

�
;

κ

M2
≤
χ1 þ q2χ2
ð1þ qÞ2

�
χ1 þ q2χ2
2q

ffiffiffiffiffiffiffiffiffi
r=M

p þ 1

�
; ð39Þ

where the first condition corresponds to J ¼ 0, the second
condition corresponds to cos θ1 ¼ cos θ2 ¼ −1 (down-
down), the third condition corresponds to cos θ1 ¼
− cos θ2 ¼ �1 (either up-down or down-up), and the fourth
condition corresponds to cos θ1 ¼ cos θ2 ¼ 1 (up-up).
The interval reported in Eq. (39) corresponds to the

bounds on κ for given values of q, χ1, χ2, and r. However,
this range is not available to each binary in its entirety, as
that depends on the additional constant of motion χeff .
Section II B illustrated that spin precession can only take
place when the cubic ΣðδχÞ admits three roots, i.e., when its
discriminant is positive. More precisely, we indicate the
discriminant of Σ=σ̄ with Δ. This turns out to be a fifth-
degree polynomial in κ [11]:

ΔðκÞ ¼ σ22σ
2
1 − 4σ3σ

3
1 − 4σ32σ0 − 27σ23σ

2
0 þ 18σ3σ2σ1σ0

ð40Þ

¼ δ̄

�
δ5

�
κ

M2

�
5

þ δ4

�
κ

M2

�
4

þ δ3

�
κ

M2

�
3

þ δ2

�
κ

M2

�
2

þ δ1

�
κ

M2

�
þ δ0

�
; ð41Þ

where the coefficients δ̄ and δi are lengthy but algebraic
expression involving q, χ1, χ2, χeff , and r; see Appendix A.
For convenience, we collect a positive term δ̄ and isolate the
leading-order coefficient δ5 ¼ −uM2. A few examples ofΔ
as a function of κ are shown in the right panel of Fig. 2.
The roots of the equation ΔðκÞ ¼ 0 correspond to

locations in the parameter space where δχ− ¼ δχþ.
Physically, these are cases where the relative orientation
of the spins and the orbital angular momentum is fixed
on the precession timescale. These configurations are
the so-called “spin-orbit resonances” first discovered by
Schnittman [45] and later explored at length by several
authors [3,4,11,32,54,62–69]. In particular, Ref. [11] for-
mally proved that there are always two spin-orbit reso-
nances κ� for each set of ðq; χ1; χ2; r; χeffÞ, as previously
suggested by extensive numerical explorations [4,45].
Spin precession takes place in a compact interval

κ− ≤ κ ≤ κþ; ð42Þ

where ΔðκÞ ≥ 0 (see Fig. 2). The quintic equation ΔðκÞ ¼
0 admits either one, three, or five real roots. We can discard
the case with a single real root because there must always
be two resonances [11]. Because δ5 < 0, if there are three
real roots, the only bounded and positive interval is located
between the two greater roots. These are indeed the
resonances κ� while the third, smaller root is spurious.
The occurrence of five real roots instead provides two
bound intervals where ΔðκÞ ≥ 0; if the roots are ordered in
κ, there are two pairs of candidate resonances, namely the
second and third roots as well as the fourth and fifth roots.
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Knowing that only one of such pairs can correspond to κ�
[11], we calculate the corresponding ranges in δχ and select
among them by imposing the constraint of Eq. (45).
To compare binaries with different values of the constant

of motions (see, e.g., Fig. 1 where we vary q), it is useful to
define

κ̃ ¼ κ − κ−
κþ − κ−

∈ ½0; 1�: ð43Þ

With an analogous calculation to that we just presented,
one can also expand Δ as a function of χeff to obtain the
limits of χeff constrained to q, χ1, χ2, r, and κ. This is less
relevant because χeff is a constant of motion and should be
imposed before κ, not vice versa.

6. Weighted spin difference

From Eq. (15), one has δχ ∈ ½−1; 1�. Fixing q, χ1, and χ2
imposes

−
χ1 þ qχ2
1þ q

≤ δχ ≤
χ1 þ qχ2
1þ q

: ð44Þ

For a given value of χeff , the geometrical conditions
cos θ1;2 ∈ ½−1; 1� further restricts the range of δχ to

δχ ≥ max

�
−χeff −

2χ1
1þ q

; χeff −
2qχ2
1þ q

�
;

δχ ≤ min

�
−χeff þ

2χ1
1þ q

; χeff þ
2qχ2
1þ q

�
: ð45Þ

The resulting constraints are illustrated in Fig. 4 for two
representative cases. The allowed region in the δχ − χeff
plane is a rectangle whose orientation depends on the sign
of χ1 − qχ2.
If one also fixes κ in addition to q, χ1, χ2, and χeff , the

evolution of δχ can be further confined to the interval

δχ− ≤ δχ ≤ δχþ; ð46Þ

or equivalently δ̃χ ∈ ½0; 1�, as discussed in Sec. II B. These
intervals are shown in Figs. 1 and 2 for a representative set
of binaries. Equation (46) is more restrictive than Eq. (45),
which implies that physical regions when spin precession
occurs must lie inside one of the rectangles of Fig. 4 but
do not occupy them fully. In particular, Fig. 4 shows the
region in the δχ − χeff parameter space that is available to
binaries with different values of κ̃. Binaries with κ̃ ¼ 0 or
κ̃ ¼ 1 (i.e., the spin-orbit resonances) are confined to one-
dimensional curves because δχ− ¼ δχþ. On the other hand,
binaries with generic values of κ̃ ∈ ð0; 1Þ occupy a wider,
nondegenerate portion of the parameter space.

FIG. 4. Available region in the δχ − χeff parameter space for two sets of binaries with fixed values of q, χ1, χ2, and r. The black
rectangles indicate the bounds from Eq. (45). Each edge corresponds to one of the four aligned conditions, cos θ1;2 ¼ �1. The rectangles
themselves are inscribed in wider squares (gray dotted lines) corresponding to Eqs. (38) and (44). The parameters used in the left (right)
panel have been chosen such that χ1 − qχ2 > 0 (χ1 − qχ2 < 0), which sets the orientation of the rectangle. The white circles at the
vertices correspond to the four aligned configurations up-up, up-down, down-up, and down-down (where “U” stands for up and “D”
stands for down). The dashed red and blue curves indicate binaries with κ̃ ¼ 0 and κ̃ ¼ 1, respectively, which are the spin-orbit
resonances. The gray areas indicate the parameter space available to binaries with κ̃ ¼ 0.5. For these same binaries, the gray dashed
curves mark the turning points δχ− (left edge) and δχþ (right edge).
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D. Dynamics in an inertial frame

While most astrophysical applications only require the
mutual orientations of the spins and the orbital angular
momentum, tracking the dynamics in an inertial frame is
crucial to construct waveforms for GW data analysis.
The direction of J is constant on the precession time-

scale, which implies one can use this vector to define an
inertial frame and describe the dynamics accordingly. In
this frame, the direction of the orbital angular momentum L
is defined by a polar angle given by

cos θL ¼ L̂ · Ĵ ð47Þ

and an azimuthal angle

ΦL ¼
Z

ΩLdt ð48Þ

which is measured in the plane orthogonal to J. The latter
can be found by integrating the precession frequency

ΩL ¼ dL̂
dt

·
Ĵ × L̂

jĴ × L̂j2 ð49Þ

while neglecting GW emission (i.e., setting dL=dt ¼ 0).
All these quantities can be expressed using the para-

metrization adopted in Sec. II A. One has [3,4,8,14]

cos θL ¼
�
1þ ð1þ qÞ ð1 − qÞδχ þ ð1þ qÞχeff

2q
ffiffiffiffiffiffiffiffiffi
r=M

p �

×

�
1þ 2ð1þ qÞ2

q
κ=M2ffiffiffiffiffiffiffiffiffi
r=M

p �−1=2
ð50Þ

and

ΩLM ¼ C0

�
1 −

X
i¼fþ;−g

Ci
Ri − ð1 − qÞδχ ffiffiffiffiffiffiffiffiffi

M=r
p �

; ð51Þ

where the following coefficients do not depend on δχ but
only on quantities that are constant on the precession
timescale:

C0 ¼
q

2ð1þ qÞ2
�
M
r

�
5=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ð1þ qÞ2

q
κ=M2ffiffiffiffiffiffiffiffiffi
r=M

p
s

; ð52Þ

C� ¼ �3

�
1−

χeff
r=M

��
ð1þ qÞ

�
1þ χeff

r=M

�

×

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ð1þ qÞ2

q
κ=M2ffiffiffiffiffiffiffiffiffi
r=M

p
s �

þ ð1þ qÞ3
q

κ=M2ffiffiffiffiffiffiffiffiffi
r=M

p
−
1− q
2q2

χ21 − q4χ22
r

��
1þ 2ð1þ qÞ2

q
κ=M2ffiffiffiffiffiffiffiffiffi
r=M

p �−1=2
;

ð53Þ

R� ¼ −
2q

1þ q

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ð1þ qÞ2

q
κ=M2ffiffiffiffiffiffiffiffiffi
r=M

p
s !

− ð1þ qÞ χeffffiffiffiffiffiffiffiffiffi
r=M

p : ð54Þ

One can then integrate Eq. (51) to obtain

ΦL ¼ �C0
τ

2MKðmÞ
�
Fðarcsin

ffiffiffiffiffi
δχ̃

p
; mÞ

−
X

i¼fþ;−g

Cni
δχþ − δχ−

× Πðnið1 − qÞ
ffiffiffiffiffiffiffiffiffi
M=r

p
; arcsin

ffiffiffiffiffi
δχ̃

p
; mÞ

�
; ð55Þ

where

ni ¼
δχþ − δχ−

Ri − δχ−ð1 − qÞ ffiffiffiffiffiffiffiffiffi
M=r

p ð56Þ

and Πðn;φ; mÞ is the incomplete elliptic integral of the
third kind [57]; cf. Appendix C. The total angle spanned
during a nutation period τ is given by

α ¼ C0
τ

M

�
1 −

X
i¼fþ;−g

Cini
δχþ − δχ−

Π½nið1 − qÞ ffiffiffiffiffiffiffiffiffi
M=r

p
m�

KðmÞ
�
;

ð57Þ

where Πðn;mÞ is the complete elliptic integral of the third
kind. Much like in Eq. (37), we have assumed an initial
condition such that ΦLðδχ−Þ ¼ 0 and ΦLðδχþÞ ¼ �α=2,
where the � sign refers to the two halves of the nuta-
tion cycle.
The direction of J is approximately constant also on the

longer radiation-reaction timescale (see, e.g., [54,70,71]).
Exceptions include the so-called “nutational resonances”
[8], where α ¼ 2πn for integer n. It turns out that for n > 1

the resulting tilts in J are as small as Oð10−3Þ rad. The
n ¼ 0 nutational resonance corresponds to the “transitional
precession” phenomenon [1] where J ∼ 0 and tilts are
of Oð1Þ rad.

III. PRECESSION-AVERAGED INSPIRAL

A. Precession averaging

The solutions of Sec. II B allow us to define the
“precession average” operation. The precession average
of a generic quantity X is given by

hXi ¼
R δχþ
δχ−

XðδχÞðdδχdt Þ−1dδχR δχþ
δχ−

ðdδχdt Þ−1dδχ
; ð58Þ
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where the denominator is also equal to τ=2. In words, we
weight each contribution entering X using the “speed”
dδχ=dt. Imagine taking snapshots of the dynamics over a
period τ, one is more (less) likely to measure a given value
XðδχÞ if the variation of δχ is slow (fast). Note that we
can safely integrate only over the first half of a precession
cycle δχ− → δχþ because the second half δχþ → δχ− is
identical up to a sign change of the derivative dδχ=dt. If the
quantity X is constant on the precession timescale (i.e.,
dX=dδχ ¼ 0), one obviously has hXi ¼ X.
Using this notion of average, the first two moments

of δχ̃ can be elegantly reduced to special functions; see
Appendix C. We find

hδχ̃i ¼ 1

m

�
1 −

EðmÞ
KðmÞ

�
; ð59Þ

hδχ̃2i ¼ 1

3m2

�
2þm − 2ð1þmÞ EðmÞ

KðmÞ
�
; ð60Þ

where m is given by Eq. (34) and KðmÞ and EðmÞ are the
complete elliptic integrals of the first and second kind,
respectively (cf. analogous expressions in Ref. [20]).
These quantities are shown in Fig. 5. As m increases
from 0 to 1, both moments increase monotonically
from limm→0hδχ̃i ¼ 1=2 and limm→0hδχ̃2i ¼ 3=8 to
limm→1hδχ̃i ¼ limm→1hδχ̃2i ¼ 1.

B. Binary inspiral

The notion of precession average allows us to connect
different quantities that vary on the radiation-reaction

timescale. The parametrization of Sec. II A reveals that,
at least for quasicircular binaries, there are only two such
variables: the asymptotic angular momentum κ and the
orbital separation r (or equivalently the compactified
coordinate u). The only ingredient one needs to evolve
binaries along the inspiral is an ordinary differential
equation (ODE) for dκ=du.
As first shown in Refs. [3,4], the derivation is straight-

forward when restricting to the angular-momentum flux at
1PN [51] and yields

dκ
du

¼ hS2i: ð61Þ

The right-hand side can be evaluated using Eqs. (16) and
(32) and by considering that δχ̃ is the only variable that
evolves on the precession timescale:

hS2i ¼M2

2u

�
2

κ

M2
− χeff −

1−q
1þq

½δχ−þhδχ̃iðδχþ− δχ−Þ�
�
:

ð62Þ

The average hδχ̃i is given by Eq. (59) and it depends on m
from Eq. (34).
In summary, a precession-averaged binary inspiral is

determined by a single ODE of the form dκ=du ¼
RHSðκ; uÞ that needs to be evolved from some initial
condition ðu0; κ0Þ. The quantities δχ−;þ;3 (and hence m)
entering the right-hand side all depend on both κ and u
in a nontrivial fashion. While we were not able to find
an analytic solution, numerically integrating this Cauchy
problem does not present a significant computational
challenge. Some examples are shown in Fig. 6. The
solutions κðrÞ are smooth and lie between the spin-orbit
resonances κ�. A less trivial behavior appears when
considering the evolution of κ̃ðrÞ, with binaries approach-
ing and departing from the resonances κ̃ ¼ 0; 1 as they
inspiral toward merger.
Previous literature, including by some of us (e.g.,

Ref. [64]), have referred to the spin-orbit resonances as
attractors because of their impact on the angle ΔΦ (see
Sec. IV B). We now believe that this attribute is, to some
extent at least, misplaced. When pictured in terms of
parameters that respect the timescale separation of the
dynamics, BH binaries do not generically approach the
spin-orbit resonances as they inspiral toward merger.
The work flow of a precession-averaged inspiral is the

following:
(i) Assume one is provided an initial binary configu-

ration in terms of the mass ratio q and the initial
conditions of the three momenta Li, S1i, and S2i.

(ii) From the magnitudes of the momenta, compute χ1
and χ2 (which are constant of motions; we thus drop
the initial condition subscript i) and ri (or equiv-
alently ui) from Eqs. (2)–(5).

FIG. 5. Moments of the weighted spin difference δχ̃ rescaled
using the turning points and averaged over a precession cycle.
Solid and dashed lines show hδχ̃i and hδχ̃2i, respectively, as a
function of the elliptic parameter m; cf. Eqs. (59) and (60).
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(iii) Compute the angles θ1i, θ2i, and ΔΦi from
Eqs. (6)–(9).

(iv) Convert these three angles into χeff , κi, and δχi from
Eqs. (11)–(15). If the binary is provided at infinitely
large separation, only θ1;2 (and not ΔΦ) enter this
conversion.

(v) Retain only χeff (which is a constant of motion) and
κi (which provides the initial condition for the ODE
integration); δχi is not necessary.

(vi) Integrate dκ=du from Eq. (61) to the desired final
separation rf, resulting in κf.

(vii) At the final separation, extract a random value of
t ∈ ½0; τ� and evaluate δχf from Eq. (33). Also
extract a random sign ε ¼ f−1;þ1g.

(viii) Convert q, χ1, χ2, χeff , rf, κf, and δχf into the angles
θ1f, θ2f, and ΔΦf using Eqs. (17)–(19). While
performing this conversion, assume ΔΦf ¼ ε×
arccosðcosΔΦfÞ ∈ ½−π; π�. This reflects the under-
lying symmetry of the two halves of a preces-
sion cycle.

Note how, in this scheme, one explicitly loses memory of
the initial value of δχ and resamples it at the very end. In
other words, one does not track the evolution of the
spins along their precession cones but only the “shape”
of those cones along the inspiral. The uncertainty intro-
duced via the precession-averaging procedure can be
captured by resampling many final values of δχ and
construct distributions of quantities at rf, rather than point
estimates (see, e.g., Ref. [12]).

IV. PHENOMENOLOGY OF SPIN PRECESSION

A. Some notable limits

We now consider some notable limits of the dynamics,
namely those at equal masses and large separations.

1. Equal masses: q → 1

Parametrizing the precession dynamics using δχ allows
us to seamlessly study equal-mass systems—a task that had
previously required a separate formulation [7].
In particular, for q ¼ 1 one has σ3 ¼ 0 such that the

cubic polynomial ðdδχ=dtÞ2 from Eq. (28) reduces to a
parabola; see Fig. 2. This is consistent with Eq. (31),
with the largest root δχ3=ð1 − qÞ approaching þ∞ as
q → 1. The discriminant ΔðκÞ reduces to a cubic poly-
nomial for which the spin-orbit resonances are the two
largest solutions:

lim
q→1

κ−
M2

¼ max

�ðχ1 − χ2Þ2
8

;
χ2eff
2

� ffiffiffiffiffi
M
r

r
þ χeff

2
; ð63Þ

lim
q→1

κþ
M2

¼ ðχ1 þ χ2Þ2
8

ffiffiffiffiffi
M
r

r
þ χeff

2
: ð64Þ

From Eq. (34), the condition q ¼ 1 implies m ¼ 0. In this
case, the time evolution of the BH spins is substantially
simpler because snðψ ; 0Þ ¼ sinðψÞ and Kð0Þ ¼ π=2. In
particular, the nutation period is given by

FIG. 6. Representative integrations of the inspiral dynamics using a precession-averaged approach. The left panel shows the evolution
of the asymptotic angular momentum κ. The right panel shows the same results rescaled to [0, 1] using κ̃; see Eq. (43). The gray curves
represent binaries with q ¼ 0.9, χ1 ¼ 0.8, χ2 ¼ 1, χeff ¼ −0.2, and a set of equally spaced initial values of κ̃. These are evolved from
r ¼ 104M to r ¼ 10M. The spin-orbit resonances κ� are shown with red and blue dashed curves, respectively.
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lim
q→1

τ ¼ 4π

3

�
r
M

�
11=4
�
2

κ

M2
− χeff

�
−1=2

�
1 −

χeffffiffiffiffiffiffiffiffiffi
r=M

p �
−1
M

ð65Þ

and the total nutation angle is given by

lim
q→1

α ¼ π

6

�
r
M

�
1=4
�
7 − 6

χeffffiffiffiffiffiffiffiffiffi
r=M

p ��
1 −

χeffffiffiffiffiffiffiffiffiffi
r=M

p �
−1

×

�
1þ 8

κ=M2ffiffiffiffiffiffiffiffiffi
r=M

p �
1=2
�
2

κ

M2
− χeff

�
−1=2

: ð66Þ

Using Eqs. (21)–(26), it is immediate to prove [7]
that q ¼ 1 implies dS=dt ¼ 0, i.e., the magnitude of
the total spin S is a constant of motion on all timescales;
as highlighted in Sec. II A, this is the reason behind
the coordinate singularity that affected our previous
formulation [3,4]. From Eq. (16), the value of this
constant is

lim
q→1

S2

M4
¼ 1

4

ffiffiffiffiffi
r
M

r �
2

κ

M2
− χeff

�
: ð67Þ

One has hSi ¼ S, such that Eq. (61) reduces to

lim
q→1

dκ
du

¼ 1

u

�
κ −

χeff
2

M2

�
: ð68Þ

This can be solved analytically from some initial condition
κðu0Þ ¼ κ0:

lim
q→1

κðrÞ
M2

¼ χeff
2

þ
ffiffiffiffiffi
r0
r

r �
κ0
M2

−
χeff
2

�
; ð69Þ

where we have expressed the results in terms of the orbital
separation for clarity. The q ¼ 1 evolutionary flow, there-
fore, corresponds to the following conservation law:

lim
q→1

�
κ

M2
−
χeff
2

� ffiffiffiffiffi
r
M

r
¼ const: ð70Þ

Equations (63) and (64) indicate that the spin-orbit reso-
nances κ� obey the same conservation law. This implies
that the rescaled quantity κ̃ from Eq. (43) remains constant
on the inspiral timescale. For the case of equal-mass
binaries, curves like those shown in the right panel of
Fig. 6 would be straight, horizontal lines.

2. Large separations: r → ∞
Considering sources at infinitely large separations (i.e.,

r → ∞ or u → 0) is useful to provide a consistent reference
point to label the binary inspiral and combine GWevents at
the population level [15,34,40]. In this limit, spin-spin
couplings can be neglected relative to spin-orbit couplings,

which implies that spins precess about L tracing cones with
fixed opening angles. That is, both angles θ1 and θ2 are
asymptotically constant as r → ∞, and so is δχ because
of Eq. (15).
Plugging the definition J ¼ Lþ S1 þ S2 into Eq. (14)

yields [4]

lim
r→∞

κ

M2
¼ S · L̂ ¼ χ1 cos θ1 þ q2χ2 cos θ2

ð1þ qÞ2 ; ð71Þ

which implies that the asymptotic angular momentum κ is
also constant in the large-separation limit and it is equal to
the projection of the total spin along the binary orbital
angular momentum. Indeed, this property is the very reason
why we picked κ instead of J in Sec. II A. From Eqs. (11)
and (71) one has

lim
r→∞

cos θ1 ¼
ð1þ qÞ½κM−2ð1þ qÞ − qχeff �

ð1 − qÞχ1
; ð72Þ

lim
r→∞

cos θ2 ¼
ð1þ qÞ½χeff − κM−2ð1þ qÞ�

ð1 − qÞqχ2
: ð73Þ

The large-separation limit is therefore that peculiar location
in the parameters space where all three variables χeff , κ, and
δχ are constant. In particular, combining Eqs. (11), (15),
and (71) returns

lim
r→∞

δχ ¼ 1þ q
1 − q

�
2

κ

M2
− χeff

�
: ð74Þ

The latter expression can also be found using Eq. (28): for
r → ∞, one has σ3 → 0 such that ðdδχ=dtÞ2 becomes a
quadratic polynomial with two coincident roots given by
Eq. (74). The scaling with the separation is important here.
In particular, the difference between the right- and left-hand
sides of Eq. (74) is equal to the term in parentheses in
Eq. (16) and is related to the magnitude of the total spin S.
The magnitude S ≤ jS1 þ S2j must remain finite at any
separation, including r → ∞, which implies

lim
r→∞

�
2

κ

M2
− χeff −

1 − q
1þ q

δχ

�
¼ O

� ffiffiffiffiffi
M
r

r �
: ð75Þ

From this expression, one can make sense of the cosines
in Eqs. (19) and (20), which indeed do not diverge
as r → ∞.
For the same reason, in the large-separation limit one

cannot naively evaluate Eq. (62) to compute hS2i and
integrate dκ=du. The right-hand side, however, can be
computed directly from the geometrical definition of
Eq. (13). At large separations, the two spins move along
cones of constant opening angles given by Eqs. (72) and
(73) with different angular velocities (at least in the generic
case where q ≠ 1). The only parameter that varies on the
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precession timescale is therefore ΔΦ, which can be used to
parametrize the precession cycle (this is not possible at
finite values of r). One has hcos θ1i ¼ const, hcos θ2i ¼
const, and hcosΔΦi ¼ R π−π cosΔΦdΔΦ=2π ¼ 0. Plug-
ging these estimates and Eqs. (72)–(73) into Eq. (13)
returns

lim
r→∞

hS2i ¼ S21 þ S22 þ 2S1S2 cos θ1 cos θ2 ð76Þ

¼ χ21 þ q4χ22
ð1þ qÞ4 M4 −

2q
ð1 − qÞ2ð1þ qÞ2

× ½ð1þ qÞκ − χeffM2�½ð1þ qÞκ − qχeffM2�:
ð77Þ

In our numerical implementation, we rely on this analytic
expression whenever the dκ=du ODE solver attempts a step
with u ≤ 0.
For binaries at infinitely large separations, the

boundaries of the asymptotic angular momentum for fixed
values of q, χ1, and χ2 can be found by extremizing
Eq. (71):

−
χ1 þ q2χ2
ð1þ qÞ2 ≤ lim

r→∞

κ

M2
≤
χ1 þ q2χ2
ð1þ qÞ2 ; ð78Þ

which is indeed the r → ∞ limit of Eq. (39). The spin-orbit
resonances can then be computed by extremizing κ under
the constrained values of q, χ1, χ2, and χeff . From Eqs. (11)
and (71), one has

lim
r→∞

κ�
M2

¼ max
min
�
qð1þ qÞχeff � ð1 − qÞχ1

ð1þ qÞ2 ;

×
ð1þ qÞχeff � qð1 − qÞχ2

ð1þ qÞ2
�
; ð79Þ

where min and max refer to þ and −, respectively.
Equivalently, taking the r → ∞ limit of the discri-
minant ΔðκÞ returns a quartic polynomial where the
four roots are those listed in Eq. (79); the resonances
are then found by excluding the smallest and the largest of
the four, which correspond to the min/max operation
in front.
The leading-order expression for the period τ and the

angle α were computed in Refs. [8,14] using a geometrical
argument similar to the one above. Their result, which we
verified with the new formulation, reads

lim
r→∞

τ ¼ 4π

3

�
r
M

�
5=2 1þ q

1 − q
; ð80Þ

lim
r→∞

α ¼
8<
:

2πqð4þ3qÞ
3ð1−q2Þ if Y ≥ 0;

2πð4qþ3Þ
3ð1−q2Þ if Y < 0;

ð81Þ

where

Y ¼ 2qð1þ qÞ3 κ

M2
χeff − ð1þ qÞ5 κ2

M4

þ ð1 − qÞðχ21 − q4χ22Þ: ð82Þ

3. Equal masses and large separations

The case of binaries with equal masses at infinitely large
separations is delicate. Taking the r → ∞ limit of Eq. (16)
returns S2 → ∞ and taking the q → 1 limit of Eq. (74)
returns δχ → ∞; both results are clearly unphysical.
The key point here is that, while both κ and χeff are

constant for r → ∞, they are not necessarily independent of
each other. Equation (69) reveals that

lim
r→∞

lim
q→1

κ

M2
¼ χeff

2
; ð83Þ

where the order of the limits is important (we con-
sider equal-mass binaries and propagate them back to large
separations). The same result can be found from Eqs. (11)
and (71), and Eq. (79) indicates that the spin-orbit reso-
nances also tend to the same value. The condition of
Eq. (83) keeps the r → ∞ limit of Eq. (67) regular,
ensuring that S remains constant.
The unfortunate consequence of Eq. (83) is that the

formalism presented in this paper cannot accommodate
q ¼ 1 binaries at r → ∞. For instance, all the σi from
Eq. (27) tend to zero (see Appendix A). Consider the
Cauchy problem described in Sec. III B where, for a given
set of constants of motion ðq; χ1; χ2; χeffÞ, one needs to
prescribe an initial condition κ0 at u0. If u0 ¼ 0, there is
only one consistent value of κ0 as determined by the
constant of motion χeff from Eq. (83). Physically, binaries
can have different spin orientations, but the labeling
strategy we use (i.e., χeff and κ) becomes degenerate.
This is a similar issue to that addressed (and solved) in
Sec. II A, where using δχ instead of S cures the q ¼ 1
coordinate singularity on the precessional timescale. On the
radiation-reaction timescale, this coordinate singularity is
still present but only at infinitely large separations.
Regularizing the joint limits of q → 1 and r → ∞ requires
the identification of an inspiral parameter that, unlike κ, is
not uniquely determined by the constants of motion. This
investigation is postponed to future work.
Let us note that this parameter degeneracy only affects

evolutions from infinitely large separation. Integrating
dκ=du with q ¼ 1 backward to past time infinity is a
sound operation and simply returns the limit of Eq. (83).
However, one cannot then convert the result to θ1;2;
cf. Eqs. (72) and (73), which diverge.

B. ΔΦ morphologies

The binary dynamics on the precession timescale can
be classified into the so-called “spin morphologies,”
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according to the behavior of the angle ΔΦ. These were
identified in Refs. [3,4] and used extensively afterward
[7,9,10,12,24,25,29,35,38].
Binaries with either δχ ¼ δχ− or δχ ¼ δχþ correspond

to configurations where the three vectors L, S1 and S2
are coplanar. From Eq. (8), this implies either ΔΦ ¼ 0

or ΔΦ ¼ π. We refer to binaries as “librating” (L) if
ΔΦðδχ−Þ ¼ ΔΦðδχþÞ and “circulating” (C) if ΔΦðδχ−Þ ≠
ΔΦðδχþÞ. There are four possible cases:
(1) L0: ΔΦðδχ−Þ ¼ ΔΦðδχþÞ ¼ 0.
(2) Lπ: ΔΦðδχ−Þ ¼ ΔΦðδχþÞ ¼ π.
(3) Cþ: ΔΦðδχ−Þ ¼ 0 and ΔΦðδχþÞ ¼ π.
(4) C−: ΔΦðδχ−Þ ¼ π and ΔΦðδχþÞ ¼ 0.

Previous studies on the subject have grouped together the
C− and Cþ morphologies into a single C class, though
early hints of this distinction can be found in Ref. [9].
The spin morphology depends on κ, χeff , r, q, χ1, and χ2,

but not on δχ: it is therefore constant on the precession
timescale while radiation reaction can cause transitions
between the different classes. We refer the reader to Ref. [4]
for an extensive exploration of these transitions. In a
nutshell, morphological transitions take place whenever
either S1 or S2 are aligned with L at any point during the
precession cycle. Much like the longitude at Earth’s North
Pole, the angle ΔΦ is instantaneously ill defined if one spin
is aligned, allowing for a discontinuous jump between 0
and π at either δχ− or δχþ. In general, all binaries with
q < 1 belong to the Cþ class at r → ∞ and tend to
transition to the L classes as they inspiral toward merger.
Further transitions from the L classes to C− are possible but
much rarer [4].
The ΔΦ morphologies are also intimately related to the

spin-orbit resonances described in Sec. II C. These are
the locations κ� where δχ− ¼ δχþ. One can show [4] that
ΔΦ ¼ π at κ− and ΔΦ ¼ 0 at κþ. The resonances are
therefore the limits of the two librating morphologies when
the libration amplitude goes to zero. A more careful
investigation of this limit with a formal Taylor expansion
is an interesting avenue for future work.

C. Up-down instability

The spin-aligned configurations first mentioned in
Sec. II A, where cos θ1;2 ¼ �1, are all equilibrium con-
figurations of the equations of motion (21)–(26)—though
not all of them are stable. Reference [6] first showed
that up-down binaries—in which the primary BH spin is
aligned with the orbital angular momentum (θ1 ¼ 0) and
the secondary BH spin is antialigned (θ2 ¼ π)—are unsta-
ble to spin precession beyond a critical orbital separation
in their inspirals [11,13,72]. In such cases, perturbations
to the spin directions leads to wide precession cycles
rather than small-amplitude oscillations about alignment.
Reference [11] further showed that unstable up-down
sources asymptote to a well-defined and predictable

endpoint at small separations, rather than dispersing in
the available parameter space.
Here we reinvestigate these results using the new para-

metrization of the dynamics in terms of δχ. Let δχ� denote
the spin parameter for an aligned-spin configuration and
αi ¼ cos θi ¼ �1 denote the spin-orbit alignment of the
two BHs (i ¼ 1; 2). For the four aligned-spin configura-
tions one has

δχ� ¼ χ1α1 − qχ2α2
1þ q

; ð84Þ

χ�eff ¼
χ1α1 þ qχ2α2

1þ q
; ð85Þ

κ�

M2
¼ 1

2qð1þ qÞ2
�
2qðχ1α1 þ q2χ2α2Þ

þ ðχ21 þ q4χ22 þ 2q2ð1þ qÞ2χ1χ2α1α2Þ
ffiffiffiffiffi
M
r

r �
: ð86Þ

Taking a second time derivative in Eq. (28) and using
Eqs. (A3)–(A5) we therefore have, to leading order in a
perturbation δχ − δχ�, that [11]

d2

dt2
ðδχ − δχ�Þ þ ω2ðδχ − δχ�Þ ≃ 0; ð87Þ

where

M2ω2ðrÞ ¼ −σ̄ð3σ3δχ� þ σ2Þ ð88Þ

¼ 9

4

��
1 − q
1þ q

�
2 r
M

− 2
1 − q
1þ q

δχ�
ffiffiffiffiffi
r
M

r
þ χ�eff

2

�

×

� ffiffiffiffiffi
r
M

r
− χ�eff

�
2
�
M
r

�
7

ð89Þ

determines the oscillation frequency of the perturbed state.
An instability occurs when this frequency becomes com-
plex. Using Eq. (29) and Vieta’s formulas, ω ¼ 0 corre-
sponds to 3δχ� ¼ δχ− þ δχþ þ δχ3=ð1 − qÞ.
The repeated root r ¼ χ2effM from Eq. (89) is unphysical

since jχeff j ≤ 1. The other two roots areffiffiffiffiffi
r�
M

r
¼ 1þ q

1 − q
ðδχ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δχ�2 − χ�eff

2

q
Þ ð90Þ

¼ χ1α1 − qχ2α2 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−qχ1χ2α1α2

p
1 − q

: ð91Þ

It is straightforward to show that r� can only take real and
physical values for α1 ¼ −α2 ¼ 1, i.e., the up-down con-
figuration. In particular, unstable motion occurs at orbital
separations rUDþ ≥ r ≥ rUD−, where [6]

rUD�
M

¼ ð ffiffiffiffiffi
χ1

p � ffiffiffiffiffiffiffi
qχ2

p Þ4
ð1 − qÞ2 : ð92Þ
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From Eq. (89) one has limr→∞ ω2ðrÞ ≥ 0 such that rUDþ
marks the onsets of unstable spin precession. We also note
stability in the limits of equal masses (q → 1), extreme
mass ratios (q → 0), and zero spins (χ1;2 → 0).
After the instability is triggered, up-down binaries do not

disperse in parameter space but approach a well-defined
endpoint. For r > rUDþ, one can show that up-down
binaries are in the κþ spin-orbit resonance [6,11]. Since
resonant binaries remain so [11], the endpoint of the up-
down instability can be found using Eq. (40) as the formal
r → 0 limit of binary configurations with κ ¼ κþ.
In this limit, the discriminant equation Δ ¼ 0 can be

solved analytically in κ=u to obtain

lim
r→0

κ−
uM4

¼ max

�ðχ1 − q2χ2Þ2
ð1þ qÞ4 ;

1 − q
ð1þ qÞ4 ðχ

2
1 − q3χ22Þ þ

qχ2eff
ð1þ qÞ2

�
; ð93Þ

lim
r→0

κþ
uM4

¼ ðχ1 þ q2χ2Þ2
ð1þ qÞ4 : ð94Þ

According to Eq. (16), one has κ
ffiffiffi
r

p
∝ κ=u → S2 as r → 0.

Using Eqs. (10) and (11), and considering that κþ implies
ΔΦ ¼ 0 while κ− implies ΔΦ ¼ π, we find

lim
r→0;κ→κ−

cos θ1 ¼
8<
:

1þq
χ1−qχ2

χeff if jχeff j ≤ jχ1−qχ2j
1þq ;

χ2
1
−q2χ2

2
þð1þqÞ2χ2eff

2ð1þqÞχ1χeff otherwise;

ð95Þ

lim
r→0;κ→κ−

cos θ2 ¼
8<
:

1þq
qχ2−χ1

χeff if jχeff j ≤ jχ1−qχ2j
1þq ;

q2χ2
2
−χ2

1
þð1þqÞ2χ2eff

2qð1þqÞχ2χeff otherwise;

ð96Þ

lim
r→0;κ→κþ

cos θ1 ¼
1þ q

χ1 þ qχ2
χeff ; ð97Þ

lim
r→0;κ→κþ

cos θ2 ¼
1þ q

χ1 þ qχ2
χeff : ð98Þ

These are the generic limits of the two spin-orbit reso-
nances as r → 0. We arrive to the specific case of up-down
binaries by setting χeff ¼ ðχ1 − qχ2Þ=ð1þ qÞ in Eqs. (97)
and (98). The endpoint of the up-down instability is a
precessing configuration with [11]

cos θ1 ¼
χ1 − qχ2
χ1 þ qχ2

;

cos θ2 ¼
χ1 − qχ2
χ1 þ qχ2

;

ΔΦ ¼ 0: ð99Þ

Because of such unstable behavior, we find that binaries
that cross the up-down instability onset are the most
challenging to evolve numerically. This includes binaries
with cos θ1 ¼ 1 and cos θ2 ¼ −1 evolved forward in time
as well as binaries close to the endpoint of Eq. (99) evolved
backward in time. Numerical challenges related to up-down
binaries were also reported for the independent implemen-
tation described in Ref. [15].

D. Wide nutation

Reference [9] showed that, under specific conditions,
BH spins can oscillate from full alignment to full antialign-
ment within a single period τ. This phenomenon, which we
dubbed “wide nutation,” corresponds by definition to the
largest possible nutational motion in BH binary dynamics.
Hints of these configurations were previously found in
Refs. [73,74].
During the inspiral of a BH binary, wide nutation can only

occur for either the primary or the secondary BH, not both,
and only if the orbital separation is smaller than the threshold

rwide
M

¼
�
χ1 − qχ2
1 − q

�
2

: ð100Þ

More specifically, the wide-nutation condition for the pri-
mary BH corresponds to the constraints cos θ1ðδχ−Þ ¼ −1
and cos θ1ðδχþÞ ¼ þ1. These are satisfied if [9]

r ≤ rwide; ð101Þ

χ1 ≤ χ2; ð102Þ

χeff ¼ −
1 − q
1þ q

ffiffiffiffiffi
r
M

r
; ð103Þ

κ

M2
¼ χ21 − 2qχ21 þ q4χ22 − 2q2ð1 − qÞðr=MÞ

2qð1þ qÞ2 ffiffiffiffiffiffiffiffiffi
r=M

p : ð104Þ

For the secondary BH, the relevant conditions are
cos θ2ðδχ−Þ ¼ 1 and cos θ2ðδχþÞ ¼ −1 which can be trans-
lated to [9]

r ≤ rwide; ð105Þ

χ2 ≤ χ1; ð106Þ

χeff ¼
1 − q
1þ q

ffiffiffiffiffi
r
M

r
; ð107Þ

κ

M2
¼ χ21 − 2q3χ22 þ q4χ22 þ 2qð1 − qÞðr=MÞ

2qð1þ qÞ2 ffiffiffiffiffiffiffiffiffi
r=M

p : ð108Þ
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E. Estimators: χ p
The most commonly used estimator to quantify spin

precession in GW data is the so-called χp parameter first
introduced by Schmidt et al. [75]

χðheuÞp ¼ max

�
χ1 sin θ1; q

3þ 4q
4þ 3q

χ2 sin θ2

�
: ð109Þ

This expression was shown to be inconsistent in Ref. [33]
and generalized using a full timescale separation. Their
amended definition reads

χp ¼
�
ðχ1 sin θ1Þ2 þ

�
q
3þ 4q
4þ 3q

χ2 sin θ2

�
2

þ 2q
3þ 4q
4þ 3q

χ1χ2 sin θ1 sin θ2 cosΔΦ
�
1=2

ð110Þ

and, crucially, includes all variations that take place on the
precession timescale. It can thus be precession averaged
without ambiguities at the PN order considered here
(Sec. III A), resulting in a precession estimator hχpi that
only varies on the radiation-reaction timescale; see
Refs. [28,36,37,76] for applications and Refs. [14,77,78]
for alternative estimators.
While it is straightforward to estimate hχpi numerically

using our new formulation based on δχ, we were not able to
solve the resulting integral analytically. We note however

that the root mean square
ffiffiffiffiffiffiffiffiffi
hχ2pi

q
can instead be written

down in closed form [20]. Using Eqs. (17)–(19) we first
write

χ2p ¼ λ̄ðλ2δχ2 þ λ1δχ þ λ0Þ ð111Þ

where λ̄ and λi are coefficients that depend on κ, χeff , r, q,
χ1, and χ2, as provided in Appendix A. Using Eq. (32) we
obtain

ffiffiffiffiffiffiffiffiffi
hχ2pi

q
¼

ffiffiffī
λ

p
½ðδχþ − δχ−Þ2λ2hδχ̃2i þ ðδχþ − δχ−Þ

× ðλ1 þ 2δχ−λ2Þhδχ̃i þ ðδχ−λ1 þ δχ2−λ2 þ λ0Þ�1=2;
ð112Þ

where hδχ̃i and hδχ̃2i are given in Eqs. (59) and (60),
respectively, using elliptic integrals (see Fig. 5).
At infinitely large separations one has θ1;2 ¼ const and

hcosΔΦi ¼ 0 (Sec. IVA). Plugging these into Eq. (110)
and computing the average returns3

lim
r→∞

hχpi ¼
2

π

�
χ1 sin θ1 þ q

3þ 4q
4þ 3q

χ2 sin θ2

�

× E

��
4q

3þ 4q
4þ 3q

χ1χ2 sin θ1 sin θ2

�

×

�
χ1 sin θ1 þ q

3þ 4q
4þ 3q

χ2 sin θ2

�
−2
�

ð113Þ

and

lim
r→∞

ffiffiffiffiffiffiffiffiffi
hχ2pi

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðχ1 sin θ1Þ2 þ

�
q
3þ 4q
4þ 3q

χ2 sin θ2

�
2

s

ð114Þ

(recall that E is the complete elliptic integral of the second
kind). In the limit of single-spin binaries, both these

expressions reduce to the “heuristic” definition χðheuÞp

[75] reported in Eq. (110); see Ref. [33] for details.

It is important to stress that hχpi and
ffiffiffiffiffiffiffiffiffi
hχ2pi

q
are two

different estimators and one is not an approximation of

the other. In particular, one necessarily has
ffiffiffiffiffiffiffiffiffi
hχ2pi

q
≥

hχpi for any BH binary (this can be proven using the
Cauchy-Schwarz inequality in the L2 Hilbert space).
The domain of both estimators is [0, 2], unlike the
earlier definition of Ref. [33] which is defined in [0, 1].
The additional region [1, 2] is unique to binaries with
two precessing spins and can be exploited to probe the
underlying physics [36].
Figure 7 shows the relative and absolute difference

between hχpi and
ffiffiffiffiffiffiffiffiffi
hχ2pi

q
. For this exercise, we generated

a sample of BH binaries with uniform values offfiffiffiffiffiffiffiffiffi
hχ2pi

q
∈ ½0; 2�. This was obtained by numerically

reweighting an initial distribution where q, χ1, and χ2
are distributed uniformly in [0.1, 1], the separation is kept
fixed to r ¼ 10M, and spin directions are isotropic. We find
that the largest relative (absolute) differences between the
two are ∼0.12 (∼0.07) and take place for values

of
ffiffiffiffiffiffiffiffiffi
hχ2pi

q
∼ 0.7.

The crucial difference between the two is that
ffiffiffiffiffiffiffiffiffi
hχ2pi

q
is

about 104 times faster to evaluate than hχpi. For the sources
in Fig. 7, the average computational time on a standard off-
the-shelf laptop was ∼0.1 s for hχpi and ∼10−5 s forffiffiffiffiffiffiffiffiffi
hχ2pi

q
. This considerable speedup might turn out to be

useful when exploring the two-spin generalization of χp for
sampling purposes in GW parameter-estimation pipelines
(cf. Ref. [79] for current attempts using RIFT).

3Equation (113) is equivalent to Eq. (19) in Ref. [33] but
written in a more compact form.
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F. Estimators: Five phenomenological parameters

A more phenomenological approach to quantify the
amount of spin precession in a BH binary includes
exploiting frequencies and angles that are directly related

to the timescale separation of Eq. (1) [14,26,35].
Considering the joint precessional and nutational motion
of L about J, we define the following “geometric”
estimators [14]:
(1) the precession amplitude hθLi, which is the average

of Eq. (50);
(2) the precession frequency hΩLi ¼ α=τ, which is the

average of Eq. (51);
(3) the nutation amplitude ΔθL ¼ ½θLðδχ−Þ−

θLðδχþÞ�=2 describing the variation of θL during
a cycle;4

(4) the nutation frequency ω ¼ 2π=τ from Eq. (35); and
(5) the variation of the precession frequency due to

nutation, ΔΩL ¼ ½ΩLðδχ−Þ −ΩLðδχþÞ�=2.
In the case where a single spin dominates the binary

dynamics, the polar motion is suppressed and the nutational
parameters ΔθL and ΔΩL become irrelevant. Similarly,
binaries do not nutate when q ¼ 1 and in the case of the
spin-orbit resonances (because S is constant, see Ref. [14]
for details).

V. INTERFACE WITH OTHER INVESTIGATIONS

A. Orbit-averaged inspirals

The precession-averaged approach is built on top of the
standard orbit-averaged formulation of the BH binary
dynamics, which is briefly presented here for completeness.
In short, an orbit-averaged PN integration requires solving
nine coupled ODEs given in Eqs. (21)–(26) for LðtÞ, S1ðtÞ,
and S2ðtÞ. Equation (23) needs to be supplemented with a
prescription for dL=dt which encodes radiation reaction.
The momentum flux including (non)spinning terms up to
(3.5PN) 2PN reads (see Refs. [46,54,80], and references
therein)

dL
dt

¼ −
32

5

M8

L7

�
1 −

M4

L2
η2

743þ 924η

336
þM6

L3
η3
�
4π − ηχ1 cos θ1

�
113

12q
þ 25

4

�
− ηχ2 cos θ2

�
113q
12

þ 25

4

��
þM8

L4
η4

×

�
34103

18144
þ 13661

2016
ηþ 59

18
η2 þ ηχ21

96q
ð719cos2θ1 − 233Þ þ ηqχ22

96
ð719cos2θ2 − 233Þ þ ηχ1χ2

48
ð474 cos θ1 cos θ2

− 247 cosΔΦ sin θ1 sin θ2Þ
�
−
M10

L5
η5π

4159þ 15876η

672
þM12

L6
η6
�
16447322263

139708800
þ 16

3
π2 −

1712

105

�
γE þ ln

4ηM2

L

�

þ
�
451

48
π2 −

56198689

217728

�
ηþ 541

896
η2 −

5605

2592
η3
�
þM14

L7
η7π

�
−
4415

4032
þ 358675

6048
ηþ 91495

1512
η2
��

; ð115Þ

where η ¼ q=ð1þ qÞ2 and γE ≃ 0.577 is Euler’s constant.
In particular, spins enter at 1.5PN, which is the reason why
the precession-averaged approach to radiation reaction
presented in Sec. III can only be extended up to 1PN
order. Orbit-averaged and precession-averaged integrations
have been extensively compared against each other in
Ref. [4].

B. Comparing to GW measurements

GW measurements are usually provided in the form of
samples from a posterior distribution, where the spin

FIG. 7. Relative (blue) and absolute (red) differences between

the two precession estimators hχpi and
ffiffiffiffiffiffiffiffiffi
hχ2pi

q
. We consider a

sample of BH binaries where
ffiffiffiffiffiffiffiffiffi
hχ2pi

q
is uniformly distributed in

[0, 2], as obtained from reweighting a base distribution where q,
χ1, and χ2 are uniformly distributed in [0.1, 1], r ¼ 10M, and spin
directions are isotropic. Shaded areas encompass 90% of the
binaries in each bin. Dashed lines mark the median error values.

4The signs of ΔθL and ΔΩL as reported here are chosen for
consistency with Ref. [14].

EFFICIENT MULTI-TIMESCALE DYNAMICS OF PRECESSING … PHYS. REV. D 108, 024042 (2023)

024042-17



directions are quoted at a reference emission frequency
fGW. For LIGO/Virgo, this is often (but not always [81]) set
to 20 Hz [39,48,49]. When interpreting GW data in light of
our formalism, one needs to convert fGW into a PN
separation r. To this end, let us first write the dimensionless
orbital frequency

ω̃ ¼ πG
c3

MfGW ≃ 1.48 × 10−5
�

M
M⊙

��
fGW
Hz

�
; ð116Þ

where we reinstated physical units for clarity. At 2PN, the
conversion between ω̃ and r is given by [51]

r
M

¼ 1

ω̃2=3

�
1 − ω̃2=3

�
1 −

q
3ð1þ qÞ2

�

−
ω̃

3ð1þ qÞ2 ½ð2þ 3qÞχ1 cos θ1 þ qð3þ 2qÞχ2 cos θ2�

þ ω̃4=3 q
2ð1þ qÞ2

�
19

2
þ 2q
9ð1þ qÞ2

þ χ1χ2ð2 cos θ1 cos θ2 − cosΔΦ sin θ1 sin θ2Þ
��

;

ð117Þ

while the inverse transformation is [51]

ω̃ ¼
�
M
r

�
3=2
�
1 −

M
r

�
3 −

q
ð1þ qÞ2

�
−
�
M
r

�
3=2 1

ð1þ qÞ2
× ½ð2þ 3qÞχ1 cos θ1 þ qð3þ 2qÞχ2 cos θ2�

þ
�
M
r

�
2
�
6þ 41q

4ð1þ qÞ2 þ
q2

ð1þ qÞ4 þ
3q

2ð1þ qÞ2

× χ1χ2ð2 cos θ1 cos θ2 − cosΔΦ sin θ1 sin θ2Þ
��

1=2
:

ð118Þ

For current LIGO/Virgo observations of BH binaries,
fGW is only a few orbits away from merger, where tpre is
likely to be comparable with trad and the precession-
averaged formalism breaks down [4,15,15]. A more solid
approach, therefore, is that of a hybrid evolution [5,12],
where one first propagates LIGO samples backward using
an orbit-averaged integration (which is numerically expen-
sive but keeps track of the precession phase) and then
switches to a precession-averaged formulation (which is
less accurate but can be easily be extended all the way to
r ¼ ∞, i.e., fGW ¼ 0).
The transition threshold rt between the orbit-averaged

and the precession-averaged approach is somewhat arbi-
trary, but it has a negligible effect as long as it falls in
the regime where tpre ≪ trad. For a rule of thumb, we find
that switching between the two formulations at rt ¼
1000M provides accurate results while maintaining the

computational cost under control [4,12]. For a deeper
investigation of the transition between orbit- and preces-
sion-averaged PN integrations see Ref. [15].

C. Remnant properties

Modeling the properties of remnant BHs left behind
following binary mergers has important applications in
both astrophysics and GW analyses (cf. Refs. [12,82–85]
for a few, nonexhaustive examples). In line with previous
versions of PRECESSION [5], the new code presented in
Sec. VI includes fitting formulas to numerical-relativity
simulations that model the mass Mf , spin χf , and proper
velocity (or kick) vf of the postmerger remnant. In
particular, we implement phenomenological expressions
from Ref. [86] for the final mass, Ref. [71] for the final
spin, and Ref. [5] for the BH kick. These were assembled
using several NR simulations available at the time (see
references therein for details and credits to the various NR
runs). The direction of the final spin is approximated using
the total angular momentum before merger [71].
Those formulas provide estimates of Mf , χf , vf as a

function of q, χ1, χ2, θ1, θ2, and ΔΦ. More specifically, the
final-mass prescription we implement does not depend on
ΔΦ while the kick velocity has an additional dependence
on the orbital phase, which we assume to be randomly
distributed [5]. Crucially, these predictions are inherently ill
posed because they do not depend on the orbital separation,
even though r is a necessary coordinate to specify the
binary configuration (see Sec. II A). The rationale is that
those expressions should only be applied sufficiently close
to merger (r ≃ 10M) where tpre ∼ trad and the spins do not
precess much.
A more accurate approach to predicting the properties

of postmerger BHs relies on surrogate modeling techni-
ques first developed for waveform approximants [87,88].
Remnant surrogates are data-driven fits to NR simulations
that do not assume a specific functional form. While this
solves the quoted ambiguity on the orbital separation, their
predictions are limited to the region of the parameter space
where NR coverage is sufficiently dense. Within their
regime of validity, surrogate remnants are more accurate
than the simple expressions implemented in PRECESSION

and should be used [87].

VI. NUMERICAL IMPLEMENTATION

A. Distribution and documentation

A public implementation of our findings is distributed in
the PRECESSION module for the PYTHON programming
language. Version v1 of PRECESSION was illustrated in
Ref. [5]. The code presented here is tagged v2 and has been
rewritten from scratch. In particular, we broke backward
compatibility because the mathematical formulation pre-
sented in this paper could not be encapsulated into the
existing routines.
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The source code is available at [41]

github.com/dgerosa/precession (source code).

The code documentation can be browsed at

dgerosa.github.io/precession (documentation)

and includes a detailed list of all functions together with
tutorials to perform some of the key operations. The code is
distributed via the PYTHON Package Index (PyPI) and can
be installed with

pip install precession (installation).

Dependencies are limited to NUMPY [56] and SCIPY [89].
The general structure of the code is that of a toolbox,

namely a series of functions that can be chained by the user
to perform the desired calculation. In particular, we provide
tools to (i) capture the BH dynamics on the spin-precession
timescale in closed form, (ii) average generic quantities
over a precession period, (iii) numerically integrate the BH
binary inspiral using both orbit- and precession-averaged
approximations, (v) evaluate spin-precession estimators,
and (vi) estimate the remnant properties.
Code units are such thatG ¼ c ¼ M ¼ 1, whereM is the

total mass of the binary. There are a few exceptionswherewe
interface our scale-free calculations with GW detectors. In
those cases, inputs and outputs are more conveniently
expressed inM⊙, hertz, etc. The order of inputs and outputs
respects the timescale hierarchy of precessing BH binaries,
with variables varying on tpre listed first, then those varying
on trad, and finally the constants of motion.
Vectorization via NUMPYarrays is implemented whenever

it is compatible with the adopted NUMPYand SCIPY routines.
For the case of polynomial root finding, we developed
our own generalization as presented in Appendix B.
PRECESSION functions can digest inputs under the form of
NUMPY arrays and perform operations on an element-by-
element basis, in line with the NUMPY broadcasting rules. By
convention, outputs are returned as arrays of shape ðM;NÞ,
where M is the number of features and N is the number of
binaries under study (as given in the input arrays). For
consistency, this convention also applies to N ¼ 1 such that
studying a single GW source returns two-dimensional arrays
of shape ðM; 1Þ and not one-dimensional arrays of lengthM
(this is somewhat inspired by the convention adopted in the
popular SCIKIT-LEARN PYTHON package [90]).
Lengthy equations have been generated using the com-

puter-algebra software MATHEMATICA and exported to
PYTHON. Our source MATHEMATICA notebook is made
available in the PRECESSION repository [41].

B. Performance

We test the performance of our new implementation on a
population of 105 BH binaries with q, χ1, and χ2 distributed
uniformly in [0.1, 1] and isotropic spin orientations. We
evolve these sources along their precession-averaged

inspiral from ri to rf ¼ 10M, where ri ∈ ½106M; 10MÞ
is distributed uniformly in log ri. We record the execution
times required to perform the entire procedure outlined in
Sec. III B, i.e., both an integration of the dκ=du ODE as
well as a resampling of the precessional phase at rf. Tests
were run on parallel threads using two Intel Xeon Gold
5220R processors.
Figure 8 compares the performance of PRECESSION v2

against that of PRECESSION v1 from Ref. [5]. We report wall-
clock times tv2 ¼ 0.06þ0.09

−0.03 s for the new code compared to
tv1 ¼ 2.75þ10.38

−1.86 s obtained with the previous version
(where we quote medians and the 90% interval across
all simulated sources). This corresponds to a speedup
of tv1=tv2 ¼ 49.6þ104.4

−19.5 .
Figure 9 shows the execution times of the new code in

bins of ri and q. The scaling with ri is essentially constant
(or, more conservatively, logarithmic [4]). Binaries with
mass ratios close to unity take, on average, about a factor of
≲3 longer to evolve compared to sources with q ∼ 0.1. This
is expected because the importance of spin-spin couplings
scales as S2=S1 ∝ q2.

C. Profiling

Figure 10 shows code profiling results for a set of
precession-averaged evolutions from the same population
described above. In particular, the ODE integrator takes

FIG. 8. Distribution of the CPU time (in seconds) required to
perform precession-averaged evolutions. The blue histogram
reports timings obtained with the version of the code presented
in this paper (PRECESSION v2). The orange histogram reports
timings obtained for the same BH binaries evolved with the
version of the code presented in Ref. [5] (PRECESSION v1). The
unit on the y-axis is arbitrary.
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about 96% of the time while the remaining ∼4% is spent
resampling the precessional phase at the final orbital
separation. Within the integrator, the evaluation of the
right-hand side from Eq. (62) requires the vast majority of
the resources (about 95% of the total execution time) while
a minor fraction of the time is taken by the ODE stepper.
Deeper into the code, the computation of the right-hand
side requires three operations with a noticeable com-
putational footprint: the evaluation of the coefficients

from Eqs. (A3)–(A6), the root finder to evaluate δχ�;3,
and the evaluation of the elliptic integral from Eq. (59).
These tasks require ∼28%, ∼54%, and ∼11% of the total
execution time. Possible computational improvements
include exploring just-in-time compilation for the evalu-
ation of σi [91] as well as porting the polynomial root finder
to GPUs [92].

VII. SUMMARY AND FUTURE
DEVELOPMENTS

The dynamics of precessing BH binaries is rich and
fascinating. This paper presents a complete reinvestigation
of the related phenomenology using multitimescale meth-
ods. Our strategy relies on double averaging the equations
of motion over both the orbital and the precessional
timescale. Radiation reaction is then captured in a quasia-
diabatic fashion.
Our previous approach [4] parametrized the dynamics

on the precession timescale using the magnitude of the
total spin S. While intuitive, it results in a coordinate
singularity when the two BHs have equal masses. On the
other hand, the formulation presented here uses the
weighted spin difference δχ which allows us to capture
the q → 1 limit, at least for finite orbital separations. The
joint limits of q → 1 and r → ∞ still need to be fully
understood, and we anticipate the solution will require
identifying a new radiation-timescale parameter to be
adopted instead of κ.
Using the new δχ formulation, we expanded upon

previous results (most notably Ref. [20]) and expressed
the 2PN spin-precession dynamics in closed form. While
some of the mathematical expressions presented in this
paper might appear convoluted, the entire evolution on tpre
is written down in terms of elliptic integrals and Jacobi
elliptic functions, which are extremely fast to evaluate
using standard numerical libraries.
Our numerical implementation is distributed in v2 of

the PRECESSION module for the PYTHON programming

FIG. 10. Code profiling of PRECESSION v2. The length of each colored bar indicates the fraction of the total CPU time spent on a given
operation, as indicated on the bottom x-axis. The top x-axis is rescaled to the mean CPU time per binary ∼0.064 s. Performing a
precession-averaged evolution requires an ODE integration (blue) and a resampling of the precessional phase at the final separation
(yellow). In turn, the integrator requires multiple evaluations of the right-hand side (orange) and the ODE stepper (cyan). In turn,
evaluating the right-hand side requires finding the roots of the cubic polynomial ΣðδχÞ (green), computing the coefficients σi (red), and
evaluating elliptic integrals (purple). Minor additional operations are marked in gray.

FIG. 9. CPU time (in seconds) required to perform precession-
averaged evolutions in bins of initial separation ri (top panel,
green) and mass ratio q (bottom panel, purple). Dashed (solid)
lines indicate the median (90% interval) wall-clock time recorded
across a broad population of sources.
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language; see github.com/dgerosa/precession [41]. Perfor-
ming precession-averaged binary BH inspirals from (infi-
nitely) large separations to the PN breakdown takes ≲0.1 s
on a standard, off-the-shelf chip. This increased speedup has
important applications in GW astronomy, including

(i) Postprocessing long posterior chains describing GW
events. These are provided at separations where BHs
are visible and need to be propagated backward to
separations where they form (e.g., Refs. [15,34]).

(ii) Evolve outputs from population-synthesis predic-
tions of astrophysical nature. These are provided
where BHs form and might need to be propagated
forward to small separations where they become
detectable (e.g., Refs. [23,24]).

In this paper, we only tackled BHs on quasicircular orbits.
A generalization of our formalism to eccentric systems is
under development; cf. Refs. [10,20,93] for existing inves-
tigations. Further extensions include considering higher-
order PN terms, as well as neutron stars (or exotic compact
objects) in addition to BHs [21,94,95]. These two lines of
research might require a similar mathematical formalism as
they both cause variations of χeff , which ceases to be a
constant of motion. The dynamics presented in this paper
could provide the background solution for a perturbative
approach where χeff is allowed to undergo small oscillations.
Finally, some of the most recent advances in PN theory
include the identification of constants of motion for the
nonaveraged problem, without recursing to any adiabatic
approximation [96–99]. A detailed comparison of our
predictions against theirs is another promising avenue for
future work.
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APPENDIX A: POLYNOMIAL COEFFICIENTS

In this appendix we list some lengthy equations that were
omitted from the main body of the paper.

We first report the coefficients entering the polynomial

Σ ¼ σ̄
X3
i¼0

σiδχ
i ðA1Þ

of Eq. (28). These are

σ̄ ¼ 4608u10M20
q11

ð1þ qÞ27 ½ð1þ qÞ2 − 2uM2qχeff �2; ðA2Þ

σ3 ¼ uM2ð1 − qÞ; ðA3Þ

σ2 ¼ −
ð1 − qÞ2ð1þ qÞ

2q
− uM2ð1þ qÞ

�
2

κ

M2
− χeff

�

þ 2u2M4
ð1 − qÞ
ð1þ qÞ3 ðχ

2
1 − q3χ22Þ; ðA4Þ

σ1 ¼
ð1 − qÞð1þ qÞ2

q

�
2

κ

M2
− χeff

�

− uM2
1 − q

qð1þ qÞ2 ½2ðχ
2
1 þ q4χ22Þ þ qð1þ qÞ2χ2eff �

þ 4u2M4
q

ð1þ qÞ3 ðχ
2
1 − q2χ22Þχeff ; ðA5Þ

σ0 ¼ −
ð1þ qÞ3

2q

�
2

κ

M2
− χeff

�
2

þ uM2

qð1þ qÞ
�
2

κ

M2
− χeff

�
× ½2ðχ21 þ q4χ22Þ þ qð1þ qÞ2χ2eff �

−
2u2M4

qð1þ qÞ5 ½ðχ
2
1 − q4χ22Þ2 þ qð1þ qÞ3ðχ21 þ q3χ22Þχ2eff �:

ðA6Þ

We now list the coefficients entering the discriminant in
Eq. (40). We break the calculation down as follows:

Δ ¼ δ̄
X5
i¼0

δi

�
κ

M2

�
i
¼ δ̄

X5
i¼0

X6
j¼0

δij

�
κ

M2

�
i
ðuM2Þj; ðA7Þ

such that the indexes i and j indicate the degree of a
polynomial expansion in κ and u, respectively. We then
systematically expand each δij in powers of χ1, χ2, and χeff .
The resulting prefactors are all rational functions of q. We
obtain

δ̄ ¼ 64
ð1þ qÞ6

q
u2M4; ðA8Þ

δ56 ¼ δ55 ¼ δ54 ¼ δ53 ¼ δ52 ¼ 0; ðA9Þ

δ51 ¼ −1; ðA10Þ

δ50 ¼ 0; ðA11Þ
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δ46 ¼ δ45 ¼ δ44 ¼ δ43 ¼ 0; ðA12Þ

δ42 ¼
5 − 3q
ð1þ qÞ4 χ

2
1 −

q3ð3 − 5qÞ
ð1þ qÞ4 χ22 þ

q
ð1þ qÞ2 χ

2
eff ; ðA13Þ

δ41 ¼
5

2
χeff ; ðA14Þ

δ40 ¼
ð1 − qÞ2
16q

; ðA15Þ

δ36 ¼ δ35 ¼ δ34 ¼ 0; ðA16Þ

δ33 ¼ −
10 − 12qþ 3q2

ð1þ qÞ8 χ41 þ
2q3ð6 − 11qþ 6q2Þ

ð1þ qÞ8 χ21χ
2
2 −

q6ð3 − 12qþ 10q2Þ
ð1þ qÞ8 χ42 −

2qð2 − qÞ
ð1þ qÞ6 χ21χ

2
eff þ

2q4ð1 − 2qÞ
ð1þ qÞ6 χ22χ

2
eff ;

ðA17Þ

δ32 ¼ −
20 − 3q − q2

2ð1þ qÞ5 χ21χeff þ
q3ð1þ 3q − 20q2Þ

2ð1þ qÞ5 χ22χeff −
2q

ð1þ qÞ2 χ
3
eff ; ðA18Þ

δ31 ¼ −
ð1 − qÞ2ð1 − 5qÞ

4qð1þ qÞ4 χ21 þ
q2ð1 − qÞ2ð5 − qÞ

4ð1þ qÞ4 χ22 −
2ð1þ 3qþ q2Þ

ð1þ qÞ2 χ2eff ; ðA19Þ

δ30 ¼ −
ð1 − qÞ2

8q
χeff ; ðA20Þ

δ26 ¼ δ25 ¼ 0; ðA21Þ

δ24 ¼
ð1 − qÞð10 − 8qþ q2Þ

ð1þ qÞ12 χ61 −
9q3ð1 − qÞð2 − 2qþ q2Þ

ð1þ qÞ12 χ41χ
2
2 þ

9q6ð1 − qÞð1 − 2qþ 2q2Þ
ð1þ qÞ12 χ21χ

4
2

−
q9ð1 − qÞð1 − 8qþ 10q2Þ

ð1þ qÞ12 χ62 þ
qð6 − 6qþ q2Þ

ð1þ qÞ10 χ41χ
2
eff −

2q4ð3 − 5qþ 3q2Þ
ð1þ qÞ10 χ21χ

2
2χ

2
eff þ

q7ð1 − 6qþ 6q2Þ
ð1þ qÞ10 χ42χ

2
eff ;

ðA22Þ

δ23 ¼
30 − 39qþ 19q2 − 4q3

2ð1þ qÞ9 χ41χeff −
3q3ð1þ q2Þ
2ð1þ qÞ8 χ21χ

2
2χeff −

q6ð4 − 19qþ 39q2 − 30q3Þ
2ð1þ qÞ9 χ42χeff

þ 2qð3 − qþ q2Þ
ð1þ qÞ7 χ21χ

3
eff þ

2q4ð1 − qþ 3q2Þ
ð1þ qÞ7 χ22χ

3
eff ; ðA23Þ

δ22 ¼
ð1 − qÞ2ð3 − 30q − 4q2Þ

8qð1þ qÞ8 χ41 −
q2ð1 − qÞ2ð15 − 29qþ 15q2Þ

4ð1þ qÞ8 χ21χ
2
2 −

q5ð1 − qÞ2ð4þ 30q − 3q2Þ
8ð1þ qÞ8 χ42

þ 12þ 2qþ 11q2 − q3

2ð1þ qÞ6 χ21χ
2
eff −

q3ð1 − 11q − 2q2 − 12q3Þ
2ð1þ qÞ6 χ22χ

2
eff þ

qð1þ 4qþ q2Þ
ð1þ qÞ4 χ4eff ; ðA24Þ

δ21 ¼
ð1 − qÞ2ð3 − 23q − 4q2Þ

8qð1þ qÞ5 χ21χeff −
q2ð1 − qÞ2ð4þ 23q − 3q2Þ

8ð1þ qÞ5 χ22χeff þ
1þ 8qþ q2

2ð1þ qÞ2 χ3eff ; ðA25Þ

δ20 ¼ −
ð1 − qÞ4

16qð1þ qÞ4 χ
2
1 −

qð1 − qÞ4
16ð1þ qÞ4 χ

2
2 þ

ð1 − qÞ2ð1þ 4qþ q2Þ
16qð1þ qÞ2 χ2eff ; ðA26Þ

δ16 ¼ 0; ðA27Þ
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δ15 ¼ −
ð1 − qÞ2ð5 − 2qÞ

ð1þ qÞ16 χ81 þ
2q3ð1 − qÞ2ð6 − qþ q2Þ

ð1þ qÞ16 χ61χ
2
2 −

9q6ð1 − qÞ2ð1þ q2Þ
ð1þ qÞ16 χ41χ

4
2

þ 2q9ð1 − qÞ2ð1 − qþ 6q2Þ
ð1þ qÞ16 χ21χ

6
2 þ

q13ð1 − qÞ2ð2 − 5qÞ
ð1þ qÞ16 χ82 −

2qð1 − qÞð2 − qÞ
ð1þ qÞ14 χ61χ

2
eff

þ 2q4ð1 − qÞð3 − qþ q2Þ
ð1þ qÞ14 χ41χ

2
2χ

2
eff −

2q7ð1 − qÞð1 − qþ 3q2Þ
ð1þ qÞ14 χ21χ

4
2χ

2
eff −

2q11ð1 − qÞð1 − 2qÞ
ð1þ qÞ14 χ62χ

2
eff ; ðA28Þ

δ14 ¼ −
ð1 − qÞð20 − 29qþ 12q2Þ

2ð1þ qÞ13 χ61χeff þ
q3ð1 − qÞð3þ 14q2 − 8q3Þ

2ð1þ qÞ13 χ41χ
2
2χeff þ

q6ð1 − qÞð8 − 14q − 3q3Þ
2ð1þ qÞ13 χ21χ

4
2χeff

þ q10ð1 − qÞð12 − 29qþ 20q2Þ
2ð1þ qÞ13 χ62χeff −

2qð3 − 5qþ 3q2Þ
ð1þ qÞ11 χ41χ

3
eff −

2q4ð1 − 2qÞð2 − qÞ
ð1þ qÞ10 χ21χ

2
2χ

3
eff

−
2q8ð3 − 5qþ 3q2Þ

ð1þ qÞ11 χ42χ
3
eff ; ðA29Þ

δ13 ¼ −
ð1− qÞ2ð1− 15q− 4q2Þ

4qð1þ qÞ12 χ61 þ
q2ð1− qÞ2ð15− 55qþ 18q2 þ 4q3Þ

4ð1þ qÞ12 χ41χ
2
2 þ

q5ð1− qÞ2ð4þ 18q− 55q2 þ 15q3Þ
4ð1þ qÞ12 χ21χ

4
2

þ q9ð1− qÞ2ð4þ 15q− q2Þ
4ð1þ qÞ12 χ62 −

6− 16qþ 18q2 − 5q3

ð1þ qÞ10 χ41χ
2
eff þ

q3ð1− 8qþ 20q2 − 8q3 þ q4Þ
ð1þ qÞ10 χ21χ

2
2χ

2
eff

þ q7ð5− 18qþ 16q2 − 6q3Þ
ð1þ qÞ10 χ42χ

2
eff −

2qð1− qþ 3q2Þ
ð1þ qÞ8 χ21χ

4
eff −

2q5ð3− qþ q2Þ
ð1þ qÞ8 χ22χ

4
eff ; ðA30Þ

δ12 ¼ −
ð1 − qÞ2ð3 − 49q − 16q2Þ

8qð1þ qÞ9 χ41χeff þ
q2ð1 − qÞ2ð4 − 7qþ 4q2Þ

4ð1þ qÞ8 χ21χ
2
2χeff þ

q6ð1 − qÞ2ð16þ 49q − 3q2Þ
8ð1þ qÞ9 χ42χeff

−
2 − 5qþ 19q2

2ð1þ qÞ7 χ21χ
3
eff −

q5ð19 − 5qþ 2q2Þ
2ð1þ qÞ7 χ22χ

3
eff −

2q2

ð1þ qÞ4 χ
5
eff ; ðA31Þ

δ11 ¼
ð1 − qÞ4

8qð1þ qÞ8 χ
4
1 þ

qð1 − qÞ4ð1 − 12qþ q2Þ
8ð1þ qÞ8 χ21χ

2
2 þ

q5ð1 − qÞ4
8ð1þ qÞ8 χ42 −

ð1 − qÞ2ð1 − 18q − 7q2Þ
8qð1þ qÞ6 χ21χ

2
eff

þ q3ð1 − qÞ2ð7þ 18q − q2Þ
8ð1þ qÞ6 χ22χ

2
eff −

qð1þ 3qþ q2Þ
ð1þ qÞ4 χ4eff ; ðA32Þ

δ10 ¼
ð1 − qÞ4

8qð1þ qÞ5 χ
2
1χeff þ

q2ð1 − qÞ4
8ð1þ qÞ5 χ22χeff −

ð1 − qÞ2
8ð1þ qÞ2 χ

3
eff ; ðA33Þ

δ06 ¼
ð1 − qÞ3
ð1þ qÞ20 χ

10
1 −

q3ð1 − qÞ3ð3þ 2qÞ
ð1þ qÞ20 χ81χ

2
2 þ

q6ð1 − qÞ3ð3þ 6qþ q2Þ
ð1þ qÞ20 χ61χ

4
2 −

q9ð1 − qÞ3ð1þ 6qþ 3q2Þ
ð1þ qÞ20 χ41χ

6
2

þ q13ð1 − qÞ3ð2þ 3qÞ
ð1þ qÞ20 χ21χ

8
2 −

q17ð1 − qÞ3
ð1þ qÞ20 χ102 þ qð1 − qÞ2

ð1þ qÞ18 χ
8
1χ

2
eff −

2q4ð1 − qÞ2
ð1þ qÞ17 χ61χ

2
2χ

2
eff

þ q7ð1 − qÞ2ð1þ 4qþ q2Þ
ð1þ qÞ18 χ41χ

4
2χ

2
eff −

2q11ð1 − qÞ2
ð1þ qÞ17 χ21χ

6
2χ

2
eff þ

q15ð1 − qÞ2
ð1þ qÞ18 χ82χ

2
eff ; ðA34Þ

δ05 ¼
ð1 − qÞ2ð5 − 8qÞ

2ð1þ qÞ17 χ81χeff −
q3ð1 − qÞ2ð1 − 4qÞð1þ 3qÞ

2ð1þ qÞ17 χ61χ
2
2χeff −

q6ð1 − qÞ2ð4þ qþ 4q2Þ
2ð1þ qÞ16 χ41χ

4
2χeff

þ q10ð1 − qÞ2ð4 − qÞð3þ qÞ
2ð1þ qÞ17 χ21χ

6
2χeff −

q14ð1 − qÞ2ð8 − 5qÞ
2ð1þ qÞ17 χ82χeff þ

2qð1 − qÞð1 − 2qÞ
ð1þ qÞ15 χ61χ

3
eff

þ 2q4ð1 − qÞð1 − qþ 3q2Þ
ð1þ qÞ15 χ41χ

2
2χ

3
eff −

2q8ð1 − qÞð3 − qþ q2Þ
ð1þ qÞ15 χ21χ

4
2χ

3
eff þ

2q12ð1 − qÞð2 − qÞ
ð1þ qÞ15 χ62χ

3
eff ; ðA35Þ
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δ04 ¼
ð1− qÞ2ð1− 20q− 8q2Þ

16qð1þ qÞ16 χ81 −
q2ð1− qÞ2ð5− 27qþ 3q2 − 8q3Þ

4ð1þ qÞ16 χ61χ
2
2 −

q5ð1− qÞ2ð4þ 6qþ 61q2 þ 6q3 þ 4q4Þ
8ð1þ qÞ16 χ41χ

4
2

þ q9ð1− qÞ2ð8− 3qþ 27q2 − 5q3Þ
4ð1þ qÞ16 χ21χ

6
2 −

q13ð1− qÞ2ð8þ 20q− q2Þ
16ð1þ qÞ16 χ82 þ

ð1− qÞð4− 18qþ 11q2Þ
2ð1þ qÞ14 χ61χ

2
eff

−
q3ð1− qÞð1− 4q− 14q2 þ 8q3Þ

2ð1þ qÞ14 χ41χ
2
2χ

2
eff þ

q7ð1− qÞð8− 14q− 4q2 þ q3Þ
2ð1þ qÞ14 χ21χ

4
2χ

2
eff

−
q11ð1− qÞð11− 18qþ 4q2Þ

2ð1þ qÞ14 χ62χ
2
eff þ

qð1− 6qþ 6q2Þ
ð1þ qÞ12 χ41χ

4
eff −

2q5ð3− 5qþ 3q2Þ
ð1þ qÞ12 χ21χ

2
2χ

4
eff þ

q9ð6− 6qþ q2Þ
ð1þ qÞ12 χ42χ

4
eff ;

ðA36Þ

δ03 ¼
ð1 − qÞ2ð1 − 25q − 12q2Þ

8qð1þ qÞ13 χ61χeff −
q2ð1 − qÞ2ð4 − 29qþ 21q2 − 32q3Þ

8ð1þ qÞ13 χ41χ
2
2χeff

þ q6ð1 − qÞ2ð32 − 21qþ 29q2 − 4q3Þ
8ð1þ qÞ13 χ21χ

4
2χeff −

q10ð1 − qÞ2ð12þ 25q − q2Þ
8ð1þ qÞ13 χ62χeff þ

1 − 14qþ 20q2 − 5q3

2ð1þ qÞ11 χ41χ
3
eff

−
q4ð2 − 3qþ 2q2Þ

ð1þ qÞ10 χ21χ
2
2χ

3
eff −

q8ð5 − 20qþ 14q2 − q3Þ
2ð1þ qÞ11 χ42χ

3
eff −

2q2ð1 − 2qÞ
ð1þ qÞ9 χ21χ

5
eff þ

2q6ð2 − qÞ
ð1þ qÞ9 χ22χ

5
eff ; ðA37Þ

δ02 ¼ −
ð1 − qÞ4

16qð1þ qÞ12 χ
6
1 −

qð1 − qÞ4ð1 − 24q − 10q2Þ
16ð1þ qÞ12 χ41χ

2
2 þ

q5ð1 − qÞ4ð10þ 24q − q2Þ
16ð1þ qÞ12 χ21χ

4
2 −

q9ð1 − qÞ4
16ð1þ qÞ12 χ

6
2

þ ð1 − qÞ2ð1 − 40q − 23q2Þ
16qð1þ qÞ10 χ41χ

2
eff þ

q3ð1 − qÞ2ð11 − 24qþ 11q2Þ
8ð1þ qÞ10 χ21χ

2
2χ

2
eff −

q7ð1 − qÞ2ð23þ 40q − q2Þ
16ð1þ qÞ10 χ42χ

2
eff

−
qð4 − 7q − q2Þ

2ð1þ qÞ8 χ21χ
4
eff þ

q5ð1þ 7q − 4q2Þ
2ð1þ qÞ8 χ22χ

4
eff þ

q3

ð1þ qÞ6 χ
6
eff ; ðA38Þ

δ01 ¼ −
ð1 − qÞ4

8qð1þ qÞ9 χ
4
1χeff þ

5q2ð1 − qÞ4
8ð1þ qÞ8 χ21χ

2
2χeff −

q6ð1 − qÞ4
8ð1þ qÞ9 χ42χeff −

ð1 − qÞ2ð5þ 3qÞ
8ð1þ qÞ7 χ21χ

3
eff

−
q4ð1 − qÞ2ð3þ 5qÞ

8ð1þ qÞ7 χ22χ
3
eff þ

q2

2ð1þ qÞ4 χ
5
eff ; ðA39Þ

δ00 ¼
qð1 − qÞ6
16ð1þ qÞ8 χ

2
1χ

2
2 −

ð1 − qÞ4
16qð1þ qÞ6 χ

2
1χ

2
eff −

q3ð1 − qÞ4
16ð1þ qÞ6 χ

2
2χ

2
eff þ

qð1 − qÞ2
16ð1þ qÞ4 χ

4
eff : ðA40Þ

The coefficients entering the expansion

χ2p ¼ λ̄
X2
i¼0

λiδχ
i ðA41Þ

of Eq. (111) are

λ̄ ¼ 1þ q
4qð4þ 3qÞ2uM2

; ðA42Þ

λ2 ¼ −qð1 − qÞ2ð1þ qÞuM2; ðA43Þ

λ1 ¼ −2ð1 − qÞð1þ qÞ2½ð4þ 3qÞð3þ 4qÞ þ 7qχeffuM2�;
ðA44Þ

λ0 ¼ 2ð1þ qÞ3ð4þ 3qÞð3þ 4qÞ
�
2

κ

M2
− χeff

�
− uM2f12ð1 − qÞ½ð4þ 3qÞχ21 − q3ð3þ 4qÞχ22�
þ 49qð1þ qÞ3χ2effg: ðA45Þ

APPENDIX B: POLYNOMIAL ROOT FINDING

Accurately determining roots of polynomials is a crucial
ingredient for the successful implementation of our for-
malism and dominates the overall computational cost
(Sec. VI C). Most notably, this is needed to compute
δχ�;3 and κ�. We find that the implementation readily
available in NUMPY.ROOTS [56] provides the necessary
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accuracy. However, it is not vectorized and can only handle
one root-finding problem at a time.
The mathematical problem is the following: we wish to

solve N equations of the kind

�XM
j¼0

cijxM−j ¼ 0

�N

i¼1

; ðB1Þ

where M is (larger than) the largest degree of all the
equations. The input is provided by the N ×M matrix C
with elements cij.
Array vectorization can be achieved by appropriately

inserting new array axes in the NUMPY.ROOTS code [100].
This, however, requires all equations in the array to be of
the same degree as values ci0 ¼ 0 cannot be accommodated
by the adopted companion-matrix algorithm [55]. The
public version of NUMPY.ROOTS addresses this issue by
stripping all trailing zeros from the input rank-1 array c1j
before performing the required linear-algebra operations.
This is not viable when considering N > 1 equations
because the number of trailing zeros could be different
in each row of the coefficient matrix C. For instance, this is
the case when considering binaries with both q < 1 and
q ¼ 1, such that some of the resulting equations ΣðδχÞ ¼ 0
are cubic and others are quadratic; cf. Sec. IVA.
We solve this issue by identifying the number of trailing

zeros in each row and applying a suitable permutation to
the element of that row such that those zeros end up in the
last columns. The resulting equations are all of the same
degree and present a number of additional null roots equal
to the number of trailing zeros in the original problem.
These spurious solutions can then be easily filtered out or
masked.
This is best explained with an example. Consider the set

of equations

x3 − 6x2 þ 11x − 6 ¼ 0;

x2 − 3xþ 2 ¼ 0;

x4 − 10x3 þ 35x2 − 50xþ 24 ¼ 0; ðB2Þ

with solutions

x ¼ 1; 2; 3;

x ¼ 1; 2;

x ¼ 1; 2; 3; 4: ðB3Þ

The coefficient matrix from Eq. (B2) is

C ¼

0
B@

0 1 −6 11 −6
0 0 1 −3 2

1 −10 35 −50 24

1
CA: ðB4Þ

The number of trailing zeros in each row is nt0 ¼ ð1; 2; 0Þ.
We cycle the coefficient of each row a number of times
given by nt0. This results in a modified coefficient matrix:

C0 ¼

0
B@

1 −6 11 −6 0

1 −3 2 0 0

1 −10 35 −50 24

1
CA; ðB5Þ

that can be easily digested by the vectorized version of
NUMPY.ROOTS [100]. The corresponding equations are

x04 − 6x03 þ 11x02 − 6x0 ¼ x0ðx03 − 6x02 þ 11x0 − 6Þ ¼ 0;

x04 − 3x03 þ 2x02 ¼ x02ðx02 − 3x0 þ 2Þ ¼ 0;

x04 − 10x03 þ 35x02 − 50x0 þ 24 ¼ 0;

ðB6Þ

with solutions

x0 ¼ 0; 1; 2; 3;

x0 ¼ 0; 0; 1; 2;

x0 ¼ 1; 2; 3; 4: ðB7Þ

Masking a number of zeros equal to nt0 ¼ ð1; 2; 0Þ in
each set returns the solutions of the original problem;
cf. Eq. (B3).
In short, our algorithm provides an array-compatible

generalization of NUMPY.ROOTS that can handle multiple
equations of different degrees.

APPENDIX C: USEFUL INTEGRALS

In this appendix, we report some standard integrals that
are used in this paper.
Let us first recall the definition of the elliptic integrals in

their Legendre form; see Ref. [57] for a complete intro-
duction. Given 0 ≤ φ ≤ π=2 and 0 ≤ m ≤ 1, one defines
the following special functions.

(i) Incomplete elliptic integral of the first kind:

Fðφ; mÞ ¼
Z

φ

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −msin2θ

p : ðC1Þ

(ii) Complete elliptic integral of the first kind:

KðmÞ ¼ F
�
φ ¼ π

2
; m
�
: ðC2Þ

(iii) Incomplete elliptic integral of the first kind:

Eðφ; mÞ ¼
Z

φ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −msin2θ

p
dθ: ðC3Þ
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(iv) Complete elliptic integral of the second kind:

EðmÞ ¼ E

�
φ ¼ π

2
; m

�
: ðC4Þ

(v) Incomplete elliptic integral of the third kind:

Πðn;φ; mÞ ¼
Z

φ

0

dθ

ð1 − nsin2θÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −msin2θ

p : ðC5Þ

(vi) Complete elliptic integral of the third kind:

Πðn;mÞ ¼ Π
�
n;φ ¼ π

2
; m

�
: ðC6Þ

Let us assume a < x < b ≤ c. The following integrals
involving the cubic function ðx − aÞðb − xÞðc − xÞ > 0 can
be reduced as follows:Z

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx − aÞðb − xÞðc − xÞp dx

¼ 2ffiffiffiffiffiffiffiffiffiffiffi
c − a

p F

�
arcsin

ffiffiffiffiffiffiffiffiffiffiffi
x − a
b − a

r
;
b − a
c − a

�
; ðC7Þ

Z
b

a

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða − xÞðb − xÞðc − xÞp dx ¼ 2ffiffiffiffiffiffiffiffiffiffiffi
c − a

p K

�
b − a
c − a

�
;

ðC8ÞZ
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx − aÞðb − xÞðc − xÞp dx

¼ 2ffiffiffiffiffiffiffiffiffiffiffi
c − a

p
�
cF

�
arcsin

ffiffiffiffiffiffiffiffiffiffiffi
x − a
b − a

r
;
b − a
c − a

�

− ðc − aÞE
�
arcsin

ffiffiffiffiffiffiffiffiffiffiffi
x − a
b − a

r
;
b − a
c − a

��
; ðC9Þ

Z
b

a

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx − aÞðb − xÞðc − xÞp dx

¼ 2ffiffiffiffiffiffiffiffiffiffiffi
c − a

p
�
cK

�
b − a
c − a

�
− ðc − aÞE

�
b − a
c − a

��
; ðC10Þ

Z
x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx − aÞðb − xÞðc − xÞp dx

¼ 2

3
ffiffiffiffiffiffiffiffiffiffiffi
c − a

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðc − aÞðx − aÞðb − xÞðc − xÞ
p

þ ½bðc − aÞ þ cðaþ 2cÞ�F
�
arcsin

ffiffiffiffiffiffiffiffiffiffiffi
x − a
b − a

r
;
b − a
c − a

�

− 2ðc − aÞðaþ bþ cÞE
�
arcsin

ffiffiffiffiffiffiffiffiffiffiffi
x − a
b − a

r
;
b − a
c − a

��
;

ðC11ÞZ
b

a

x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx − aÞðb − xÞðc − xÞp dx

¼ 2

3
ffiffiffiffiffiffiffiffiffiffiffi
c − a

p
�
½bðc − aÞ þ cðaþ 2cÞ�K

�
b − a
c − a

�

− 2ðc − aÞðaþ bþ cÞE
�
b − a
c − a

��
; ðC12Þ

Z
1

ðk − xÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx − aÞðb − xÞðc − xÞp dx

¼ 2ffiffiffiffiffiffiffiffiffiffiffi
c − a

p ðk − aÞΠ
�
b − a
k − a

; arcsin

ffiffiffiffiffiffiffiffiffiffiffi
x − a
b − a

r
;
b − a
c − a

�
;

ðC13ÞZ
b

a

1

ðk − xÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx − aÞðb − xÞðc − xÞp dx

¼ 2ffiffiffiffiffiffiffiffiffiffiffi
c − a

p ðk − aÞΠ
�
b − a
k − a

;
b − a
c − a

�
: ðC14Þ
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