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We provide a first principles derivation of the microscopic entropy of a very general class of
supersymmetric, rotating, and accelerating black holes in AdS4. This is achieved by analyzing the
large-N limit of the spindle index and completes the construction of the first example of a holographic
duality involving supersymmetric field theories defined on orbifolds with conical singularities.
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Introduction.—The explanation of the microscopic ori-
gin of the entropy of supersymmetric black holes in anti–de
Sitter (AdS) is one of the most spectacular successes of the
holographic duality. This was first accomplished in [1] for a
class of AdS4 black holes through the study of the large-N
limit of the topologically twisted index [2]. The landscape
of supersymmetric black holes was significantly broadened
in [3], which constructed a supersymmetric, rotating, and
accelerating black hole with spindle horizon, displaying a
number of remarkable features. Most strikingly, in this
solution supersymmetry is preserved via a novel mecha-
nism, referred to as antitwist. It is was later noted that
supersymmetry on the spindle may be preserved by means
of a more standard topological twist [4,5]. Utilizing the
insight of [6], it was shown in [7] that the on-shell action of
a supersymmetric and complex deformation of the black
hole of [3] takes the form of an entropy function, whose
extremization yields the Bekenstein-Hawking entropy. A
generalization of such entropy function was conjectured
in [8], where it was proposed that it can be expressed in
terms of gravitational blocks [9], as in all previous
examples of black holes. The block decomposition of
the gravitational entropy function was proved in [10] using
the formalism of [11] and then in [12] employing equiv-
ariant localization in supergravity.
Motivated by these developments, Refs. [13,14]

computed the localized partition function of N ¼ 2

Chern-Simons-matter theories defined on ⅀ × S1, where

⅀ ¼ WCP1
½nþ;n−� is the spindle, with either twist or anti-

twist for the R-symmetry connection A:
Z
⅀

dA
2π

¼ 1

2

�
1

n−
þ σ

nþ

�
≡ χσ

2
; ð1Þ

with σ ¼ �1. The result can be expressed by a single
formula, dubbed spindle index [13], which can be
defined [7] as a flavored Witten index,

Z⅀×S1 ¼ TrH½⅀�
h
e−i

P
d
α¼1

φαQαþiϵJ
i
; ð2Þ

whereQα are the generators of global symmetries of rank d,
J generates angular momentum on ⅀, H½⅀� is the Hilbert
space of Bogomol’nyi-Prasad-Sommerfield states on the
spindle, and the complex chemical potentials are related by
the constraint

Xd
α¼1

φα þ
χ−σ
2

ϵ ¼ 2πn; n∈Z: ð3Þ

In this Letter we will demonstrate that the large-N limit of
the spindle index reproduces the entropy functions asso-
ciated to the supersymmetric and accelerating AdS4 black
holes. Explicitly, the entropy of a black hole with electric
charges Qα and angular momentum J is obtained by
extremizing with respect to the variables φα and ϵ the
entropy function

S ≡ log Z⅀×S1 þ i
Xd
α¼1

φαQα − iϵJ; ð4Þ

under the constraint (3), setting n ¼ 1 and requiring that J,
Qα, and S are real. In the case nþ ¼ n− ¼ 1 our result
encompasses the large-N limit of both the topologically

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 133, 031603 (2024)

0031-9007=24=133(3)=031603(6) 031603-1 Published by the American Physical Society

https://orcid.org/0000-0001-9845-0584
https://orcid.org/0000-0001-8205-400X
https://orcid.org/0000-0002-9877-2222
https://orcid.org/0000-0003-0616-0681
https://orcid.org/0000-0001-8938-7587
https://ror.org/01vj6ck58
https://ror.org/01vj6ck58
https://ror.org/01vj6ck58
https://ror.org/041kmwe10
https://ror.org/01ynf4891
https://ror.org/01ynf4891
https://ror.org/03xejxm22
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.133.031603&domain=pdf&date_stamp=2024-07-18
https://doi.org/10.1103/PhysRevLett.133.031603
https://doi.org/10.1103/PhysRevLett.133.031603
https://doi.org/10.1103/PhysRevLett.133.031603
https://doi.org/10.1103/PhysRevLett.133.031603
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


twisted index and the generalized superconformal index.
More details and generalizations will be discussed in [15].
Spindle index matrix model.—We consider N ¼ 2

Chern-Simons-matter quiver gauge theories with gauge

group G ¼ QjGj
a¼1UðNÞa and chiral multiplets transforming

in either bifundamental or adjoint representations of the
gauge group factors. The index has been derived using
supersymmetric localization in [13,14] and it is written as
the matrix model,

Z⅀×S1ðφ;n; ϵÞ ¼
X
m∈Γh

I
C

du
jWGj

Ẑðu;mjφ;n; ϵÞ; ð5Þ

where h, Γh, and WG denote the Cartan algebra, the coroot
lattice, and the Weyl group of the gauge group G,
respectively, while C is a suitable integration contour for
u. Here we have collectively expressed by u∈ h and
m∈Γh the gauge holonomies on S1 and fluxes through
⅀, respectively. Similarly, φ and n are flavor or topological
charges and fluxes, with (5) implicitly depending on the
spindle data nþ; n− and the twist parameter σ.
We focus on theories whose gauge group and matter

content can be represented by a quiver diagram with jGj
nodes, where an arrow from node a to node b corresponds
to a bifundamental field in the representationNa ⊗ N̄b, and
a ¼ b indicates the adjoint representation. For each UðNÞa
factor there are N holonomies and fluxes ðuai ;ma

i ÞN−1
i¼0 ; for

each arrow we assign flavor charges and fluxes ðφI;nIÞ,
where the index I runs over all the jRj chiral multiplets of
the theory. If the corresponding arrow stretches from a node
a to a node b, we write I ∈ ða; bÞ. Moreover, for each node
we assign charges or fluxes ðφa

m;na
mÞ for the topological

symmetries. As in [13,14] we consider a choice of R
symmetry that assigns even charges to the chiral multiplets:
rI ∈ 2Z. For a chiral multiplet the corresponding chemical
potential φI is related to the flavor holonomy uFI via

φI ¼ 2πuFI þ
�
πn −

ϵ

4
χ−σ

�
rI; ð6Þ

where, for each monomial term W in the superpotential,
X
I ∈W

uFI ¼
X
I ∈W

nI ¼ 0;
X
I ∈W

rI ¼ 2; ð7Þ

so that

X
I ∈W

φI þ
χ−σ
2

ϵ ¼ 2πn: ð8Þ

Note that the index I runs over the fields belonging to a
superpotential term, while in (3) the index α labels the
generators of the global symmetries of the theory. For the
Aharony-Bergman-Jafferis-Maldacena (ABJM) model, that
is the main focus in this Letter, these two sets coincide.
More general quivers will be discussed in [15].

The integrand of (5) is the product of a classical part and
the one-loop determinants of chiral and vector multiplets.
In order to write it explicitly we need to introduce some
further notation [13]. First, we define the symbols σþ ¼ σ
and σ− ¼ −1. Then, we set

bIij ¼ 1 −
ma

i −mb
j

nþn−
−

nI

nþn−
−
rI
2
χσ −A−

I;ij − σAþ
I;ij;

cIij ¼ A−
I;ij − σAþ

I;ij; ð9Þ
for each arrow I∈ ða; bÞ, with

l�a;i ¼ n�

�
σ�a�ma

i

n�

�
;

A�
I;ij ¼

�
l�a;i − l�b;j þ σ�a�nI − rI=2

n�

�
; ð10Þ

and a� ∈Z such that nþa− − n−aþ ¼ 1. Moreover,
fxg≡ x − bxc. Note that bIij ∈Z, while l�a;i; n�A

�
I;ij ∈Zn� .

Denoting by

yIij ¼ e−iφI−2πiðuai −ubj Þ · qð1=2Þc
I
ij ; q ¼ eiϵ; ð11Þ

the gauge holonomies, the one-loop determinant contribu-
tion of the chiral multiplets (CMs) can be written as [13,14]

ZCM
1L ¼

YjRj

I¼1

YN−1

i;j¼0

ζσqðyIij; bIijÞ; ð12Þ

in terms of the function

ζσqðy; bÞ≡ ð−yÞð1−σ−2bÞ=4q½ð1−σÞðb−1Þ�=8 ðqð1þbÞ=2y−1; qÞ∞
ðqð1−bÞ=2σy−σ;qÞ∞

;

ð13Þ
where ðz; qÞ∞ is the q-Pochhammer symbol, y; q∈C,
b∈Z, and σ ¼ �1. This is the one-loop determinant of
a single chiral multiplet in an Abelian theory, satisfying

ζσqðy; bÞ ¼ ζσqðy−σ; 1 − σ − bÞ−σ: ð14Þ
The one-loop determinant of all vector multiplets reads

ZVM
1L ¼

YjGj
a¼1

YN−1

i;j¼0

ζσqðyaij; baijÞ; ð15Þ

where yaij, b
a
ij, c

a
ij, andA

�
a;ij are defined as in (9)–(11), with all

the instances of I and b replaced by a, and with the following
identifications: ra ≡ 2, na ≡ 0, φa ≡ 2πn − ðϵ=2Þχ−σ .
The classical part receives contributions from the

Chern-Simons terms, which can be written as [15]

ZCS
eff ¼

YjGj
a¼1

YN−1

i¼0

ð−yai Þkaðbai −1Þ; ð16Þ
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where we defined

yai ¼ e−2πiu
a
i · ql

−
a;i=2n−−σðlþa;i=2nþÞ;

bai ¼ 1 −
ma

i

nþn−
−
l−a;i
n−

− σ
lþa;i
nþ

: ð17Þ

In this Letter we restrict to the case where
P

a ka ¼ 0,
corresponding to N ¼ 2 Chern-Simons-matter quiver
gauge theories with an M theory dual AdS4 ×M7. The
topological symmetries also contribute to the classical part,
but the explicit expression will not be needed in this Letter.
Holomorphic block factorization.—The spindle index

factorizes into the product of dual holomorphic blocks [16].
It is convenient to use a choice of factorization that breaks
the Weyl symmetry of the gauge group, generalizing the
one introduced in [17] for the superconformal index.
Starting from (12), we split the product over i, j into a
product over i < j and one over i > j, ignoring the
diagonal terms that are subleading at large N, then we
apply (14) to the i > j terms and we find

ZCM
1L ¼

YjRj

I¼1

ΨI · B
þ
I · B−

I ; ð18Þ

where for I ∈ ða; bÞ we defined

ΨI ¼
Y
i<j

ðyIijÞð1−σ−2b
I
ijÞ=4ðyIjiÞ−ð1−σ−2b

I
jiÞ=4 · q½ð1−σÞðb

I
ij−b

I
jiÞ�=8;

B�
I ¼

Y
B−∶ i<j
Bþ∶ i>j

��
z�a;i
z�b;j

��σ�e−iσ�Δ
�
I q1−A

�
I;ij ; q

�
∞��

z�a;j
z�b;i

�∓σ�eiσ�Δ
�
I qA

�
I;ji ; q

�
∞

: ð19Þ

Note that here we have swapped the role of i, j in the blocks
for convenience. The ΨI will turn out to be subleading after
the cancellation of the long-range forces. The blocks B�

I
depend on the combinations

Δ�
I ¼ φI �

ϵ

2

�
nI

nþn−
þ χσ

2
rI

�
;

z�a;i ¼ e∓2πiuai q−m
a
i =2nþn− : ð20Þ

Note that the variables Δ�
I satisfy the constraints

X
I ∈W

Δ�
I ¼ 2πnþ σ�ϵ

n�
: ð21Þ

We derive the vector-multiplet counterparts of (18) and (19)
by replacing the indices I and b with a and applying
standard identifications.
Strategy for the large-N limit.—We will implement the

large-N limit of the spindle index by relying on its
factorization into holomorphic blocks, generalizing the
approach of [17–19]. For the partition functions on
S2 × S1 the sum over all the possible values of the gauge

fluxes m∈Γh ≡ ZjGjN is usually approximated at large N
by promoting the fluxes m to continuous variables.
However, for ⅀ × S1 this approximation is hindered by
the presence of fractional parts in (10). To take care of this,
we split each gauge flux as ma

i ≡ nþn−ðm0Þai þ rai , with
ðm0Þai ∈Z and rai ∈Znþn− . We then observe that there is a
one-to-one correspondence between the possible values of
l�a;i and rai :

l�a;i
n�

¼
�
σ�a�rai
n�

�
;

rai
nþn−

¼
�
−
l−a;i
n−

− σ
lþa;i
nþ

�
: ð22Þ

We can therefore split the sum over ma
i as

X
ma

i ∈Z

¼
Xn−−1
l−a;i¼0

Xnþ−1
lþa;i¼0

X
ðm0Þai ∈Z

; ð23Þ

and in the large-N limit we may promote the ðm0Þai to be
continuous variables while keeping the l�a;i discrete. Thus,
we approximate the integration measure of (5) by

X
m∈Γh

I
C

du
jWGj

⟶
X

l� ∈ ðZn�ÞjGjN

Z
Cþ

dzþ
Z
C−
dz−; ð24Þ

at large N, where the variables z� were defined in (20), C�

are appropriate middle-dimensional contours in CjGjN , and
the order of the Weyl group can be ignored since
log jWGj ¼ OðN logNÞ.
Since the B�

I blocks depend separately on z�, we will be
able to perform the saddle point approximation in z− and zþ
independently of one another. However, the right-hand side
of (24) also features a sum over the vectors of integers l�,
which can take a total of ðnþn−ÞjGjN possible values,
exponentially growing with N. At large N only one value
of the l� is expected to dominate at any given region of the
parameter space: in particular, there will be one such value
associated to the saddle point that reproduces the accel-
erating AdS4 black holes. Two observations are in order to
find the correct ansatz for l�. First, we need to restrict our
attention to the set of possible choices of l� that, up to an
appropriate permutation of the index i, are periodic under
shifts i → iþ T for some T ≪ N. This assumption is
necessary in order to be able to take (partially) the
continuum limit: splitting the index i as i ¼ Ti0 þ {̃, with
ĩ∈ f0;…; T − 1g, makes the fluxes l�a;i depend only on the
index {̃, l�a;i ≡ l�

a;ĩ
. Hence, at large N the index i0 can be

replaced with a continuous variable t. Second, all the
known methods for computing 3D partition functions at
large N [1,20,21] require that terms with i ∼ j dominate
over the terms with ji − jj ≫ 1. The latter are called “long-
range forces” and with the appropriate assumptions they
cancel out at leading order, at least for a class of quiver
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theories that we shall discuss momentarily. The cancella-
tion of long-range forces constrains the possible choices of
l�, although in general the constraint is complicated and it
involves the value of z� as well. Remarkably, the special
value

l�a;i ¼ i mod n� ð25Þ

makes the long-range forces vanish for any z�. We also
anticipate that (25), along with a simple ansatz for z�,
reproduces the entropy of accelerating AdS4 black holes.
Curiously, (25) exhibits a strong similarity to the ansatz
reproducing the entropy of AdS5 black holes with arbitrary
momenta, as discussed in [22,23].
Long-range forces cancellation.—In (19) the prefactors

ΨI encode long-range forces among the variables z� that
could spoil the large-N limit. As in previous work on 3d
theories, we cancel the long-range forces by restricting to
“nonchiral” quivers, where for any bifundamental connect-
ing the nodes a and b there is a bifundamental connecting b
and a and

X
I ∈ ðaÞ

nI ¼
X
I ∈ ðaÞ

uFI ¼
X
I ∈ ðaÞ

ðrI − 1Þ þ 2 ¼ 0 ð26Þ

at each node a, where the sum is taken over all the arrows in
the quiver with an end point at the node a, with adjoint
chirals counting twice. In a four-dimensional quiver this
condition would be equivalent to the absence of ABJ
anomalies for any symmetry. The conditions (26) also
imply that Tr Q ¼ 0 for any global or R-symmetry with
generator Q, where the trace is taken over all the fermions
in the theory.
Using the periodicity relation l�a;i ¼ l�a;iþT that we have

assumed, for the nonchiral quivers satisfying (26) the
product of all the prefactor terms (19) at large N can be
simplified down to

YjRj

I¼1

ΨI ·
YjGj
a¼1

Ψa ⟶
YjRj

I¼1

Ψ̃I ·
YjGj
a¼1

Ψ̃a; ð27Þ

where for I ∈ ða; bÞ,

Ψ̃I ¼
Y
s¼�

YN−1

i;j¼0

�
zsa;i
zsb;j

�ðσs=4Þð1−1=ns−2As
I;ijÞsgnði−jÞ

; ð28Þ

and a similar definition holds for Ψ̃a. Requiring the right-
hand side of (27) to vanish yields a mixed constraint on l�

and z�. Crucially, the ansatz (25) is the only one that
satisfies the property

1

n�

Xj0þn�−1

j¼j0

A�
I;ij ¼

1

2

�
1 −

1

n�

�
ð29Þ

(and a similar relation with i, j inverted) ensuring that the
long-range forces coming from (27) vanish for any z�.
Thanks to the Weyl-symmetry breaking factorization that
we have used, the blocks B�

I will not produce any long-
range term at leading order, as we will now show.
Holomorphic blocks at largeN.—In order to compute the

large-N limit of the blocks B�
I , we will first consider the

usual ansatz for the saddle point distribution of z� [1,20,21],

log z�a;i ¼ −σ�Nαti ∓ iy�a ðtiÞ; ð30Þ

where ti, yaðtiÞ are real and are assumed to be ordered so that
ti ≤ tj for i < j. The power of N must be set to α ¼ 1

2
,

otherwise the one-loop contributions and the Chern-Simons
termswould growwith a different power law at largeN and it
would not be possible to find nontrivial critical points.When
we take the continuum limit we split the index i≡ Ti0 þ {̃:
assuming that the eigenvalues ti conform to a single
continuous distribution at large N allows us to make the
replacements ti ≡ ti0 ≡ t and define the eigenvalue density
ρ�ðtÞ such that

1

N

XN−1

i¼0

• ⟶
1

T

XT−1
{̃¼0

Z
dtρ�ðtÞ•;

Z
dtρ�ðtÞ ¼ 1: ð31Þ

Expanding the q-Pochhammer symbols in terms of poly-
logarithms at all orders in ϵ and taking the large-N limit of
each term as in [1,20,21] yields

logB�
I ¼ N3=2

X2
k¼0

ϵk−1
Bk

k!
1

T2

XT−1
{̃;|̃¼0

Z
dtρ�ðtÞ2

× g3−k½−σ�δy�abðtÞ − σ�Δ�
I − ϵA�

I;{̃ |̃� þ oðN3=2Þ;
ð32Þ

with Bk ¼ Bkð1Þ ¼ f1; 1
2
; 1
6
;…g and

gkðxÞ ¼
ð2πÞk
k!

Bk

�
x
2π

þ ν

�
; ð33Þ

whereBkðwÞ are the Bernoulli polynomials and the integer ν
in (33) must be chosen so that Imð1=ϵÞ < Imfð1=ϵÞ×
½ðx=2πÞ þ ν�g < 0. We are using the notation δy�abðtÞ≡
y�a ðtÞ − y�b ðtÞ.
Large-N limit of the spindle index.—We assume that the

index is dominated by the configuration (25), which leads
to a consistent large-N limit. The large-N limit of the
classical Chern-Simons terms simplifies to

log ZCS
eff ¼ N3=2

X
a

X
s¼�

σs
ϵ
ka

Z
dttρsðtÞysaðtÞ: ð34Þ

Consistentlywith fact that for saddleswith gravity duals flux
quantization implies N=ðnþn−Þ∈N [3], we can take
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T ¼ nþn−. Moreover, in order to compare with the black
hole solutions, we need to take n ¼ 1 [7]. Finally, we also
need to choose a determination: we assume that Imð1=ϵÞ <
Im½ð1=2πϵÞðy�abðtÞ þ φIÞ� < 0. After some algebra, the
explicit expression for l�a;i and the conditions (26) yield

log Z⅀×S1 ¼ −
X
s¼�

σs
Fðρs; δysab;Δs

IÞ
ϵ

; ð35Þ

with

Fðρ�; δy�ab;Δ�
I Þ

N3=2 ¼ −
X
a

ka

Z
dttρ�ðtÞy�a ðtÞ

þ
X

I ∈ ða;bÞ

Z
dtρ�ðtÞ2G�

3 ½δy�abðtÞ þ Δ�
I �;

ð36Þ

where G�
3 ðxÞ¼ 1

6
xðx−P

I∈WΔ�
I =2Þðx−

P
I∈WΔ�

I Þ. The
functions G�

3 ðxÞ are obtained by g3ðxÞ in the range
Rex∈ ½0; 2π� by replacing all occurrences of π withP

I ∈W Δ�
I =2. The two terms in (35) depend on different

variables and they can be extremized independently.
For example, for the ABJM theory dual to AdS4 × S7,

with jGj ¼ 2, Chern-Simons level k1 ¼ 1 and k2 ¼ −1, and
four bifundamental fields transforming as N1 ⊗ N̄2 for
I ¼ 1, 2 and as N2 ⊗ N̄1 for I ¼ 3, 4, we find

ð36Þ¼
Z

dttρ�δy�21−
1

2

Z
dtðρ�Þ2

�X
I

Δ�
I ðδy�21Þ2

−2ðΔ�
1 Δ�

2 −Δ�
3 Δ�

4 Þδy�21−
X

I<J<K

Δ�
I Δ�

J Δ�
K

�
: ð37Þ

This functional coincides with the large-N limit of the
effective twisted superpotential for the ABJM theory
derived in [1], expressed in terms of � quantities, and
its extremization is straightforward [24]. The explicit
expressions for ρ� and δy�21 can be found, for example,
in [[1], (2.70)–(2.75)]. The critical value is

Fðρ�; δy�21;Δ�
I Þjcrit ¼

2

3
N3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δ�

1 Δ�
2 Δ�

3 Δ�
4

q
: ð38Þ

Using (35) we recover the gravitational block form [8,25]
of the entropy function obtained in [7] and more generally
conjectured in [5]. The density of eigenvalues ρ� also
agrees with the gravitational analysis performed in [26].
We can extend the result to more general quivers: indeed,

the term of order zero of F in the ϵ expansion coincides
with the large-N limit of the effective twisted superpotential
of the N ¼ 2 theory [27],

i
Wðρ; δyab;ΔIÞ

N3=2 ¼ −
X
a

ka

Z
dttρðtÞyaðtÞ

þ
X

I ∈ ða;bÞ

Z
dtρðtÞ2g3½δyabðtÞ þ ΔI�;

ð39Þ

where ΔI ¼ Δ�
I jϵ¼0 ¼ 2πuFI þ πrI and we are ignoring

topological symmetries for simplicity. This agrees with
well-known asymptotic behavior of the holomorphic blocks
[16]: logðblockÞ ¼ iðW=ϵÞ þOðϵÞ. We then observe
that (36) is a homogeneous form of the large-N limit of
the effective twisted superpotentialW obtained by replacing
ΔI withΔ�

I and all occurrences of π with
P

I ∈W Δ�
I =2. The

extremization of (36) is then equivalent to the extremization
of W with the constraint

P
I ∈W ΔI ¼ 2π. One concludes

that the entropy function has always a block form

logZ⅀×S1 ¼
FcritðΔ−

I Þ
ϵ

− σ
FcritðΔþ

I Þ
ϵ

: ð40Þ

We also see that the block functionFcritðΔIÞ, up to factors, is
the homogeneous form of the large-N on-shell value of the
effective twisted superpotentialW. This has been computed
for many examples in [28]. At largeN,W coincides with the
S3 partition function of the N ¼ 2 theory [27] and,
for theories with an AdS4 ×M7 dual, the latter is in turn
related [20,21] to the Sasakian volume [29,30] ofM7. Using
this chain of equalities, one provides a field theory derivation
of the gravitational block decomposition obtained in
[10,12,31] for configurations with a “mesonic” (or “flavor”)
twist [32]. More details about topological symmetries and
issues with baryonic symmetries will be discussed in [15].
Discussion.—In this Letter, we solved the fundamental

problem of elucidating the microscopic origin of the
Bekenstein-Hawking entropy of the most general class
of rotating Bogomol’nyi-Prasad-Sommerfield black holes
currently known in four dimensions. Specifically, our
findings demonstrate that the microstates contributing to
the entropy of accelerating black holes in four-dimensional
anti–de Sitter space-time are precisely mirrored by the
physical degrees of freedom characterizing three-dimen-
sional gauge theories quantized on a spindle. To success-
fully solve this problem we developed a novel approach
tailored to deal with the degrees of freedom of gauge
theories on orbifolds. This technique holds vast potential
impact as it applies to supersymmetric systems in any
number of dimensions, including, e.g., three-dimensional
orbifold partition functions [14] and four-dimensional
orbifold indices [33]. Our results complete the construction
of the first duality between a gravitational theory and a
quantum field theory defined on an orbifold, paving the
way for a reenergized research program in holography.
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